4.9 Markov matrices

DEFINITION 4.3

A real $n \times n$ matrix $A = [a_{ij}]$ is called a Markov matrix, or row-stochastic matrix if

(i) $a_{ij} \ge 0$ for $1 \le i, j \le n$;

(ii)
$$\sum_{j=1}^{n} a_{ij} = 1$$
 for $1 \le i \le n$.

Remark: (ii) is equivalent to $AJ_n = J_n$, where $J_n = [1, ..., 1]^t$. So 1 is always an eigenvalue of a Markov matrix.

EXERCISE 4.1

If A and B are $n \times n$ Markov matrices, prove that AB is also a Markov matrix.

THEOREM 4.9

Every eigenvalue λ of a Markov matrix satisfies $|\lambda| \leq 1$.

PROOF Suppose $\lambda \in \mathbb{C}$ is an eigenvalue of A and $X \in V_n(\mathbb{C})$ is a corresponding eigenvector. Then

$$AX = \lambda X. \tag{13}$$

Let k be such that $|x_j| \leq |x_k|, \forall j, 1 \leq j \leq n$. Then equating the k-th component of each side of equation (13) gives

$$\sum_{j=1}^{n} a_{kj} x_j = \lambda x_k.$$
(14)

Hence

$$|\lambda x_k| = |\lambda| \cdot |x_k| = |\sum_{j=1}^n a_{kj} x_j| \le \sum_{j=1}^n a_{kj} |x_j|$$
(15)

$$\leq \sum_{j=1}^{n} a_{kj} |x_k| = |x_k|.$$
 (16)

Hence $|\lambda| \leq 1$.

DEFINITION 4.4

A positive Markov matrix is one with all positive elements (i.e. strictly greater than zero). For such a matrix A we may write "A > 0".

THEOREM 4.10

If A is a positive Markov matrix, then 1 is the only eigenvalue of modulus 1. Moreover nullity $(A - I_n) = 1$.

PROOF Suppose $|\lambda| = 1$, $AX = \lambda X$, $X \in V_n(\mathbb{C})$, $X \neq 0$. Then inequalities (15) and (16) reduce to

$$|x_k| = \left|\sum_{j=1}^n a_{kj} x_j\right| \le \sum_{j=1}^n a_{kj} |x_j| \le \sum_{j=1}^n a_{kj} |x_k| = |x_k|.$$
(17)

Then inequalities (17) and a sandwich principle, give

$$|x_j| = |x_k| \quad \text{for} \quad 1 \le j \le n. \tag{18}$$

Also, as equality holds in the triangle inequality section of inequalities (17), this forces all the complex numbers $a_{kj}x_j$ to lie in the same direction:

$$\begin{aligned} a_{kj}x_j &= t_j a_{kk}x_k, \ , t_j > 0, \ 1 \le j \le n, \\ x_j &= \tau_j x_k, \end{aligned}$$

where $\tau_j = (t_j a_{kk})/a_{kj} > 0$.

Then equation (18) implies $\tau_j = 1$ and hence $x_j = x_k$ for $1 \le j \le n$. Consequently $X = x_k J_n$, thereby proving that $N(A - I_n) = \langle J_n \rangle$. Finally, equation (14) implies

$$\sum_{j=1}^{n} a_{kj} x_j = \lambda x_k = \sum_{j=1}^{n} a_{kj} x_k = x_k,$$

so $\lambda = 1$.

COROLLARY 4.3

If A is a positive Markov matrix, then A^t has 1 as the only eigenvalue of modulus 1. Also nullity $(A^t - I_n) = 1$.

PROOF The eigenvalues of A^t are precisely the same as those of A, even up to multiplicities. For

$$\operatorname{ch}_{A^t} = \det \left(xI_n - A^t \right) = \det \left(xI_n - A \right)^t = \det \left(xI_n - A \right) = \operatorname{ch}_A.$$

Also $\nu(A^t - I_n) = \nu(A - I_n)^t = \nu(A - I_n) = 1.$

THEOREM 4.11

If A is a positive Markov matrix, then

(i) $(x-1)||m_A;$

(ii)
$$A^m \to B$$
, where $B = \begin{bmatrix} X^t \\ \vdots \\ \hline X^t \end{bmatrix}$ is a positive Markov matrix and where

X is uniquely defined as the (positive) vector satisfying $A^t X = X$ whose components sum to 1.

Remark: In view of part (i) and the equation $\nu(A - I_n) = 1$, it follows that $(x - 1)|| \operatorname{ch}_A$.

PROOF As $\nu(A - I_n) = 1$, the Jordan form of A has the form $J_b(1) \oplus K$, where $(x - 1)^b || m_A$. Here K is the direct sum of all Jordan blocks corresponding to all the eigenvalues of A other than 1 and hence $K^m \to 0$.

Now suppose that b > 1; then $J_b(1)$ has size b > 1. Then $\exists P$ such that

$$P^{-1}AP = J_b(1) \oplus K,$$

$$P^{-1}A^m P = J_b^m(1) \oplus K^m.$$

Hence the 2 × 1 element of $J_b^m(1)$ equals $\binom{m}{1} \to \infty$ as $m \to \infty$.

However the elements of A^m are ≤ 1 , as A^m is a Markov matrix. Consequently the elements of $P^{-1}A^mP$ are bounded as $m \to \infty$. This contradiction proves that b = 1.

Hence $P^{-1}A^mP \to I_1 \oplus 0$ and $A^m \to P(I_1 \oplus 0)P^{-1} = B$.

We see that rank $B = \operatorname{rank}(I_1 \oplus 0) = 1$.

Finally it is easy to prove that B is a Markov matrix. So

$$B = \begin{bmatrix} t_1 X^t \\ \vdots \\ t_n X^t \end{bmatrix}$$

for some non-negative column vector X and where t_1, \ldots, t_n are positive. We can assume that the entries of X sum to 1. It then follows that $t_1 = \cdots = t_n = 1$ and hence

$$B = \begin{bmatrix} \frac{X^t}{\vdots} \\ \hline \frac{X^t}{X^t} \end{bmatrix}.$$
 (19)

Now $A^m \to B$, so $A^{m+1} = A^m \cdot A \to BA$. Hence B = BA and

$$A^t B^t = B^t. (20)$$

Then equations (19) and (20) imply

$$A^t[X|\cdots|X] = [X|\cdots|X]$$

and hence $A^t X = X$.

However $X \ge 0$ and $A^t > 0$, so $X = A^t X > 0$.

DEFINITION 4.5

We have thus proved that there is a positive eigenvector X of A^t corresponding to the eigenvalue 1, where the components of X sum to 1. Then because we know that the eigenspace $N(A^t - I_n)$ is one-dimensional, it follows that this vector is unique.

This vector is called the **stationary vector** of the Markov matrix A.

EXAMPLE 4.4

Let

$$A = \left[\begin{array}{rrr} 1/2 & 1/4 & 1/4 \\ 1/6 & 1/6 & 2/3 \\ 1/3 & 1/3 & 1/3 \end{array} \right].$$

Then

$$A^{t} - I_{3} \text{ row-reduces to} \begin{bmatrix} 1 & 0 & -4/9 \\ 0 & 1 & -2/3 \\ 0 & 0 & 0 \end{bmatrix}.$$

Hence
$$N(A^t - I_3) = \left\langle \begin{bmatrix} 4/9\\2/3\\1 \end{bmatrix} \right\rangle = \left\langle \begin{bmatrix} 4/19\\6/19\\9/19 \end{bmatrix} \right\rangle$$
 and
$$\lim_{m \to \infty} A^m = \frac{1}{19} \begin{bmatrix} 4 & 6 & 9\\4 & 6 & 9\\4 & 6 & 9 \end{bmatrix}.$$

We remark that $ch_A = (x - 1)(x^2 - 1/24)$.

DEFINITION 4.6

A Markov Matrix is called **regular** or **primitive** if $\exists k \geq 1$ such that $A^k > 0$.

THEOREM 4.12

If A is a primitive Markov matrix, then A satisfies the same properties enunciated in the last two theorems for positive Markov matrices.

PROOF Suppose $A^k > 0$. Then $(x - 1) || \operatorname{ch}_{A^k}$ and hence $(x - 1) || \operatorname{ch}_A$, as

$$ch_A = (x - c_1)^{a_1} \cdots (x - c_t)^{a_t} \Rightarrow ch_{A^k} = (x - c_1^k)^{a_1} \cdots (x - c_t^k)^{a_t}.$$
 (21)

and consequently $(x-1)||m_A$.

Also as 1 is the only eigenvalue of A^k with modulus 1, it follows from equation (21) that 1 is the only eigenvalue of A with modulus 1.

The proof of the second theorem goes through, with the difference that to prove the positivity of X we observe that $A^t X = X$ implies $(A^k)^t X = X$.

EXAMPLE 4.5

The following Markov matrix is primitive (its fourth power is positive) and is related to the 5x + 1 problem:

$$\left[\begin{array}{rrrrr} 0 & 0 & 1 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 1/2 & 1/2 & 0 \end{array}\right].$$

Its stationary vector is $[\frac{1}{15}, \frac{2}{15}, \frac{8}{15}, \frac{4}{15}]^t$.

We remark that $ch_A = (x - 1)(x + 1/2)(x^2 + 1/4)$.