CM3106 Chapter 2: DSP, Filters and the Fourier Transform

Prof David Marshall dave.marshall@cs.cardiff.ac.uk and Dr Kirill Sidorov K.Sidorov@cs.cf.ac.uk www.facebook.com/kirill.sidorov

School of Computer Science & Informatics Cardiff University, UK

Digital Signal Processing and Digital Audio Recap from CM2104/CM2208

Issues to be Recapped:

Basic Digital Signal Processing and Digital Audio

- Waveforms and Sampling Theorem
- Digital Audio Signal Processing
- Filters

For full details please refer to last Year's <u>CM2208 Course Material</u> — Especially detailed <u>underpinning maths</u> — and also <u>CM2104 Notes</u>.

Simple Waveforms

- Frequency is the number of cycles per second and is measured in Hertz (Hz)
- Wavelength is *inversely proportional* to frequency
 - i.e. Wavelength varies as $\frac{1}{frequency}$

The Sine Wave and Sound

The general form of the sine wave we shall use (quite a lot of) is as follows:

$$y = A.sin(2\pi.n.F_w/F_s)$$

where:

A is the amplitude of the wave, F_w is the frequency of the wave, F_s is the sample frequency, *n* is the sample index.

CM3106 Chapter 2 Basic Digital Audio Signal Processing

Relationship Between Amplitude, Frequency and Phase

Phase of a Sine Wave

sinphasedemo.m

```
% Simple Sin Phase Demo
samp_freq = 400;
dur = 800: % 2 seconds
amp = 1; phase = 0; freq = 1;
s1 = mysin(amp,freq,phase,dur,samp_freq);
axisx = (1:dur)*360/samp_freq; % x axis in degrees
plot(axisx.s1):
set(gca, 'XTick', [0:90:axisx(end)]);
fprintf('Initial Wave: \t Amplitude = ...\n', amp, freq, phase,...);
% change amplitude
phase = input('\nEnter Phase:\n\n');
s2 = mysin(amp,freq,phase,dur,samp_freq);
hold on:
plot(axisx, s2,'r');
set(gca, 'XTick', [0:90:axisx(end)]);
```

Phase of a Sine Wave: sinphasedemo output

Basic DSP Concepts and Definitions: The Decibel (dB)

When referring to measurements of power or intensity, we express these in decibels (dB):

$$X_{dB} = 10 \log_{10} \left(rac{X}{X_0}
ight)$$

where:

- X is the actual value of the quantity being measured,
- X₀ is a specified or implied reference level,
- X_{dB} is the quantity expressed in units of decibels, relative to X_0 .
- X and X_0 must have the same dimensions they must measure the same type of quantity in the the same units.
- the same type of quantity in the the same units.
 The reference level itself is always at 0 dB as shown by setting X = X₀ (note: log₁₀(1) = 0).

Why Use Decibel Scales?

- When there is a large range in frequency or magnitude, logarithm units often used.
- If X is greater than X₀ then X_{dB} is positive (Power Increase)
- If X is less than X₀ then X_{dB} is negative (Power decrease).
- Power Magnitude = |X(i)|²| so (with respect to reference level)

$$X_{dB} = 10 \log_{10}(|X(i)^2|)$$

= 20 \log_{10}(|X(i)|)

which is an expression of dB we often come across.

Decibel and Chillies!

Decibels are used to express wide dynamic ranges in a many applications:

- dB is commonly used to quantify sound levels relative to some 0 dB reference.
- The reference level is typically set at the threshold of human perception
- Human ear is capable of detecting a very large range of sound pressures.

Threshold of Pain

The ratio of sound pressure that causes **permanent** damage from short exposure to the limit that (undamaged) ears can hear is above a million:

- The ratio of the maximum power to the minimum power is above one (short scale) trillion (10¹²).
- The log of a trillion is 12, so this ratio represents a difference of 120 dB.

120 dB is the quoted **Threshold of Pain** for Humans.

Examples of dB measurement in Sound (cont.)

Speech Sensitivity

Human ear is not equally sensitive to all the frequencies of sound within the entire spectrum:

- Maximum human sensitivity at noise levels at between 2 and 4 kHz (Speech)
 - These are factored more heavily into sound descriptions using a process called frequency weighting.
 - Filter (Partition) into frequency bands concentrated in this range.
 - Used for Speech Analysis
 - Mathematical Modelling of Human Hearing
 - Audio Compression (E.g. MPEG Audio)

More on this Later

Examples of dB measurement in Sound (cont.)

Digital Noise increases by 6dB per bit

In digital audio sample representation (linear pulse-code modulation (PCM)),

- The first bit (least significant bit, or LSB) produces residual quantization noise (bearing little resemblance to the source signal)
- Each subsequent bit offered by the system doubles the resolution, corresponding to a 6 (= 10 * log₁₀(4)) dB.
- So a 16-bit (linear) audio format offers 15 bits beyond the first, for a dynamic range (between quantization noise and clipping) of (15 × 6) = 90 dB, meaning that the maximum signal is 90 dB above the theoretical peak(s) of quantisation noise.
- 8-bit linear PCM similarly gives $(7 \times 6) = 42$ dB.
- 48 dB difference between 8- and 16-bit which is (48/6 (dB)) 8 times as noisy.

More on this Later

Signal to Noise

Signal-to-noise ratio is a term for the power ratio between a signal (meaningful information) and the background noise:

$${\it SNR} = rac{{\it P_{signal}}}{{\it P_{noise}}} = \left(rac{{\it A_{signal}}}{{\it A_{noise}}}
ight)^2$$

where P is average power and A is RMS amplitude.

Both signal and noise power (or amplitude) must be measured at the same or equivalent points in a system, and within the same system bandwidth.

Because many signals have a very wide dynamic range, SNRs are usually expressed in terms of the logarithmic decibel scale:

$$SNR_{dB} = 10 \log_{10} \left(\frac{P_{signal}}{P_{noise}} \right) = 20 \log_{10} \left(\frac{A_{signal}}{A_{noise}} \right)$$

System Representation: Algorithms and Signal Flow Graphs

It is common to represent digital system signal processing routines as a visual **signal flow graphs**.

We use a simple *equation* relation to describe the **algorithm**.

Three Basic Building Blocks

We will need to consider *three* processes:

- Delay
- Multiplication
- Summation

Delay

We represent a delay of one sampling interval by a block with a T label:

•
$$x(n)$$
 T $y(n) = x(n-1)$ • •

■ We describe the algorithm via the equation: y(n) = x(n-1)

Signal Flow Graphs: Delay Example

A Delay of 2 Samples

A delay of the input signal by two sampling intervals:

• We can describe the **algorithm** by:

$$\mathbf{y}(\mathbf{n}) = \mathbf{x}(\mathbf{n} - \mathbf{2})$$

We can use the block diagram to represent the signal flow graph as:

$$\mathbf{x}(n) \rightarrow \mathbf{T} \qquad y(n) = x(n-1) \rightarrow \mathbf{T} \qquad y(n) = x(n-2) \rightarrow \mathbf{O}$$

Signal Flow Graphs: Multiplication

Multiplication

- We represent a multiplication or weighting of the input signal by a circle with a × label .
- We describe the algorithm via the equation: $y(n) = a \cdot x(n)$

Signal Flow Graphs: Addition

Addition

- We represent a addition of two input signal by a circle with a + label.
- We describe the algorithm via the equation:

 $y(n)=a_1.x_1(n)+a_2.x_2(n)$

Signal Flow Graphs: Addition Example

Signal Flow Graphs: Complete Example

All Three Processes Together

We can combine all above algorithms to build up more complex algorithms:

$$\mathsf{y}(\mathsf{n}) = \frac{1}{2}\mathsf{x}(\mathsf{n}) + \frac{1}{3}\mathsf{x}(\mathsf{n}-1) + \frac{1}{4}\mathsf{x}(\mathsf{n}-2)$$

This has the following signal flow graph:

Signal Flow Graphs: Complete Example Impulse Response

Filtering

Filtering

Filtering in a broad sense is selecting portion(s) of data for some processing.

If we isolate a portion of data (e.g. audio, image, video) we can

- Remove it E.g. Low Pass, High Pass etc. filtering
- Attenuate it Enhance or diminish its presence, *E.g.* Equalisation, Audio Effects/Synthesis
- Process it in other ways Digital Audio, E.g. Audio Effects/Synthesis

More Later

Filtering Examples (More Later)

Filtering Examples:

- In many multimedia contexts this involves the removal of data from a signal — This is essential in almost all aspects of lossy multimedia data representations.
 - JPEG Image Compression
 - MPEG Video Compression
 - MPEG Audio Compression
- In Digital Audio we may wish to determine a range of frequencies we wish the enhance or diminish to equalise the signal, e.g.:
 - Tone Treble and Bass Controls
 - Equalisation (EQ)
 - **Synthesis** Subtractive Synthesis, EQ in others.

How can we filter a Digital Signal

Two Ways to Filter

- Temporal Domain E.g. Sampled (PCM) Audio
- Frequency Domain Analyse frequency components in signal.

We will look at filtering in the **frequency space** very soon, but first we consider filtering in the **temporal domain** via **impulse responses**.

Temporal Domain Filters

We will look at:

IIR Systems : Infinite impulse response systems

FIR Systems : Finite impulse response systems

Infinite Impulse Response (IIR) Systems

Simple Example IIR Filter

The algorithm is represented by the difference equation:

$$y(n) = x(n) - a_1 \cdot y(n-1) - a_2 \cdot y(n-2)$$

This produces the opposite signal flow graph

Infinite Impulse Response (IIR)Systems Explained

IIR Filter Explained

The following happens:

- The output signal y(n) is fed back through a series of delays
- Each delay is weighted
- Each fed back weighted delay is summed and passed to new output.
- Such a feedback system is called a recursive system

A Complete IIR System

Complete IIR Algorithm

Here we extend:

The **input** delay line up to N - 1 elements and

The **output** delay line by M elements.

We can represent the IIR system algorithm by the difference equation:

$$y(n) = x(n) - \sum_{k=1}^{M} a_k y(n-k)$$

Finite Impulse Response (FIR) Systems

FIR system's are slightly simpler — there is **no feedback loop**.

Simple Example FIR Filter

A simple FIR system can be described as follows:

$$y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2)$$

- The input is fed through delay elements
- Weighted sum of delays gives y(n)

A Complete FIR System

FIR Algorithm

To develop a more complete FIR system we need to add N-1 feed forward delays

We can describe this with the algorithm:

$$y(n) = \sum_{k=0}^{N-1} b_k x(n-k)$$

Filtering with IIR/FIR

We have **two filter banks** defined by vectors: $A = \{a_k\}, B = \{b_k\}.$

These can be applied in a *sample-by-sample* algorithm:

 MATLAB provides a generic filter(B,A,X) function which filters the data in vector X with the filter described by vectors A and B to create the filtered data Y. The filter is of the standard difference equation form:

 $\begin{aligned} \mathsf{a}(1) * \mathsf{y}(n) &= b(1) * \mathsf{x}(n) + b(2) * \mathsf{x}(n-1) + \dots + b(nb+1) * \mathsf{x}(n-nb) \\ &- \mathsf{a}(2) * \mathsf{y}(n-1) - \dots - \mathsf{a}(na+1) * \mathsf{y}(n-na) \end{aligned}$

If a(1) is not equal to 1, filter normalizes the filter coefficients by a(1). If a(1) equals 0, filter() returns an error

How do I create Filter banks A and B

- Filter banks can be created manually Hand Created:
 See next slide and Equalisation example later in slides
- MATLAB can provide some predefined filters a few slides on, see lab classes

Many standard filters provided by MATLAB

See also help filter, online MATLAB docs and lab classes.

Filtering with IIR/FIR: Simple Example

The MATLAB file <u>IIRdemo.m</u> sets up the filter banks as follows:

IRdemo.m fg=4000; fa=48000; k=tan(pi*fg/fa); b(1)=1/(1+sqrt(2)*k+k^2); b(2)=-2/(1+sqrt(2)*k+k^2); b(3)=1/(1+sqrt(2)*k+k^2); a(1)=1; a(2)=2*(k^2-1)/(1+sqrt(2)*k+k^2); a(3)=(1-sqrt(2)*k+k^2)/(1+sqrt(2)*k+k^2);

How to apply the (previous) difference equation:

By hand

IIRdemo.m cont.

```
for n=1:N
    y(n)=b(1)*x(n) + b(2)*xh1 + b(3)*xh2 ...
        - a(2)*yh1 - a(3)*yh2;
    xh2=xh1;xh1=x(n);
    yh2=yh1;yh1=y(n);
end;
```

Use MATLAB filter() function — see next but one slide
 Far more preferable: general — any length filter

Filtering with IIR: Simple Example Output

This produces the following output:

MATLAB filters

Matlab filter() function implements an IIR/FIR hybrid filter.

Type help filter:

FILTER One-dimensional digital filter.

Y = FILTER(B,A,X) filters the data in vector X with the filter described by vectors A and B to create the filtered data Y. The filter is a "Direct Form II Transposed" implementation of the standard difference equation:

$$a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + \dots + b(nb+1)*x(n-nb) - a(2)*y(n-1) - \dots - a(na+1)*y(n-na)$$

If a(1) is not equal to 1, FILTER normalizes the filter coefficients by a(1).

FILTER always operates along the first non-singleton dimension, namely dimension 1 for column vectors and non-trivial matrices, and dimension 2 for row vectors.

MATLAB provides a few built-in functions to create ready made filter parameter A and B:

Some common MATLAB Filter Bank Creation Functions

E.g: butter, buttord, besself, cheby1, cheby2, ellip.

See help or doc appropriate function.

Fourier Transform (Recap from CM2104/CM2208

The Frequency Domain

The **Frequency domain** can be obtained through the transformation, via **Fourier Transform (FT)**, from

one Temporal (Time) or Spatial domain

to the other

Frequency Domain

 We do not think in terms of signal or pixel intensities but rather underlying sinusoidal waveforms of varying frequency, amplitude and phase.

Applications of Fourier Transform

Numerous Applications including:

- Essential tool for Engineers, Physicists, Mathematicians and Computer Scientists
- Fundamental tool for Digital Signal Processing and Image Processing
- Many types of Frequency Analysis:
 - Filtering
 - Noise Removal
 - Signal/Image Analysis
 - Simple implementation of Convolution
 - Audio and Image Effects Processing.
 - Signal/Image Restoration e.g. Deblurring
 - Signal/Image Compression MPEG (Audio and Video), JPEG use related techniques.
 - Many more

Introducing Frequency Space

1D Audio Example

Lets consider a 1D (e.g. Audio) example to see what the different domains mean:

Consider a complicated sound such as the a chord played on a piano or a guitar.

We can describe this sound in two related ways:

Temporal Domain : Sample the amplitude of the sound many times a second, which gives an approximation to the sound as a function of time.

Frequency Domain : Analyse the sound in terms of the pitches of the notes, or frequencies, which make the sound up, recording the amplitude of each frequency.

Non New Chards Press	
C	Maine7
Do	Minor7
D	Aug
2 18	
O	-8
•	0

Fundamental Frequencies

- Db : 554.40Hz
 - F : 698.48Hz
- Ab : 830.64Hz
- C: 1046.56Hz

plus harmonics/partial frequencies

Back to Basics

An 8 Hz Sine Wave

A signal that consists of a sinusoidal wave at 8 Hz.

- 8 Hz means that wave is completing 8 cycles in 1 second
- The frequency of that wave is 8 Hz.

From the **frequency domain** we can see that the composition of our signal is

- one peak occurring with a frequency of 8 Hz — there is only one sine wave here.
 - with a magnitude/fraction of 1.0 i.e. it is the whole signal.

2D Image Example

What do Frequencies in an Image Mean?

Now images are no more complex really:

- Brightness along a line can be recorded as a set of values measured at equally spaced distances apart,
- Or equivalently, at a set of spatial frequency values.
- Each of these frequency values is a frequency component.
- An image is a 2D array of pixel measurements.
- We form a 2D grid of spatial frequencies.
 - A given frequency component now specifies what contribution is made by data which is changing with specified x and y direction spatial frequencies.

What do Frequencies in an Image Mean? (Cont.)

- Large values at high frequency components then the data is changing rapidly on a short distance scale.
 - *e.g.* a page of text
 - However, Noise contributes (very) High Frequencies also

Large low frequency components then the large scale features of the picture are more important.

e.g. a single fairly simple object which occupies most of the image.

Visualising Frequency Domain Transforms

Sinusoidal Decomposition

- Any digital signal (function) can be decomposed into purely sinusoidal components
 - Sine waves of different size/shape varying amplitude, frequency and phase.
- When added back together they reconstitute the original signal.
- The Fourier transform is the tool that performs such an operation.

Summing Sine Waves. Example: to give a Square(ish) Wave (**E.g. Additive Synthesis**)

Digital signals are composite signals made up of many sinusoidal frequencies

A 200Hz digital signal (square(ish) wave) may be a composed of 200, 600, 1000, etc. sinusoidal signals which sum to give:

So What Does All This Mean?

Transforming a signal into the frequency domain allows us

- To see what sine waves make up our underlying signal
- **E.g.**
 - One part sinusoidal wave at 50 Hz and
 - Second part sinusoidal wave at 200 Hz.
 - Etc.
- More complex signals will give more complex decompositions but the idea is exactly the same.

Basic Idea of Filtering in Frequency Space

Filtering now involves **attenuating** or **removing** certain frequencies — **easily performed**:

- Low pass filter
 - Ignore high frequency noise components make zero or a very low value.
 - Only store lower frequency components
- High Pass Filter opposite of above
- Bandpass Filter only allow frequencies in a certain range.

Think Graphic Equaliser

An easy way to visualise what is happening is to think of a graphic equaliser on a stereo system (or some software audio players, *e.g. iTunes*).

So are we ready for the Fourier Transform?

We have all the Tools....

- This lecture, so far, (hopefully) set the context for Frequency decomposition.
- Past <u>CM2208 Lectures</u>:
 - **Odd/Even Functions**: sin(-x) = -sin(x), cos(-x) = cos(x)
 - **Complex Numbers:** Phasor Form $re^{i\phi} = r(\cos \phi + i \sin \phi)$
 - **Calculus Integration**: $\int e^{kx} dx = \frac{e^{kx}}{k}$
- Digital Signal Processing:
 - Basic Waveform Theory. Sine Wave $y = A.sin(2\pi . n.F_w/F_s)$ where: A = amplitude, $F_w =$ wave frequency, $F_s =$ sample frequency, n is the sample index.

Relationship between Amplitude, Frequency and Phase:

Cosine is a Sine wave 90° out of phase

Impulse Responses

■ DSP + Image Proc.: Filters and other processing, Convolution

Moving into the Frequency Domain

Fourier Theory

Introducing The Fourier Transform

The tool which **converts** a **spatial** or **temporal** (real space) **description** of **audio/image** data, for example, into one in terms of its **frequency components** is called the **Fourier transform**

The new version is usually referred to as the **Fourier space description** of the data.

We then essentially process the data:

• *E.g.* for **filtering** basically this means attenuating or setting certain frequencies to zero

We then need to **convert data back** (or **invert**) to **real audio**/imagery to use in our applications.

The corresponding **inverse** transformation which turns a Fourier space description back into a real space one is called the **inverse Fourier** transform.

1D Fourier Transform

1D Case (e.g. Audio Signal)

Considering a **continuous** function f(x) of a single variable x representing distance (or time). The **Fourier transform** of that function is denoted F(u), where u represents **spatial** (or **temporal**) **frequency** is defined by:

$$F(u) = \int_{-\infty}^{\infty} f(x) \mathbf{e}^{-2\pi \mathbf{i} \mathbf{x} \mathbf{u}} \, dx.$$

Note: In general F(u) will be a complex quantity *even though* the original data is purely **real**.

- The meaning of this is that not only is the magnitude of each frequency present important, but that its phase relationship is too.
- Recall Phasors from Complex Number Lectures (CM2208).

• $e^{-2\pi i x u}$ above is a **Phasor**.

Inverse 1D Fourier Transform

The **inverse Fourier transform** for regenerating f(x) from F(u) is given by

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{2\pi i x u} \, du,$$

which is rather similar to the (forward) Fourier transform

- except that the exponential term has the opposite sign.
- It is not negative

Fourier Transform Example

Fourier Transform of a Top Hat Function

Let's see how we compute a Fourier Transform: consider a particular function f(x) defined as

 $f(x) = \begin{cases} 1 & \text{if } |x| \le 1 \\ 0 & \text{otherwise,} \end{cases}$

The Sinc Function (1)

We derive the Sinc function

So its Fourier transform is:

$$F(\mathbf{u}) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i x u} dx$$
$$= \int_{-1}^{1} 1 \times e^{-2\pi i x u} dx$$
$$= \frac{-1}{2\pi i u} (e^{2\pi i u} - e^{-2\pi i u})$$

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}, So$$

$$F(u) = \frac{\sin 2\pi u}{\pi u}.$$

In this case, F(u) is purely real, which is a consequence of the original data being symmetric in x and -x. **a** f(x) is an even function.

A graph of F(u) is shown overleaf.

This function is often referred to as the Sinc function.

The Sinc Function Graph

The Sinc Function

The Fourier transform of a top hat function, the **Sinc function**:

2D Case (*e.g.* Image data)

If f(x, y) is a function, for example **intensities** in an **image**, its **Fourier transform** is given by

$$F(u, v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \mathbf{e}^{-2\pi \mathbf{i}(\mathbf{x}\mathbf{u} + \mathbf{y}\mathbf{v})} \, dx \, dy,$$

and the inverse transform, as might be expected, is

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{2\pi i (xu+yv)} du dv$$

But All Our Audio and Image data are Digitised!!

Thus, we need a *discrete* formulation of the Fourier transform:

- Assumes regularly spaced data values, and
- Returns the value of the Fourier transform for a set of values in frequency space which are equally spaced.

This is done quite naturally by replacing the integral by a summation, to give the *discrete Fourier transform* or **DFT** for short.

1D Discrete Fourier transform

1D Case:

In 1D it is convenient now to assume that x goes up in steps of 1, and that there are N samples, at values of x from 0 to N - 1.

So the DFT takes the form

$$F(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-2\pi i x u/N},$$

while the inverse DFT is

$$f(x) = \sum_{x=0}^{N-1} F(u) e^{2\pi i x u/\mathbf{N}}.$$

NOTE: Minor changes from the continuous case are a factor of 1/N in the **exponential** terms, and also the factor 1/N in front of the forward transform which **does not appear** in the **inverse** transform.

2D Case

The **2D DFT** works is similar.

So for an $N \times M$ grid in x and y we have

$$F(\mathbf{u},\mathbf{v}) = \frac{1}{\mathsf{NM}} \sum_{x=0}^{\mathsf{N}-1} \sum_{y=0}^{\mathsf{M}-1} f(x,y) e^{-2\pi i (x\mathbf{u}/\mathsf{N}+y\mathbf{v}/\mathsf{M})}$$

and

$$f(x,y) = \sum_{u=0}^{N-1} \sum_{v=0}^{M-1} F(u,v) e^{2\pi i (xu/N + yv/M)}.$$

Balancing the 2D DFT

Most Images are Square

Often N = M, and it is then it is more convenient to redefine F(u, v) by multiplying it by a factor of N, so that the **forward** and **inverse** transforms are more **symmetric**:

$$F(u, v) = \frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y) e^{-2\pi i (xu+yv)/N}$$

and

$$f(x,y) = \frac{1}{N} \sum_{u=0}^{N-1} \sum_{v=0}^{N-1} F(u,v) e^{2\pi i (xu+yv)/N}$$

Fourier Transforms in MATLAB

fft() and fft2()

MATLAB provides functions for 1D and 2D **Discrete Fourier Transforms (DFT)**:

- fft(X) is the 1D discrete Fourier transform (DFT) of vector X. For matrices, the FFT operation is applied to each column — NOT a 2D DFT transform.
- fft2(X) returns the 2D Fourier transform of matrix X. If X is a vector, the result will have the same orientation.
- fftn(X) returns the N-D discrete Fourier transform of the N-D array X.

Inverse DFT ifft(), ifft2(), ifftn() perform the inverse DFT.

See appropriate MATLAB help/doc pages for full details.

Plenty of examples to Follow.

Visualising the Fourier Transform

Visualising the Fourier Transform

Having computed a DFT it might be useful to visualise its result:

- It's useful to visualise the Fourier Transform
- Standard tools
- Easily plotted in MATLAB

The Magnitude Spectrum of Fourier Transform

Recall that the Fourier Transform of our **real** audio/image data is always **complex**

Phasors: This is how we encode the phase of the underlying signal's Fourier Components.

How can we visualise a complex data array?

Back to Complex Numbers:

Magnitude spectrum Compute the absolute value of the complex data:

 $|F(k)| = \sqrt{F_R^2(k) + F_I^2(k)}$ for k = 0, 1, ..., N - 1

where $F_R(k)$ is the real part and $F_I(k)$ is the imaginary part of the N sampled Fourier Transform, F(k).

Recall MATLAB: Sp = abs(fft(X,N))/N; (Normalised form)

The Phase Spectrum of Fourier Transform

The Phase Spectrum

Phase Spectrum

The Fourier Transform also represent phase, the **phase spectrum** is given by:

$$arphi = rctan \, rac{F_l(k)}{F_R(k)} \, \, {f for} \, \, k = 0, 1, \dots, N-1$$

Recall MATLAB: phi = angle(fft(X,N))

Relating a Sample Point to a Frequency Point

When **plotting graphs** of *Fourier Spectra* and doing other DFT processing we may wish to **plot** the x-axis in Hz (Frequency) rather than sample point number k = 0, 1, ..., N - 1

There is a simple relation between the two:

- The sample points go in steps $k = 0, 1, \dots, N 1$
- For a given sample point k the frequency relating to this is given by:

$$f_k = k \frac{t_s}{N}$$

where f_s is the sampling frequency and N the number of samples.

Thus we have equidistant frequency steps of $\frac{f_s}{N}$ ranging from 0 Hz to $\frac{N-1}{N}f_s$ Hz

Time-Frequency Representation: Spectrogram

Spectrogram

It is often **useful** to look at the **frequency distribution** over a **short-time**:

- Split signal into N segments
- Do a windowed Fourier Transform Short-Time Fourier Transform (STFT)
 - Window needed to reduce *leakage* effect of doing a shorter sample SFFT.
 - Apply a Blackman, Hamming or Hanning Window
- MATLAB function does the job: Spectrogram see help spectrogram
- See also MATLAB's specgramdemo

MATLAB spectrogram Example

spectrogrameg.m

```
load('handel')
[N M] = size(y);
figure(1)
spectrogram(y,512,20,1024,Fs);
```

Produces the following:

Aphex Twin Spectrogram

Aphex Twin famously¹ embedded images in the spectrogram of a few tracks on his <u>Windowlicker EP</u>. His face on Track 2 "Formula" or "Equation" (Full title:

 $\Delta M_{i-1} = -\alpha \sum_{n=1}^{N} D_i[n][\sum_{\sigma \in C[i]} F_{ji}[n-1] + Fext_i[n-1]]$

Filtering in the Frequency Domain

Low Pass Filter

Example: Audio Hiss, 'Salt and Pepper' noise in images,

Noise:

- The idea with noise Filtering is to reduce various spurious effects of a local nature in the image, caused perhaps by
 - noise in the acquisition system,
 - arising as a result of transmission of the data, for example from a space probe utilising a low-power transmitter.

Frequency Space Filtering Methods

Low Pass Filtering — Remove Noise

Noise = High Frequencies:

- In audio data many spurious peaks in over a short timescale.
- In an image means there are many rapid transitions (over a short distance) in intensity from high to low and back again or vice versa, as faulty pixels are encountered.
- Not all high frequency data noise though!

Therefore **noise** will contribute heavily to the **high frequency** components of the signal when it is **analysed** in **Fourier space**.

Thus if we **reduce** the **high frequency** components — **Low-Pass Filter** should (if tuned properly) **reduce** the amount of noise in the data.

(Low-pass) Filtering in the Fourier Space

Low Pass Filtering with the Fourier Transform

We filter in Fourier space by computing

G(u,v) = H(u,v)F(u,v)

where:

• F(u, v) is the Fourier transform of the original image,

- H(u, v) is a filter function, designed to reduce high frequencies, and
- G(u, v) is the Fourier transform of the improved image.
- Inverse Fourier transform G(u, v) to get g(x, y) our improved image
Ideal Low-Pass Filter

We need to design or compute H(u, v)

- If we know h(x, y) or have a discrete sample of h(x, y) can compute its Fourier Transform
- Can simply design simple filters in Frequency Space
- The simplest sort of filter to use is an *ideal low-pass filter*, which in one dimension appears as :

n

Ideal Low-Pass Filter (2)

How the Low Pass Filter Works with Frequencies

This is a h(x, y) function which is **1** for *u* between 0 and u_0 , the *cut-off frequency*, and **zero** elsewhere.

- So all frequency space information above u₀ is discarded, and all information below u₀ is kept.
- A very simple computational process.

Ideal 2D Low-Pass Filter

Ideal 2D Low-Pass Filter

The two dimensional version of this is the Low-Pass Filter:

$$H(u, v) = \begin{cases} 1 & \text{if } \sqrt{u^2 + v^2} \le w_0 \\ 0 & \text{otherwise,} \end{cases}$$

where w_0 is now the **cut-off frequency** for **both** dimensions.

Thus, all frequencies inside a radius w₀ are kept, and all others discarded.

Not So Ideal Low-Pass Filter? (1)

In practice, the ideal Low-Pass Filter is no so ideal

The **problem** with this filter is that as well as noise there may be **useful** high frequency content:

- In audio: plenty of other high frequency content: high pitches, rustles, scrapes, wind, mechanical noises, cymbal crashes etc.
- In images: edges (places of rapid transition from light to dark) also significantly contribute to the high frequency components.

Choosing the **most appropriate** cut-off frequency is not so easy

Similar problem to choosing a threshold in image thresholding.

What if you set the wrong value for the cut-off frequency?

If you **choose the wrong cut-off frequency** an ideal low-pass filter will tend to *blur* the data:

- High audio frequencies become muffled
- Edges in images become blurred.

The lower the cut-off frequency is made, the more pronounced this effect becomes in *useful data content*

Ideal Low Pass Filter Example 1

(a) Input Image

(c) Ideal Low Pass Filter

(b) Image Spectra

Ideal Low-Pass Filter Example 1 MATLAB Code

lowpass.m:

```
% Create a white box on a
% black background image
M = 256; N = 256;
image = zeros(M,N)
box = ones(64,64);
%box at centre
image(97:160,97:160) = box;
```

% Show Image

figure(1);
imshow(image);

% compute fft and display its spectra

```
F=fft2(double(image));
figure(2);
imagesc((abs(fftshift(F))/(M*N)));
colormap(jet);
axis off;
```

% Compute Ideal Low Pass Filter u0 = 20; % set cut off frequency

u=0:(M-1); v=0:(N-1); idx=find(u>M/2); u(idx)=u(idx)-M; idy=find(v>N/2); v(idy)=v(idy)-N; [V,U]=meshgrid(v,u); D=sqrt(U.^2+V.^2); H=double(D<=u0);</pre>

% display
figure(3);
imshow(fftshift(H));

% Apply filter and do inverse FFT G=H.*F; g=real(ifft2(double(G)));

% Show Result
figure(4);
imshow(g);

Ideal Low Pass Filter Example 2

The term watershed refers to a ridge that ... divides ar eas rained by different ver systems.

(a) Input Image

(c) Ideal Low-Pass Filter

(b) Image Spectra

(d) Filtered Image

Ideal Low-Pass Filter Example 2 MATLAB Code

lowpass2.m:

```
% read in MATLAB demo text image
image = imread('text.png');
[M N] = size(image)
```

% Show Image

figure(1);
imshow(image);

% compute fft and display its spectra

```
F=fft2(double(image));
figure(2);
imagesc((abs(fftshift(F))/(M*N)));
colormap(jet);
axis off;
```

% Compute Ideal Low Pass Filter u0 = 50; % set cut off frequency

```
u=0:(M-1);
v=0:(N-1);
idx=find(u>M/2);
u(idx)=u(idx)-M;
idy=find(v>N/2);
v(idy)=v(idy)-N;
[V,U]=meshgrid(v,u);
D=sqrt(U.^2+V.^2);
H=double(D<=u0);</pre>
```

% display

figure(3); imshow(fftshift(H));

% Apply filter and do inverse FFT G=H.*F; g=real(ifft2(double(G)));

```
% Show Result
figure(4);
imshow(g);
```

Low-Pass Butterworth Filter (1)

We introduced the **Butterworth Filter** with **IIR/FIR Filters** (**Temporal Domain Filtering**). Let's now study it in more detail.

Much easier to visualise in Frequency space

2D Low-Pass Butterworth Filter

Another popular (and general) filter is the **Butterworth low pass filter**.

In the 2D case, H(u, v) takes the form

$$H(u, v) = \frac{1}{1 + \left[(u^2 + v^2) / w_0^2 \right]^n},$$

where n is called the **order** of the filter.

Low-Pass Butterworth Filter (2)

Visualising the 1D Low-Pass Butterworth Filter

This keeps some of the high frequency information, as illustrated by the second order **one dimensional** Butterworth filter:

Consequently reduces the blurring.

Blurring the filter — Butterworth is essentially a smoothed top hat functions — reduces blurring by the filter.

Low-Pass Butterworth Filter (3)

Visualising the 2D Low-Pass Butterworth Filter

The **2D** second order Butterworth filter looks like this:

 Note this is blurred circle — blurring of the ideal 2D Low-Pass Filter.

Butterworth Low Pass Filter Example 1 (1)

(a) Input Image

(c) Butterworth Low-Pass Filter

(b) Image Spectra

(d) Filtered Image

Butterworth Low-Pass Filter Example 1 (2)

Comparison of Ideal and Butterworth Low Pass Filter:

Ideal Low-Pass

Butterworth Low-Pass

Butterworth Low-Pass Filter Example 1 (3)

butterworth.m:

```
% Load Image and Compute FFT as
% in Ideal Low Pass Filter Example 1
% Compute Butterworth Low Pass Filter
u0 = 20: % set cut off frequency
u=0:(M-1);
v=0:(N-1);
idx=find(u>M/2):
u(idx)=u(idx)-M:
idy=find(v>N/2);
v(idv) = v(idv) - N:
[V,U]=meshgrid(v,u);
for i = 1 \cdot M
   for i = 1:N
      %Apply a 2nd order Butterworth
      UVw = double((U(i,j)*U(i,j) + V(i,j)*V(i,j))/(u0*u0));
     H(i,j) = 1/(1 + UV_W * UV_W);
    end
end
% Display Filter and Filtered Image as before
```

Low-Pass Butterworth Filter Example 2 (1)

Lue term watershed refers to a ridge that " divides areas frained by different iver systems.

(a) Input Image

(c) Butterworth Low-Pass Filter

(b) Image Spectra

(d) Filtered Image

Low-Pass Butterworth Filter Example 2 (2)

Ideal Low Pass

Butterworth Low-Pass

Butterworth Low Pass Filter Example 2 MATLAB (3)

butterworth2.m:

```
% Load Image and Compute FFT as in Ideal Low Pass Filter
% Example 2
% Compute Butterworth Low Pass Filter
u0 = 50; % set cut off frequency
u=0:(M-1);
v=0:(N-1);
idx=find(u>M/2);
u(idx)=u(idx)-M:
idy=find(v>N/2);
v(idy)=v(idy)-N;
[V,U]=meshgrid(v,u);
for i = 1: M
   for j = 1:N
      %Apply a 2nd order Butterworth
      UVw = double((U(i,j)*U(i,j) + V(i,j)*V(i,j))/(u0*u0));
      H(i,j) = 1/(1 + UVw*UVw);
    end
end
% Display Filter and Filtered Image as before
```

Low Pass Filtering Noisy Images

How to create noise and results of Low Pass Filtering

Use Matlab function, imnoise() to add noise to image (lowpass.m, lowpass2.m):

(a) Input Noisy Image

(b) Deconvolved Noisy Image (Low Cut Off)

The term wat refers to a ric	tershed dge that
	divides areas drained by different river systems.

(c) Input Noisy Image

CM3106 Chapter 2

(d) Deconvolved Noisy Image (Higher Cut Off)

Filtering in the Frequency Domain

Other Filters

Other Filters

High-Pass Filters — opposite of low-pass, select high frequencies, attenuate those below u_0

- Band-pass allow frequencies in a range $u_0 \dots u_1$ attenuate those outside this range
- Band-reject opposite of band-pass, attenuate frequencies within $u_0 \dots u_1$ select those outside this range
 - Notch attenuate frequencies in a narrow bandwidth around cut-off frequency, u_0
 - Resonator amplify frequencies in a narrow bandwidth around cut-off frequency, u_0

Other filters exist that essentially are a combination/variation of the above

High Pass Filtering

Easy to Implement from the above Low Pass Filter

A High Pass Filter is usually defined as 1 - low pass = 1 - H:

(c) Input Noisy Image (d) High Pass Filtered Noisy Image

Convolution

Many Useful Applications of Convolution

Several important audio and optical effects can be described in terms of convolutions.

- Filtering In fact the above Fourier filtering is applying convolutions of a low pass filter where the equations are Fourier Transforms of real space equivalents.
- Deblurring high pass filtering
- Reverb impulse response convolution (more soon).

Note we have seen a discrete **real domain** example of Convolution with **Edge Detection**.

Formal Definition of 1D Convolution:

Let us examine the concepts using 1D continuous functions.

The convolution of two functions f(x) and g(x), written f(x) * g(x), is defined by the integral

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(\alpha)g(x-\alpha) \, d\alpha.$$

■ * is the mathematical **notation** for **convolution**.

No Fourier Transform in sight here — but wait!

1D Convolution Real Domain Example (1)

Convolution of Two Top Hat Functions

For example, let us take two top hat functions:

Let $f(\alpha)$ be the top hat function shown:

$$f(lpha) = \left\{ egin{array}{cc} 1 & ext{if } |lpha| \leq 1 \ 0 & ext{otherwise} \end{array}
ight.$$

and let $g(\alpha)$ be as shown in next slide, defined by

$$g(\alpha) = \left\{ egin{array}{cc} 1/2 & ext{if } 0 \leq lpha \leq 1 \ 0 & ext{otherwise.} \end{array}
ight.$$

1D Convolution Example (2)

Our Two Top Hat Functions Plots

1D Convolution Example (3)

The Convolution Process: Graphical Interpretation

- g(−α) is the reflection of this function in the vertical y-axis,
- $g(x \alpha)$ is the **latter shifted** to the right by a **distance** x.
- Thus for a given value of x, f(α)g(x – α) integrated over all α is the area of overlap of these two top hats, as f(α) has unit height.
- An example is shown for x in the range -1 ≤ x ≤ 0 opposite

1D Convolution Example (4)

So the solution is:

If we now consider x moving from $-\infty$ to $+\infty$, we can see that

- For $x \le -1$ or $x \ge 2$, there is **no overlap**;
- As x goes from -1 to 0 the area of overlap steadily increases from 0 to 1/2;
- As x increases from0 to 1, the overlap area remains at 1/2;
- Finally as x increases from 1 to 2, the overlap area steadily decreases again from 1/2 to 0.
- Thus the convolution of f(x) and g(x), f(x) * g(x), in this case has the form shown on next slide

1D Convolution Example (5)

Result of f(x) * g(x)

1D Convolution Example (6)

Mathematically the convolution is expressed by:

$$f(x) * g(x) = \begin{cases} (x+1)/2 & \text{if } -1 \le x \le 0\\ 1/2 & \text{if } 0 \le x \le 1\\ 1-x/2 & \text{if } 1 \le x \le 2\\ 0 & \text{otherwise.} \end{cases}$$

Convolution Theorem: Convolution in Frequency Space is Easy

One **major** reason that Fourier transforms are so important in signal/image processing is the **convolution theorem** which states that:

If f(x) and g(x) are two functions with Fourier transforms F(u) and G(u), then the Fourier transform of the convolution f(x) * g(x) is simply the product of the Fourier transforms of the two functions, F(u)G(u).

Fourier Transforms and Convolution (Cont.)

Recall our Low Pass Filter Example (MATLAB CODE)

% Apply filter
G=H.*F;

Where F was the Fourier transform of the image, H the filter

Computing Convolutions with the Fourier Transform

Example Applications:

- To apply some reverb to an audio signal.
- To compensate for a less than ideal image capture system.

More soon.

Example Applications (Cont.)

Deconvolution: Compensating for undesirable effects

To do this **fast convolution** we simply:

- Take the Fourier transform of the audio/imperfect image,
- Take the Fourier transform of the function describing the effect of the system,
- Multiply by the effect to apply effect to audio data
- To **remove**/**compensate** for effect: Divide by the effect to obtain the Fourier transform of the ideal image.
- Inverse Fourier transform to recover the new improved audio image.

This process is sometimes referred to as deconvolution.

Image Deblurring Deconvolution Example

Inverting our Previous Low-Pass Filter

Recall our Low Pass (Butterworth) Filter example of a few slides ago: <u>butterworth.m</u>: <u>deconv.m</u> and <u>deconv2.m</u> reuses this code and adds a deconvolution stage:

- Our computed butterworth low pass filter, H is our blurring function
- So to simply invert this we can divide (as opposed to multiply) by H with the blurred image G effectively a high pass filter

```
Ghigh = G./H;
ghigh=real(ifft2(double(Ghigh)));
figure(5)
imshow(ghigh)
```

- In this ideal example we clearly get *F* back and to get the image simply to inverse Fourier Transfer.
- In the real world we don't really know the exact blurring function H so things are not so easy.

(a) Input Image

(b) Blurred Low-Pass Filtered Image

(a) Input Image (b) Blurred Low-Pass Filtered Image (c) Deconvolved Image

Deconvolution is not always that simple!

(c) Input Noisy Image (d) Deconvolved Noisy Image