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Figuure 23.5 



 

 

 

Closed Surface (Balloon, bag) 

By convention, normal is always chosen from inside to outside (uniquely determined) 

 

 

 

 

 

 

 

 

															݀ ൌ	ܧሬԦ	. Ԧܣ݀ ൌ ሺߠݏ݋ܿܧሻ݀ܣ   

 

  Total Flux =  ൌ .ሬԦܧ∮  Ԧܣ݀

   

 

(a)  ൌ ׬ .ி	ሬԦܧ  Ԧ  (Open surface)ܣ݀

 ൌ ׬ ி		0ݏ݋ܿܣ݀ܧ      E and dA are parallel, =0, cos0=1 

 ൌ ܧ	 ׬ ிܣ݀     E is uniform on front face; we take it out from integral 

 ൌ ׬   ܣܧ	 ிܣ݀ ൌ  Area of front face   ܣ

Figure 23.6 



 

 

 

(b)  ൌ ׬ .ி	ሬԦܧ  Ԧ  (Open surface)ܣ݀

 ൌ ׬ ி		180ݏ݋ܿܣ݀ܧ    E and dA (vector area along negative z-axis) are antiparallel, 

=180, cos180= 1 

 ൌ	െ	ܧ ׬ ிܣ݀     E is uniform on rear face; we take it out from integral 

 ൌ	െ	׬   ܣܧ ிܣ݀ ൌ  Area of rear face   ܣ

 

(c)  ൌ ׬ .	ሬԦܧ Ԧிܣ݀   (Open surface) 

 ൌ ׬ ி		180ݏ݋ܿܣ݀ܧ    E and dA (vector area along positive y-axis) are perpendicular, 

=90, cos90=0 

 ൌ 	0    

 

 

(d)               ݈ܶܽݐ݋	ݔݑ݈݂	݄݃ݑ݋ݎ݄ݐ	݈݁݋݄ݓ	ܾ݁ݑܿ ൌ  ൌ .	ሬԦܧ∮  ሬሬሬሬሬറ         (Closed surface)ܣ݀
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For bottom, right and left faces E and dA are perpendicular, =90, cos90=0 

 ൌ ܣܧ െ ܣܧ ൅ 0 ൅ 0 ൅ 0 ൅ 0 

 ൌ 0     Why? 

 

 

 

 

 



 

 

Total Flux =  ൌ	ܧሬԦ.  Ԧܣ

 ൌ 4	ଓ	ො. ሺ2	ଓ̂ ൅ 	3	ଔ̂ሻ 	ൌ 8	ଓ	̂. ଓ̂ 	൅ 12	ଓ	̂. ଔ̂ ൌ 8
ே௠మ

஼
  

 ൌ 4	݇	෡ . ሺ2	ଓ̂ ൅ 	3	ଔ̂ሻ ൌ 8	 ෠݇	. ଓ̂ 	൅ 12	 ෠݇	. ଔ̂ ൌ 0	 

 

Flux due to a point charge 

A spherical Gaussian surface centered on a particle with charge q. 
 

 ൌ රܧሬԦ	.  Ԧܣ݀

i) E and dA are parallel,  = 0, cos0 =1 

 ൌ රߠݏ݋ܿܣ݀ܧ ൌ	රܣ݀ܧ 

 

ii) E at surface is same because r is same. 

 ൌ ܧ   ܣ݀∮ ൌ  ଶሻݎߨሺ4ܧ
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Independent of r; independent of size and shape of Gaussian surface; holds for any shape 
and no. of charges. 

 ൌ රܧሬԦ	. ሬሬሬԦ	ܣ݀ ൌ 	
∑ ௘௡௖ݍ
଴ߝ

 

Holds for air. Always holds. Guass’ law relates the electric field at points on a (closed) 
Gaussian surface to the net charge enclosed by that surface. 

 
 
 



 
 
 
 

 
 
 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23.8
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Electric flux are independent of size and shape of Gaussian surface. 

Equal to ௜ 

 

Spherical Symmetry 

Figure shows a uniformaly charged spherical shell of radius R. Consider a Gaussian 
surface of radius r. 

i) Spherical symmetry, charge uniformly distributed. Electric field at point 1 is equal 
in magnitude to electric field at point 2. 

ii) Electric field radially inward or outward. 
 

 

 ൌ .	ሬԦܧ∮ ሬሬሬԦ	ܣ݀ ൌ 	
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௤೐೙೎
ఌబ

 

௘௡௖ݍ ൌ ܧ  0 ൌ ݎ    0 ൏ ܴ   

A charged particle inside a shell with charge uniformly 
distributed on its surface has no net force acting on it due to 
the shell. 
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A charged particle outside a shell with charge uniformly distributed on its surface is 
attracted or repelled as if the shell’s charge were concentrated as a particle at its center. 
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All tie. 

 

 

 



 

 

 

 

 

 

 

 

(a)   All tie. Electric flux is independent of size and shape of Gaussian surface. 

(b)  a, b, c and d. 	

ܧ ൌ 	
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଴ߝߨ4

ܳ
ܴଶ

 

The magnitude of electric field is uniform along surfaces a and c and is variable along b 
and d. 

Spherical charge distribution 

Any spherically symmetric charge distribution, such 
as that of Fig. can be constructed with a nest of 
concentric spherical shells. For purposes of 
applying the two shell theorems, the volume charge 
density  should have a single value for each shell 
but need not be the same from shell to shell. Thus, 
for the charge distribution as a whole  can vary, 
but only with r, the radial distance from the center. 
We can then examine the effect of the charge 
distribution “shell by shell.” In Fig. the entire 
charge lies within a Gaussian surface with r  R. 
The charge produces an electric field on the 
Gaussian surface as if the charge were that of a 
particle located at the center. 
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Figure shows a Gaussian surface with r   R. To find the electric field at points on this 
Gaussian surface, we separately consider the charge inside it and the charge outside it. The 
outside charge does not set up a field on the Gaussian surface. The inside charge sets up a 
field as though it is concentrated at the center. Letting ݍ/ represent that enclosed charge, 
we can then write 

ܧ ൌ 	
1

଴ߝߨ4

/ݍ

ଶݎ
 

If the full charge q enclosed within radius R is uniform, then	q/ enclosed within radius r in 
Fig. is proportional to q: 
 

௤/
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ܧ ൌ 	ቀ
௤

ସగఌబோయ
ቁ  r  R    ݎ

Direction of E? 

 

 

 

 

 

 

 

 

 

 

 

 

a) a, b, c and d.    b) a and b tie, c and d. 

 



 

 

 

Cylindrical Symmetry 

Figure shows a section of an infinitely long cylindrical plastic rod with a uniform charge 
density .We want to find an expression for the electric field magnitude E at radius r from 
the central axis of the rod, outside the rod.  The charge distribution and the field have 
cylindrical symmetry. To find the field at radius r, we enclose a section of the rod with a 
concentric Gaussian cylinder of radius r and height h. 
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What is direction of E? 
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a, c then b and d tie 
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Enclosed charge and length is same. Gausssian surfaces have same radius so electric field 
is same. All tie. 

 

 

 

 

 

 

 

 

 

 



 

 

 ൌ රܧሬԦ	. ሬሬሬԦ	ܣ݀ ൌ 	
௘௡௖ݍ
଴ߝ

 

(a)  E=0, therefore ݍ௘௡௖ ൌ 0 but ݍ௘௡௖ ൌ ஺ݍ ൌ 	൅3ݍ଴ , impossible. 

(b) E=0, therefore ݍ௘௡௖ ൌ ஺ݍ ൅ ஻ݍ ൌ 0	 implies ݍ஻ ൌ െݍ஺ ൌ െ3ݍ଴ 

(c) E=0, therefore ݍ௘௡௖ ൌ ஺ݍ ൅ ஻ݍ ൅ ஼ݍ ൌ 0 implies ݍ஼ ൌ െݍ஺ െ ஻ݍ ൌ െ3ݍ଴ ൅ ଴ݍ3 ൌ 0         
impossible. 

A Charged Isolated Conductor 
If an excess charge is placed on an isolated conductor that 
amount of charge will move entirely to the surface of the 
conductor. None of the excess charge will be found within the 
body of the conductor. 
 
Charges with the same sign repel. 

Gauss’ law  
Figure shows, in cross section, an isolated lump of copper hanging from an insulating 
thread and having an excess charge q. We place a Gaussian surface just inside the actual 
surface of the conductor. 
 
The electric field inside this conductor must be zero.  Why? 

There is no perpetual current in an isolated conductor. 

Since E = 0 everywhere inside copper conductor then ( ൌ .	ሬԦܧ∮  ሬሬሬԦ) shows flux through	ܣ݀

Gaussian surface must be zero ( = 0) and ( ൌ
௤

ఌబ
 ) shows charge inside the Gaussian 

surface must also be zero. 

Then because the excess charge is not inside the Gaussian surface, it must be outside that 
surface, which means it must lie on the actual surface of the conductor. 
 

An Isolated Conductor with a Cavity 
Figure shows the same hanging conductor, but now with a cavity that 
is totally within the conductor. We draw a Gaussian surface 
surrounding the cavity, close to its surface but inside the conducting 
body. Because E = 0 inside the conductor.  
From Gauss’ law ( ൌ .	ሬԦܧ∮ ሬሬሬԦ	ܣ݀ ൌ

௤

ఌబ
ሻ that surface can enclose no 

net charge. Where is the excess charge? 
 
 
 
 



 
 
 
The Conductor Removed 
Suppose that, by some magic, the excess charges could be “frozen” into position on the 
conductor’s surface, perhaps by embedding them in a thin plastic coating, and suppose 
that then the conductor could be removed completely. This is equivalent to enlarging the 
cavity of Fig. until it consumes the entire conductor, leaving only the charges. The electric 
field would not change at all; it would remain zero inside the thin shell of charge and 
would remain unchanged for all external points. This shows us that the electric field is set 
up by the charges and not by the conductor. The conductor simply provides an initial 
pathway for the charges to take up their positions. 
 

 
 
 
 
 
 
 
 
 

 
 
 

 ൌ .	ሬԦܧ∮ ሬሬሬԦ	ܣ݀ ൌ 	
௤೐೙೎
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E = 0 inside shell. Flux through Gaussian surface is zero and net 
charge enclosed in Gaussian surface is zero. 
 
(a)࢚ࢋ࢔ࢗ ൌ ࢒࢒ࢇ࢈ࢗ	 ൅ ࢋࢉࢇࢌ࢛࢙࢘	࢘ࢋ࢔࢔࢏ࢗ        ૙ ൌ 	૝ࢗ ൅  ࢋࢉࢇࢌ࢛࢙࢘	࢘ࢋ࢔࢔࢏ࢗ
ࢋࢉࢇࢌ࢛࢙࢘	࢘ࢋ࢔࢔࢏ࢗ  ൌ 	െ૝ࢗ 
(2, 1, 3) 
 
 
(b) ݍ௦௛௘௟௟ ൌ ௦௨௥௙௔௖௘	௜௡௡௘௥ݍ	 ൅ ௦௨௥௙௔௖௘	௢௨௧௧௘௥ݍ          0 ൌ 	െ4ݍ ൅   ௦௨௥௙௔௖௘	௢௨௧௧௘௥ݍ
௦௨௥௙௔௖௘	௢௨௧௧௘௥ݍ ൌ  ݍ4
(All tie) 

 
 
 
 
 

 
 
 
 
(a) All tie; E = 0 inside metal shell 
(b) All tie; enclosed charge same and distance of point same. 
 
 



 
 
 
 
 
 
 
The External Electric Field 
The surface charge density varies over the surface of any nonspherical 
conductor that makes the determination of the electric field set up by 
the surface charges very difficult. 
 
The find electric field just outside the surface of a conductor, we 
consider a section of the surface that is small enough to permit us to neglect any curvature 
and thus to take the section to be flat. We then imagine a tiny cylindrical Gaussian surface 
to be partially embedded in the section. 
 
The electric field at and just outside the conductor’s surface must also be perpendicular to 
that surface. Why? 
 
Since electric field within the conductor is zero therefore no flux through the internal (in 
the conductor) portion of Gaussian surface. 
 
Flux through the external portion of Gaussian surface are:  
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Thus, the magnitude of the electric field just outside a conductor is proportional to the 
surface charge density on the conductor. 
What is direction of electric field? 
 

Planar Symmetry   

Figure shows a portion of a thin, infinite, non conducting sheet with a uniform (positive) 
surface charge density σ. Let us find electric field a distance r in front of the sheet.  



Cylindrical Gaussian surface (why not spherical, tapered 
or conical) 

i) End caps should be flat (not convex, concave or conical) 
and parallel to sheet (no tilt) 

ii) Curved surface should be perpendicular to sheet 

iii) Distance of end caps from sheet should be same. 
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(a) All tie; zero   (b) all tie; same 

Two Conducting Plates 
Figure shows a cross section of a thin, infinite conducting plate with 
excess positive charge. All the excess charge lies on the two large faces 
of the plate. If there is no external electric field to force the positive 
charge into some particular distribution, it will spread out on the two 
faces with a uniform surface charge density of magnitude ߪଵ.  Just outside 
the plate this charge sets up an electric field of magnitude  
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Figure shows an identical plate with excess negative charge having the same magnitude of 
surface charge density ߪଵ.   
The two plates arranged so they are parallel and close. Since the plates are conductors, 
when we bring them into this arrangement, the excess charge on 
one plate attracts the excess charge on the other plate, and all the 
excess charge moves onto the inner faces of the plates. With twice 
as much charge now on each inner face, the new surface charge 
density (call it σ) on each inner face is twice ߪଵ.Thus, the electric 
field at any point between the plates has the magnitude 
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All tie; Electric field same. 

Electrostatic force  same. 

Acceleration  same. 

 

 

 

 

 

 



 

 

 

 

 

 

Problems: 4, 5, 12, 15, 21, 29, 33, 43, 49, 54. 

 

 

 

 

 

 

3 & 4 tie then 2, 1 

 

 

 

 


