
Notice that the voltage across the 9-k and 18-k resistors is the same,
and V, as expected.
(b) Power supplied by the source is

(c) Power absorbed by the 12-k resistor is

Power absorbed by the 6-k resistor is

Power absorbed by the 9-k resistor is

or

Notice that the power supplied (5.4 W) equals the power absorbed
W). This is one way of checking results.(1.2 � 0.6 � 3.6 � 5.4

p � voi1 � 180(20) mW � 3.6 W

p �
vo

2

R
�

(180)2

9,000
� 3.6 W

�

p � i 2
2 R � (10 � 10�3)2 (6,000) � 0.6 W

�

p � iv � i2 (i2 R) � i 
2
2 R � (10 � 10�3)2 (12,000) � 1.2 W

�

po � voio � 180(30) mW � 5.4 W

vo � 9,000i1 � 18,000i2 � 180
��
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(a)

30 mA 9 kΩvo

+

−
12 kΩ

6 kΩ

(b)

30 mA 9 kΩvo

+

−
18 kΩ

i1

io i2

Figure 2.44
For Example 2.13: (a) original circuit,
(b) its equivalent circuit.

Practice Problem 2.13

30 mA3 kΩ 5 kΩ 20 kΩ

1 kΩ

v1

+

−
v2

+

−

Figure 2.45
For Practice Prob. 2.13.

For the circuit shown in Fig. 2.45, find: (a) and (b) the power
dissipated in the 3-k and 20-k resistors, and (c) the power supplied
by the current source.

��
v2,v1

Answer: (a) 45 V, 60 V, (b) 675 mW, 180 mW, (c) 1.8 W.

Wye-Delta Transformations
Situations often arise in circuit analysis when the resistors are neither in
parallel nor in series. For example, consider the bridge circuit in Fig. 2.46.
How do we combine resistors through when the resistors are neither
in series nor in parallel? Many circuits of the type shown in Fig. 2.46
can be simplified by using three-terminal equivalent networks. These are

R6R1

2.7vs
+
−

R1

R4

R2

R5

R3

R6

Figure 2.46
The bridge network.
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the wye (Y) or tee (T) network shown in Fig. 2.47 and the delta ( ) or
pi ( ) network shown in Fig. 2.48. These networks occur by themselves
or as part of a larger network. They are used in three-phase networks,
electrical filters, and matching networks. Our main interest here is in how
to identify them when they occur as part of a network and how to apply
wye-delta transformation in the analysis of that network.

ß
¢

2.7 Wye-Delta Transformations 53

1 3

2 4

R3

R2R1

(a)

1 3

2 4

R3

R2R1

(b)

Figure 2.47
Two forms of the same network: (a) Y, (b) T.

Delta to Wye Conversion

Suppose it is more convenient to work with a wye network in a place
where the circuit contains a delta configuration. We superimpose a wye
network on the existing delta network and find the equivalent resistances
in the wye network. To obtain the equivalent resistances in the wye net-
work, we compare the two networks and make sure that the resistance
between each pair of nodes in the (or ) network is the same as the
resistance between the same pair of nodes in the Y (or T) network. For
terminals 1 and 2 in Figs. 2.47 and 2.48, for example,

(2.46)

Setting (Y) gives

(2.47a)

Similarly,

(2.47b)

(2.47c)

Subtracting Eq. (2.47c) from Eq. (2.47a), we get

(2.48)

Adding Eqs. (2.47b) and (2.48) gives

(2.49)R1 �
Rb Rc

Ra � Rb � Rc

R1 � R2 �
Rc (Rb � Ra)

Ra � Rb � Rc

R34 � R2 � R3 �
Ra (Rb � Rc)

Ra � Rb � Rc

R13 � R1 � R2 �
Rc (Ra � Rb)

Ra � Rb � Rc

R12 � R1 � R3 �
Rb (Ra � Rc)

Ra � Rb � Rc

� R12 (¢)R12

R12 
(¢) � Rb 7  (Ra � Rc)

R12 (Y) � R1 � R3

ß¢

Figure 2.48
Two forms of the same network: (a) ,
(b) .ß

¢

1 3

2 4

Rc

(a)

1 3

2 4

(b)

RaRb

Rc

RaRb
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Each resistor in the Y network is the product of the resistors in the two
adjacent branches, divided by the sum of the three resistors.¢¢

and subtracting Eq. (2.48) from Eq. (2.47b) yields

(2.50)

Subtracting Eq. (2.49) from Eq. (2.47a), we obtain

(2.51)

We do not need to memorize Eqs. (2.49) to (2.51). To transform a net-
work to Y, we create an extra node n as shown in Fig. 2.49 and follow
this conversion rule:

¢

R3 �
Ra Rb

Ra � Rb � Rc

R2 �
Rc Ra

Ra � Rb � Rc

54 Chapter 2 Basic Laws

Figure 2.49
Superposition of Y and networks as an
aid in transforming one to the other.

¢

R3

RaRb

R1 R2

Rc

b

n

a

c

One can follow this rule and obtain Eqs. (2.49) to (2.51) from Fig. 2.49.

Wye to Delta Conversion

To obtain the conversion formulas for transforming a wye network to
an equivalent delta network, we note from Eqs. (2.49) to (2.51) that

(2.52)

Dividing Eq. (2.52) by each of Eqs. (2.49) to (2.51) leads to the fol-
lowing equations:

(2.53)

(2.54)

(2.55)

From Eqs. (2.53) to (2.55) and Fig. 2.49, the conversion rule for Y to
is as follows:¢

Rc �
R1 R2 � R2 R3 � R3 R1

R3

Rb �
R1 R2 � R2 R3 � R3 R1

R2

Ra �
R1 R2 � R2 R3 � R3 R1

R1

 �
Ra Rb Rc

Ra � Rb � Rc

 R1 R2 � R2 R3 � R3 R1 �
Ra Rb Rc (Ra � Rb � Rc)

(Ra � Rb � Rc)
2

Each resistor in the network is the sum of all possible products of Y
resistors taken two at a time, divided by the opposite Y resistor.

¢
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The Y and networks are said to be balanced when

(2.56)

Under these conditions, conversion formulas become

(2.57)

One may wonder why is less than Well, we notice that the Y-
connection is like a “series” connection while the -connection is like
a “parallel” connection.

Note that in making the transformation, we do not take anything
out of the circuit or put in anything new. We are merely substituting
different but mathematically equivalent three-terminal network patterns
to create a circuit in which resistors are either in series or in parallel,
allowing us to calculate if necessary.Req

¢
R¢.RY

RY �
R¢

3
  or  R¢ � 3RY

R1 � R2 � R3 � RY,  Ra � Rb � Rc � R¢

¢

Example 2.14Convert the network in Fig. 2.50(a) to an equivalent Y network.¢

Figure 2.50
For Example 2.14: (a) original network, (b) Y equivalent network.¢

c

ba

10 Ω 15 Ω

(a)

Rb Ra

Rc

25 Ω

c

ba

5 Ω

3 Ω

7.5 Ω
R2R1

R3

(b)

Solution:
Using Eqs. (2.49) to (2.51), we obtain

The equivalent Y network is shown in Fig. 2.50(b).

 R3 �
Ra Rb

Ra � Rb � Rc
�

15 � 10

50
� 3 �

 R2 �
Rc Ra

Ra � Rb � Rc
�

25 � 15

50
� 7.5 �

 R1 �
Rb Rc

Ra � Rb � Rc
�

10 � 25

15 � 10 � 25
�

250

50
� 5 �
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Transform the wye network in Fig. 2.51 to a delta network.

Answer: Ra � 140 �, Rb � 70 �, Rc � 35 �.

Practice Problem 2.14

Figure 2.51
For Practice Prob. 2.14.

20 Ω

R2

ba

c

10 Ω

R1

R3 40 Ω

Obtain the equivalent resistance for the circuit in Fig. 2.52 and use
it to find current i.

Solution:

1. Define. The problem is clearly defined. Please note, this part
normally will deservedly take much more time.

2. Present. Clearly, when we remove the voltage source, we end
up with a purely resistive circuit. Since it is composed of deltas
and wyes, we have a more complex process of combining the
elements together. We can use wye-delta transformations as one
approach to find a solution. It is useful to locate the wyes (there
are two of them, one at n and the other at c) and the deltas
(there are three: can, abn, cnb).

3. Alternative. There are different approaches that can be used to
solve this problem. Since the focus of Sec. 2.7 is the wye-delta
transformation, this should be the technique to use. Another
approach would be to solve for the equivalent resistance by
injecting one amp into the circuit and finding the voltage
between a and b; we will learn about this approach in Chap. 4.

The approach we can apply here as a check would be to use
a wye-delta transformation as the first solution to the problem.
Later we can check the solution by starting with a delta-wye
transformation.

4. Attempt. In this circuit, there are two Y networks and three 
networks. Transforming just one of these will simplify the circuit.
If we convert the Y network comprising the 5- 10- and
20- resistors, we may select

Thus from Eqs. (2.53) to (2.55) we have

 Rc �
R1 

R2 � R2 R3 � R3 R1

R3
�

350

5
� 70 �

 Rb �
R1 R2 � R2 R3 � R3 R1

R2
�

350

20
� 17.5 �

 �
350

10
� 35 �

 Ra �
R1 R2 � R2 R3 � R3 R1

R1
�

10 � 20 � 20 � 5 � 5 � 10

10

R1 � 10 �,  R2 � 20 �,  R3 � 5 �

�
�,�,

¢

RabExample 2.15

a a
i

bb

c n120 V
5 Ω

30 Ω

12.5 Ω

15 Ω

10 Ω

20 Ω

+
−

Figure 2.52
For Example 2.15.
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With the Y converted to the equivalent circuit (with the
voltage source removed for now) is shown in Fig. 2.53(a).
Combining the three pairs of resistors in parallel, we obtain

so that the equivalent circuit is shown in Fig. 2.53(b). Hence, we
find

Then

We observe that we have successfully solved the problem.
Now we must evaluate the solution.

5. Evaluate. Now we must determine if the answer is correct and
then evaluate the final solution.

It is relatively easy to check the answer; we do this by
solving the problem starting with a delta-wye transformation. Let
us transform the delta, can, into a wye.

Let and This will lead
to (let d represent the middle of the wye):

 Rnd �
Ra Rc

27.5
�

5 � 10

27.5
� 1.8182 �

 Rcd �
Ra Rn

27.5
�

5 � 12.5

27.5
� 2.273 �

 Rad �
Rc Rn

Ra � Rc � Rn
�

10 � 12.5

5 � 10 � 12.5
� 4.545 �

Rn � 12.5 �.Ra � 5 �,Rc � 10 �,

i �
vs

Rab
�

120

9.632
� 12.458 A

Rab � (7.292 � 10.5) � 21 �
17.792 � 21

17.792 � 21
� 9.632 �

 15 � 35 �
15 � 35

15 � 35
� 10.5 �

 12.5 � 17.5 �
12.5 � 17.5

12.5 � 17.5
� 7.292 �

 70 � 30 �
70 � 30

70 � 30
� 21 �

¢,
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a

b

30 Ω70 Ω

17.5 Ω

35 Ω

12.5 Ω

15 Ω

(a)

a

b

21 Ω

(b)

7.292 Ω

10.5 Ω

a

b

c n

d

30 Ω

4.545 Ω

20 Ω

1.8182 Ω2.273 Ω

15 Ω

(c)

Figure 2.53
Equivalent circuits to Fig. 2.52, with the voltage source removed.
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This now leads to the circuit shown in Figure 2.53(c). Looking
at the resistance between d and b, we have two series
combination in parallel, giving us

This is in series with the resistor, both of which are in
parallel with the resistor. This then gives us the equivalent
resistance of the circuit.

This now leads to

We note that using two variations on the wye-delta transformation
leads to the same results. This represents a very good check.

6. Satisfactory? Since we have found the desired answer by
determining the equivalent resistance of the circuit first and the
answer checks, then we clearly have a satisfactory solution. This
represents what can be presented to the individual assigning the
problem.

i �
vs

Rab
�

120

9.631
� 12.46 A

Rab �
(9.642 � 4.545)30

9.642 � 4.545 � 30
�

425.6

44.19
� 9.631 �

30-�
4.545-�

Rdb �
(2.273 � 15)(1.8182 � 20)

2.273 � 15 � 1.8182 � 20
�

376.9

39.09
� 9.642 �
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For the bridge network in Fig. 2.54, find and i.

Answer: 6 A.40 �,

RabPractice Problem 2.15

24 Ω

240 V

i

30 Ω

10 Ω

50 Ω

13 Ω

20 Ω
+
−

b

a

Figure 2.54
For Practice Prob. 2.15.

So far, we have assumed that connect-
ing wires are perfect conductors (i.e.,
conductors of zero resistance). In real
physical systems, however, the resist-
ance of the connecting wire may be
appreciably large, and the modeling
of the system must include that
resistance.

Applications
Resistors are often used to model devices that convert electrical energy
into heat or other forms of energy. Such devices include conducting
wire, light bulbs, electric heaters, stoves, ovens, and loudspeakers. In
this section, we will consider two real-life problems that apply the con-
cepts developed in this chapter: electrical lighting systems and design
of dc meters.

2.8.1 Lighting Systems

Lighting systems, such as in a house or on a Christmas tree, often con-
sist of N lamps connected either in parallel or in series, as shown in
Fig. 2.55. Each lamp is modeled as a resistor. Assuming that all the lamps
are identical and is the power-line voltage, the voltage across each
lamp is for the parallel connection and for the series connec-
tion. The series connection is easy to manufacture but is seldom used
in practice, for at least two reasons. First, it is less reliable; when a lamp
fails, all the lamps go out. Second, it is harder to maintain; when a lamp
is bad, one must test all the lamps one by one to detect the faulty one.

Vo�NVo

Vo

2.8
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81

Methods of
Analysis
No great work is ever done in a hurry. To develop a great scientific
discovery, to print a great picture, to write an immortal poem, to
become a minister, or a famous general—to do anything great requires
time, patience, and perseverance. These things are done by degrees,
“little by little.”

—W. J. Wilmont Buxton

c h a p t e r

3

Enhancing Your Career

Career in Electronics
One area of application for electric circuit analysis is electronics. The
term electronics was originally used to distinguish circuits of very low
current levels. This distinction no longer holds, as power semiconduc-
tor devices operate at high levels of current. Today, electronics is
regarded as the science of the motion of charges in a gas, vacuum, or
semiconductor. Modern electronics involves transistors and transistor
circuits. The earlier electronic circuits were assembled from compo-
nents. Many electronic circuits are now produced as integrated circuits,
fabricated in a semiconductor substrate or chip.

Electronic circuits find applications in many areas, such as automa-
tion, broadcasting, computers, and instrumentation. The range of devices
that use electronic circuits is enormous and is limited only by our imag-
ination. Radio, television, computers, and stereo systems are but a few.

An electrical engineer usually performs diverse functions and is likely
to use, design, or construct systems that incorporate some form of elec-
tronic circuits. Therefore, an understanding of the operation and analysis
of electronics is essential to the electrical engineer. Electronics has
become a specialty distinct from other disciplines within electrical engi-
neering. Because the field of electronics is ever advancing, an electronics
engineer must update his/her knowledge from time to time. The best way
to do this is by being a member of a professional organization such as
the Institute of Electrical and Electronics Engineers (IEEE). With a mem-
bership of over 300,000, the IEEE is the largest professional organization
in the world. Members benefit immensely from the numerous magazines,
journals, transactions, and conference/symposium proceedings published
yearly by IEEE. You should consider becoming an IEEE member.

Troubleshooting an electronic circuit
board.
© BrandX Pictures/Punchstock
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Introduction
Having understood the fundamental laws of circuit theory (Ohm’s law
and Kirchhoff’s laws), we are now prepared to apply these laws to
develop two powerful techniques for circuit analysis: nodal analysis,
which is based on a systematic application of Kirchhoff’s current law
(KCL), and mesh analysis, which is based on a systematic application
of Kirchhoff’s voltage law (KVL). The two techniques are so impor-
tant that this chapter should be regarded as the most important in the
book. Students are therefore encouraged to pay careful attention.

With the two techniques to be developed in this chapter, we can ana-
lyze any linear circuit by obtaining a set of simultaneous equations that
are then solved to obtain the required values of current or voltage. One
method of solving simultaneous equations involves Cramer’s rule, which
allows us to calculate circuit variables as a quotient of determinants. The
examples in the chapter will illustrate this method; Appendix A also
briefly summarizes the essentials the reader needs to know for applying
Cramer’s rule. Another method of solving simultaneous equations is to
use MATLAB, a computer software discussed in Appendix E.

Also in this chapter, we introduce the use of PSpice for Windows,
a circuit simulation computer software program that we will use
throughout the text. Finally, we apply the techniques learned in this
chapter to analyze transistor circuits.

Nodal Analysis
Nodal analysis provides a general procedure for analyzing circuits
using node voltages as the circuit variables. Choosing node voltages
instead of element voltages as circuit variables is convenient and
reduces the number of equations one must solve simultaneously.

To simplify matters, we shall assume in this section that circuits
do not contain voltage sources. Circuits that contain voltage sources
will be analyzed in the next section.

In nodal analysis, we are interested in finding the node voltages.
Given a circuit with n nodes without voltage sources, the nodal analy-
sis of the circuit involves taking the following three steps.

3.2

3.1

82 Chapter 3 Methods of Analysis

Nodal analysis is also known as the
node-voltage method.

Steps to Determine Node Voltages:

1. Select a node as the reference node. Assign voltages 
to the remaining nodes. The voltages are

referenced with respect to the reference node.
2. Apply KCL to each of the nonreference nodes. Use

Ohm’s law to express the branch currents in terms of node
voltages.

3. Solve the resulting simultaneous equations to obtain the
unknown node voltages.

n � 1

n � 1v2, p , vn�1

v1,

We shall now explain and apply these three steps.
The first step in nodal analysis is selecting a node as the reference

or datum node. The reference node is commonly called the ground
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since it is assumed to have zero potential. A reference node is indicated
by any of the three symbols in Fig. 3.1. The type of ground in Fig. 3.1(c)
is called a chassis ground and is used in devices where the case, enclo-
sure, or chassis acts as a reference point for all circuits. When the
potential of the earth is used as reference, we use the earth ground in
Fig. 3.1(a) or (b). We shall always use the symbol in Fig. 3.1(b).

Once we have selected a reference node, we assign voltage desig-
nations to nonreference nodes. Consider, for example, the circuit in
Fig. 3.2(a). Node 0 is the reference node while nodes 1 and
2 are assigned voltages and respectively. Keep in mind that the
node voltages are defined with respect to the reference node. As illus-
trated in Fig. 3.2(a), each node voltage is the voltage rise from the ref-
erence node to the corresponding nonreference node or simply the
voltage of that node with respect to the reference node.

As the second step, we apply KCL to each nonreference node in
the circuit. To avoid putting too much information on the same circuit,
the circuit in Fig. 3.2(a) is redrawn in Fig. 3.2(b), where we now add

and as the currents through resistors and respec-
tively. At node 1, applying KCL gives

(3.1)

At node 2,

(3.2)

We now apply Ohm’s law to express the unknown currents and
in terms of node voltages. The key idea to bear in mind is that, since

resistance is a passive element, by the passive sign convention, current
must always flow from a higher potential to a lower potential.

i3

i1, i2,

I2 � i2 � i3

I1 � I2 � i1 � i2

R3,R1, R2,i3i1, i2,

v2,v1

(v � 0),

3.2 Nodal Analysis 83

The number of nonreference nodes is
equal to the number of independent
equations that we will derive.

Figure 3.1
Common symbols for indicating a
reference node, (a) common ground,
(b) ground, (c) chassis ground.

(a) (b) (c)

Figure 3.2
Typical circuit for nodal analysis.

Current flows from a higher potential to a lower potential in a resistor.

We can express this principle as

(3.3)

Note that this principle is in agreement with the way we defined resist-
ance in Chapter 2 (see Fig. 2.1). With this in mind, we obtain from
Fig. 3.2(b),

(3.4)

Substituting Eq. (3.4) in Eqs. (3.1) and (3.2) results, respectively, in

(3.5)

(3.6)I2 �
v1 � v2

R2
�

v2

R3

I1 � I2 �
v1

R1
�

v1 � v2

R2

i3 �
v2 � 0

R3
  or  i3 � G3v2

i2 �
v1 � v2

R2
  or  i2 � G2 (v1 � v2)

i1 �
v1 � 0

R1
  or  i1 � G1v1

i �
vhigher � vlower

R

(a)

(b)

1 2

v1

i1

i2 i2

i3

v2

I2

0

R3v2

+

−

R3

R1v1

+

−

R1I1

I2

R2

R2

I1
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In terms of the conductances, Eqs. (3.5) and (3.6) become

(3.7)

(3.8)

The third step in nodal analysis is to solve for the node voltages.
If we apply KCL to nonreference nodes, we obtain simul-
taneous equations such as Eqs. (3.5) and (3.6) or (3.7) and (3.8). For
the circuit of Fig. 3.2, we solve Eqs. (3.5) and (3.6) or (3.7) and (3.8)
to obtain the node voltages and using any standard method, such
as the substitution method, the elimination method, Cramer’s rule, or
matrix inversion. To use either of the last two methods, one must cast
the simultaneous equations in matrix form. For example, Eqs. (3.7) and
(3.8) can be cast in matrix form as

(3.9)

which can be solved to get and Equation 3.9 will be generalized
in Section 3.6. The simultaneous equations may also be solved using
calculators or with software packages such as MATLAB, Mathcad,
Maple, and Quattro Pro.

v2.v1

cG1 � G 2  �G 2

�G 2  G 2 � G 3
d cv1

v2
d � c I1 � I2

I2
d

v2v1

n � 1n � 1

I2 � G2(v1 � v2) � G3v2

I1 � I2 � G1v1 � G2(v1 � v2)

84 Chapter 3 Methods of Analysis

Appendix A discusses how to use
Cramer’s rule.

Calculate the node voltages in the circuit shown in Fig. 3.3(a).

Solution:
Consider Fig. 3.3(b), where the circuit in Fig. 3.3(a) has been prepared
for nodal analysis. Notice how the currents are selected for the
application of KCL. Except for the branches with current sources, the
labeling of the currents is arbitrary but consistent. (By consistent, we
mean that if, for example, we assume that enters the resistor
from the left-hand side, must leave the resistor from the right-hand
side.) The reference node is selected, and the node voltages and 
are now to be determined.

At node 1, applying KCL and Ohm’s law gives

Multiplying each term in the last equation by 4, we obtain

or

(3.1.1)

At node 2, we do the same thing and get

Multiplying each term by 12 results in

or

(3.1.2)�3v1 � 5v2 � 60

3v1 � 3v2 � 120 � 60 � 2v2

i2 � i4 � i1 � i5  1   
v1 � v2

4
� 10 � 5 �

v2 � 0

6

3v1 � v2 � 20

20 � v1 � v2 � 2v1

i1 � i2 � i3  1   5 �
v1 � v2

4
�

v1 � 0

2

v2v1

i2

4-�i2

Example 3.1

Figure 3.3
For Example 3.1: (a) original circuit,
(b) circuit for analysis.

2
1

5 A

10 A2 Ω 6 Ω

4 Ω

(a)

5 A

10 A2 Ω 6 Ω

4 Ω

(b)

i1 = 5 i1 = 5

i4 = 10i2

i3
i2 i5

v2v1
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3.2 Nodal Analysis 85

Now we have two simultaneous Eqs. (3.1.1) and (3.1.2). We can solve
the equations using any method and obtain the values of and 

■ METHOD 1 Using the elimination technique, we add Eqs. (3.1.1)
and (3.1.2).

Substituting in Eq. (3.1.1) gives

■ METHOD 2 To use Cramer’s rule, we need to put Eqs. (3.1.1)
and (3.1.2) in matrix form as

(3.1.3)

The determinant of the matrix is

We now obtain and as

giving us the same result as did the elimination method.

If we need the currents, we can easily calculate them from the
values of the nodal voltages.

The fact that is negative shows that the current flows in the direction
opposite to the one assumed.

i2

i4 � 10 A,  i5 �
v2

6
� 3.333 A

i1 � 5 A,  i2 �
v1 � v2

4
� �1.6668 A,  i3 �

v1

2
� 6.666 A

 v2 �
¢2

¢
�

` 3 20

�3 60
`

¢
�

180 � 60

12
� 20 V

 v1 �
¢1

¢
�

`20 �1

60 5
`

¢
�

100 � 60

12
� 13.333 V

v2v1

¢ � ` 3 �1

�3 5
` � 15 � 3 � 12

c 3 �1

�3 5
d cv1

v2
d � c20

60
d

3v1 � 20 � 20  1  v1 �
40

3
� 13.333 V

v2 � 20

4v2 � 80  1   v2 � 20 V

v2.v1

Obtain the node voltages in the circuit of Fig. 3.4.

Answer: v1 � �6 V, v2 � �42 V.

Practice Problem 3.1

Figure 3.4
For Practice Prob. 3.1.

3 A 12 A

6 Ω

2 Ω 7 Ω

1 2

ale80571_ch03_081_126.qxd  11/30/11  4:10 PM  Page 85



86 Chapter 3 Methods of Analysis

Determine the voltages at the nodes in Fig. 3.5(a).

Solution:
The circuit in this example has three nonreference nodes, unlike the pre-
vious example which has two nonreference nodes. We assign voltages
to the three nodes as shown in Fig. 3.5(b) and label the currents.

Example 3.2

Figure 3.5
For Example 3.2: (a) original circuit, (b) circuit for analysis.

4 Ω

4 Ω

2 Ω 8 Ωix

1 3
2

0

3 A 2ix

(a)

ix ix i3

4 Ω

4 Ω

2 Ω 8 Ω
i1

v1
v2

i2 i2
i1

v3

3 A

3 A

2ix

(b)

At node 1,

Multiplying by 4 and rearranging terms, we get

(3.2.1)

At node 2,

Multiplying by 8 and rearranging terms, we get

(3.2.2)

At node 3,

Multiplying by 8, rearranging terms, and dividing by 3, we get

(3.2.3)

We have three simultaneous equations to solve to get the node voltages
and We shall solve the equations in three ways.

■ METHOD 1 Using the elimination technique, we add Eqs. (3.2.1)
and (3.2.3).

or

(3.2.4)

Adding Eqs. (3.2.2) and (3.2.3) gives

(3.2.5)�2v1 � 4v2 � 0  1   v1 � 2v2

v1 � v2 �
12

5
� 2.4

5v1 � 5v2 � 12

v3.v1, v2,

2v1 � 3v2 � v3 � 0

i1 � i2 � 2ix  1   
v1 � v3

4
�

v2 � v3

8
�

2(v1 � v2)

2

�4v1 � 7v2 � v3 � 0

ix � i2 � i3  1   
v1 � v2

2
�

v2 � v3

8
�

v2 � 0

4

3v1 � 2v2 � v3 � 12

3 � i1 � ix  1   3 �
v1 � v3

4
�

v1 � v2

2
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3.2 Nodal Analysis 87

Substituting Eq. (3.2.5) into Eq. (3.2.4) yields

From Eq. (3.2.3), we get

Thus,

■ METHOD 2 To use Cramer’s rule, we put Eqs. (3.2.1) to (3.2.3)
in matrix form.

(3.2.6)

From this, we obtain

where and are the determinants to be calculated as
follows. As explained in Appendix A, to calculate the determinant of
a 3 by 3 matrix, we repeat the first two rows and cross multiply.

Similarly, we obtain

 ¢3 �

�

�

�

  5  3 �2 12

�4 7 0

2 �3 0

3 �2 12

�4 7 0

 5  

�

�

�

� 0 � 144 � 0 � 168 � 0 � 0 � �24

 ¢2 �

�

�

�

  5  3 12 �1

�4 0 �1

2 0 1

3 12 �1

�4 0 �1

 5  

�

�

�

� 0 � 0 � 24 � 0 � 0 � 48 � 24

 ¢1 �

�

�

�

  5  12 �2 �1

0 7 �1

0 �3 1

12 �2 �1

0 7 �1

 5  

�

�

�

� 84 � 0 � 0 � 0 � 36 � 0 � 48

� 21 � 12 � 4 � 14 � 9 � 8 � 10

�

�

�

 5  3 �2 �1

�4 7 �1

2 �3 1

3 �2 �1

�4 7 �1

 5 
�

�

�

3 �2 �1

¢ � 3  �4 7 �1   3 �
2 �3 1

¢3¢2,¢1,¢,

v1 �
¢1

¢
,  v2 �

¢2

¢
,  v3 �

¢3

¢

£
3 �2 �1

�4 7 �1

2 �3 1

§  £
v1

v2

v3

§ � £
12

0

0

§

v1 � 4.8 V,  v2 � 2.4 V,  v3 � �2.4 V

v3 � 3v2 � 2v1 � 3v2 � 4v2 � �v2 � �2.4 V

2v2 � v2 � 2.4  1   v2 � 2.4,  v1 � 2v2 � 4.8 V
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88 Chapter 3 Methods of Analysis

Thus, we find

as we obtained with Method 1.

■ METHOD 3 We now use MATLAB to solve the matrix. Equa-
tion (3.2.6) can be written as

where A is the 3 by 3 square matrix, B is the column vector, and V is
a column vector comprised of and that we want to determine.
We use MATLAB to determine V as follows:

��A � [3 �2 �1; �4 7 �1; 2 �3 1];

��B � [12 0 0]�;

��V � inv(A) * B

Thus, and as obtained previously.v3 � �2.4 V,v2 � 2.4 V,v1 � 4.8 V,

V �
4.8000
2.4000

�2.4000

v3v2,v1,

AV � B  1   V � A�1B

v3 �
¢3

¢
�

�24

10
� �2.4 V

v1 �
¢1

¢
�

48

10
� 4.8 V,  v2 �

¢2

¢
�

24

10
� 2.4 V

Practice Problem 3.2 Find the voltages at the three nonreference nodes in the circuit of
Fig. 3.6.

Answer: v1 � 32 V, v2 � �25.6 V, v3 � 62.4 V.

Figure 3.6
For Practice Prob. 3.2.

4 A

2 Ω

3 Ω

4 Ω 6 Ω

ix

4ix

1 3
2

Nodal Analysis with Voltage Sources
We now consider how voltage sources affect nodal analysis. We use the
circuit in Fig. 3.7 for illustration. Consider the following two possibilities.

■ CASE 1 If a voltage source is connected between the reference
node and a nonreference node, we simply set the voltage at the non-
reference node equal to the voltage of the voltage source. In Fig. 3.7,
for example,

(3.10)

Thus, our analysis is somewhat simplified by this knowledge of the volt-
age at this node.

■ CASE 2 If the voltage source (dependent or independent) is con-
nected between two nonreference nodes, the two nonreference nodes

v1 � 10 V

3.3
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