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Digital Signal Processing and Digital Audio
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Digital Audio Signal Processing

Filters
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CM2208 Course Material — Especially detailed
underpinning maths — and also CM2104 Notes .
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Simple Waveforms

Frequency is the number of cycles per second and is
measured in Hertz (Hz)

Wavelength is inversely proportional to frequency
i.e. Wavelength varies as 1

frequency
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The Sine Wave and Sound

The general form of the sine wave we shall use (quite a lot of)
is as follows:

y = A.sin(2π.n.Fw/Fs)

where:

A is the amplitude of the wave,
Fw is the frequency of the wave,
Fs is the sample frequency,
n is the sample index.
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Relationship Between Amplitude, Frequency and

Phase
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Phase of a Sine Wave

sinphasedemo.m

% Simple Sin Phase Demo

samp_freq = 400;

dur = 800; % 2 seconds

amp = 1; phase = 0; freq = 1;

s1 = mysin(amp,freq,phase,dur,samp_freq);

axisx = (1:dur)*360/samp_freq; % x axis in degrees

plot(axisx,s1);

set(gca,'XTick',[0:90:axisx(end)]);

fprintf('Initial Wave: \t Amplitude = ...\n', amp, freq, phase,...);

% change amplitude

phase = input('\nEnter Phase:\n\n');

s2 = mysin(amp,freq,phase,dur,samp_freq);

hold on;

plot(axisx, s2,'r');
set(gca,'XTick',[0:90:axisx(end)]);
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Phase of a Sine Wave: sinphasedemo output
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Basic DSP Concepts and Definitions: The Decibel

(dB)

When referring to measurements of power or intensity, we express these
in decibels (dB):

XdB = 10 log10

(
X

X0

)
where:

X is the actual value of the quantity being measured,
X0 is a specified or implied reference level,
XdB is the quantity expressed in units of decibels, relative to X0.
X and X0 must have the same dimensions — they must measure
the same type of quantity in the the same units.
The reference level itself is always at 0 dB — as shown by setting
X = X0 (note: log10(1) = 0).
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Why Use Decibel Scales?

When there is a large range in frequency or magnitude,
logarithm units often used.

If X is greater than X0 then XdB is positive (Power
Increase)

If X is less than X0 then XdB is negative (Power
decrease).

Power Magnitude = |X (i)|2| so (with respect to reference
level)

XdB = 10 log10(|X (i)2|)
= 20 log10(|X (i)|)

which is an expression of dB we often come across.
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Decibel and Chillies!

Decibels are used to express wide dynamic ranges in a many applications:
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Decibel and acoustics

dB is commonly used to quantify sound levels relative to
some 0 dB reference.

The reference level is typically set at the
threshold of human perception
Human ear is capable of detecting a very large range of
sound pressures.
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Examples of dB measurement in Sound

Threshold of Pain

The ratio of sound pressure that causes permanent damage
from short exposure to the limit that (undamaged) ears can
hear is above a million:

The ratio of the maximum power to the minimum power
is above one (short scale) trillion (1012).

The log of a trillion is 12, so this ratio represents a
difference of 120 dB.

120 dB is the quoted Threshold of Pain for Humans.
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Examples of dB measurement in Sound (cont.)

Speech Sensitivity

Human ear is not equally sensitive to all the frequencies of sound
within the entire spectrum:

Maximum human sensitivity at noise levels at between 2 and
4 kHz (Speech)

These are factored more heavily into sound descriptions
using a process called frequency weighting.

Filter (Partition) into frequency bands concentrated in
this range.

Used for Speech Analysis

Mathematical Modelling of Human Hearing

Audio Compression (E.g. MPEG Audio)

More on this Later
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Examples of dB measurement in Sound (cont.)

Digital Noise increases by 6dB per bit

In digital audio sample representation (linear pulse-code modulation (PCM)),

The first bit (least significant bit, or LSB) produces residual quantization noise
(bearing little resemblance to the source signal)

Each subsequent bit offered by the system doubles the
resolution, corresponding to a 6 (= 10 ∗ log10(4)) dB.

So a 16-bit (linear) audio format offers 15 bits beyond the first, for a dynamic
range (between quantization noise and clipping) of (15 x 6) = 90 dB, meaning
that the maximum signal is 90 dB above the theoretical peak(s) of quantisation
noise.

8-bit linear PCM similarly gives (7 x 6) = 42 dB.

48 dB difference between 8- and 16-bit which is (48/6 (dB))
8 times as noisy.

More on this Later
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Signal to Noise

Signal-to-noise ratio is a term for the power ratio between a
signal (meaningful information) and the background noise:

SNR =
Psignal

Pnoise
=

(
Asignal

Anoise

)2

where P is average power and A is RMS amplitude.

Both signal and noise power (or amplitude) must be
measured at the same or equivalent points in a system,
and within the same system bandwidth.

Because many signals have a very wide dynamic range, SNRs
are usually expressed in terms of the logarithmic decibel scale:

SNRdB = 10 log10

(
Psignal

Pnoise

)
= 20 log10

(
Asignal

Anoise

)
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System Representation: Algorithms and Signal

Flow Graphs

It is common to represent digital system signal processing
routines as a visual signal flow graphs.

We use a simple equation relation to describe the algorithm.

Three Basic Building Blocks

We will need to consider three processes:

Delay

Multiplication

Summation

CM3106 Chapter 2 System Representation: Algorithms and Signal Flow Graphs 16



Signal Flow Graphs: Delay

Delay

We represent a delay of one sampling interval by a
block with a T label:

Tx(n) y(n) = x(n − 1)

1

We describe the algorithm via the equation:
y(n) = x(n − 1)

CM3106 Chapter 2 System Representation: Algorithms and Signal Flow Graphs 17



Signal Flow Graphs: Delay Example

A Delay of 2 Samples

A delay of the input signal by two sampling intervals:

We can describe the algorithm by:

y(n) = x(n− 2)

We can use the block diagram to represent the signal flow graph
as:

T Tx(n) y(n) = x(n − 1) y(n) = x(n − 2)

1

x(n) y(n) = x(n − 2)
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Signal Flow Graphs: Multiplication

Multiplication

We represent a multiplication or weighting of the input
signal by a circle with a × label .

We describe the algorithm via the equation: y(n) = a.x(n)
a

×
e.g. a = 0.5

x(n) y(n) = a.x(n)

1

x(n) y(n) = 0.5x(n)
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Signal Flow Graphs: Addition

Addition

We represent a addition of two input signal by a circle
with a + label .

We describe the algorithm via the equation:

y(n) = a1.x1(n) + a2.x2(n)

+

a1.x1(n)

a2.x2(n)

y(n) = a1.x1(n) + a2.x2(n)

1
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Signal Flow Graphs: Addition Example

In the example, set a1 = a2 = 1:

+

a1.x1(n)

a2.x2(n)

y(n) = a1.x1(n) + a2.x2(n)

1

x1(n) x2(n)

y(n) = x1(n) + x2(n)

CM3106 Chapter 2 System Representation: Algorithms and Signal Flow Graphs 21



Signal Flow Graphs: Complete Example

All Three Processes Together

We can combine all above algorithms to build up more
complex algorithms:

y(n) =
1

2
x(n) +

1

3
x(n− 1) +

1

4
x(n− 2)

This has the following signal flow graph:

T T

× × ×1
2

1
3

1
4

+

x(n)

x(n − 1)

x(n − 2)

y(n) = 1
2x(n) + 1

3x(n − 1) + 1
4x(n − 2)

1
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Signal Flow Graphs: Complete Example Impulse

Response

T T

× × ×1
2

1
3

1
4

+

x(n)

x(n − 1)

x(n − 2)

y(n) = 1
2x(n) + 1

3x(n − 1) + 1
4x(n − 2)

1

x(n) y(n) = 1
2x(n) + 1

3x(n − 1) + 1
4x(n − 2)
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Filtering

Filtering

Filtering in a broad sense is selecting portion(s) of data for
some processing.

If we isolate a portion of data (e.g. audio, image, video) we
can

Remove it — E.g. Low Pass, High Pass etc. filtering

Attenuate it — Enhance or diminish its presence, E.g.
Equalisation, Audio Effects/Synthesis

Process it in other ways — Digital Audio, E.g. Audio
Effects/Synthesis

More Later
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Filtering Examples (More Later)

Filtering Examples:

In many multimedia contexts this involves the removal of data

from a signal — This is essential in almost all aspects of lossy

multimedia data representations.

JPEG Image Compression

MPEG Video Compression

MPEG Audio Compression

In Digital Audio we may wish to determine a range of frequencies

we wish the enhance or diminish to equalise the signal, e.g.:

Tone — Treble and Bass — Controls

Equalisation (EQ)

Synthesis — Subtractive Synthesis, EQ in others.
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How can we filter a Digital Signal

Two Ways to Filter

Temporal Domain — E.g. Sampled (PCM) Audio

Frequency Domain — Analyse frequency components in
signal.

We will look at filtering in the frequency space very soon,
but first we consider filtering in the temporal domain via
impulse responses.

Temporal Domain Filters

We will look at:

IIR Systems : Infinite impulse response systems

FIR Systems : Finite impulse response systems
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Infinite Impulse Response (IIR) Systems

Simple Example IIR Filter

The algorithm is represented by
the difference equation:

y(n) = x(n)−a1.y(n−1)−a2.y(n−2)

This produces the opposite signal
flow graph

+
y(n)

T

T

×

×

y(n − 1) = xH1(n)

y(n − 2) = xH2(n)

−a1

−a2

x(n)

1
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Infinite Impulse Response (IIR)Systems Explained

IIR Filter Explained

The following happens:

The output signal y(n) is fed
back through a series of delays

Each delay is weighted

Each fed back weighted delay
is summed and passed to new
output.

Such a feedback system is
called a recursive system

+
y(n)

T

T

×

×

y(n − 1) = xH1(n)

y(n − 2) = xH2(n)

−a1

−a2

x(n)

1
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A Complete IIR System
x(n)

+ + + + +
y(n)

× × × ×−aM −aM−1 −aM−2 −a1

T T T
y(n − M) y(n − 1)

1

Complete IIR Algorithm

Here we extend:
The input delay line up to N − 1 elements and
The output delay line by M elements.
We can represent the IIR system algorithm by the difference
equation:

y(n) = x(n)−
M∑
k=1

aky(n − k)
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Finite Impulse Response (FIR) Systems

FIR system’s are slightly simpler — there is no feedback
loop.

Simple Example FIR Filter

A simple FIR system can be described
as follows:

y(n) = b0x(n) + b1x(n− 1) + b2x(n− 2)

The input is fed through delay
elements

Weighted sum of delays gives
y(n)

+
y(n)

T

T

×

×

×

x(n − 1) = xH1(n)

x(n − 2) = xH2(n)

b0

b1

b2

x(n)

1
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A Complete FIR System
x(n)

T T T

x(n − 1) x(n − 2) x(n − N + 1)

y(n)

× × × × ×b0 b1 b2 bN−2 bN−1

+ + + +

1

FIR Algorithm

To develop a more complete FIR system we need to add N − 1
feed forward delays

We can describe this with the algorithm:

y(n) =
N−1∑
k=0

bkx(n − k)
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Filtering with IIR/FIR

We have two filter banks defined by vectors: A = {ak},
B = {bk}.

These can be applied in a sample-by-sample algorithm:

MATLAB provides a generic filter(B,A,X) function
which filters the data in vector X with the filter described
by vectors A and B to create the filtered data Y.
The filter is of the standard difference equation form:

a(1) ∗ y(n) = b(1) ∗ x(n) + b(2) ∗ x(n − 1) + ...+ b(nb + 1) ∗ x(n − nb)

−a(2) ∗ y(n − 1)− ...− a(na + 1) ∗ y(n − na)

If a(1) is not equal to 1, filter normalizes the filter
coefficients by a(1). If a(1) equals 0, filter() returns
an error
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Creating Filters

How do I create Filter banks A and B

Filter banks can be created manually — Hand Created:
See next slide and Equalisation example later in slides

MATLAB can provide some predefined filters — a few
slides on, see lab classes

Many standard filters provided by MATLAB

See also help filter, online MATLAB docs and lab
classes.
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Filtering with IIR/FIR: Simple Example

The MATLAB file IIRdemo.m sets up the filter banks as
follows:

IIRdemo.m

fg=4000;

fa=48000;

k=tan(pi*fg/fa);

b(1)=1/(1+sqrt(2)*k+k^2);

b(2)=-2/(1+sqrt(2)*k+k^2);

b(3)=1/(1+sqrt(2)*k+k^2);

a(1)=1;

a(2)=2*(k^2-1)/(1+sqrt(2)*k+k^2);

a(3)=(1-sqrt(2)*k+k^2)/(1+sqrt(2)*k+k^2);
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Apply this filter

How to apply the (previous) difference equation:

By hand

IIRdemo.m cont.

for n=1:N

y(n)=b(1)*x(n) + b(2)*xh1 + b(3)*xh2 ...

- a(2)*yh1 - a(3)*yh2;

xh2=xh1;xh1=x(n);

yh2=yh1;yh1=y(n);

end;

Use MATLAB filter() function — see next but one slide

Far more preferable: general — any length filter
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Filtering with IIR: Simple Example Output

This produces the following output:

0 2 4 6 8 10 12 14 16 18

−1

−0.5

0

0.5

1

n →

x(
n)

 →

0 2 4 6 8 10 12 14 16 18

−1

−0.5

0

0.5

1

n →

y(
n)

 →
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MATLAB filters

Matlab filter() function implements an IIR/FIR hybrid
filter.

Type help filter:

FILTER One-dimensional digital filter.

Y = FILTER(B,A,X) filters the data in vector X with the

filter described by vectors A and B to create the filtered

data Y. The filter is a "Direct Form II Transposed"

implementation of the standard difference equation:

a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)

- a(2)*y(n-1) - ... - a(na+1)*y(n-na)

If a(1) is not equal to 1, FILTER normalizes the filter

coefficients by a(1).

FILTER always operates along the first non-singleton dimension,

namely dimension 1 for column vectors and non-trivial matrices,

and dimension 2 for row vectors.
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Using MATLAB to make filters for filter() (1)

MATLAB provides a few built-in functions to create ready
made filter parameterA and B :

Some common MATLAB Filter Bank Creation Functions

E.g: butter, buttord, besself, cheby1, cheby2,

ellip.

See help or doc appropriate function.
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Fourier Transform

(Recap from CM2104/CM2208

The Frequency Domain

The Frequency domain can be obtained through the
transformation, via Fourier Transform (FT), from

one Temporal (Time) or Spatial domain

to the other

Frequency Domain

We do not think in terms of signal or pixel intensities
but rather underlying sinusoidal waveforms of varying
frequency, amplitude and phase.
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Applications of Fourier Transform

Numerous Applications including:

Essential tool for Engineers, Physicists,
Mathematicians and Computer Scientists

Fundamental tool for Digital Signal
Processing and Image Processing

Many types of Frequency Analysis:

Filtering
Noise Removal
Signal/Image Analysis
Simple implementation of Convolution
Audio and Image Effects Processing.
Signal/Image Restoration — e.g. Deblurring
Signal/Image Compression — MPEG (Audio
and Video), JPEG use related techniques.

Many more . . . . . .
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Introducing Frequency Space

1D Audio Example

Lets consider a 1D (e.g. Audio) example to see what the different domains mean:

Consider a complicated sound such as the a chord played on a piano or a guitar.

We can describe this sound in two related ways:

Temporal Domain : Sample the amplitude of the sound many times a second, which
gives an approximation to the sound as a function of time.

Frequency Domain : Analyse the sound in terms of the pitches of the notes, or
frequencies, which make the sound up, recording the amplitude
of each frequency.

Fundamental Frequencies

D[ : 554.40Hz

F : 698.48Hz

A[ : 830.64Hz

C: 1046.56Hz

plus harmonics/partial frequencies ....
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Back to Basics

An 8 Hz Sine Wave

A signal that consists of a sinusoidal wave
at 8 Hz.

8 Hz means that wave is completing
8 cycles in 1 second

The frequency of that wave is 8 Hz.

From the frequency domain we can see
that the composition of our signal is

one peak occurring with a frequency

of 8 Hz — there is only one sine

wave here.

with a magnitude/fraction of

1.0 i.e. it is the whole signal.
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2D Image Example

What do Frequencies in an Image Mean?

Now images are no more complex really:

Brightness along a line can be recorded as a set of
values measured at equally spaced distances apart,

Or equivalently, at a set of spatial frequency values.

Each of these frequency values is a frequency
component.

An image is a 2D array of pixel measurements.

We form a 2D grid of spatial frequencies.

A given frequency component now specifies what
contribution is made by data which is changing with
specified x and y direction spatial frequencies.
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Frequency components of an image

What do Frequencies in an Image Mean? (Cont.)

Large values at high frequency components then the data
is changing rapidly on a short distance scale.

e.g. a page of text
However, Noise contributes (very) High Frequencies
also

Large low frequency components then the large scale
features of the picture are more important.
e.g. a single fairly simple object which occupies most of
the image.
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Visualising Frequency Domain Transforms

Sinusoidal Decomposition

Any digital signal (function) can be decomposed into purely sinusoidal

components

Sine waves of different size/shape — varying amplitude, frequency and

phase.

When added back together they reconstitute the original signal.

The Fourier transform is the tool that performs such an operation.
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Summing Sine Waves. Example: to give a

Square(ish) Wave (E.g. Additive Synthesis)

Digital signals are composite signals made up of many
sinusoidal frequencies

A 200Hz digital signal (square(ish) wave) may be a composed of 200, 600, 1000, etc. sinusoidal signals

which sum to give:
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Summary so far

So What Does All This Mean?

Transforming a signal into the frequency domain allows us

To see what sine waves make up our underlying
signal

E.g.

One part sinusoidal wave at 50 Hz and
Second part sinusoidal wave at 200 Hz.
Etc.

More complex signals will give more complex
decompositions but the idea is exactly the same.
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How is this Useful then?

Basic Idea of Filtering in Frequency Space

Filtering now involves attenuating or removing certain
frequencies — easily performed:

Low pass filter —

Ignore high frequency noise components — make zero
or a very low value.
Only store lower frequency components

High Pass Filter — opposite of above

Bandpass Filter — only allow frequencies in a certain
range.
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Visualising the Frequency Domain

Think Graphic Equaliser

An easy way to visualise what is happening is to think of a
graphic equaliser on a stereo system (or some software audio
players, e.g. iTunes).
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So are we ready for the Fourier Transform?

We have all the Tools....

This lecture, so far, (hopefully) set the context for Frequency decomposition.

Past CM2208 Lectures:

Odd/Even Functions: sin(−x) = − sin(x), cos(−x) = cos(x)
Complex Numbers: Phasor Form re iφ = r(cosφ+ i sinφ)

Calculus Integration:
∫
ekxdx = ekx

k

Digital Signal Processing:

Basic Waveform Theory. Sine Wave y = A.sin(2π.n.Fw/Fs)
where: A = amplitude, Fw = wave frequency, Fs = sample frequency,
n is the sample index.
Relationship between Amplitude, Frequency and Phase:

Cosine is a Sine wave 90◦ out of phase

Impulse Responses

DSP + Image Proc.: Filters and other processing, Convolution
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Fourier Theory

Introducing The Fourier Transform

The tool which converts a spatial or temporal (real space) description
of audio/image data, for example, into one in terms of its frequency
components is called the Fourier transform

The new version is usually referred to as the Fourier space description
of the data.

We then essentially process the data:

E.g. for filtering basically this means attenuating or setting certain
frequencies to zero

We then need to convert data back (or invert) to real audio/imagery
to use in our applications.

The corresponding inverse transformation which turns a Fourier space

description back into a real space one is called the inverse Fourier

transform.
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1D Fourier Transform

1D Case (e.g. Audio Signal)

Considering a continuous function f (x) of a single variable x
representing distance (or time).
The Fourier transform of that function is denoted F (u), where u
represents spatial (or temporal) frequency is defined by:

F (u) =

∫ ∞
−∞

f (x)e−2πixu dx .

Note: In general F (u) will be a complex quantity even though the
original data is purely real.

The meaning of this is that not only is the magnitude of each
frequency present important, but that its phase relationship is
too.

Recall Phasors from Complex Number Lectures (CM2208).

e−2πixu above is a Phasor.
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Inverse Fourier Transform

Inverse 1D Fourier Transform

The inverse Fourier transform for regenerating f (x) from
F (u) is given by

f (x) =

∫ ∞
−∞

F (u)e2πixu du,

which is rather similar to the (forward) Fourier transform

except that the exponential term has the opposite
sign.

It is not negative
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Fourier Transform Example

Fourier Transform of a Top Hat Function

Let’s see how we compute a Fourier Transform: consider a
particular function f (x) defined as

f (x) =

{
1 if |x | ≤ 1
0 otherwise,

1

1
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The Sinc Function (1)

We derive the Sinc function
So its Fourier transform is:

F(u) =

∫ ∞
−∞

f (x)e−2πixu dx

=

∫ 1

−1
1 × e−2πixu dx

=
−1

2πiu
(e2πiu − e−2πiu)

sin θ =
eiθ − e−iθ

2i
, So:

F(u) =
sin 2πu

πu
.

In this case, F (u) is purely real, which is a consequence of the original data being symmetric in x and −x .

f (x) is an even function.

A graph of F (u) is shown overleaf.

This function is often referred to as the Sinc function.
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The Sinc Function Graph

The Sinc Function

The Fourier transform of a top hat function, the Sinc
function:

−6 −4 −2 0 2 4 6
−0.5

0

0.5

1

1.5

2

u

sin(2 π u)/(π u)
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The 2D Fourier Transform

2D Case (e.g. Image data)

If f (x , y) is a function, for example intensities in an image,
its Fourier transform is given by

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f (x , y)e−2πi(xu+yv) dx dy ,

and the inverse transform, as might be expected, is

f (x , y) =

∫ ∞
−∞

∫ ∞
−∞

F (u, v)e2πi(xu+yv) du dv .
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The Discrete Fourier Transform

But All Our Audio and Image data are Digitised!!

Thus, we need a discrete formulation of the Fourier transform:

Assumes regularly spaced data values, and

Returns the value of the Fourier transform for a set of
values in frequency space which are equally spaced.

This is done quite naturally by replacing the integral by a
summation, to give the discrete Fourier transform or DFT for
short.
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1D Discrete Fourier transform

1D Case:
In 1D it is convenient now to assume that x goes up in steps of 1, and that there are
N samples, at values of x from 0 to N − 1.

So the DFT takes the form

F (u) =
1

N

N−1∑
x=0

f (x)e−2πixu/N,

while the inverse DFT is

f (x) =

N−1∑
x=0

F (u)e2πixu/N.

NOTE: Minor changes from the continuous case are a factor of 1/N in the
exponential terms, and also the factor 1/N in front of the forward transform which
does not appear in the inverse transform.
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2D Discrete Fourier transform

2D Case

The 2D DFT works is similar.

So for an N ×M grid in x and y we have

F (u, v) =
1

NM

N−1∑
x=0

M−1∑
y=0

f (x , y)e−2πi(xu/N+yv/M),

and

f (x , y) =
N−1∑
u=0

M−1∑
v=0

F (u, v)e2πi(xu/N+yv/M).
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Balancing the 2D DFT

Most Images are Square

Often N = M , and it is then it is more convenient to redefine
F (u, v) by multiplying it by a factor of N , so that the forward
and inverse transforms are more symmetric:

F (u, v) =
1

N

N−1∑
x=0

N−1∑
y=0

f (x , y)e−2πi(xu+yv)/N,

and

f (x , y) =
1

N

N−1∑
u=0

N−1∑
v=0

F (u, v)e2πi(xu+yv)/N.

CM3106 Chapter 2 The Discrete Fourier Transform 61



Fourier Transforms in MATLAB

fft() and fft2()

MATLAB provides functions for 1D and 2D Discrete Fourier
Transforms (DFT):

fft(X) is the 1D discrete Fourier transform (DFT) of vector X.
For matrices, the FFT operation is applied to each
column — NOT a 2D DFT transform.

fft2(X) returns the 2D Fourier transform of matrix X. If X is a
vector, the result will have the same orientation.

fftn(X) returns the N-D discrete Fourier transform of the N-D
array X.

Inverse DFT ifft(), ifft2(), ifftn() perform the inverse DFT.

See appropriate MATLAB help/doc pages for full details.

Plenty of examples to Follow.

See also: MALTAB Docs Image Processing → User’s
Guide → Transforms → Fourier Transform
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Visualising the Fourier Transform

Visualising the Fourier Transform

Having computed a DFT it might be
useful to visualise its result:

It’s useful to visualise the
Fourier Transform

Standard tools

Easily plotted in MATLAB

0 2 4 6 8 10 12 14 16
−1

0

1

n →

a)

 

 
Cosine signal x(n)

0 2 4 6 8 10 12 14 16
0

0.5

1

k →

b)

 

 
Magnitude spectrum |X(k)|

0 0.5 1 1.5 2 2.5 3 3.5
x 104

0

0.5

1

f in Hz →

c)

 

 
Magnitude spectrum |X(f)|
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The Magnitude Spectrum of Fourier Transform

Recall that the Fourier Transform of our real audio/image data is always
complex

Phasors: This is how we encode the phase of the underlying
signal’s Fourier Components.

How can we visualise a complex data array?

Back to Complex Numbers:

Magnitude spectrum Compute the absolute value of the complex
data:

|F (k)| =
√

F 2
R(k) + F 2

I (k) for k = 0, 1, . . . ,N − 1

where FR(k) is the real part and FI (k) is the imaginary part of the N
sampled Fourier Transform, F (k).

Recall MATLAB: Sp = abs(fft(X,N))/N; (Normalised form)
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The Phase Spectrum of Fourier Transform

The Phase Spectrum

Phase Spectrum
The Fourier Transform also represent phase, the
phase spectrum is given by:

ϕ = arctan
FI (k)

FR(k)
for k = 0, 1, . . . ,N − 1

Recall MATLAB: phi = angle(fft(X,N))

CM3106 Chapter 2 Visualising the Fourier Transform 65



Relating a Sample Point to a Frequency Point

When plotting graphs of Fourier Spectra and doing other DFT
processing we may wish to plot the x-axis in Hz (Frequency) rather
than sample point number k = 0, 1, . . . ,N − 1

There is a simple relation between the two:

The sample points go in steps k = 0, 1, . . . ,N − 1

For a given sample point k the frequency relating to this is given
by:

fk = k
fs
N

where fs is the sampling frequency and N the number of samples.

Thus we have equidistant frequency steps of fs
N ranging from 0

Hz to N−1
N fs Hz
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Time-Frequency Representation: Spectrogram

Spectrogram

It is often useful to look at the frequency distribution over
a short-time:

Split signal into N segments

Do a windowed Fourier Transform — Short-Time
Fourier Transform (STFT)

Window needed to reduce leakage effect of doing a
shorter sample SFFT.
Apply a Blackman, Hamming or Hanning Window

MATLAB function does the job: Spectrogram — see
help spectrogram

See also MATLAB’s specgramdemo
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MATLAB spectrogram Example

spectrogrameg.m

load('handel')
[N M] = size(y);

figure(1)

spectrogram(y,512,20,1024,Fs);

Produces the following:
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Aphex Twin Spectrogram

Aphex Twin famously1 embedded images in the spectrogram
of a few tracks on his Windowlicker EP. His face on Track 2
“Formula” or “Equation” (Full title:
∆Mi−1 = −α

∑N
n=1 Di [n][

∑
σ∈C [i ] Fji [n − 1] + Fexti [n − 1]]!!:

1See here for web link to other examples of embedded image
SpectrogramsCM3106 Chapter 2 Visualising the Fourier Transform 69

https://en.wikipedia.org/wiki/Windowlicker
http://twistedsifter.com/2013/01/hidden-images-embedded-into-songs-spectrographs/


Filtering in the Frequency Domain

Low Pass Filter

Example: Audio Hiss, ’Salt and Pepper’ noise in
images,

Noise:

The idea with noise Filtering is to reduce

various spurious effects of a local nature in

the image, caused perhaps by

noise in the acquisition system,
arising as a result of transmission
of the data, for example from a
space probe utilising a low-power
transmitter.

Image with Noise Added

High Cut−off Frequency Low Pass Filtered Image
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Frequency Space Filtering Methods

Low Pass Filtering — Remove Noise

Noise = High Frequencies:

In audio data many spurious peaks in over a short timescale.

In an image means there are many rapid transitions (over a short
distance) in intensity from high to low and back again or vice versa,
as faulty pixels are encountered.

Not all high frequency data noise though!

Therefore noise will contribute heavily to the high frequency
components of the signal when it is analysed in Fourier space.

Thus if we reduce the high frequency components — Low-Pass Filter

should (if tuned properly) reduce the amount of noise in the data.
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(Low-pass) Filtering in the Fourier Space

Low Pass Filtering with the Fourier Transform

We filter in Fourier space by computing

G (u, v) = H(u, v)F (u, v)

where:

F (u, v) is the Fourier transform of the original image,

H(u, v) is a filter function, designed to reduce high
frequencies, and

G (u, v) is the Fourier transform of the improved
image.

Inverse Fourier transform G (u, v) to get g(x , y) our
improved image
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Ideal Low-Pass Filter

We need to design or compute H(u, v)

If we know h(x , y) or have a discrete sample of h(x , y)
can compute its Fourier Transform

Can simply design simple filters in Frequency Space

The simplest sort of filter to use is an ideal low-pass filter,
which in one dimension appears as :

uu0

2.0

H(u)
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Ideal Low-Pass Filter (2)

How the Low Pass Filter Works with Frequencies

uu0

2.0

H(u)

This is a h(x , y) function which is 1 for u between 0 and u0,
the cut-off frequency, and zero elsewhere.

So all frequency space information above u0 is
discarded, and all information below u0 is kept.

A very simple computational process.
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Ideal 2D Low-Pass Filter

Ideal 2D Low-Pass Filter

The two dimensional version of this is the Low-Pass Filter:

H(u, v) =

{
1 if

√
u2 + v 2 ≤ w0

0 otherwise,

where w0 is now the cut-off frequency for both dimensions.

Thus, all frequencies inside a radius w0 are kept, and
all others discarded.

w0
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Not So Ideal Low-Pass Filter? (1)

In practice, the ideal Low-Pass Filter is no so ideal

The problem with this filter is that as well as noise there may
be useful high frequency content:

In audio: plenty of other high frequency content: high
pitches, rustles, scrapes, wind, mechanical noises, cymbal
crashes etc.

In images: edges (places of rapid transition from light
to dark) also significantly contribute to the high
frequency components.

Choosing the most appropriate cut-off frequency is not so
easy

Similar problem to choosing a threshold in image
thresholding.
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Not So Ideal Low-Pass Filter? (2)

What if you set the wrong value for
the cut-off frequency?

If you choose the wrong cut-off
frequency an ideal low-pass filter
will tend to blur the data:

High audio frequencies become
muffled

Edges in images become blurred.

The lower the cut-off frequency is
made, the more pronounced this
effect becomes in useful data content
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Ideal Low Pass Filter Example 1

(a) Input Image

(c) Ideal Low Pass Filter

50 100 150 200 250

50

100

150

200

250

(b) Image Spectra

(d) Filtered Image
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Ideal Low-Pass Filter Example 1 MATLAB Code

lowpass.m:

% Create a white box on a

% black background image

M = 256; N = 256;

image = zeros(M,N)

box = ones(64,64);

%box at centre

image(97:160,97:160) = box;

% Show Image

figure(1);

imshow(image);

% compute fft and display its spectra

F=fft2(double(image));

figure(2);

imagesc((abs(fftshift(F))/(M*N)));

colormap(jet);

axis off;

% Compute Ideal Low Pass Filter

u0 = 20; % set cut off frequency

u=0:(M-1);

v=0:(N-1);

idx=find(u>M/2);

u(idx)=u(idx)-M;

idy=find(v>N/2);

v(idy)=v(idy)-N;

[V,U]=meshgrid(v,u);

D=sqrt(U.^2+V.^2);

H=double(D<=u0);

% display

figure(3);

imshow(fftshift(H));

% Apply filter and do inverse FFT

G=H.*F;

g=real(ifft2(double(G)));

% Show Result

figure(4);

imshow(g);
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Ideal Low Pass Filter Example 2

(a) Input Image

(c) Ideal Low-Pass Filter

FFT Image Spectra

(b) Image Spectra

(d) Filtered Image
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Ideal Low-Pass Filter Example 2 MATLAB Code

lowpass2.m:

% read in MATLAB demo text image

image = imread('text.png');
[M N] = size(image)

% Show Image

figure(1);

imshow(image);

% compute fft and display its spectra

F=fft2(double(image));

figure(2);

imagesc((abs(fftshift(F))/(M*N)));

colormap(jet);

axis off;

% Compute Ideal Low Pass Filter

u0 = 50; % set cut off frequency

u=0:(M-1);

v=0:(N-1);

idx=find(u>M/2);

u(idx)=u(idx)-M;

idy=find(v>N/2);

v(idy)=v(idy)-N;

[V,U]=meshgrid(v,u);

D=sqrt(U.^2+V.^2);

H=double(D<=u0);

% display

figure(3);

imshow(fftshift(H));

% Apply filter and do inverse FFT

G=H.*F;

g=real(ifft2(double(G)));

% Show Result

figure(4);

imshow(g);
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Low-Pass Butterworth Filter (1)

We introduced the Butterworth Filter with IIR/FIR Filters
(Temporal Domain Filtering). Let’s now study it in more
detail.

Much easier to visualise in Frequency space

2D Low-Pass Butterworth Filter

Another popular (and general) filter is the Butterworth low
pass filter.

In the 2D case, H(u, v) takes the form

H(u, v) =
1

1 + [(u2 + v 2)/w 2
0 ]

n ,

where n is called the order of the filter.
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Low-Pass Butterworth Filter (2)

Visualising the 1D Low-Pass Butterworth Filter

This keeps some of the high frequency information, as illustrated
by the second order one dimensional Butterworth filter:

u0 u
.0

.0

H(u)

Consequently reduces the blurring.

Blurring the filter — Butterworth is essentially a smoothed
top hat functions — reduces blurring by the filter.
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Low-Pass Butterworth Filter (3)

Visualising the 2D Low-Pass Butterworth Filter

The 2D second order Butterworth filter looks like this:

w0

Note this is blurred circle — blurring of the ideal 2D
Low-Pass Filter.
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Butterworth Low Pass Filter Example 1 (1)

(a) Input Image

(c) Butterworth Low-Pass
Filter

50 100 150 200 250

50

100

150

200

250

(b) Image Spectra

(d) Filtered Image

CM3106 Chapter 2 Filtering in the Frequency Domain 85



Butterworth Low-Pass Filter Example 1 (2)

Comparison of Ideal and Butterworth Low Pass Filter:

Ideal Low-Pass Butterworth Low-Pass
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Butterworth Low-Pass Filter Example 1 (3)

butterworth.m:

% Load Image and Compute FFT as

% in Ideal Low Pass Filter Example 1

.......

% Compute Butterworth Low Pass Filter

u0 = 20; % set cut off frequency

u=0:(M-1);

v=0:(N-1);

idx=find(u>M/2);

u(idx)=u(idx)-M;

idy=find(v>N/2);

v(idy)=v(idy)-N;

[V,U]=meshgrid(v,u);

for i = 1: M

for j = 1:N

%Apply a 2nd order Butterworth

UVw = double((U(i,j)*U(i,j) + V(i,j)*V(i,j))/(u0*u0));

H(i,j) = 1/(1 + UVw*UVw);

end

end

% Display Filter and Filtered Image as before
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Low-Pass Butterworth Filter Example 2 (1)

(a) Input Image

(c) Butterworth Low-Pass
Filter

FFT Image Spectra

(b) Image Spectra

(d) Filtered Image
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Low-Pass Butterworth Filter Example 2 (2)

Comparison of Ideal and Low-Pass Butterworth Filter:

Ideal Low Pass Butterworth Low-Pass
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Butterworth Low Pass Filter Example 2 MATLAB

(3)

butterworth2.m:

% Load Image and Compute FFT as in Ideal Low Pass Filter

% Example 2

.......

% Compute Butterworth Low Pass Filter

u0 = 50; % set cut off frequency

u=0:(M-1);

v=0:(N-1);

idx=find(u>M/2);

u(idx)=u(idx)-M;

idy=find(v>N/2);

v(idy)=v(idy)-N;

[V,U]=meshgrid(v,u);

for i = 1: M

for j = 1:N

%Apply a 2nd order Butterworth

UVw = double((U(i,j)*U(i,j) + V(i,j)*V(i,j))/(u0*u0));

H(i,j) = 1/(1 + UVw*UVw);

end

end

% Display Filter and Filtered Image as before
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Low Pass Filtering Noisy Images

How to create noise and results of Low Pass Filtering

Use Matlab function, imnoise() to add noise to image
(lowpass.m, lowpass2.m):

Image with Noise Added Low Pass Filtered Noisy Image

(a) Input Noisy Image (b) Deconvolved Noisy Image (Low Cut Off)Image with Noise Added High Cut−off Frequency Low Pass Filtered Image

(c) Input Noisy Image (d) Deconvolved Noisy Image (Higher Cut Off)
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Other Filters

Other Filters

High-Pass Filters — opposite of low-pass, select high
frequencies, attenuate those below u0

Band-pass — allow frequencies in a range u0 . . . u1 attenuate
those outside this range

Band-reject — opposite of band-pass, attenuate frequencies
within u0 . . . u1 select those outside this range

Notch — attenuate frequencies in a narrow bandwidth
around cut-off frequency, u0

Resonator — amplify frequencies in a narrow bandwidth
around cut-off frequency, u0

Other filters exist that essentially are a combination/variation
of the above
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High Pass Filtering

Easy to Implement from the above Low Pass Filter

A High Pass Filter is usually defined as 1 - low pass = 1−H :
Original image High Pass Filtered

(a) Input Image (b) High Pass Filtered ImageImage with Noise Added High Pass Filter Noisy Image

(c) Input Noisy Image (d) High Pass Filtered Noisy Image
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Convolution

Many Useful Applications of Convolution

Several important audio and optical effects can be described in
terms of convolutions.

FIltering — In fact the above Fourier filtering is
applying convolutions of a low pass filter where the
equations are Fourier Transforms of real space
equivalents.

Deblurring — high pass filtering

Reverb — impulse response convolution (more soon).

Note we have seen a discrete real domain example of
Convolution with Edge Detection.
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Formal Definition of 1D Convolution:

Let us examine the concepts using 1D continuous functions.

The convolution of two functions f (x) and g(x), written
f (x) ∗ g(x), is defined by the integral

f (x) ∗ g(x) =

∫ ∞
−∞

f (α)g(x − α) dα.

∗ is the mathematical notation for convolution.

No Fourier Transform in sight here — but wait!
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1D Convolution Real Domain Example (1)

Convolution of Two Top Hat Functions

For example, let us take two top hat functions:

Let f (α) be the top hat function shown:

f (α) =

{
1 if |α| ≤ 1
0 otherwise,

and let g(α) be as shown in next slide, defined by

g(α) =

{
1/2 if 0 ≤ α ≤ 1
0 otherwise.
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1D Convolution Example (2)

Our Two Top Hat Functions Plots

-5.0 5.00.0

1.0

-5.0 5.00.0

1.0

f (α) =

{
1 if |α| ≤ 1
0 otherwise,

g(α) =

{
1/2 if 0 ≤ α ≤ 1
0 otherwise.
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1D Convolution Example (3)

The Convolution Process: Graphical Interpretation

g(−α) is the reflection of this
function in the vertical y -axis,

g(x − α) is the latter shifted
to the right by a distance x .

Thus for a given value of x ,
f (α)g(x − α) integrated over all
α is the area of overlap of these
two top hats, as f (α) has unit
height.

An example is shown for x in the
range −1 ≤ x ≤ 0 opposite

-5.0 5.00.0

1.0

x
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1D Convolution Example (4)

So the solution is:

If we now consider x moving from −∞ to +∞, we can see
that

For x ≤ −1 or x ≥ 2, there is no overlap;

As x goes from −1 to 0 the area of overlap steadily
increases from 0 to 1/2;

As x increases from0 to 1, the overlap area remains at
1/2;

Finally as x increases from 1 to 2, the overlap area
steadily decreases again from 1/2 to 0.

Thus the convolution of f (x) and g(x), f (x) ∗ g(x), in
this case has the form shown on next slide
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1D Convolution Example (5)

-5.0 5.00.0

1.0

Result of f (x) ∗ g(x)
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1D Convolution Example (6)

Mathematically the convolution is expressed by:

f (x) ∗ g(x) =


(x + 1)/2 if −1 ≤ x ≤ 0
1/2 if 0 ≤ x ≤ 1
1− x/2 if 1 ≤ x ≤ 2
0 otherwise.

-5.0 5.00.0

1.0

CM3106 Chapter 2 Filtering in the Frequency Domain 101



Fourier Transforms and Convolution

Convolution Theorem: Convolution in Frequency Space is Easy

One major reason that Fourier transforms are so important in
signal/image processing is the convolution theorem which
states that:

If f (x) and g(x) are two functions with Fourier transforms
F (u) and G (u), then the Fourier transform of the convolution
f (x) ∗ g(x) is simply the product of the Fourier transforms of
the two functions, F (u)G (u).
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Fourier Transforms and Convolution (Cont.)

Recall our Low Pass Filter Example (MATLAB CODE)

% Apply filter

G=H.*F;

Where F was the Fourier transform of the image, H the filter
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Computing Convolutions with the Fourier

Transform

Example Applications:

To apply some reverb to an audio signal.

To compensate for a less than ideal image capture system.

More soon.
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Example Applications (Cont.)

Deconvolution: Compensating for undesirable effects

To do this fast convolution we simply:

Take the Fourier transform of the audio/imperfect image,

Take the Fourier transform of the function describing the effect
of the system,

Multiply by the effect to apply effect to audio data

To remove/compensate for effect: Divide by the effect to obtain
the Fourier transform of the ideal image.

Inverse Fourier transform to recover the new improved audio
image.

This process is sometimes referred to as deconvolution.
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Image Deblurring Deconvolution Example

Inverting our Previous Low-Pass Filter
Recall our Low Pass (Butterworth) Filter example of a few slides ago: butterworth.m:
deconv.m and deconv2.m reuses this code and adds a deconvolution stage:

Our computed butterworth low pass filter, H is our blurring function

So to simply invert this we can divide (as opposed to multiply) by H with the blurred image G —
effectively a high pass filter

Ghigh = G./H;

ghigh=real(ifft2(double(Ghigh)));

figure(5)

imshow(ghigh)

In this ideal example we clearly get F back and to get the image simply to inverse Fourier Transfer.

In the real world we don’t really know the exact blurring function H so things are not so easy.

(a) Input Image (b) Blurred Low-Pass Filtered Image (c) Deconvolved Image
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deconv2.m results

(a) Input Image (b) Blurred Low-Pass Filtered Image (c) Deconvolved Image
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Deconvolution is not always that simple!
Origial Image Deconvolved

(a) Input Image (b) Deconvolved Image
Image with Noise Added Deconvolved Noisy Image

(c) Input Noisy Image (d) Deconvolved Noisy Image
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