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Performing an experiment withoul drawing some sorl of conclusion has little merit.
A ftew experiments may have mainly gualitative resulls—the appearance of an inter-
ference pattern on a ripple tank or the color of light ransmitted by some oplical
system—but the vast majority of experiments lead to quantitative conclusions, that
is, to a statement of numerical resulls. It is important to recognize that the statement
of a stngle measwred number s completely uninieresting. Stalements that the density

IThis is not always so. For example, if you look up the refractive index of glass, you find values ranging
Mo 1.5 10 1.9, depeidiing oi ke cotnpusition of (e glass, T an eaperiment W nicasuic he icliactive indea
of o piece of glass whose composition is unknown, the accepled value is therefore no mare than & rough guide
to the expected answer.

“Here is an example: [f vou measure the ratio of a circle’s circumference o its diameter, the true answer is

exactly . (Obviously such un experiment is rather contrived.)
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Figure 2.2. Three measurements of the speed of sound at standard temperature and pressure,
Because the accepted value (331 m/s) is within Student A's margins of error, her result is satis-
factory. I'he accepted value is just outside Student B's margin of error, bul his measurement is
nevertheless acceptable. The accepted value is far ourside Student C's stated margins, and his
measurement is definitely unsatisfactory.

of some metal was measured us 9.3 + 0.2 granyen® or that the momentum of a
cart was measured as 0.051 = 0.004 kg-m/s are, by themselves, of no interest. An
interesting conclusion must compare fwo or more numbers: a measurement with
the accepted value. a measurement with a theoretically predicted value, or several
measurements, to show that they are related to one another in accordance with some
physical law. 1t is in such comparison of numbers that error analysis is so important.
This and the next two sections discuss three typical experiments to illustrate how
the estimated uncertainties are used to draw a conclusion.

Ferhaps the simplest type of cxperiment is a measurcment of a quantity whosc
accepled value is known. As discussed, this exercise is a somewhat artificial experi-
ment peculiar to the teaching laboratory. The procedure 1s to measure the quantity,
estimale the experimental uncertainty, and compare these values with the accepled
value, Thus, in an experiment to mensure the speed of sound in air (al standard
temperature and pressure), Student A might arrive at the conclusion

A’s measured speed = 329 £ 5 m/s, (2.12)
compared with the
accepted speed = 331 m/s. (2.13)

Student A might choose to display this result graphically as in Figurc 2.2, She
should certainly include in her report both Equations (2.12) and (2.13) next to each
other., so her readers can clearly appreciate her result. She should probably add an
explicil stalement thal because the aceepled value lies inside her margins of err,
her measurement seems salisfoctory.

The meaning of the uncertainty & is that the correct value of v prabably lies
between x,.,, — v and x. ., + & it is certainly possible that the correct value lies
slightly outside this range. Therefore, a measurement can be regarded as satisfactory
even if the accepted value lies slightly outside the estimated range of the measured
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value. For example, if Student B found the value
B’s measured speed = 325 + 5 m/s,

he could certainly claim that his measurement is consistent with the accepted value
of 331 m/s.

On the other hand, if the accepted value is well outside the margins of error
(the discrepancy is appreciably more than twice the uncertainty, say), there is reason
to think something has gone wrong. For example, suppose the unlucky Student C

finds
C’s measured speed = 345 = 2 m/s (2.14)
compared with the
accepted speed = 331 m/s. (2.15)

Student C’s discrepancy is 14 m/s, which is seven times bigger than his stated
uncertainty (see Figure 2.2). He will need to check his measurements and calcula-
tions to find out what has gone wrong,

Unfortunately, the tracing of C’s mistake may be a tedious business because of
the numerous possibilities. He may have made a mistake in the measurements or
calculations that led to the answer 345 m/s. He may have estimated his uncertainty
incorrectly. (The answer 345 = 15 m/s would have been acceptable.) He also might
be comparing his mecasurement with the wrong accepted value. For example, the
accepted value 331 m/s is the speed of sound at standard temperature and pressure.
Because standard temperature is 0°C, there is a good chance the measured speed in
(2.14) was not taken at standard temperature. In fact, if the measurement was made
at 20°C (that is, normal room tempcrature), the correct accepted valuc for the speed
of sound is 343 m/s, and the measurement would be entirely acceptable.

Finally, and perhaps most likely, a discrepancy such as that between (2.14) and
(2.15) may indicate some undetected source of systematic error (such as a clock
that runs consistently slow, as discussed in Chapter 1). Detection of such systematic
errors (ones that consistently push the result in one direction) requires careful check-
ing of the calibration of all instruments and detailed review of all procedures.

2.5 Comparison of Two Measured Numbers

Many experiments involve measuring (wo numbers that theory predicts should be
equal. For example, the law of conservation of momentum states that the total mo-
mentum of an isolated system is constant. To test it, we might perform a series of
experiments with two carts that collide as they move along a frictionless track. We
could measure the total momentum of the two carts before (p) and after (g) they
collide and check whether p =g within experimental uncertainties. For a single pair
of measurements, our results could be

initial momentum p = 1.49 = 0.03 kg'm/s
and

final momentum ¢ = 1.56 * 0.06 kg'm/s.
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Figure 2.3. Measured values of the total momentum of two carts before (p) and after (g) a col-
lision. Because the margins of error for p and ¢ overlap, these measurements are certainly consis-
tent with conservation of momentum (which implies that p and g should be equal).

Here, the range in which p probably lies (1.46 to 1.52) overlaps the range in which
¢ probably lies (1.50 w 1.62). (See Figure 2.3.) Therefore, these measurements are
consistent with conservation of momentum. If, on the other hand, the two probable
ranges were not even close to overlapping, the measurements would be inconsistent
with conservation of momentum, and we would have to check for mistakes in our
measurements or calculations, for possible systematic crrors, and for the possibility
that some external forces (such as gravity or friction) are causing the momentum of
the system to change.

If we repeat similar pairs of measurements several times, what is the best way
to display our results? First, using a table to record a sequence of similar measure-
ments is usually better than listing the results as several distinct statements. Second,
the uncertainties often differ little from one measurement to the next. For example,
we might convince ourselves that the uncertainties in all measurements of the initial
momentum p are about 8p = 0.03 kg-m/s and that the uncertainties in the final g
are all about &g = 0.06 kg:m/s. If so, a good way to display our measurements
would be as shown in Table 2.1.

Table 2.1. Measured momenta (kg:m/s).

Trial Initial momentum p Final momentum g
number (all +0.03) (all +0.06)
1 1.49 1.56
2 310 3a2
3 2.16 2.05
elc.

For each pair of measurements, the probable range of values for p overlaps (or
nearly overlaps) the range of values for g. If this overlap continues for all measure-
ments, our results can be pronounced consistent with conservation of momentum.
Note that our experiment does not prove conservation of momentum; no experiment
can. The best you can hope for is to conduet many more trials with progressively
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smaller uncertainties and that all the results are consistent with conservation of

momentum.
In a real experiment, Table 2.1 might contain a dozen or more entries, and

checking that each final momentum ¢ is consistent with the corresponding initial
momentum p could be tedious. A better way to display the results would be to add
a fourth column that lists the differences p  ¢. If momentum is conscrved, these
values should be consistent with zero. The only difficulty with this method is that
we must now compule the uncertainty in the ditference p — q. This compulation is
performed as follows. Suppose we have made measurements

(measured p) = py., + p
and

(measured q) = @ = 9.

‘The numbers p,.,, and q,.., are our best estimates for p and g. Therefore, the best
estimate for the difference (p = ¢) IS (Ppest = Ghew)- TO find the uncertainty in
(p — q), we must decide on the highest and lowest probable valucs of (p — g). The
highest value for (p — q) would result if p had its largest probable value,
Poest + Op, at the same time that g had its smallest value g, — 6q. Thus, the
highest probable value for p — g is

highest probable value = (P, = Gues) + (8p + 89). (2.16)

Similarly, the lowest probable value arises when p is smallest (p., — 6p), but q is
largest (Gpess + ). Thus,

lowest probable value = (py = Gues) — (Op + 69). (2.17)

Combining Equations (2.16) and (2.17), we see that the uncertainty in the difference
(p — q) is the sum 8p + 8q of the original uncertaintics. For example, if

p = 149 = 0.03 kg:m/s
and
q = 1.56 = 0.06 kg'm/s,
then
p—q = —0.07 = 0.09 kg-m/s.

We can now add an extra column for p — g to lable 2.1 and arrive at lable
2.2,

Table 2.2. Measured momenta (kg-m/s).

Trial Initial p Final g Difference p—gq
number (all =0.03) (all +0.06) (all +0.09)
1 1.49 1.56 =0.07
2 3.10 3.12 —0.02
3 2.16 2.05 0.11

o
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Figure 2.4, Three trials in a test of the conservation of momentum. The student has measured
the total momentum of two carts before and after they collide (p and g, respectively). If momen-
tum is conserved, the differences p — ¢ should all be zero. The plot shows the value of p — g
with its error bar for each trial. The expected value 0 is inside the margins of error in trials 1
and 2 and only slightly outside in trial 3. Thercfore, these results arc consistent with the conser-
vation of momentum.

Whether our results are consistent with conservation of momentum can now be seen
at a glance by checking whether the numbers in the final column are consistent with
zero (that is, are less than, or comparable with, the uncertainty 0.09). Alternatively,
and perhaps even better, we could plot the results as in Figure 2.4 and check visu-
ally. Yet another way to achieve the same effect would be to calculate the ratios
q/p, which should all be consistent with the expected value g/p — 1. (Here, we
would need to calculate the uncertainty in g/p, a problem discussed in Chapter 3.)

Our discussion of the uncertainty in p — g applies to the difference of any two
mcasured numbers. If we had measured any two numbers x and y and used our
measured values to compute the difference x — y, by the argument just given, the
resulting uncertainty in the difference would be the sum of the separate uncertainties
in x and y. We have, therefore, established the following provisional rule:

Uncertainty in a Difference
(Provisional Rule)

If two quantities x and y are measured with uncertainties &x
and Ay, and if the measured values x and y are used to calculate
the difference ¢ = x — y, the uncertainty in q is the sum of
the uncertainties in x and y:

5q = &x + ¥. (2.18)
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2.9 Multiplying Two Measured Numbers

Perhaps the greatest importance of fractional errors emerges when we start multi-
plying measured numbers by each other. For example, to find the momentum of a
body, we might measure its mass m and its velocity v and then multiply them to
give the momentum p = mv. Both m and v are subject to uncertainties, which we
will have to estimate. The problem, then, is to find the uncertainty in p that results
from the known uncertainties in m and v.

First, for convenience, let us rewrite the standard form

(measured value of x) = X, = ox

in terms of the fractional uncertainty, as

(measured value of x) = xm,(l = 1 = |) (2.23)
Xpest

For example, if the fractional uncertainty is 3%, we see from (2.23) that
3
= + —
(measured value of x) x,,c,,(l * 7 {)U)'

that is, 3% uncertainty means that x probably lies between x,., times 0.97 and x;,.,
times 1.03,

VINXXpesr = x < (1.03) X Xpeqre

We will find this a useful way to think about a measured number that we will have
to multiply. .

Let us now return to our problem of calculating p = mv, when m and v have
been measured, as

(measured m) = mbm(l .. ) (2.24)
[
and
(mcasured v) = vbm(l =+ & ) (2.25)
|vhestl
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Because m,,, and vy, are our besl estimates for m and v, our best estimate for
p = muis

(best estimate for p) = po, = My Ve

The largest probable values of m and v are given by (2.24) and (2.25) with the plus
signs. Thus, the largest probable value for p = muv is
. am &
(largest value for p) = m.,mv.m(l + r—)(l + 4 ) (2.26)
|'”'I:Il:bl| iubca.ll
The smallest probable value for p is given by a similar expression with two minus
signs. Now, the product of the parentheses in (2.26) can be multiplied out as
am
(1+ ](1 l)=1+‘5'"+‘§"+‘f’h"" X @2
]mb:sxl iubesll lmbuml I”h:all |mb=:1| |"bcs||

Because the two fractional uncertainties dm/|my.,| and 8v/|vy.| are small numbers
(a few percent, perhaps), their product is extremely small. Therefore, the last term
in (2.27) can be neglected. Returning to (2.26), we find

om oU )

(largest valuc of p) = mbmum(l =2y

[y
The smallest probable value is given by a similar expression with two minus signs.
Our measurements of m and v, therefore, lead to a value of p = mv given by

IUh:.-.zl

(value of p) = mm,vmg(l t[ i + % ])
tpes] e

Comparing this equation with the general form
)!
I.phﬁll

we see that the best estimate for p is py., = My Vpey (a5 we already knew) and that
the fractional uncertainty in p is the sum of the fractional uncertainties in m and v,

(value of p) — pbw(l - &

o _ @
Pocsd ~ Mpes]l  [Vpesd
If, for example, we had the following measurements for m and v,
m = 053 = 0.01 kg
and
v = 91 %= 0.3 m/s,

the best estimate for p = mv is

Poest = My Uy = (0.53) X (9.1) = 4.82 kg'm/s.
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To compute the uncertainty in p, we would first compute the fractional errors

om (.01
—_— = — =002 = 2%
My 0.53

and
S _ 03 _ 003 = 3%
uhcg.,t 9.1

The tractional uncertainty in p is then the sum:

G‘”=2%I3%=5%.

Poest
If we want to know the absolute uncertainty in p, we must multiply by py,.:
_ % - 7 = 0.2
dp = X Press = 0.05 X 4.82 = 0.241.
Presi

We then round dp and py; to give us our final answer

(value of p) = 48 + 0.2 kg-m/s.

The preceding considerations apply to any product of two measured quantities.
We have therefore discovered our second general rule for the propagation of errors.
If we measure any two quantities x and y and form their product, the uncertainties
in the original two quantities “propagate” to cause an uncertainty in their product.
This uncertainty is given by the following rule:

Uncertainty in a Product
(Provisional Rule)

If two quantities x and y have been measured with small frac-
tional uncertainties &x/|x,.,| and &y/|yy.l, and if the measured
values of x and y arc used to calculatc the product g = xy,
then the fractional uncertainty in q is the sum of the fractional
uncertainties in x and y,

g . & b
|‘fhest| L‘b:sal ]J’bemi

(2.28)

[ call this rule “provisional,” because, just as with the rule for uncertainty in a
difference, I will replace it with a more precise rule later on. Two other features of
this rule also need to be emphasized. First, the derivation of (2.28) required that the
fractional uncertainties in x and y both be small enough that we could neglect their
product. This requirement is almost always true in practice, and I will always as-
sumc it. Nevertheless, remember that if the fractional uncertainties arc not much
smaller than 1, the rule (2.28) may not apply. Second, even when x and y have
ditterent dimensions, (2.28) balances dimensionally because all fractional uncertain-
ties are dimensionless.
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