4.9 Markov matrices

DEFINITION 4.3

A real $n \times n$ matrix $A=\left[a_{i j}\right]$ is called a Markov matrix, or rowstochastic matrix if
(i) $a_{i j} \geq 0$ for $1 \leq i, j \leq n$;
(ii) $\sum_{j=1}^{n} a_{i j}=1$ for $1 \leq i \leq n$.

Remark: (ii) is equivalent to $A J_{n}=J_{n}$, where $J_{n}=[1, \ldots, 1]^{t}$. So 1 is always an eigenvalue of a Markov matrix.

EXERCISE 4.1

If A and B are $n \times n$ Markov matrices, prove that $A B$ is also a Markov matrix.

THEOREM 4.9

Every eigenvalue λ of a Markov matrix satisfies $|\lambda| \leq 1$.
PROOF Suppose $\lambda \in \mathbb{C}$ is an eigenvalue of A and $X \in V_{n}(\mathbb{C})$ is a corresponding eigenvector. Then

$$
\begin{equation*}
A X=\lambda X \tag{13}
\end{equation*}
$$

Let k be such that $\left|x_{j}\right| \leq\left|x_{k}\right|, \forall j, 1 \leq j \leq n$. Then equating the $k-$ th component of each side of equation (13) gives

$$
\begin{equation*}
\sum_{j=1}^{n} a_{k j} x_{j}=\lambda x_{k} \tag{14}
\end{equation*}
$$

Hence

$$
\begin{align*}
\left|\lambda x_{k}\right| & =|\lambda| \cdot\left|x_{k}\right|=\left|\sum_{j=1}^{n} a_{k j} x_{j}\right| \leq \sum_{j=1}^{n} a_{k j}\left|x_{j}\right| \tag{15}\\
& \leq \sum_{j=1}^{n} a_{k j}\left|x_{k}\right|=\left|x_{k}\right| . \tag{16}
\end{align*}
$$

Hence $|\lambda| \leq 1$.

DEFINITION 4.4

A positive Markov matrix is one with all positive elements (i.e. strictly greater than zero). For such a matrix A we may write " $A>0$ ".

THEOREM 4.10

If A is a positive Markov matrix, then 1 is the only eigenvalue of modulus 1. Moreover nullity $\left(A-I_{n}\right)=1$.

PROOF Suppose $|\lambda|=1, A X=\lambda X, X \in V_{n}(\mathbb{C}), X \neq 0$.
Then inequalities (15) and (16) reduce to

$$
\begin{equation*}
\left|x_{k}\right|=\left|\sum_{j=1}^{n} a_{k j} x_{j}\right| \leq \sum_{j=1}^{n} a_{k j}\left|x_{j}\right| \leq \sum_{j=1}^{n} a_{k j}\left|x_{k}\right|=\left|x_{k}\right| \tag{17}
\end{equation*}
$$

Then inequalities (17) and a sandwich principle, give

$$
\begin{equation*}
\left|x_{j}\right|=\left|x_{k}\right| \quad \text { for } \quad 1 \leq j \leq n \tag{18}
\end{equation*}
$$

Also, as equality holds in the triangle inequality section of inequalities (17), this forces all the complex numbers $a_{k j} x_{j}$ to lie in the same direction:

$$
\begin{aligned}
a_{k j} x_{j} & =t_{j} a_{k k} x_{k},, t_{j}>0,1 \leq j \leq n \\
x_{j} & =\tau_{j} x_{k}
\end{aligned}
$$

where $\tau_{j}=\left(t_{j} a_{k k}\right) / a_{k j}>0$.
Then equation (18) implies $\tau_{j}=1$ and hence $x_{j}=x_{k}$ for $1 \leq j \leq n$.
Consequently $X=x_{k} J_{n}$, thereby proving that $N\left(A-I_{n}\right)=\left\langle J_{n}\right\rangle$.
Finally, equation (14) implies

$$
\sum_{j=1}^{n} a_{k j} x_{j}=\lambda x_{k}=\sum_{j=1}^{n} a_{k j} x_{k}=x_{k}
$$

so $\lambda=1$.

COROLLARY 4.3

If A is a positive Markov matrix, then A^{t} has 1 as the only eigenvalue of modulus 1. Also nullity $\left(A^{t}-I_{n}\right)=1$.

PROOF The eigenvalues of A^{t} are precisely the same as those of A, even up to multiplicities. For

$$
\operatorname{ch}_{A^{t}}=\operatorname{det}\left(x I_{n}-A^{t}\right)=\operatorname{det}\left(x I_{n}-A\right)^{t}=\operatorname{det}\left(x I_{n}-A\right)=\operatorname{ch}_{A}
$$

Also $\nu\left(A^{t}-I_{n}\right)=\nu\left(A-I_{n}\right)^{t}=\nu\left(A-I_{n}\right)=1$.

THEOREM 4.11

If A is a positive Markov matrix, then
(i) $(x-1) \| m_{A}$;
(ii) $A^{m} \rightarrow B$, where $B=\left[\begin{array}{c}X^{t} \\ \vdots \\ \hline X^{t}\end{array}\right]$ is a positive Markov matrix and where X is uniquely defined as the (positive) vector satisfying $A^{t} X=X$ whose components sum to 1 .

Remark: In view of part (i) and the equation $\nu\left(A-I_{n}\right)=1$, it follows that $(x-1) \| \operatorname{ch}_{A}$.
PROOF As $\nu\left(A-I_{n}\right)=1$, the Jordan form of A has the form $J_{b}(1) \oplus$ K, where $(x-1)^{b} \| m_{A}$. Here K is the direct sum of all Jordan blocks corresponding to all the eigenvalues of A other than 1 and hence $K^{m} \rightarrow 0$.

Now suppose that $b>1$; then $J_{b}(1)$ has size $b>1$. Then $\exists P$ such that

$$
\begin{aligned}
P^{-1} A P & =J_{b}(1) \oplus K, \\
P^{-1} A^{m} P & =J_{b}^{m}(1) \oplus K^{m} .
\end{aligned}
$$

Hence the 2×1 element of $J_{b}^{m}(1)$ equals $\binom{m}{1} \rightarrow \infty$ as $m \rightarrow \infty$.
However the elements of A^{m} are ≤ 1, as A^{m} is a Markov matrix. Consequently the elements of $P^{-1} A^{m} P$ are bounded as $m \rightarrow \infty$. This contradiction proves that $b=1$.

Hence $P^{-1} A^{m} P \rightarrow I_{1} \oplus 0$ and $A^{m} \rightarrow P\left(I_{1} \oplus 0\right) P^{-1}=B$.
We see that $\operatorname{rank} B=\operatorname{rank}\left(I_{1} \oplus 0\right)=1$.
Finally it is easy to prove that B is a Markov matrix. So

$$
B=\left[\frac{t_{1} X^{t}}{\vdots}\right]\left[\frac{t_{n} X^{t}}{}\right]
$$

for some non-negative column vector X and where t_{1}, \ldots, t_{n} are positive. We can assume that the entries of X sum to 1 . It then follows that $t_{1}=$ $\cdots=t_{n}=1$ and hence

$$
B=\left[\begin{array}{c}
X^{t} \tag{19}\\
\vdots \\
\hline X^{t}
\end{array}\right]
$$

Now $A^{m} \rightarrow B$, so $A^{m+1}=A^{m} \cdot A \rightarrow B A$. Hence $B=B A$ and

$$
\begin{equation*}
A^{t} B^{t}=B^{t} \tag{20}
\end{equation*}
$$

Then equations (19) and (20) imply

$$
A^{t}[X|\cdots| X]=[X|\cdots| X]
$$

and hence $A^{t} X=X$.
However $X \geq 0$ and $A^{t}>0$, so $X=A^{t} X>0$.

DEFINITION 4.5

We have thus proved that there is a positive eigenvector X of A^{t} corresponding to the eigenvalue 1, where the components of X sum to 1. Then because we know that the eigenspace $N\left(A^{t}-I_{n}\right)$ is one-dimensional, it follows that this vector is unique.

This vector is called the stationary vector of the Markov matrix A.

EXAMPLE 4.4

Let

$$
A=\left[\begin{array}{lll}
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 6 & 1 / 6 & 2 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right]
$$

Then

$$
A^{t}-I_{3} \text { row-reduces to }\left[\begin{array}{rrr}
1 & 0 & -4 / 9 \\
0 & 1 & -2 / 3 \\
0 & 0 & 0
\end{array}\right]
$$

Hence $N\left(A^{t}-I_{3}\right)=\left\langle\left[\begin{array}{c}4 / 9 \\ 2 / 3 \\ 1\end{array}\right]\right\rangle=\left\langle\left[\begin{array}{l}4 / 19 \\ 6 / 19 \\ 9 / 19\end{array}\right]\right\rangle$ and

$$
\lim _{m \rightarrow \infty} A^{m}=\frac{1}{19}\left[\begin{array}{lll}
4 & 6 & 9 \\
4 & 6 & 9 \\
4 & 6 & 9
\end{array}\right]
$$

We remark that $\operatorname{ch}_{A}=(x-1)\left(x^{2}-1 / 24\right)$.

DEFINITION 4.6

A Markov Matrix is called regular or primitive if $\exists k \geq 1$ such that $A^{k}>0$.

THEOREM 4.12

If A is a primitive Markov matrix, then A satisfies the same properties enunciated in the last two theorems for positive Markov matrices.

PROOF Suppose $A^{k}>0$. Then $(x-1) \| \operatorname{ch}_{A^{k}}$ and hence $(x-1) \| \operatorname{ch}_{A}$, as
$\operatorname{ch}_{A}=\left(x-c_{1}\right)^{a_{1}} \cdots\left(x-c_{t}\right)^{a_{t}} \Rightarrow \operatorname{ch}_{A^{k}}=\left(x-c_{1}^{k}\right)^{a_{1}} \cdots\left(x-c_{t}^{k}\right)^{a_{t}}$.
and consequently $(x-1) \| m_{A}$.
Also as 1 is the only eigenvalue of A^{k} with modulus 1 , it follows from equation (21) that 1 is the only eigenvalue of A with modulus 1 .

The proof of the second theorem goes through, with the difference that to prove the positivity of X we observe that $A^{t} X=X$ implies $\left(A^{k}\right)^{t} X=X$.

EXAMPLE 4.5

The following Markov matrix is primitive (its fourth power is positive) and is related to the $5 x+1$ problem:

$$
\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
0 & 0 & 1 / 2 & 1 / 2 \\
0 & 1 / 2 & 1 / 2 & 0
\end{array}\right] .
$$

Its stationary vector is $\left[\frac{1}{15}, \frac{2}{15}, \frac{8}{15}, \frac{4}{15}\right]^{t}$.
We remark that $\operatorname{ch}_{A}=(x-1)(x+1 / 2)\left(x^{2}+1 / 4\right)$.

