
4.9 Markov matrices

DEFINITION 4.3
A real n × n matrix A = [aij ] is called a Markov matrix, or row–

stochastic matrix if

(i) aij ≥ 0 for 1 ≤ i, j ≤ n;

(ii)
n∑
j=1

aij = 1 for 1 ≤ i ≤ n.

Remark: (ii) is equivalent to AJn = Jn, where Jn = [1, . . . , 1]t. So 1 is
always an eigenvalue of a Markov matrix.

EXERCISE 4.1
If A and B are n× n Markov matrices, prove that AB is also a Markov

matrix.

THEOREM 4.9
Every eigenvalue λ of a Markov matrix satisfies |λ| ≤ 1.

PROOF Suppose λ ∈ C is an eigenvalue of A and X ∈ Vn(C) is a corre-
sponding eigenvector. Then

AX = λX. (13)

Let k be such that |xj | ≤ |xk|, ∀j, 1 ≤ j ≤ n. Then equating the k–th
component of each side of equation (13) gives

n∑
j=1

akjxj = λxk. (14)

Hence

|λxk| = |λ| · |xk| = |
n∑
j=1

akjxj | ≤
n∑
j=1

akj |xj | (15)

≤
n∑
j=1

akj |xk| = |xk|. (16)

Hence |λ| ≤ 1.
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DEFINITION 4.4
A positive Markov matrix is one with all positive elements (i.e.

strictly greater than zero). For such a matrix A we may write “A > 0”.

THEOREM 4.10
If A is a positive Markov matrix, then 1 is the only eigenvalue of modulus

1. Moreover nullity (A− In) = 1.

PROOF Suppose |λ| = 1, AX = λX, X ∈ Vn(C), X 6= 0.
Then inequalities (15) and (16) reduce to

|xk| =
∣∣∣ n∑
j=1

akjxj

∣∣∣ ≤ n∑
j=1

akj |xj | ≤
n∑
j=1

akj |xk| = |xk|. (17)

Then inequalities (17) and a sandwich principle, give

|xj | = |xk| for 1 ≤ j ≤ n. (18)

Also, as equality holds in the triangle inequality section of inequalities (17),
this forces all the complex numbers akjxj to lie in the same direction:

akjxj = tjakkxk, , tj > 0, 1 ≤ j ≤ n,
xj = τjxk,

where τj = (tjakk)/akj > 0.
Then equation (18) implies τj = 1 and hence xj = xk for 1 ≤ j ≤ n.
Consequently X = xkJn, thereby proving that N(A− In) = 〈Jn〉.
Finally, equation (14) implies

n∑
j=1

akjxj = λxk =
n∑
j=1

akjxk = xk,

so λ = 1.

COROLLARY 4.3
If A is a positive Markov matrix, then At has 1 as the only eigenvalue

of modulus 1. Also nullity (At − In) = 1.

PROOF The eigenvalues of At are precisely the same as those of A, even up
to multiplicities. For

chAt = det (xIn −At) = det (xIn −A)t = det (xIn −A) = chA .

Also ν(At − In) = ν(A− In)t = ν(A− In) = 1.
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THEOREM 4.11
If A is a positive Markov matrix, then

(i) (x− 1)||mA;

(ii) Am → B, where B =

 Xt

...

Xt

 is a positive Markov matrix and where

X is uniquely defined as the (positive) vector satisfying AtX = X
whose components sum to 1.

Remark: In view of part (i) and the equation ν(A−In) = 1, it follows that
(x− 1)|| chA .
PROOF As ν(A − In) = 1, the Jordan form of A has the form Jb(1) ⊕
K, where (x − 1)b||mA. Here K is the direct sum of all Jordan blocks
corresponding to all the eigenvalues of A other than 1 and hence Km → 0.

Now suppose that b > 1; then Jb(1) has size b > 1. Then ∃P such that

P−1AP = Jb(1)⊕K,
P−1AmP = Jmb (1)⊕Km.

Hence the 2× 1 element of Jmb (1) equals
(
m
1

)
→∞ as m→∞.

However the elements of Am are ≤ 1, as Am is a Markov matrix. Con-
sequently the elements of P−1AmP are bounded as m → ∞. This contra-
diction proves that b = 1.

Hence P−1AmP → I1 ⊕ 0 and Am → P (I1 ⊕ 0)P−1 = B.
We see that rankB = rank (I1 ⊕ 0) = 1.
Finally it is easy to prove that B is a Markov matrix. So

B =

 t1X
t

...
tnX

t


for some non–negative column vector X and where t1, . . . , tn are positive.
We can assume that the entries of X sum to 1. It then follows that t1 =
· · · = tn = 1 and hence

B =

 Xt

...
Xt

 . (19)
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Now Am → B, so Am+1 = Am ·A→ BA. Hence B = BA and

AtBt = Bt. (20)

Then equations (19) and (20) imply

At[X| · · · |X] = [X| · · · |X]

and hence AtX = X.
However X ≥ 0 and At > 0, so X = AtX > 0.

DEFINITION 4.5
We have thus proved that there is a positive eigenvector X of At corre-

sponding to the eigenvalue 1, where the components of X sum to 1. Then
because we know that the eigenspace N(At − In) is one–dimensional, it
follows that this vector is unique.

This vector is called the stationary vector of the Markov matrix A.

EXAMPLE 4.4
Let

A =

 1/2 1/4 1/4
1/6 1/6 2/3
1/3 1/3 1/3

 .
Then

At − I3 row–reduces to

 1 0 −4/9
0 1 −2/3
0 0 0

 .
Hence N(At − I3) =

〈 4/9
2/3
1

〉 =

〈 4/19
6/19
9/19

〉 and

lim
m→∞

Am =
1
19

 4 6 9
4 6 9
4 6 9

 .
We remark that chA = (x− 1)(x2 − 1/24).

DEFINITION 4.6
A Markov Matrix is called regular or primitive if ∃k ≥ 1 such that

Ak > 0.
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THEOREM 4.12
If A is a primitive Markov matrix, then A satisfies the same properties

enunciated in the last two theorems for positive Markov matrices.

PROOF Suppose Ak > 0. Then (x− 1)|| chAk and hence (x− 1)|| chA , as

chA = (x− c1)a1 · · · (x− ct)at ⇒ chAk = (x− ck1)a1 · · · (x− ckt )at . (21)

and consequently (x− 1)||mA.
Also as 1 is the only eigenvalue of Ak with modulus 1, it follows from

equation (21) that 1 is the only eigenvalue of A with modulus 1.

The proof of the second theorem goes through, with the difference that
to prove the positivity of X we observe that AtX = X implies (Ak)tX = X.

EXAMPLE 4.5
The following Markov matrix is primitive (its fourth power is positive)

and is related to the 5x+ 1 problem:
0 0 1 0

1/2 0 1/2 0
0 0 1/2 1/2
0 1/2 1/2 0

 .
Its stationary vector is [ 1

15 ,
2
15 ,

8
15 ,

4
15 ]t.

We remark that chA = (x− 1)(x+ 1/2)(x2 + 1/4).
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