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4.5 Thevenin’s Theorem

It often occurs in practice that a particular element in a circuit is vari-
able (usually called the load) while other elements are fixed. As a typ-
ical example, a household outlet terminal may be connected to different
appliances constituting a variable load. Each time the variable element
is changed, the entire circuit has to be analyzed all over again. To avoid
this problem, Thevenin’s theorem provides a technique by which the
fixed part of the circuit is replaced by an equivalent circuit.

According to Thevenin’s theorem, the linear circuit in Fig. 4.23(a)
can be replaced by that in Fig. 4.23(b). (The load in Fig. 4.23 may be
a single resistor or another circuit.) The circuit to the left of the ter-
minals a-b in Fig. 4.23(b) is known as the Thevenin equivalent circuit;
it was developed in 1883 by M. Leon Thevenin (1857-1926), a French
telegraph engineer.

Thevenin’s theorem states that a linear two-terminal circuit can be
replaced by an equivalent circuit consisting of a voltage source V4, in
series with a resistor Ry, where V4, is the open-circuit voltage at the
terminals and Ry, is the input or equivalent resistance at the terminals
when the independent sources are turned off.

The proof of the theorem will be given later, in Section 4.7. Our
major concern right now is how to find the Thevenin equivalent volt-
age Vy, and resistance Ry,. To do so, suppose the two circuits in
Fig. 4.23 are equivalent. Two circuits are said to be equivalent if they
have the same voltage-current relation at their terminals. Let us find
out what will make the two circuits in Fig. 4.23 equivalent. If the ter-
minals a-b are made open-circuited (by removing the load), no current
flows, so that the open-circuit voltage across the terminals a-b in
Fig. 4.23(a) must be equal to the voltage source Vyy, in Fig. 4.23(b),
since the two circuits are equivalent. Thus Vpy, is the open-circuit volt-
age across the terminals as shown in Fig. 4.24(a); that is,

VTh = Use (4'6)
Linear . a Linear circuit with a
two-terminal all independent R,
- Yoc sources set equal
circuit _
[ to zero —— N /]
Vin = e Ry, = Ry,

(a) (b)
Figure 4.24
Finding V1, and Ry,

Again, with the load disconnected and terminals a-b open-
circuited, we turn off all independent sources. The input resistance
(or equivalent resistance) of the dead circuit at the terminals a-b in
Fig. 4.23(a) must be equal to Ry, in Fig. 4.23(b) because the two circuits
are equivalent. Thus, Ry, is the input resistance at the terminals when the
independent sources are turned off, as shown in Fig. 4.24(b); that is,

Ry, = Ry, 4.7)
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Figure 4.23
Replacing a linear two-terminal circuit
by its Thevenin equivalent: (a) original
circuit, (b) the Thevenin equivalent
circuit.
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(b) Thevenin equivalent.
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To apply this idea in finding the Thevenin resistance Ry, we need
to consider two cases.

B CASE 1 If the network has no dependent sources, we turn off all
independent sources. Ry, is the input resistance of the network look-
ing between terminals a and b, as shown in Fig. 4.24(b).

B CASE 2 If the network has dependent sources, we turn off all
independent sources. As with superposition, dependent sources are not
to be turned off because they are controlled by circuit variables. We
apply a voltage source v,, at terminals @ and b and determine the result-
ing current i,. Then Ry, = v,/i,, as shown in Fig. 4.25(a). Alterna-
tively, we may insert a current source i, at terminals a-b as shown in
Fig. 4.25(b) and find the terminal voltage v,. Again Ry, = v,/i,. Either
of the two approaches will give the same result. In either approach we
may assume any value of v, and i,. For example, we may use v, = 1 V
or i, = 1 A, or even use unspecified values of v, or i,,.

It often occurs that Ry, takes a negative value. In this case, the
negative resistance (v = —iR) implies that the circuit is supplying
power. This is possible in a circuit with dependent sources; Example 4.10
will illustrate this.

Thevenin’s theorem is very important in circuit analysis. It helps
simplify a circuit. A large circuit may be replaced by a single indepen-
dent voltage source and a single resistor. This replacement technique
is a powerful tool in circuit design.

As mentioned earlier, a linear circuit with a variable load can be
replaced by the Thevenin equivalent, exclusive of the load. The equiv-
alent network behaves the same way externally as the original circuit.
Consider a linear circuit terminated by a load R;, as shown in Fig. 4.26(a).
The current ; through the load and the voltage V; across the load are
easily determined once the Thevenin equivalent of the circuit at the
load’s terminals is obtained, as shown in Fig. 4.26(b). From Fig. 4.26(b),
we obtain

1%
[ =—2 (4.82)
Rp, + R,
Vv, =R = — Ty (4.8b)
L — LLfRTh_i_RL Th o

Note from Fig. 4.26(b) that the Thevenin equivalent is a simple volt-
age divider, yielding V; by mere inspection.

Example 4.8

40 e
32V(# 129% ﬁ)zA %RL
b

Figure 4.27
For Example 4.8.

Find the Thevenin equivalent circuit of the circuit shown in Fig. 4.27, to
the left of the terminals a-b. Then find the current through R; = 6, 16,
and 36 Q.

Solution:
We find Ry, by turning off the 32-V voltage source (replacing it
with a short circuit) and the 2-A current source (replacing it with an
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open circuit). The circuit becomes what is shown in Fig. 4.28(a).
Thus,

4 X 12
16

Rp=4|12+1= +1=40

VTh

40 1Q 4Q
a A AMAN—0 a
+
% R
120 - 32V%> @ 12Q @ 2A Vi
o b gb
(a)

(b)

Figure 4.28
For Example 4.8: (a) finding Ry, (b) finding Vry,.

To find Vrpy, consider the circuit in Fig. 4.28(b). Applying mesh
analysis to the two loops, we obtain
=32 + 4iy + 12(i; — i) = 0, ip=—-2A
Solving for i;, we get i; = 0.5 A. Thus,
Vin = 1235, — i) = 12(0.5 + 2.0) =30V

Alternatively, it is even easier to use nodal analysis. We ignore the
1-Q) resistor since no current flows through it. At the top node, KCL

gives
2-Vm  ,_Vm
4 12
or
96 - 3VTh + 24 = VTh = VTh =30V
4Q
as obtained before. We could also use source transformation to find V. A g
The Thevenin equivalent circuit is shown in Fig. 4.29. The current ‘IL
through R; is 30V CD R,
Vin 30
IL = =
When R, = 6, Figure 4.29
The Thevenin equivalent circuit for
/ 30 3 A Example 4.8.
oo
When R; = 16,
30
I, =—=15A
E20
When R; = 36,
30
I; =—=075A

40
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Practice Problem 4.8 Using Thevenin’s theorem, find the equivalent circuit to the left of the
terminals in the circuit of Fig. 4.30. Then find 1.
6Q 6Q u
Y1 Answer: Vo, =6V, Rp, =3Q,1=15A.
12V 2A 40 21Q

b
Figure 4.30
For Practice Prob. 4.8.
Example 4.9 Find the Thevenin equivalent of the circuit in Fig. 4.31 at terminals a-b.
2, Solution:

This circuit contains a dependent source, unlike the circuit in the
previous example. To find Ry, we set the independent source equal to
2Q 2Q zero but leave the dependent source alone. Because of the presence of
the dependent source, however, we excite the network with a voltage

* source v,, connected to the terminals as indicated in Fig. 4.32(a). We
5A 4Q Uy 6Q . . . N
_ may set v, = 1 V to ease calculation, since the circuit is linear. Our
o b goal is to find the current i, through the terminals, and then obtain
Figure 4.31 Ry, = 1/i,. (Alternatively, we may insert a 1-A current source, find the
For Exampie 4.9 corresponding voltage v, and obtain Rr, = v,/1)
ZZIX zvx
~ £ ~ +
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Figure 4.32
Finding Ry, and Vryy, for Example 4.9.

Applying mesh analysis to loop 1 in the circuit of Fig. 4.32(a)
results in

—2v, + 2(i; — i) =0 or UV, =11 — Iy
But —4i, = v, = i, — i»; hence,
ip = —3i, (4.9.1)
For loops 2 and 3, applying KVL produces
4iy + 2(ip, — 1)) + 6(i, —i3) =0 (4.9.2)
6(i3 — i) +2is+1=0 (4.9.3)
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Solving these equations gives
. 1
13 = —EA

But i, = —i; = 1/6 A. Hence,
1V
Rpy=—"=6Q
l

o

To get Vpy,, we find v, in the circuit of Fig. 4.32(b). Applying
mesh analysis, we get

ii=5 4.9.4)
W A 2is— i) =0 = v, =iy—i (4.9.5)
Ay — iy) + 20> — i3) + 6iy = 0
or
12i, — 4iy — 2i3 =0 (4.9.6)

But 4(i; — i,) = v,. Solving these equations leads to i, = 10/3.
Hence,

VTh = Uy — 612 =20V

The Thevenin equivalent is as shown in Fig. 4.33.
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6 Q

20V

Figure 4.33
The Thevenin equivalent of the circuit in
Fig. 4.31.

Find the Thevenin equivalent circuit of the circuit in Fig. 4.34 to the
left of the terminals.

Answer: Vo, = 5333V, Ry, = 444.4 m().

Practice Problem 4.9

s Lo3a
AW o
6V <%1.51X 40
O

Figure 4.34
For Practice Prob. 4.9.

a

b

Determine the Thevenin equivalent of the circuit in Fig. 4.35(a) at
terminals a-b.

Solution:

1. Define. The problem is clearly defined; we are to determine the
Thevenin equivalent of the circuit shown in Fig. 4.35(a).

2. Present. The circuit contains a 2-{) resistor in parallel with a
4-Q) resistor. These are, in turn, in parallel with a dependent
current source. It is important to note that there are no
independent sources.

3. Alternative. The first thing to consider is that, since we have no
independent sources in this circuit, we must excite the circuit
externally. In addition, when you have no independent
sources you will not have a value for Vyy; you will only have
to find Ry,

Example 4.10
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2i

o b
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40 a 9Q

-4Q a 9Q

(d

Figure 4.35
For Example 4.10.

Chapter 4 Circuit Theorems

The simplest approach is to excite the circuit with either a
1-V voltage source or a 1-A current source. Since we will end
up with an equivalent resistance (either positive or negative), |
prefer to use the current source and nodal analysis which will
yield a voltage at the output terminals equal to the resistance
(with 1 A flowing in, v,, is equal to 1 times the equivalent
resistance).

As an alternative, the circuit could also be excited by a 1-V
voltage source and mesh analysis could be used to find the
equivalent resistance.

. Attempt. We start by writing the nodal equation at @ in Fig. 4.35(b)

assuming i, = 1 A.
2i, + (v, — 0)/4 + (v, —0)/2+(=1)=0 (4.10.1)

Since we have two unknowns and only one equation, we will
need a constraint equation.

i,=0-v,)/2=-v,/2 (4.10.2)
Substituting Eq. (4.10.2) into Eq. (4.10.1) yields

2(=vo/2) + (v, = 0)/4 + (v, = 0)/2 + (=1) =0
=(-l+5+3v, —1 or v,=-4V

Since v, = 1 X Ry, then Ry, = v,/1 = —4 Q.

The negative value of the resistance tells us that, according
to the passive sign convention, the circuit in Fig. 4.35(a) is
supplying power. Of course, the resistors in Fig. 4.35(a) cannot
supply power (they absorb power); it is the dependent source
that supplies the power. This is an example of how a
dependent source and resistors could be used to simulate
negative resistance.

. Evaluate. First of all, we note that the answer has a negative

value. We know this is not possible in a passive circuit, but in
this circuit we do have an active device (the dependent current
source). Thus, the equivalent circuit is essentially an active
circuit that can supply power.

Now we must evaluate the solution. The best way to do this
is to perform a check, using a different approach, and see if we
obtain the same solution. Let us try connecting a 9-() resistor in
series with a 10-V voltage source across the output terminals of
the original circuit and then the Thevenin equivalent. To make
the circuit easier to solve, we can take and change the parallel
current source and 4-() resistor to a series voltage source and
4-Q) resistor by using source transformation. This, with the new
load, gives us the circuit shown in Fig. 4.35(c).

We can now write two mesh equations.

Note, we only have two equations but have 3 unknowns, so we
need a constraint equation. We can use
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This leads to a new equation for loop 1. Simplifying leads to

A+2—8)i, + (-2 +8)i, =0
or
_211 + 612 =0 or il = 312

Substituting the first equation into the second gives
i =—10/5=—2A

Using the Thevenin equivalent is quite easy since we have only
one loop, as shown in Fig. 4.35(d).

—6i, + 11i, = —10 or

—4i+9i+10=0 or i=-10/5=-2A

6. Satisfactory? Clearly we have found the value of the equivalent
circuit as required by the problem statement. Checking does
validate that solution (we compared the answer we obtained by
using the equivalent circuit with one obtained by using the load
with the original circuit). We can present all this as a solution to
the problem.
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Obtain the Thevenin equivalent of the circuit in Fig. 4.36.

Answer: Vp, = 0V, R, = —7.5 Q.

4.6 Norton’s Theorem

In 1926, about 43 years after Thevenin published his theorem, E. L.
Norton, an American engineer at Bell Telephone Laboratories, pro-
posed a similar theorem.

Norton’s theorem states that a linear two-terminal circuit can be
replaced by an equivalent circuit consisting of a current source / in
parallel with a resistor Ry, Where /5 is the short-circuit current through
the terminals and Ry is the input or equivalent resistance at the termi-
nals when the independent sources are turned off.

Thus, the circuit in Fig. 4.37(a) can be replaced by the one in Fig. 4.37(b).

The proof of Norton’s theorem will be given in the next section.
For now, we are mainly concerned with how to get Ry and /. We find
Ry in the same way we find Rpy,. In fact, from what we know about
source transformation, the Thevenin and Norton resistances are equal;
that is,

RN = RTh (4.9)

To find the Norton current I, we determine the short-circuit current
flowing from terminal a to b in both circuits in Fig. 4.37. It is evident

Practice Problem 4.10

4o,
10Q $
+ — O a
+
v, 5Q 15Q
O b
Figure 4.36
For Practice Prob. 4.10.
Linear ©a
two-terminal
circuit o
(@)
0 a
Iy Ry
0 b

(b)
Figure 4.37
(a) Original circuit, (b) Norton equivalent
circuit.
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Linear
two-terminal
circuit

Figure 4.38

Finding Norton current /y.

The Thevenin and Norton equivalent
circuits are related by a source
transformation.
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that the short-circuit current in Fig. 4.37(b) is Iy. This must be the same
short-circuit current from terminal a to b in Fig. 4.37(a), since the two
circuits are equivalent. Thus,

IN = Ise

(4.10)

shown in Fig. 4.38. Dependent and independent sources are treated the
same way as in Thevenin’s theorem.

Observe the close relationship between Norton’s and Thevenin’s
theorems: Ry = Ry, as in Eq. (4.9), and

4.11)

This is essentially source transformation. For this reason, source trans-
formation is often called Thevenin-Norton transformation.

Since Vy, Iy, and Ry, are related according to Eq. (4.11), to deter-
mine the Thevenin or Norton equivalent circuit requires that we find:

e The open-circuit voltage v, across terminals a and b.

¢ The short-circuit current iy at terminals a and b.

* The equivalent or input resistance R;, at terminals @ and b when
all independent sources are turned off.

We can calculate any two of the three using the method that takes the
least effort and use them to get the third using Ohm’s law. Example 4.11
will illustrate this. Also, since

vTh Uoc (4.123)
IN = Lsc (4.12b)
U()l‘
Ry, = ; = Ry (4.12¢)

the open-circuit and short-circuit tests are sufficient to find any Thevenin
or Norton equivalent, of a circuit which contains at least one inde-
pendent source.

Example 4.11

8Q
MW O a

§SQ

4Q

@

12V

Figure 4.39
For Example 4.11.

Find the Norton equivalent circuit of the circuit in Fig. 4.39 at
terminals a-b.

Solution:

We find Ry in the same way we find Ry, in the Thevenin equivalent
circuit. Set the independent sources equal to zero. This leads to the
circuit in Fig. 4.40(a), from which we find Ry. Thus,

20 X 5
25

Ry=5[@8+4+8) =5]20= =40

To find Iy, we short-circuit terminals a and b, as shown in Fig. 4.40(b).
We ignore the 5-() resistor because it has been short-circuited.
Applying mesh analysis, we obtain

ip =2A, 20i, — 4i; — 12 =0
From these equations, we obtain
h=1A=1i,.=1Iy
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80 80 ;
o AN O a AWV
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12V 0
80 8Q
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b
(a)
(b)
80
AW\ 0 a

+
() 2 ()

2A Q} 50 § Vih = e

Figure 4.40
For Example 4.11; finding: (a) Ry, (b) Iy = iy, (€) Vi, = Uge-

Alternatively, we may determine I from Vi,/Rp,. We obtain Vi,
as the open-circuit voltage across terminals a and b in Fig. 4.40(c).
Using mesh analysis, we obtain

is=2A
25i, —4iy—12=0 =  i,=08A

and
Uoe = VTh = 514 =4V
Hence,
V. 4
Iy=-"=-=1A

as obtained previously. This also serves to confirm Eq. (4.12c) that
Ry = U, /ige = 4/1 = 4 Q). Thus, the Norton equivalent circuit is as
shown in Fig. 4.41.

Figure 4.41
Norton equivalent of the circuit in Fig. 4.39.

Find the Norton equivalent circuit for the circuit in Fig. 4.42, at
terminals a-b.

Answer: Ry =3 Q, Iy = 45 A.

Practice Problem 4.11

3Q 3Q
MW O a
15V 4A¢ 6 Q
O b

Figure 4.42
For Practice Prob. 4.11.
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Example 412 Using Norton’s theorem, find Ry and Iy of the circuit in Fig. 4.43 at
terminals a-b.
2i
o Solution:
To find Ry, we set the independent voltage source equal to zero and
_ 5Q connect a voltage source of v, = 1 V (or any unspecified voltage v,)
'xl MWW ©a to the terminals. We obtain the circuit in Fig. 4.44(a). We ignore the

410 (P 10V 4-() resistor because it is short-circuited. Also due to the short circuit,

the 5-Q) resistor, the voltage source, and the dependent current source
0 b are all in parallel. Hence, i, = 0. At node a, i, = 5% = (0.2 A, and

Figure 4.43 v 1
For Example 4.12. Ry=-2= 02 =50
i, .

To find Iy, we short-circuit terminals a and b and find the current
i, as indicated in Fig. 4.44(b). Note from this figure that the 4-Q)
resistor, the 10-V voltage source, the 5-() resistor, and the dependent
current source are all in parallel. Hence,

10
.= —=25A
iy 7
At node a, KCL gives
. 10 .
zsc=?+ 2i, =2 +225 =TA

Thus,

2i 2i,

50 50 u

(a) (b)

Figure 4.44
For Example 4.12: (a) finding Ry, (b) finding /y.

Practice Problem 4.12 Find the Norton equivalent circuit of the circuit in Fig. 4.45 at

terminals a-b.
2v

X

& oq Answer: Ry=1Q,1y=10A.

Figure 4.45
For Practice Prob. 4.12.
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