4.9 Markov matrices

DEFINITION 4.3
A real n x n matrix A = |a;;] is called a Markov matrix, or row—
stochastic matrix if

(i) a;; >0 for 1 <14, j <n;
n

(ii) > aiyj=1forl<i<n.
=1

Remark: (ii) is equivalent to A.J, = J,, where J, = [1,...,1]®. So 1 is
always an eigenvalue of a Markov matrix.

EXERCISE 4.1
If A and B are n x n Markov matrices, prove that AB is also a Markov
matrix.

THEOREM 4.9
Every eigenvalue X of a Markov matrix satisfies |\| < 1.

PROOF Suppose A € C is an eigenvalue of A and X € V,,(C) is a corre-
sponding eigenvector. Then

AX = A\X. (13)

Let k be such that |z;| < |xg|, Vj, 1 < j < n. Then equating the k-th
component of each side of equation (13) gives

n

Zaqu:j = \zg. (14)

=1
Hence
n n
Mokl = okl = 1D argzs] <O argla| (15)
j=1 j=1
n
< Y aggla] = Janl. (16)
j=1
Hence |A| < 1.
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DEFINITION 4.4
A positive Markov matrix is one with all positive elements (i.e.
strictly greater than zero). For such a matrix A we may write “A > 07.

THEOREM 4.10
If A is a positive Markov matrix, then 1 is the only eigenvalue of modulus
1. Moreover nullity (A — I,,) = 1.

PROOF Suppose |A| =1, AX =)X, X € V,,(C), X #0.
Then inequalities (15) and (16) reduce to

n n n
k| = ’Zaijj) <Y agjlrgl < anglak] = Jaxl. (17)
j=1 j=1 j=1

Then inequalities (17) and a sandwich principle, give
|zj| = |zg| for 1< j<n. (18)

Also, as equality holds in the triangle inequality section of inequalities (17),
this forces all the complex numbers ayjx; to lie in the same direction:

agjr; = tjagprg, ,t; >0, 1 <7 <n,

l’j = TjIL‘k,

where Tj = (tjakk)/akj > 0.
Then equation (18) implies 7; = 1 and hence z; = zj, for 1 < j < n.
Consequently X = xy.J,, thereby proving that N(A — I,) = (J,).
Finally, equation (14) implies

n n
E Ap;Tj = )\xk = E AT = Tk,
j=1 j=1

soA=1.

COROLLARY 4.3
If A is a positive Markov matrix, then A® has 1 as the only eigenvalue
of modulus 1. Also nullity (A! — I,) = 1.

PROOF The eigenvalues of A? are precisely the same as those of A, even up
to multiplicities. For

chye = det (21, — AY) = det (zI,, — A)' = det (xI, — A) = chy.
Alsov(A' - L) =v(A-1,) =v(A-1,) = 1.
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THEOREM 4.11

If A is a positive Markov matrix, then

(i) (z = 1)[[ma;
Xt
(i) A™ — B, where B = : is a positive Markov matrix and where
Xt
X is uniquely defined as the (positive) vector satisfying A'X = X
whose components sum to 1.

Remark: In view of part (i) and the equation v(A—I,,) = 1, it follows that

(x —1)||cha.

PROOF As v(A — I,) = 1, the Jordan form of A has the form J;(1) &

K, where (z — 1)°|[ma. Here K is the direct sum of all Jordan blocks

corresponding to all the eigenvalues of A other than 1 and hence K™ — 0.
Now suppose that b > 1; then J,(1) has size b > 1. Then 3P such that

PlAP = J,(1)®K,
PlA™P = JM1)® K™

Hence the 2 x 1 element of J;"(1) equals (') — oo as m — oo.

However the elements of A™ are < 1, as A™ is a Markov matrix. Con-
sequently the elements of P~'A™P are bounded as m — oo. This contra-
diction proves that b = 1.

Hence P~1A™P — I ®0 and A™ — P(I[; ®0)P~! = B.

We see that rank B = rank (I; ©0) = 1.

Finally it is easy to prove that B is a Markov matrix. So

t1 Xt
B = :
tn X?
for some non—negative column vector X and where t1,...,t, are positive.

We can assume that the entries of X sum to 1. It then follows that t; =
.-+ =1, =1 and hence
Xt
B=| : |. (19)
Xt
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Now A™ — B, so A™tl = A™. A — BA. Hence B = BA and
A'B' = B (20)
Then equations (19) and (20) imply
ANX] - 1X] = X ] X

and hence A'X = X.
However X >0 and A® >0, s0 X = A'X > 0.

DEFINITION 4.5

We have thus proved that there is a positive eigenvector X of A' corre-
sponding to the eigenvalue 1, where the components of X sum to 1. Then
because we know that the eigenspace N(A' — I,,) is one-dimensional, it
follows that this vector is unique.

This vector is called the stationary vector of the Markov matrix A.

EXAMPLE 4.4

Let
1/2 1/4 1/4
A=|1/6 1/6 2/3
1/3 1/3 1/3
Then
1 0 —4/9
A" — I3 row-reduces to | 0 1 —2/3
0 0 0
4/9 C 4/19
HenceN(At—Ig)—< 2/3 >—< 6/19 >and
1 | 9/19
1 [4 6 9
lim A" =— |4 6 9
e D146 9

We remark that chy = (z — 1)(2? — 1/24).
DEFINITION 4.6

A Markov Matrix is called regular or primitive if 3k > 1 such that
AF > 0.

92



THEOREM 4.12
If A is a primitive Markov matrix, then A satisfies the same properties
enunciated in the last two theorems for positive Markov matrices.

PROOF Suppose A¥ > 0. Then (z — 1)||ch4x and hence (x — 1)||cha, as
chy = (@ —c))M - (z—c)® = chyr = (. — )W - (z — ). (21)

and consequently (x — 1)||m4.
Also as 1 is the only eigenvalue of A* with modulus 1, it follows from
equation (21) that 1 is the only eigenvalue of A with modulus 1.

The proof of the second theorem goes through, with the difference that
to prove the positivity of X we observe that A*X = X implies (A*)!X = X.

EXAMPLE 4.5
The following Markov matrix is primitive (its fourth power is positive)
and is related to the bx + 1 problem:

0 0 1 0
1/2 0 1/2 0
0 0 1/2 1/2
0 1/2 1/2 0

Its stationary vector is [%, 12—5, %, %]t.

We remark that chy = (z — 1)(x + 1/2)(z% + 1/4).
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