LAB # 02

Introduction and understanding the concept of PV Module Using MATLAB

Objective:

- Observe the P-V curve of different PV modules by changing its parameters.
- Observe the P-I curve of different PV module by changing its parameters.
- Observe the behavior of P-V & P-I curve at different value of temperature.
- Observe the behavior of P-V & P-I curve at different value of irradiance.

Related theory:

Solar panel refers to a panel designed to absorb the sun's rays as a source of energy for generating electricity or heating.

Photovoltaic modules use light energy (photons) from the Sun to generate electricity through the photovoltaic effect. The majority of modules use wafer-based crystalline silicon cells or thinfilm cells. The structural (load carrying) member of a module can either be the top layer or the back layer. Cells must also be protected from mechanical damage and moisture. Most modules are rigid, but semi-flexible ones are available, based on thin-film cells.

Modules electrical connections are made in series to achieve a desired output voltage and/or in parallel to provide a desired current capability. The conducting wires that take the current off the modules may contain silver, copper or other non-magnetic conductive material.

The most common application of solar panels is solar water heating systems.

EXPERIMENTAL PROCEDURE:

Software tools: Matlab R2015a

PV Module:

Pin description:

- Input 1 = Sun irradiance, in $\frac{kW}{m^2}$
- Input 2 = Cell temperature, in deg.C

Outputs:

- +, (dc supply)
- pin (m) shows the properties/parameters of module.

Block parameters: PV Array

Block Parameters: PV Array			×
PV array (mask) (link)			^
Implements a PV array built of strings of PV Allows modeling of a variety of preset PV m Input 1 = Sun irradiance, in W/m2, and inpu	¹ modules connected in parallel. Each string co odules available from NREL System Advisor M ut 2 = Cell temperature, in deg.C.	nsists of modules connected in series. odel (Jan. 2014) as well as user-defined PV module.	
Parameters Advanced			
Array data		Display I-V and P-V characteristics of	
Parallel strings		array @ 1000 W/m2 & specified temperatures	
4 Series-connected modules per string		T_cell (deg. C) [45 25]	
10		Plot	
Module data		Model parameters	
Module: 1Soltech 1STH-215-P	•	Light-generated current IL (A)	
Plot I-V and P-V characteristics when a module is selected		7.8649	
Maximum Power (W)	Cells per module (Ncell)	Diode saturation current I0 (A)	
213.15	60	2.9259e-10	
Open circuit voltage Voc (V)	Short-circuit current Isc (A)	Diode ideality factor	
36.3	7.84	0.98117	
Voltage at maximum power point Vmp (V)	Current at maximum power point Imp (A)	Shunt resistance Rsh (ohms)	
29	7.35	313.3991	
Temperature coefficient of Voc (%/deg.C)	Temperature coefficient of Isc (%/deg.C)	Series resistance Rs (ohms)	
-0.36099	0.102	0.39383	

Characteristics curve V-I & P-V:

Characteristics curve in fig.1 below describe the relationship between V & I and between power & Voltages. In 1st curve the open circuit voltage or maximum voltage is at 36.5v & the short circuit current or maximum current is 7.9A. The red circle at V=30v describe the maximum power point. The 2nd curve describes the power w.r.t voltage. We observe that at V=30 the power curve is maximum & after maximum power point, the power reduces. At the V_{oc} point, the power is equal to zero, because in case of open circuit the value of current is approaches to zero.

V-I, P-V curve (Figure 1)

Characteristics curve b/w V-I & P-V at different temp:

In this module, we observe the V-I & P-V curve (fig.2) at different temperature level. We observe that, at different temperatures, the maximum power point is change due to change in value of current & voltage. In this module, we use 10 series & 4 parallel strings to get desire power at the output. We observe that at 25°C, the V_{oc} is 350 & at 75°C the value of V_{oc} is 300. By seeing the curve, we can say that the change in MPP is due to temperature change.

V-I, P-V curve (Temperature Plot) (Figure 2)

V-I & P-V curve at different value of irradiance:

Characteristics curve in figure 3 below represent the value of current, power & voltage at different value of irradiance. In this module, we set the different value of irradiance (1000, 850, 500, 400, 250, 100) W / m^2 . We observe that change in irradiance effect the photonic current (at 1000 irradiance the value of current is 8A & at 250 irradiance the current value is 2A). We can say that as the intensity of sun light increases, the value of current also increases. The relation b/w V & I is logarithmic, so by changing the irradiance, we facing large change in photonic current but small change in V_{oc} due to logarithmic relation.

Conclusion and Comments: