
Introduction 

 

What is Conservative force? 

Action at distance 

Ԧܨ ൌ  ሬԦܧଵݍ	

Potential energy 

   ܷ ൌ  ଵܸݍ
 

Our goals in this chapter are to  

1) Define electric potential,  

2) Discuss how to calculate it for various arrangements of 

charged particles and objects, and 

3)  Discuss how electric potential V is related to electric 

potential energy U. 

 

Electric Potential and Electric Potential Energy 

How to measure gravitational potential energy? 

1) Assigning ܷ ൌ 0  for a reference configuration (such as 

the object at table level) and  

2) then calculating the work W the gravitational force does 

if the object is moved up or down from that level.  

We then defined the potential energy as being 

 ܷ ൌ	െܹ   (potential energy)  (24.1) 

 
How to measure electric potential energy 
 
1) Reference configuration for which 	ܷ ൌ 0 
2) Calculating the work the electric force does 
 
The electric potential energy of the final configuration is then given by 
 

ܷ ൌ	െ ܹ 



The work and thus the potential energy can be positive or negative depending on the sign of the 
rod’s charge. 
 
We define the electric potential V at P in terms of the work done by the electric force and the 
resulting potential energy: 
 

 ܸ ൌ 	ିௐ
௤బ

ൌ 	 ௎
௤బ

  (electric potential)  (24.2) 

 
We see that V is a scalar quantity and can be positive or negative (because potential energy and 
charge have signs). 
 
We find that an electric potential is set up at every point in the rod’s electric field.  
 

 
ܷ ൌ  ܸݍ

 
where q can be positive or negative. 
 
 Cautions 
  
1) The potential and potential energy are related (that is the point here) but they are very 

different and not interchangeable.  
 
2) Electric potential is a scalar, not a vector.  
 
3) A potential energy is a property of a system (or configuration) of objects, but sometimes 

we can get away with assigning it to a single object.  
 
4) If a charged particle is placed in an electric field and has no noticeable effect on the field 

(or the charged object that sets up the field), we usually assign the electric potential 
energy to the particle alone. 

 
Units 
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   (1 volt = 1 joule per coulomb) 

 
 

1	
ܰ
ܥ
ൌ 	൬1	

ܰ
ܥ
൰ቌ

1	ܸ

1	 ܥܬ

ቍ ൬1	
ܬ

ܰ.݉
൰ ൌ 1	

ܸ
݉

 

 



ܬ	1 ൌ 1	ܰ.݉   1	 ௃

ே.௠
ൌ 1 

 

1	ܸ ൌ 1	 ௃
஼
    

ଵ	௏

ଵ	಻
಴

ൌ 1 

 
Motion Through an Electric Field 
 
Change in Electric Potential.  
If we move from an initial point i to a second point f in the electric field of a charged object, the 
electric potential changes by 

∆ܸ ൌ 	 ௙ܸ െ	 ௜ܸ 
If we move a particle with charge q from i to f, then, from Eq. 24-3, the potential energy of the 
system changes by 
 

∆ܷ ൌ ܸ∆ݍ ൌ ൫ݍ ௙ܸ െ	 ௜ܸ൯     (24-4) 
 

1) The change can be positive or negative, depending on the signs of q and ∆ܸ 
 
2)  The change can be zero, if there is no change in potential from i to f (the points have the 

same value of potential). 
  
3) Because the electric force is conservative, the change in potential energy ∆ܸ between i 

and f is the same for all paths between those points (it is path independent). 
 
 
Work by the Field.  
 
We can relate the potential energy change ∆ܷ to the work W done by the electric force as the 
particle moves from i to f by applying the general relation for a conservative force (Eq. 8-1): 
 

ܹ ൌ	െ∆ܷ   (work, conservative force).   (24-5) 
 
Next, we can relate that work to the change in the potential by substituting from Eq. 24-4: 
 

ܹ ൌ	െ∆ܷ ൌ െݍ∆ܸ ൌ െݍ൫ ௙ܸ െ	 ௜ܸ൯	    (24-6) 
 
1) W is the work done on the particle by the electric field (because it, of course, produces 

the force). The work can be positive, negative, or zero. 
  
2) Because ∆ܷ between any two points is path independent, so is the work W done by the 

field. 
 
3) If you need to calculate work for a difficult path, switch to an easier path—you get the 

same result. 
 



 
Conservation of Energy 
 If a charged particle moves through an electric field with no force acting on it other than the 
electric force due to the field, then the mechanical energy is conserved. Let’s assume that we can 
assign the electric potential energy to the particle alone. Then we can write the conservation of 
mechanical energy of the particle that moves from point i to point f as 
 

௜ܷ ൅ ௜ܭ ൌ 	 ௙ܷ ൅  ௙  (24-7)ܭ
 

ܭ∆ ൌ 	െ∆ܷ   (24-8) 
 

Substituting Eq. 24-4, we find a very useful equation for the change in the particle’s kinetic 
energy as a result of the particle moving through a potential difference: 
 

ܭ∆ ൌ െݍ∆ܸ ൌ െݍ൫ ௙ܸ െ	 ௜ܸ൯		  (24-9) 
 

Work by an Applied Force 
 If some force in addition to the electric force acts on the particle, we say that the additional force 
is an applied force or external force, which is often attributed to an external agent. Such an 
applied force can do work on the particle, but the force may not be conservative and thus, in 
general, we cannot associate a potential energy with it. We account for that work Wapp by 
modifying Eq. 24-7: 
 
(initial energy) + (work by applied force) = (final energy) 
 

௜ܷ ൅ ௜ܭ ൅	 ௔ܹ௣௣ ൌ 	 ௙ܷ ൅  ௙     (24-10)ܭ
 

Rearranging and substituting from Eq. 24-4, we can also write this as 
 

ܭ∆ ൌ 	െ∆ܷ ൅ ௔ܹ௣௣ ൌ 	െݍ∆ܸ ൅	 ௔ܹ௣௣   (24-11) 
 

The work by the applied force can be positive, negative, or zero, and thus the energy of the 
system can increase, decrease, or remain the same. 
 
In the special case where the particle is stationary before and after the move, the kinetic energy 
terms in Eqs. 24-10 and 24-11 are zero and we have 
 

௔ܹ௣௣ ൌ ௜ܭ	for)  	ܸ∆ݍ ൌ  ௙ )   (24-12)ܭ
 

In this special case, the work Wapp involves the motion of the particle through the potential 
difference ∆ܸ and not a change in the particle’s kinetic energy. 
 
By comparing Eqs. 24-6 and 24-12, we see that in this special case, the work by the applied force 
is the negative of the work by the field: 
 



ܹ ൌ	െ∆ܷ ൌ െݍ∆ܸ ൌ െݍ൫ ௙ܸ െ	 ௜ܸ൯	    (24-6) 
 

௔ܹ௣௣ ൌ ௜ܭ	for)  	ܸ∆ݍ ൌ  ௙ )    (24-12)ܭ
 

௔ܹ௣௣ ൌ െܹ	  (for	ܭ௜ ൌ  ௙ )    (24-13)ܭ
 
 

Electron-volt 
 In atomic and subatomic physics, energy measures in the SI unit of joules often require 
awkward powers of ten. A more convenient (but non-SI unit) is the electron-volt (eV), which is 
defined to be equal to the work required to move a single elementary charge e (such as that of an 
electron or proton) through a potential difference ∆ܸ of exactly one volt. From Eq. 24-6, we see 
that the magnitude of this work is ݍ∆ܸ.Thus, 
 

1ܸ݁ ൌ ݁ሺ1ܸሻ 
 

ൌ ሺ1.602	 ൈ 10ିଵଽ	ܥሻ ቀ1 ௃

஼
ቁ ൌ 	1.602	 ൈ 10ିଵଽ	(14-24)   ܬ 

 

 
 
 
 
 
 

 a) ௘ܹ ൌ .	Ԧ௘ܨ	 Ԧ݀ ൌ 180ݏ݋௘݀ܿܨ	 ൌ 	െܨ௘݀  
 
b) ௔ܹ௣௣ ൌ .	Ԧ௔௣௣ܨ	 Ԧ݀ ൌ 0ݏ݋௔௣௣݀ܿܨ	 ൌ  	௔௣௣݀ܨ
 
c) ∆ܷ ൌ ௙ܷ െ	 ௜ܷ 	ൌ 	െܹ ൌ	െ	ሺെܨ௘݀ሻ ൌ  ௘݀ܨ	
 

 ∆ܷ ൌ ௙ܷ െ	 ௜ܷ 	ൌ 	 ௔ܹ௣௣ ൌ  ௔௣௣݀ܨ	
 

As ௙ܷ ൐ ௜ܷ Electric potential energy increase 
 

d) ∆ܷ ൌ ܸ∆ݍ ൌ ൫ݍ ௙ܸ െ	 ௜ܸ൯ 
 

As ∆ܷ ൐ 0 and ݍ	 ൐ 0 therefore ∆ܸ ൐ 0 and ௙ܸ ൐ 	 ௜ܸ  
 



Proton moves to a point of higher potential   
 

Equipotential Surfaces 
 
1) Adjacent points that have the same electric potential form an equipotential surface, 

which can be either an imaginary surface or a real, physical surface. 
 
2) No net work W is done on a charged particle by an electric field when the particle moves 

between two points i and f on the same equipotential surface.  
 

ܹ ൌ	െ∆ܷ ൌ െݍ∆ܸ ൌ െݍ൫ ௙ܸ െ	 ௜ܸ൯	    (24-6) 
 

If  ௙ܸ ൌ 	 ௜ܸ  then  ܹ ൌ 	0 
 
 
3) Because of the path independence of work (and thus of potential energy and potential), 

ܹ ൌ 	0 for any path connecting points i and f on a given equipotential surface regardless 
of whether that path lies entirely on that surface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 



Figure 24-5 shows electric field lines and cross sections of the equipotential surfaces for a 
uniform electric field and for the field associated with a charged particle and with an electric 
dipole. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Equipotential surfaces are always perpendicular to electric 

field. Why?  

 

ܹ ൌ	െ∆ܷ ൌ െݍ∆ܸ ൌ െݍ൫ ௙ܸ െ	 ௜ܸ൯	  (24-6) 
 

 
If  ௙ܸ ൌ 	 ௜ܸ  then  ܹ ൌ 	0 
 

 

 

 

 

 

 

 

 



 

 

 

Calculating the Potential from the Field 

We can calculate the potential difference between any two points i and f in an electric field if we 

know the electric field vector ܧሬԦ all along any path connecting those points.  

 

To make the calculation, we find the work done on a positive test charge by the field as the 

charge moves from i to f. 

 

Consider an arbitrary electric field, represented by the field 

lines in Figure, and a positive test charge q0 that moves 

along the path shown from point i to point f. At any point on 

the path, an electric force ݍ଴ܧሬԦ   acts on the charge as it 

moves through a differential displacement ݀ݏԦ.  

 

The differential work dW done on a particle by a force ܨԦ during a displacement ݀ݏԦ is given by 

the dot product of the force and the displacement: 

 

ܹ݀ ൌ	ܨԦ	. Ԧݏ݀ ൌ .	ሬԦܧ଴ݍ      (24-16)		Ԧݏ݀

 

ܹ ൌ	ݍ଴ ׬ .	ሬԦܧ Ԧݏ݀
௙
௜     (24-17) 

ܹ ൌ	െ∆ܷ ൌ െݍ∆ܸ ൌ െݍ൫ ௙ܸ െ	 ௜ܸ൯ 

 

௙ܸ െ 	 ௜ܸ ൌ െ׬ .	ሬԦܧ Ԧݏ݀
௙
௜           (24-18) 

If we set potential ௜ܸ ൌ 0 

 

ܸ ൌ െ׬ .	ሬԦܧ Ԧݏ݀
௙
௜    (24-19) 



Equation 24-19 gives us the potential V at any point f in the electric field relative to the zero 

potential at point i. If we let point i be at infinity, then Eq. 24-19 gives us the potential V at any 

point f relative to the zero potential at infinity. 

Uniform Field 
 
 Let’s apply Eq. 24-18 for a uniform field as 

shown in Figure. We start at point i on an 

equipotential line with potential Vi and move to 

point f on an equipotential line with a lower 

potential Vf. The separation between the two 

equipotential lines is ∆ݔ. Let’s also move along a 

path that is parallel to the electric field ܧሬԦ (and thus 

perpendicular to the equipotential lines). The angle 

between ܧሬԦ and ݀ݏԦ in Eq. 24-18 is zero, and the dot 

product gives us 

.	ሬԦܧ	 Ԧݏ݀ ൌ 0ݏ݋ܿݏ݀ܧ ൌ  		ݏ݀ܧ

 

Because E is constant for a uniform field, Eq. 24-18 becomes 

௙ܸ െ 	 ௜ܸ ൌ െܧන ݏ݀
௙

௜
 

The integral gives the sum of all the displacement elements ds from i to f, but we already know 

that the sum is length  ∆ݔ. Thus we can write the change in potential ௙ܸ െ 	 ௜ܸ in this uniform 

field as 

∆ܸ ൌ 	െܧ	ݔ∆      (uniform field) 

 

This is the change in voltage ∆ܸ between two equipotential lines in a uniform field of magnitude 

E, separated by distance ∆ݔ. If we move in the direction of the field by distance  ∆ݔ, the potential 

decreases. In the opposite direction, it increases. 

 

The electric field vector points from higher potential toward lower potential. 

 



 

 

 

 

a) Rightward; because the electric field vector points from higher potential toward lower 

potential. 

 

b) The work we do for paths 1, 2, 3 and 5 is positive because  

	  and	Ԧ௔௣௣ܨ Ԧ݀ are parallel. 

The work we do for path 4 is negative because  ܨԦ௔௣௣	 and 	 Ԧ݀ 

are antiparallel. 

c) 3 then 1, 2 and 5 tie then 4. 

 

Potential Due to a Charged Particle 

We now use Eq. 24-18 to derive, for the space around a 

charged particle, an expression for the electric potential V 

relative to the zero potential at infinity. Consider a point P at 

distance R from a fixed particle of positive charge q Figure. 

To use Eq. 24-18, we imagine that we move a positive test 

charge q0 from point P to infinity. Because the path we take 

does not matter, let us choose the simplest one— a line that 

extends radially from the fixed particle through P to infinity. 

To use Eq. 24-18, we must evaluate the dot product  

.	ሬԦܧ Ԧݏ݀ ൌ 0ݏ݋ܿݏ݀ܧ ൌ  ݏ݀ܧ



The electric field ܧሬԦ is directed radially outward from the fixed particle. Thus, the differential 

displacement ݀ݏԦ of the test particle along its path has the same direction as ܧሬԦ .That means that, 

angle ߠ ൌ 0 and  ܿ0ݏ݋ ൌ 1. Because the path is radial, let us write ds as dr. Then, substituting 

the limits R and , we can write as 

 

௙ܸ െ 	 ௜ܸ ൌ െන ݎ݀ܧ


ோ
 

Next, we set  ௙ܸ ൌ 0 (at ) and ௜ܸ ൌ ܸ (at R). Then, for the magnitude of the electric field at the 

site of the test charge, we substitute  

ܧ ൌ 	
1

଴ߝߨ4
	
ݍ
ଶݎ

 

 

With these changes, above eq. then gives us 

 

0 െ 	ܸ ൌ െ	
ݍ
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න

ݎ݀
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

ோ
ൌ 	

ݍ
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1
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ݍ
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Solving for V and switching R to r, we then have 

ܸ ൌ 		 ଵ

ସగఌబ
	௤
௥
    (24-26) 

as the electric potential V due to a particle of charge q 

at any radial distance r from the particle. Although we 

have derived Eq. 24-26 for a positively charged 

particle, the derivation holds also for a negatively 

charged particle, in which case, q is a negative 

quantity. Note that the sign of V is the same as the sign 

of q:  

A positively charged particle produces a positive 

electric potential. A negatively charged particle 

produces a negative electric potential. 

 



Equation 24-26 also gives the electric potential either outside or on the external surface of a 

spherically symmetric charge distribution. 

 

Potential Due to a Group of Charged Particles 

We can find the net electric potential at a point due to a group of charged particles with the help 

of the superposition principle.  

We calculate separately the potential resulting from each charge at the given point. Then we sum 

the potentials. Thus, for n charges, the net potential is  

 

ܸ ൌ 	෍ ௜ܸ

௡

௜ୀଵ

ൌ 		
1

଴ߝߨ4
	෍

௜ݍ
௜ݎ

௡

௜ୀଵ

 

 

The sum in above Eq. is an algebraic sum, not a vector sum like the sum that would be used to 

calculate the electric field resulting from a group of charged particles. Here in lies an important 

computational advantage of potential over electric field: It is a lot easier to sum several scalar 

quantities than to sum several vector quantities whose directions and components must be 

considered. 

 

 

 

 



ܸ ൌ 			 ௤

ସగఌబ
ቂଵ
ௗ
൅	 ଵ

஽
ቃ  

 

All tie 

Potential Due to an Electric Dipole 

Now let us apply Eq. 24-27 to an electric dipole to find the potential at an 

arbitrary point P in Fig. 24-13a. At P, the positively charged particle 

(at distance 

r(_)) sets up potential V(_) and the negatively charged particle (at 

distance r(_)) 

sets up potential V(_).Then the net potential at P is given by Eq. 24-27 

as 

ܸ ൌ 	෍ ௜ܸ

ଶ

௜ୀଵ

ൌ 	 ሺܸାሻ ൅ ሺܸିሻ ൌ 		
1

଴ߝߨ4
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ݍ
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െݍ
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ൌ		 ଵ

ସగఌబ
	൬

௤

௥ሺశሻ
൅	 ି௤

௥ሺషሻ
	൰ 

 

ൌ		
ݍ

଴ߝߨ4
	ቆ			

ሺିሻݎ െ	ݎሺାሻ
ሺିሻݎሺାሻݎ

ቇ 

 

Naturally occurring dipoles—such as those possessed by many 

molecules—are quite small; so we are usually interested only in points 

that are relatively far from the dipole, such that ݎ ≫ ݀, where d is the 

distance between the charges and r is the distance from the dipole’s 

midpoint to P. In that case, we can approximate the two lines to P as being parallel and their 

length difference as being the leg of a right triangle with hypotenuse d. Also, that difference is so 

small that the product of the lengths is approximately r 2.Thus, 

ሺିሻݎ െ	ݎሺାሻ 	ൎ ሺାሻݎሺିሻݎ  and  ߠݏ݋ܿ݀ 	ൎ 	 ݎ    ଶݎ ൌ 	 ሺାሻݎ ൅
௥ሺషሻି	௥ሺశሻ

ଶ
ൌ 	 ሺାሻݎ ൅

∆௥

ଶ
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     (electric dipole) 

 

 

 

a, c and b 

 

 

Induced Dipole Moment 

Many molecules, such as water, have 

permanent electric dipole moments. In other 

molecules (called nonpolar molecules) and 

in every isolated atom, the centers of the 

positive and negative charges coincide (Fig. 

24-14a) and thus no dipole moment is set 

up. However, if we place an atom or a 

nonpolar molecule in an external electric 



field, the field distorts the electron orbits and separates the centers of positive and negative 

charge (Fig. 24-14b). Because the electrons are negatively charged, they tend to be shifted in a 

direction opposite the field. This shift sets up a dipole moment that points in the direction of the 

field. This dipole moment is said to be induced by the field, and the atom or molecule is then 

said to be polarized by the field (that is, it has a positive side and a negative side).When the field 

is removed, the induced dipole moment and the polarization disappear.  

 

 

Potential Due to a Continuous Charge Distribution 

 

Line of Charge 

A thin nonconducting rod of length L has a positive charge of uniform linear density . Let us 

determine the electric potential V due to the rod at point P, a perpendicular distance d from the 

left end of the rod. We consider a differential element dx of the rod. This element of the rod has a 

differential charge of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ݍ݀ ൌ 		݀ݔ 



This element produces an electric potential dV at point P, which is a distance 

ݎ ൌ 	ඥݔଶ ൅ ݀ଶ 

from the element (Fig. 24-15c). Treating the element as a point charge, we can write the potential 

dV as 

 

ܸ݀ ൌ ଵ
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	ௗ௤
௥
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	 ௗ௫

ሺ௫మାௗమሻ
భ
మ
	   (24-34) 

 

 

Since the charge on the rod is positive and we have taken ܸ ൌ 0 at infinity. We now find the 

total potential V produced by the rod at point P by integrating Eq. 24-34 along the length of the 

rod, from ݔ ൌ 0 to ݔ ൌ   ܮ
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Because V is the sum of positive values of dV, it too is positive, consistent with the logarithm 

being positive for an argument greater than 1. 

 

 



Charged Disk 

Here we derive an expression for V(z), the electric potential 

at any point on the central axis. Because we have a circular 

distribution of charge on the disk, we could start with a 

differential element that occupies angle ݀ߠ  and radial 

distance dr. We consider a differential element consisting of 

a flat ring of radius R/ and radial width dR/. Its charge has 

magnitude 
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We find the net potential at P by adding (via integration) the contributions of all the rings from 

ܴ/ ൌ 0 to  ܴ/ ൌ ܴ: 
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Calculating the Field from the Potential 

In Module 24-2, you saw how to find the potential at a point f if you know the electric field along 

a path from a reference point to point f. In this module, we propose to go the other way—that is, 

to find the electric field when we know the potential. As Fig. 24-5 shows, solving this problem 

graphically is easy: If we know the potential V at all points near an assembly of charges, we can 

draw in a family of equipotential surfaces. The electric field lines, sketched perpendicular to 



those surfaces, reveal the variation of ܧሬԦ . What we are seeking here is the mathematical 

equivalent of this graphical procedure. 

Figure 24-17 shows cross sections of a family of closely spaced equipotential surfaces, the 

potential difference between each pair of adjacent surfaces being dV. As the figure suggests, the 

field at any point P is perpendicular to the equipotential surface through P.  

Suppose that a positive test charge q0 moves through a 

displacement from one equipotential surface to the adjacent 

surface. From eq.  

ܹ ൌ	െ∆ܷ ൌ െݍ଴∆ܸ ൌ െݍ଴൫ ௙ܸ െ	 ௜ܸ൯	    (24-6) 
 

 we see that the work the electric field does on the test charge 

during the move is െݍ∆ܸ. From Eq.  

ܹ݀ ൌ	ܨԦ	. Ԧݏ݀ ൌ .	ሬԦܧ଴ݍ  Ԧݏ݀

we see that the work done by the electric field may also be written as the scalar product ݍ଴ܧሬԦ	.  Ԧݏ݀

or  ݍ଴	ܧሺܿߠݏ݋ሻ	݀ݏ . Equating these two expressions for the work yields 

 

െݍ଴∆ܸ ൌ  ݏ݀	ሻߠݏ݋ሺܿܧ	଴ݍ	

ߠݏ݋ܿܧ ൌ 	െ
ܸ݀
ݏ݀

 

Since ߠݏ݋ܿܧ is the component of in the direction of ݀ݏԦ. Above Eq. becomes  

௦ܧ 	ൌ 	െ
డ௏

డ௦
   (24-40) 

 

We have added a subscript to E and switched to the partial derivative symbols to emphasize that 

Eq. 24-40 involves only the variation of V along a specified axis (here called the s axis) and only 

the component of ܧሬԦ  along that axis. In words, Eq. 24-40 (which is essentially the reverse 

operation of Eq. 24-18) states: 

 

The component of ܧሬԦ in any direction is the negative of the rate at which the electric potential 

changes with distance in that direction. 

 



If we take the s axis to be, in turn, the x, y, and z axes, we find that the x, y, and z components of 

  ሬԦ at any point areܧ

௫ܧ 	ൌ 	െ
డ௏

డ௫
௬ܧ    ; 	ൌ 	െ

డ௏

డ௬
௭ܧ  ; 	ൌ 	െ

డ௏

డ௭
   (24-41) 

Thus, if we know V for all points in the region around a charge distribution—that is, if we know 

the function V(x, y, z)—we can find the components of ܧሬԦ, and thus ܧሬԦ itself, at any point by 

taking partial derivatives. 

For the simple situation in which the electric field ܧሬԦ is uniform, Eq. 24-40 becomes 

ܧ ൌ 	െ ∆௏

∆௦
    (24-42) 

where s is perpendicular to the equipotential surfaces. The component of the electric field is zero 

in any direction parallel to the equipotential surfaces because there is no change in potential 

along the surfaces. 

 

 

a)  Uniform electric field and same separation.   ܧ ൌ 	െ ∆௏

∆௦
;     ∆ܸ is 200 V, 220 V 

and -200 V in 1, 2 and 3 pair respectively. 

2, then 1 and 3 tie. 



b)  Electric field vector points from higher potential toward lower potential. 

3 

c)  In third pair electric field points towards right and force on electron is towards left. So 

electron accelerates towards leftward. 


