£q. (3.1.7), tha!lis:“:" 1L But the i,._,..." 'Urim. Notice that the intercept term

, Nterce ;
the sample means of y | € fact thay g Ptterm can always be estimated by

simplifies ¢o;
In passing,

€ sample regression 1
_ ssion line passes through
puting formuylyg, ntage of the deviation form is that it often

note thay
nt fael
he deviation form, the SRF can be written as

.‘jl = ﬁzl‘l
whereas in the of 119

iginal units
% ?q, (2'6_-1). S of measurement iy was ¥i = fi + f1 X, as shown in
. The residuals I are uncorrelated with

as follows: using the deviatio form the predicted Y,. This statement can be verified
y

We can write

ijﬁl = f Z.r,z?, -

2 X = faxy)

23 xivi= Y x? (3.1.15)

By xi-f Y s
0

[
> T

Il

I

of the fact that ﬁ; = Z.ti,\’:/z-"iz'

- where use is made
5. The residuals #; are uncorrelated with X: that is, Y i, X; = 0. This fact follows

from Eq. (2) in Appendix 3A, Section 3A.1.
/

32 The Classical Linear Regression Model: The Assumptions
Underlying the Method of Least Squares

et

If our objective is to estimate 8, and B only, the method of OLS discussed in the preceding
section will suffice. But recall from Chapter 2 that in regression analysis our objective is not
only to obtain 8, and 8, but also to draw inferences about the true #, and f,. For example,
we would like to know how close f;; and f, are to their counterparts in the population or
how close Y; is to the true £(Y | X;). To that end, we must not only specify the functional
form of the model, as in Eq. (2.4.2), but also make certain assumptions about the manner
in which Y; are gencrated. To see why this requirement is needed, look at the PRF:
Yi = Bi + B2Xi + u;. It shows that ¥; depends on both X; and u;. Therefore, unless we are
specific about how X; and u; are created or generated, there is'no way we can make any

“statistical inference about the Y; and also, as we shali see, about £, and . Thus, the
assumptions made about the X; variable(s) and the error term are extremely critical to the
valid interpretation of the regression estimates. ‘ _

The Gaussian, standard, or classical linear regression mod_el (CLRM), which is
the cornerstone of most econometric theory, makes 7 assumptions.” We first discuss these
assumptions in the context of the tWo-variable- régressiorj. merl; and i.n Chapter 7 we
extend them to multiple regression models, that 1s, models in which there is more than one

regressor.

It is classical in the sense that it was developed first by Gauss in 1821 and since then has served as a
norm or a standard against which may be compared the regression models that do not satisfy the

Gaussian assumptions.
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Aisyﬂ'hlr 1

ession I T ssion del is linear In the para
egression Model: The regression MO ' iete
Linear Reg ¢ be linear In the variables. That Is the regression model aSSho\:,:'
n

though it may or may no

in Eq. (2.4.2):
Y= pH+ P2 Xi+ Ui (2.4,2)
As will be discussed in Chapter 7, this model can be extended to include more exp|anatOry

variables.
—

del (2.4.2) in Chapter 2. Since linear-in-para,.nete
f the CLRM, we will maintain this assumption for
he regressand Y and the regressor X may ber

We have already discussed mo
regression models are the starting point 0
most of this book.8 Keep in mind that 1
nonlinear, as discussed in Chapter 2.

———

Assumyﬁon 2
(\V4

es Independent of the Error Term: Values taken by the
d fixed in repeated samples (the case of fixed regressor) o
with the dependent variable Y (the case of stochastic
d that the X variable(s) and the error term are

Fixed X Values or X Valu
regressor X may be considere
they may be sampled along
regressor). In the latter case, it is assume
independent, that is, cov (X, u) = 0.

This-can be explained in terms of our example given in Table 2.1 (page 35). Consider the
various Y populations corresponding to the levels of income shown in the table. Keeping
the value of income X fixed, say, at level $80, we draw at random a family and observe its
weekly family consumption Y as, say, $60. Still keeping X at $80, we draw at random
another family and observe its Y value at $75. In each of these drawings (i.e., repeated
sampling), the value of X is fixed at $80. We can repeat this process for all the X values
shown in Table 2.1. As a matter of fact, the sample data shown in Tables 2.4 and 2.5 were

drawn in this fashion. \
Why do we assume that the X values are nonstochastic? Given that, in most social

sciences, data usually are collected randomly on both the ¥ and X variables, it scems natural
t? assume the opposite—that the X variable, like the ¥ variable, is also random or stochas-
tic. But initially we assume that the X variable(s) is nonstochastic for the following reasons:
Ff’r.st, this is done initially to simplify the analysis and to introduce the reader to the com-
plemeS _of regression analysis gradually. Second, in experimental situations it may not be
pnrcahst:c to assume that the X values are fixed. For example, a farmer may divide his land
‘::Z :s;’eyfiillgalfjilcswa.nd apply different amounts of f-'crtilizcr to these parcels to see its effect
P ;ec " el;% ; department store may fiemde to offer different rates of discount 0
SREiBE purnose Supposeownec:nsun*{ers. Sometimes we may want to fix the X values for 2
(Y) with various levels of educart‘i:otrr)y(l;)g ‘o ﬁnd out the average ,wec.kly c.amingS Ofworkl?:
case, the X varizble can be songerrr gs in the case of the data given in Table 2.6.In ™
ter 13, even fthe X varinblos ixed or nonrandom. 7hird, as we show in Chap
' are stochastic, the statistical results of linear regression b5

However, a brief discussi
X r' scussion of nonlinear-;
e it of more advanced studelnu -in-parameter regression models is given in Chapter 14 for
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Chapte
prer 3 Two-Varlable Regression Mudel: The Problem of Litimation 6 3

on the case of fixed regress . .

conditions are mcl(,’ (Stﬁrz(‘"::]r;“:': i‘:»li'}?'u\l/:]-ld wrhcn the X' are random, providf:d that some

As James Davidson notes, ©. . . this m:o ]ngr‘c..sm Xand t‘hc crror term i are ?n(J'cpcndcnt,

regressor model, and , , . m dhabio '[l..c.. stochastic regressors) ‘mimics the fired
b . many of . = statistical propertics of least squarcs In the fired

regressor model continue to hold,"”

For all these reasons, we will first discuss the (fixed-regressor) CLRM in considerable
detail. However, in Chapter 13 we will discuss the case of stochastic regressors in some
detail and point ut the occasions where we need to consider the stochastic regressor
models. Incidentally, note that if the X variable(s) is stochastic, the resulting model is called
the neo-classical lincar regression model (NLRM),'” in contrast to the CLRM, where the
A% are treated as fixed or nonrandom. For discussion purposes, We will call the former the

stochastic regressor model and the latter the fixed regressor model.
R
/
ASSUMPTION 3 Zero Mean Value of Disturbance u;: Given the value of Xi the mean, or expected,
value of the random disturbance term u; is zero. symbolically, we have
y y
E(ul%) = 0 (3:2:1)
Or, if Xis nonstochastic,
F(u)=0 /
S
Assumption 3 states that the mean value of u, conditional upon the given ?" 'szlcurgs'
Geometrically, this assumption can be pictured as in Figure 3.3, which 5h°""5h“ cwcach y
of the variable X and the ¥ populations associated with cach of them. As S own,
FIGURE 3.3 Y
(s)Mean

Conditional
distribution of the
disturbances 1.

PRF Y’ = ﬂl + ple

p- 10.

Econometrics, Harvard Universit® i

9james Davidson, Econometric Theory, Blackwell publisher,, J.k . 200, _
104 term due to Arthur S. Goldberger, A Course in . 55, Cambridge,

MA, 1991, p. 264.
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v

—

; i iven X is distributed around its mean vajye (sh
lation corresponding to a given X is distri hown |, |
mupoims on the PRF), with some ¥ values above the mean and some below . Th Y the Cir.

. : € dig

above and below the mean values are nothing but the v;. E uation 3.2, reQuireg th:nc°‘

average or mean value of these dcviaticrms corresponding to any given X'shoy € 2rg ! the
This assumption should not be difficult to comprehenmw\on},? e

dis

Section 2.4 (see Eq. [2.4.5]). Assumption 3 simply says that the factors nmcuss
included in the model, and therefore subsumed in u;, do not
value of Y; in other words, the positive u; values cancel oy € Ui valueg ¢ Cap
their average or mean effect on Y is zero.'! O th,

In passing. note that the assumption E(i;| X)) = 0 implies that E(Y|X) = Bi+p
(Why?) Therefore, the two assumption are equivalent, ' 14,

It is important to point out that Assumption 3 im
or specification error in the model used
sion model is correctly specified. Leaving
unnecessary variables, or choosing the
the Y and X variables are some e i or. We will discuss th
considerable detail in Chapter 13.

In
systematically qfypg ths ciy
t the negatiy

when u decreases anqd decreases w
that the error term actually ;
additional regressors in the model
there is no specification error

ASSUMPTION 4

Homoscedasticity or Constant Variance of u;

The variance of the error, or
disturbance, term is the sa

me regardless of the value of X. Symbolically,
var(u) = E[u, - Eu,| X))

= E(U?|X), because of Assumption 3

= E(ud), it X, are nonstochastic

= o?

(3.2.2)
where var stands for variance.

""For a more technical reason why Assumption 3 is neces
Econometrics, Rand McNally, Chicago, 1966, p. 75. See al

12The converse, however, is not true because correlation is a measure of linear association only. That
is, even if X, and u, are uncorrelated, the conditional mean of y, given X, may not be zero, However, if
X, and u, are correlated, £(u;| X)) must be nonzero, violating Assumption 3. We owe this point to Stock

ction to Econometrics, Addison-Wesley,

sary see E. Malinvaud, Statistical Methods of
50 Exercise 3.3,

and Watson. See James H. Stock and Mark W. Watson, Introdu
Boston, 2003, pPp. 104-105
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/

cyression Models

the differenc
cxpcnditure an

two situations clear, let Y represep,
To ma‘kc 4 A weckly income. Figures 3.4and 3.5 sh9w that g ineckly
consumption umption expenditure also increases. But‘ in Figure 1 Comq
increases, the ion expenditure remains the sam¢ at all levels qf income, Wher' the
e of consumpt! “h increase in income. In other words, richer familieg €as iy,
2. but there is also more variability oin the

t

he

e between the

varianc :
Figure 3.5 it nc
average consume
consumption expen

more than
iure of the form>°r. . .
di assumption, refer to Figure 3.5. As thi )

le behind this
- gul‘e

derstand the ration > on T :

shc‘,rf-: u:.‘a,-c(ul Xy <varXa). - - < .ar(ul| X;). Therefore, the likelihood is thay th, Y
- m the populatior. with X = X, would be closer to the PRF thy), 1h(;b-
Se

servations coming fro g ;v
coming from populations corresponding 10 X = X, X' = ).(3‘ . e In short, noy al]
| be equally reliable, reliability beihgjudged b}’

values corresponding 10 the various A™ wil_ ; '
how closely or distantly the Y values are distributed around their means, that is, the Poin;
s

on the PRF. If this is in fact the case, would we not prefer to sample from those y Popul
lions that are closer to their mean than those that are widely spread? But doing so Might ra“
e-

strict the variation we obtain across X values.
By invoking Assumption 4, we are saying that at this stage, all Y values correspong;
1o the various A’ are equally important. In Chapter 11 we shall see what happens if thi'nA
not the case, that is, where therc is heteroscedasticity. Sis
In passing. note that Assumption 4 implies that the conditional variances of ¥; are also

homoscedastic. That is,
var (il X) = & (3.2.4)

Of course, the unconditional variance of Y is oy. Later we will see the importance f
distinguishing between conditional and unconditional variances of Y (see Appendix A fo
or

details of conditional and unconditional variances).

N

ASS

UMPTION 5

Nq Autocorrelatiqn between the Disturbances: Given any two X values, X; and
X,(i # j), the correlation between any two u;and uj(i # ) is zero. In short, the obse'rva‘tions

are sampled independently. Symbolically,
cov(u; uj| X, X) =0 (3.2.5)
cov(u;, u) = 0, if X is nonstochastic

where i and j are two different observations and where cov means covariance

In words, Equation 3.2.5 postulates that the disturbances u; and u; are uncorrelated.

;e:ahnr:ctzlli/. t{ns is the assumgtign of no serial correlation, or no autocorrelation. This
exhibit :n~ rg'VC" Xi, fhe dev:auons. of any two Y values from their mean value do not
Ne u's Fz)ircc s .Ch as those shown in Figures 3.6(a) and (b). In Figure 3.6(a), we see that
followed bypaoil;::;!y COfflelal_E?d, a positive u followed by a posi;ivc u or a negative U
gative u: In Figure 3.6(b). the u’s are negati iy
2 \ . e y
followed by a negative 1 and vice versa, gatively correlated, a positive ¥

If the distur! Satinnc
Moy andb?::;ets}] (wdcxllauons) folIO\'v systematic patterns, such as those shown in Fig-
that such correlations :’:;;:Utto -F(_)r serial correlation, and what Assumption 5 requires i*
e ent. Figure 3.6 . .
the u’s, thus indicating zero ¢ Orrclaﬁon (¢) shows that there is no systematic paitern 1o
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: s as it seems. In the hy['rolhcti_cal eXamp), o
mnocu(;]u., ;xir of observations on Yand X (4 and 1) oy

t:; torscsrt)imntc the two unknmvns.I '/3[ and g, y & ne m
timate the two unknowns. In a later chapter We wil

This assumption is not so N
Table 3.1, imaginc that we haq only
this single observation therc is no W )
at least two pairs of observations 10 c e
see the critical importance of this assump

A

i g le must not all be the ¢
. . lues in a given samp AMme,
ASSUMPTION 7 The Nature of X Variables: The X :z:ier. Furthermore, there can be no outliers in

i be a positive . :
EChmlca”yéfvft:e(x)’()\:::;:)Ie thSt is, values that are very large in relation to the rest of the
the values , ’

tions.
observa ——

t

The assumption that there is variability in the A" values is also not as innocuouyg as i
¢

. . W -y
looks. Look at Eq. (3.1.6). If all the X" values are iflcm{cn‘l. then :[:;c-tc;\c(q:?r::) l?) and th,
denominator of that equation will be zero, ¥1mkmg it impossi o .lo i-c B2 ang
therefore g,. Intuitively, we readily sce why this nssun;pqon IS uppczr |.‘ni-0 ing ?][ 0%”
family consumption expenditure example m.Chaptcr 2 if lhf:rc. Is very l|h ¢ vanauon. in
family income, we will not be ablc to explain much -of‘thc. \‘anatlo}r'l lnd \f:‘con‘sum_pu(,n
expenditure. The reader should kecp in mind that variation in both Y and X is essentig to

» ? '
use regression analysis as a rescarch tool. In short, the \arlz}blcs mL!st vary! |
The requirement that there are no outliers in the X' values is to avoid the regression results

being dominated by such outlicrs. Iftherc arc a fcw,\’valuc-s that are, say, 20 tim;s the average
of the X values, the estimated regression lines with or without such obser\fanons might be
vastly different. Very often such outliers are the result ofhupmn. crrors o.f arlt}}mctic Or mix-
ing samples from different populations. In Chapter 13 we will discuss this topic further.

Our discussion of the assumptions underlying the classical linear regression mode] s
now complete. It is important to note that all of these assumptions pertain to the PRF only
and not the SRF. But it is interesting to obscrve that the method of least squares discussed
previously has some properties that are similar to the assumptions we have made aboyt
the PRF. For example. the finding that }"4i; = 0 and, therefore, i = 0, is akin to the
assumption that £(i;|.X;) = 0. Likewise. the finding that "4, X, = 0 is similar to the
assumption that cov(u;, X;) = 0. It is comforting to note that the method of lcast squares

 thus trics to “duplicate” some of the assumptions we have imposed on the PRF

Of course, the SRF does not duplicate all the assumptions of the CLRM. As we will
show later, although cov(u, ;) = 0 (i # j) by assumption, it is nor true that the sample
cov(ii 1) = 0 (i # /). As a matter of fact, we will show later that the residuals are not only
autocorrelated but are also heteroscedastic (see Chapter 12).

A Word about These Assumptions
The million-dollar question is: How realistic are al] these assumptions? The “reality of
assumptions” is an age-old question in the philosophy of science. Some argue that it does
not matter whether the assumptions are realistic. What matters are the predictions based
on those assumptions. Notable among the "irrclcvance-of-assumptions thesis™ is Milton
Fricdman. To him, unreality of assumptions is a positive advantage: “to be important . .. a
hypothesis must be descriptively falsc in its assumptions.”!?

One may not subscribe to this viewpoint fully, but recall that in any scientific study we
make certain assumplions because they facilitate the development of the subject matter In
gradual steps, not because they are necessarily realistic in the sense that they replicate

13p4: . ) N
Milton Friedman, Essays in Positive Economics, University of Chicago Press, Chicago, 1953, p. 14.
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