Human Physiology, Motor System

Dr. Shahid JavedMBBS; PhD

Spinal Cord

- ➤ Spinal cord extends through the vertebral canal and is connected to the spinal nerves
- ➤ The white matter of spinal cord is organized into tracts
- ➤ Each horn of spinal cord houses a different type of neuronal cell body
- ➤ Spinal nerves carry both afferent and efferent fibers

• FIGURE 5-29 Regions of the gray matter.

ORGANIZATION OF SPINAL CORD FOR MOTOR FUNCTION

- ➤ Each segment of spinal cord has several million neurons in its grey matter
- ➤ Aside from sensory relay neurons, other neurons are motor neurons

- > 2 types of lower motor neurons:
- Anterior motor neurons
- Interneurons

ANTERIOR MOTOR NEURONS

- > Located in anterior horns of cord grey matter
- > Innervate skeletal muscle fibers
- ➤ 2 types:
 - A- alpha motor neurons
 - B- gamma motor neurons
- A. ALPHA MOTOR NEURONS
- > Give rise to large type A alpha motor nerve fibers
- > 14 μm in diameter
- Innervate extrafusal muscle fibers
- ➤ Motor unit
- Inputs to alpha motor neurons
- B. GAMMA MOTOR NEURONS
- Give rise to smaller type gamma motor nerve fibers
- 5μm in diameter
- Innervate the special skeletal muscle fibers intrafusal fibers middle of the muscle spindle control basic muscle tone

INTERNEURONS

- > Located in all areas of cord grey matter
- ➤ Are about 30 times as numerous as anterior motor neurons
- ➤ Are small and highly excitable
- ➤ They have many interconnections with one another and many of them directly synapse with anterior motor neurons
- ➤ These interconnections between interneurons and anterior motor neurons are responsible for most of the integrative functions of the spinal cord
- ➤ Function of the interneuron integration and processing of information

RENSHAW CELLS

- ➤ In anterior horn of grey matter
- ➤ These are inhibitory cells
- Stimulation of each motor neuron tends to inhibit adjacent motor neurons called lateral inhibition
- > This is to focus or sharpen these signals

Muscle receptors provide afferent information needed to control skeletal muscle activity

MUSCLE SPINDLE

Location - distributed throughout the belly of skeletal muscle & send information to nervous system about muscle length

Length 3 – 10 mm

Structure - Intrafusal fibers

- 1. Nuclear bag fibers
- 2. Nuclear chain fibers

Motor Innervation

- Central portion of muscle spindle has few or no actin & myosin filaments
- > It acts as sensory receptors
- > End portion of muscle spindle has actin & myosin filaments
- ➤ End portion is excited by gamma efferent fibers (coactivation of gamma and alpha motor neurons is required)

Sensory Innervation

- 2 types of sensory nerve fibers
 - primary endings or annulospiral endings Diameter 17 μ m Conduction velocity 70-120 m/sec
 - secondary endings or flower spray endings Diameter 8 μm

1 Initial length of muscle

2 Spindle activated by "involuntary" muscle stretching

Reflex contraction of skeletal muscle to bring muscle back to initial length

3 Supraspinal activation

- "Voluntary" change in muscle length with pre-setting (via γ fibers) of
- a set-point for length (α/γ co-activation)
- an increased sensor sensitivity (fusimotor set)

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

GOLGI TENDON ORGAN

- Location at the junction of muscle with its tendon
- Encapsulated and 10-15 muscle fibers are usually connected to each golgi tendon organ
- Stimulation by tension produced in the muscle either by contraction or the stretching of the muscle
- It has both dynamic and static response
- Sensory nerve fibers are Ib fibers with an average diameter of 16 µm

Spinal Cord Reflexes

- **❖**The spinal cord is responsible for the integration of many basic reflexes
- Reflex arc
- 1- Sensory receptors
- 2- Afferent pathway
- 3- Integrating centre
- 4- Efferent pathway
- 5- Effectors

Spinal Cord Reflexes

- ➤ Muscles stretch reflex
- > Withdrawl reflex
- ➤ Flexor reflex or Nociceptive reflex or Pain reflex
- > Crossed extensor reflex
- ➤ Golgi tendon Reflex

Monosynaptic

Polysynaptic

Muscles stretch reflex

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

FUNCTIONS OF STRETCH REFLEX

Damping Function or Signal Averaging Function

- it is the ability to prevent oscillation or jerkiness of body movements
- Signals from spinal cord are often transmitted to a muscle in an unsmooth form
- Muscle spindle causes smoothening of muscle contraction

Role in Voluntary Motor Activity

Whenever signals are transmitted from motor cortex to the alpha motor neurons, in most instances the gamma motor neurons are stimulated simultaneously called <u>coactivation of alpha and gamma motor neurons</u>

FUNCTIONS OF STRETCH REFLEX

Stabilizes body position during tense action

- Bulbo-reticular facilitatory region and its allied areas of brain stem transmit excitatory signals through the gamma nerve fibers to the intrafusal fibers of muscle spindles
- Spindles on both sides of each joint are activated at the same time → reflex excitation of the skeletal muscles on both sides of the joint → produces tense muscle contractions opposing each other at the joint

Helps in motor control from higher levels of brain

CLINICAL APPLICATIONS

- ➤ Knee jerk
- ➤ Other muscle jerks
 - Exaggerated muscle jerks → large lesions in motor areas of cerebral cortex
 - oclonus→ oscillation of muscle jerks it occurs only when the stretch reflex is highly sensitized by facilitatory impulses from the brain

Knee Jerk

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

Withdrawl reflex
 Crossed extensor reflex
 Reflexes of posture & locomotion

Autonomic reflexes in spinal cord

- Changes in vascular tone resulting from changes in local skin heat
- Sweating which results from localized heat on the surface of body
- Peritoneointestinal reflexes
- Evacuation reflexes
- Mass reflex

Spinal Shock

- When the spinal cord is suddenly transected in the neck, at first, all cord functions, including cord reflexes immediately depressed to a point of complete silence, a reaction called spinal shock
- The reason for spinal shock
- Clinical features