Electric Flux
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Figure: 23.4

Open Surface (Piece of paper, handkerchief)

A®= E.A = (Ecosf)AA

Total Flux=® = Y E .AA

d®= E.dA = (Ecosf)dA

Total Flux= @ = [E.dA
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Closed Surface (Balloon, bag)

By convention, normal is always chosen from inside to outside (uniquely determined)
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Figure 23.6

do= E.dA = (Ecos8)dA

Total Flux= @ = $ E.dA

IE Checkpoint 1 i

The figure here shows a Gaussian cube of face area A
immersed in a uniform electric field & that has the positive

direction of the 7 axiz In terms of F and A, what is the flux A
throwgh (a) the front face (which is in the xy plane), (b} the
rear face. (c) the tog ‘ace. and {d) the whole cube? T-“"T://I
k-
@ o@=[, E.dA (Open surface)
o= . EdAcos0 E and dA are parallel, =0, cos0=1
o=E| - dA E 1s uniform on front face; we take it out from integral

@= EA J. dA=A Area of front face



-

(b)y @=], E.dA (Open surface)

o= - EdAcos180 E and dA (vector area along negative z-axis) are antiparallel,
0=180, cos180=—1

o= —-Ef F dA E 1s uniform on rear face; we take it out from integral
®= —EA fF dA=A Area of rear face
© o=/, E.dA (Open surface)

o= o EdAcos180 E and dA (vector area along positive y-axis) are perpendicular,
0=90, cos90=0

o= 0

(d) Total flux through whole cube = @ = 955 LdA (Closed surface)

¢=§£§.dz=jﬁ.dmjﬁ.dmjﬁ.dmjﬁ.dmj* dA +j E.di

F R T B L

For bottom, right and left faces E and dA are perpendicular, 6=90, cos90=0
O®=EA—-—EA+0+0+0+0

O=0 Why?

1 A surface has the area vector A = (21 + 3)) m®. What is the
flux of a uniform electnic ficld through the arca if the ficld 1s

(a) E = 4i N/C and { I'-JJr 4k NIC?



Total Flux= @ = E.A

Flux due to a point charge

A spherical Gaussian surface centered on a particle with charge g.

@=f§dﬁ
1) E and dA are parallel, 6 = 0, cos0 =1

Q= fEdAcos@ = fEdA

i) E at surface is same because r is same.
®=E$dA @ = E(4nr?)

1 g¢q

E= ——
Arey 12

4 X 4mr?

D=
ATrey 12

o=
€o
Independent of r; independent of size and shape of Gaussian surface; holds for any shape
and no. of charges.

Z quLC
€o

@=§E@X=

Holds for air. Always holds. Guass’ law relates the electric field at points on a (closed)
Gaussian surface to the net charge enclosed by that surface.
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Figure 23.8

Eﬂhﬂh—l‘ 2
The figure shows three siluations in which a Gaussian cube sits in
an electric ficld. The arrows and the values indicate the directions
of the field lines and the magnitudes (in N - m*C) of the flux
through the six sdes of eech cube. (The lighter arrows are for the
hdden taces. ) In which sruation does the cube enclose (a) a posi-
tive net charge, (b) 2 negative net charpe, and (c) zero net charge?




m{:henl-:unint:i

There 15 a certain net flux &, through a Gaussian sphere of radius renclosing an 1so-
lated charped particle. Suppose the enclosing Gaussian surface 1schangedto(a) a
larger Gaussian sphere, (b) a Gaussian cube with edge length equal to r,and (c) a
Gaussian cube with edge length equal to 2r. In each case, 1s the net flux through the
new (aussian surface greater than, less than, or equal to &7

o=21
€o

Electric flux are independent of size and shape of Gaussian surface.

Equal to @,

Spherical Symmetry

Figure shows a uniformaly charged spherical shell of radius R. Consider a Gaussian
surface of radius r.

1) Spherical symmetry, charge uniformly distributed. Electric field at point 1 is equal
in magnitude to electric field at point 2.

q
i)  Electric field radially inward or outward.
_ g —_—> _ M

@— ﬁE-dA — €0 "#".---“1‘*

— denc 2y — denc "“ q v “I-
E$dA . E(4nr?) . : \

' r E

Genc = 0 E=0 r<R ' -
A charged particle inside a shell with charge uniformly "-.__ ',"
distributed on its surface has no net force acting on it due to ST -
the shell. g

¢=3€§.dz= Genc

€o
_ denc 2y _ a4 ' 1/¢?
EfdA = . E(4m‘)—£0 K
R

E=-~4 r >R

4TTE T2




A charged particle outside a shell with charge uniformly distributed on its surface is
attracted or repelled as if the shell’s charge were concentrated as a particle at its center.

3 Fgure 23-23 shows, in cross section, a central metal ball, two
spherical metal shells, and three sphencal Gaussian surfaces of radn
R, 2R, and 3R, all with the same center. The uniform charpes on the
three omects are: ball, O smaller shell, 30 larger shell, 30. Rank the

Gaussian surfaces according to the magnitude of the electnc held at
anv pont on the surface, greatest first.

Figure 23-2 Question 3.

_ 1 q
 4me, R?
1 4 1
E = _Q —F = g
4A1ey 4R? 41ey R?
1 9 1
E = 9 _ E = 9
4mey 9R? 4mey R?

All tie.



4 Fgure 23-24 shows, 1n cross sec-
ton, two Gauvssan spheres and two

(aus=ian cubes that are centered on
a positively charped particle. (a)
Rank the net flux through the four

(raussian surfaces, greatest first. (b)
Rank the magmitudes of the electric

ficlds on the surfaces. greatest first,

[ i

i

and indicate whether the magnitudes
are umform or vanable along each

surface. Fioua 732 Ouestion 4.

(a) Alltie. Electric flux is independent of size and shape of Gaussian surface.

(b) a,b,candd.
1 0

- 4‘7-[80 ﬁ

The magnitude of electric field is uniform along surfaces a and ¢ and is variable along b

and d.
Spherical charge distribution

Any spherically symmetric charge distribution, such
as that of Fig. can be constructed with a nest of
concentric spherical shells. For purposes of
applying the two shell theorems, the volume charge
density p should have a single value for each shell
but need not be the same from shell to shell. Thus,
for the charge distribution as a whole p can vary,
but only with r, the radial distance from the center.
We can then examine the effect of the charge
distribution “shell by shell.” In Fig. the entire
charge lies within a Gaussian surface with » > R.
The charge produces an electric field on the
Gaussian surface as if the charge were that of a
particle located at the center.

E=-14 r >R

4TTEy T2




Figure shows a Gaussian surface with » < R. To find the electric field at points on this
Gaussian surface, we separately consider the charge inside it and the charge outside it. The
outside charge does not set up a field on the Gaussian surface. The inside charge sets up a
field as though it is concentrated at the center. Letting q/ represent that enclosed charge,
we can then write’

1 q/
F=-—2L
4mey r?

If the full charge q enclosed within radius R is uniform, then q/ enclosed within radius r in
Fig. is proportional to q:

q/ q r3
a/=q

= ( a ) T r<R
4EgR3
Direction of E?

2 Figure 2127 shows four solid spheres, each with charge
()} uniformly distributed through its volume. (a) Rank the spheres
according to their volume charge density, greatest first. The fipure
also shows a point F for each sphere, all at the same distance from
the center of the sphere. (b) Rank the spheres according to the mag-
nitude of the electric field they produce at point F, greatest first.

™ _J_'_"i_ " Pa _ s “
. i:' v B . xi | -

= % - . . | ;
{a) { ) (£ E

a)a, b, cand d. b) a and b tie, ¢ and d.



Cylindrical Symmetry

Figure shows a section of an infinitely long cylindrical plastic rod with a uniform charge
density A.We want to find an expression for the electric field magnitude £ at radius » from
the central axis of the rod, outside the rod. The charge distribution and the field have
cylindrical symmetry. To find the field at radius », we enclose a section of the rod with a
concentric Gaussian cylinder of radius » and height 4.

¢=fﬁ@z=qmc
€o

f§¢z+j§¢z+fﬁdz=ﬁm
0
B C

T

j EdAcos90 + J EdAcos90 + j EdAcos0 = ene
T B C

€0
__Yenc _ Ah _ y)
EfC dA = 8_0 E(Zﬂ'?"h) = 8_0 E = meor

What 1s direction of E?

7  Figure 23-26 shows four situations in which four very long
rods extend into and out of the page (we see only their cross sec-
tions). The value below each cross section gives that particular
rod’s uniform charge density in microcoulombs per meter. The
rods are separated by either d or 24 as drawn, and a central point
is shown midway between the inner rods. Rank the situations ac-
cording to the magnitude of the net electric field at that central
point, greatest first.

(a) —o—0——0—0-
+3 +2 —Z 3
®) ——0——0—0-
+2 B § o § +2
) —@ O * & o—
+5 -7 ¥ +8



1 3 1 6 7
(a) E _21150 E+_+ +£ _Znsod[E-l_ ]_Zneod

a, c then b and d tie

2 Figure 23-12 shows, in cross section, three solid cylinders, each of
length I and uniform charge () Concentnc with each cylinder 15 a
cylindncal Gaussian surface, with all three surfaces having the same
radius Rank the Gaussian surfaces according to the clectnc ficld at

anv point on the surface, greatest first.
Cylinder
ll:'.:l.um::rl
. A1 0Q

2me,r 2MEYT L

Enclosed charge and length is same. Gausssian surfaces have same radius so electric field

is same. All tie.

11 Figure 23-28 shows a seclion of (hree long charged cylinders
centered on the same axis. Central cylinder A has a uniform charge
g4 = +3q; What uniform charges gy end g should be on cylinders
B and C so that (if possible| the net electric field s zero at (&) point
1,(b) point 2, and (c) point 37




@:jﬂﬁ.dmw
€o

(a) E=0, therefore q,.,, = 0 but gpope = q4 = +3q, , impossible.
(b) E=0, therefore qonc = q4 + g = 0 1mplies g = —q4 = —3q

(c) E=0, therefore g.,, = q4 + 95 + qc = 0 implies g0 = —q4 — qg = —3qy +3q, =0

impossible.
A Charged Isolated Conductor
If an excess charge is placed on an isolated conductor that
amount of charge will move entirely to the surface of the
conductor. None of the excess charge will be found within the — )
body of the conductor. \ "
Copper =" \
. . surface # /’
Charges with the same sign repel. f-ﬂ“;'*_-‘““‘ R/
siriace
Gauss’ law

Figure shows, in cross section, an isolated lump of copper hanging from an insulating
thread and having an excess charge g. We place a Gaussian surface just inside the actual
surface of the conductor.

The electric field inside this conductor must be zero. Why?

There is no perpetual current in an isolated conductor.

Since E = 0 everywhere inside copper conductor then (@ = 95§ : dZ) shows flux through

Gaussian surface must be zero (® =0) and (@ = gi ) shows charge inside the Gaussian
0

surface must also be zero.

Then because the excess charge is not inside the Gaussian surface, it must be outside that
surface, which means it must lie on the actual surface of the conductor.

An lIsolated Conductor with a Cavity

Figure shows the same hanging conductor, but now with a cavity that

is totally within the conductor. We draw a Gaussian surface .
surrounding the cavity, close to its surface but inside the conducting .~ )
body. Because E = 0 inside the conductor. . & / atmssan
From Gauss’ law (@ = sﬁE) dA = :—0) that surface can enclose no \ /L -up]]jrurlm

net charge. Where is the excess charge? surface



The Conductor Removed

Suppose that, by some magic, the excess charges could be “frozen” into position on the
conductor’s surface, perhaps by embedding them in a thin plastic coating, and suppose
that then the conductor could be removed completely. This is equivalent to enlarging the
cavity of Fig. until it consumes the entire conductor, leaving only the charges. The electric
field would not change at all; it would remain zero inside the thin shell of charge and
would remain unchanged for all external points. This shows us that the electric field is set
up by the charges and not by the conductor. The conductor simply provides an initial
pathway for the charges to take up their positions.

9 A small charged ball lies within the hollow of a metallic spher-
ical shell of radius K. For three situations, the net charges on the
ball and shell, respectively, are (1) +4q, 0 (2) —6g, +10qg;
(3) +16g, —12g. Rank the situations according to the charge on
(a) the inner surface of the shell and (b) the outer surface. most
positive first.

®=¢E .dA = Tene
€o
E = 0 inside shell. Flux through Gaussian surface is zero and net

charge enclosed in Gaussian surface is zero.

Gaussian

(@) Gnet = Qbant + Dinner surface 0 = 49 + qinner surface surface
Qinner surface = —4q
(2,1, 3)
(b) Qshell = Yinner surface + Qoutter surface 0= _4q + Qoutter surface

Qoutter surface — 4q

(All tie)

10 Rank the situations of Question 9 according to the magnitude
of the electric field (a) halfway through the shell and (b) at a point
2R from the center of the shell, greatest first.

(a) All tie; E = 0 inside metal shell
(b) All tie; enclosed charge same and distance of point same.



The External Electric Field

The surface charge density varies over the surface of any nonspherical 8 ‘
conductor that makes the determination of the electric field set up by @D/ZA
the surface charges very difficult. EXG

The find electric field just outside the surface of a conductor, we

consider a section of the surface that is small enough to permit us to neglect any curvature
and thus to take the section to be flat. We then imagine a tiny cylindrical Gaussian surface
to be partially embedded in the section.

The electric field at and just outside the conductor’s surface must also be perpendicular to
that surface. Why?

Since electric field within the conductor is zero therefore no flux through the internal (in
the conductor) portion of Gaussian surface.

Flux through the external portion of Gaussian surface are:

ot H
=N

curved surface end cap

j EdAcos90 + f EdAcos0 = Clznc
curved surface end cap 0
) dA = Tene EA=2" E=2
end cap £ & €o

Thus, the magnitude of the electric field just outside a conductor is proportional to the
surface charge density on the conductor.
What is direction of electric field?

Planar Symmetry

Figure shows a portion of a thin, infinite, non conducting sheet with a uniform (positive)
surface charge density o. Let us find electric field a distance » in front of the sheet.



Cylindrical Gaussian surface (why not spherical, tapered dA
or conical) e

1) End caps should be flat (not convex, concave or conical)
and parallel to sheet (no tilt) E

i1) Curved surface should be perpendicular to sheet

111) Distance of end caps from sheet should be same.

= g Z Qenc E
O=0F.dA = —— dA
€o
e ] 7 _ denc - -
fTEdA+fBE.dA+fCEdA—£0
—_— = -f N "}
A= S e
Qenc E ; oL
j EdAcos0 + J EdAcos0 + j EdAcos90 = > ; -
&o = i =
T B c - f -
gA g
Ef dA+E/[ dA =2 EA+EA=2FEA == E =2
T B &o €o 280
12 Fgure 23-29 shows four Gaussian surfaces consisting of identical
cylindrical midsections but different end caps. The surfaces are in a
uniform electric field E that is directed parallel to the central axis of
each cylindrical midsection. The end caps have these shapes: §, con-
vex hemispheres; 55, concave hemispheres; 5;, cones; §;, flat disks.
Rank the surfaces according to (a) the net electric flux through them
and (b} the electric flux through the top end caps. greatest first.
E
5 54
iy iy

(a) All tie; zero (b) all tie; same

Two Conducting Plates

Figure shows a cross section of a thin, infinite conducting plate with
excess positive charge. All the excess charge lies on the two large faces
of the plate. If there is no external electric field to force the positive LJ—;
charge into some particular distribution, it will spread out on the two
faces with a uniform surface charge density of magnitude ;. Just outside —
the plate this charge sets up an electric field of magnitude - -




F=2
€o
Figure shows an identical plate with excess negative charge having the same magnitude of
surface charge density g;.
The two plates arranged so they are parallel and close. Since the plates are conductors,

when we bring them into this arrangement, the excess charge on

20,

one plate attracts the excess charge on the other plate, and all the 4 R L
excess charge moves onto the inner faces of the plates. With twice 4 B
as much charge now on each inner face, the new surface charge . _, ; E . F
density (call it o) on each inner face is twice oy.Thus, the electric 3 -
field at any point between the plates has the magnitude : ] -

200 O

€o €o

5 In Fg 23-25, an electron is released
between two infinite nonconducting sheets that are horizontal and have
40 4o 40 uniform surface charge densities o, , and o, as indicated. The electron
E = + = is subjected to the following three situations involving surface charge
280 2&g 2&g densities and sheet separations. Rank the magnitudes of the electron’s
acceleration, greatest first.

70 0O 4o

E = + =
2&y  2& 2&, Situation Ty L P Separation
30 5 4o 1 +dor —der d

E = + = 2 +7o —o 4d
280 28  2& 3 +3a —Ser 9d

iy

All tie; Electric field same.

Electrostatic force same.
6 Three infinite nonconducting sheets, with uniform positive sur-

face charge densities o. 2o, and 3o, are arranged to be parallel like same.
the two sheets in Fig. 23-19a. What is their order, from left to

right, if the electric field E produced by the arrangement has mag-

nitude F = 0 in one region and E' = 2ofe; in another region?

Acceleration

3o 2a o

3c 3o 3a 3o
f— — — — —_— —

2ey 2Ep 2Ep 2y

2c 2o 2o 2c
f— — —_— — — — —

25 2z, 2g; 28y

a o0 o a
2E0 280 &0 28
2




]makpﬂint 4

The figure shows two large, parallel, nonconducting sheets with identical (posi-
tive ) uniform surface charpe densities. and a sphere with a uniform {positive)

volume charge density. Rank the four numbered points according to the magni-
tude of the net electric field there, preatest first.

Problems: 4, 5, 12, 15, 21, 29, 33, 43, 49, 54.

3&4tiethen2,1

-+ ESRNERERET.
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