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5 Transforming Time Series

In many situations, it is desirable or necessary to transform a time series

data set before using the sophisticated methods we study in this course:

1. Almost all methods assume that the amount of variability in a time

series is constant across time.

2. Many times we would like to study what is left in a data set after

having removed trends (low frequency content) or cycles in the data.
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5.1 Power Transformation

A simple but often effective way to stabilize the variance across time is to

apply a power transformation (square root, cube root, log, etc) to the

time series.

Here are some examples:
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5.2 Dividing Seasonal Standard Deviations

Sometimes with data observed periodically (hourly, daily, monthly, etc),

the variability may vary for different periods; for example, there may be

more variability on mondays than on tuesdays, and so on. When this

happens, it is often useful to calculate the standard deviation for each of

the different periods and then for example, divide each monday by the

standard deviation of all the mondays, the tuesdays by the standard

deviation of the tuesdays, and so on (notice that dividing a set of any

numbers by their standard deviation results in the standard deviation of

the new set of numbers being equal to one).

5.3 Subtracting Seasonal Means

One way to remove cycles in data observed periodically is to calculate

the sample means of each of the periods (hours or days, for example)

and then subtract them from the correpsonding period (subtract the

mean of the mondays from mondays, that of tuesdays from each

tuesday, and so on).
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5.4 Differencing

The dth differencing operator applied to a time series x is to create a

new series z whose value at time t is the difference between x(t+ d)
and x(t). This method works very well in removing trends and cycles.

For example, first differencing applied to a series with a linear trend

eliminates the trend while if cycles of length d exist in a series, a dth

difference will remove them.

Here is a plot of the famous airline data along with its log to stabilize the

variance, the 1st difference of the log to eliminate the linear trend, and

the 12th difference of the 1st difference of the log to eliminate the annual

cycle.
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5.5 Regressing on Trends and Cycles

The natural thing for a statistician to do to eliminate trends and cycles in

a time series would be to regress x(t) on linear and/or sinusoidal

functions of t. For example, we could find the residuals from a model

such as

x(t) = β0+β1t+β2 cos(2π(t−1)/d)+β3 sin(2π(t−1)/d)+ε(t),

if we felt there was both a linear trend and a sinusoidal cycle of length d

in the data. Note that theX matrix for this regression would be a column

of 1’s followed by a column (1, 2, . . . , n), followed by a column of

cosines and then a column of sines where the cosines and sines both

have amplitude one and period d.

The regression would also give us an idea of the strength of the linear

trend from β̂1 and/or the sinusoid from ĉ =
√
β̂2

2 + β̂2
3 .
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5.6 Moving Average Smoother

If we produce a new series z whose tth value is the average of x(t) and

the K values of x before and the K values after time t, then the result

will be smoother than x since consecutive values of z will have many

values of x in common in their averages. As K increases, z will get

smoother (smaller variance) but values of x further away from time t will

be included in z(t) so there will be bias; for example, peaks in x will get

chopped off in producing z.
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5.7 Example of MA Smoother

Here x is N(0,1) white noise plus a cosine of 100 points with amplitude

one and period 40 (noise plus signal). We apply the MA smoother with

values of K from one to five. As K increases, the result gets smoother

but less representative of original signal.
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5.8 General Filters

The MA smoother is a special case of the general idea of using linear

smoothers, where new values are weighted averages of old values

centered at the time point of interest. An obvious extension would be to

use weights other than all 1/(2K + 1) as in the MA smoother. The

weights would be greater for x’s near the time point t and smaller farther

away from t.

This idea of linear smoother is also called a linear filter.
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