

Basic Terms

Crack Seal

Crack sealing uses specialized materials that bond to the walls of the crack, while being able to move with the pavement as it expands and contracts, preventing intrusion of water and debris into the crack. Crack sealant is specifically engineered to remain flexible at low temperatures so it doesn't crack or split open, and remains stable at higher temperatures so that it doesn't track or bleed on the pavement.

Basic Terms

Crack filling

Crack filling uses ordinary materials that do not bond well to the crack; it only fills the void and reduces intrusion of water and debris into the crack and does not move with the pavement as it expands and contracts. Crack filler does not have high or low temperature properties. When pavement movement takes place due to temperature change or traffic loads, the crack filler is separated from the edge allowing water and incompressible materials to enter the crack and into the pavement. Crack filler does not achieve the same level of service life as crack sealant, and it does not preserve the pavement as long as crack sealant. Crack sealing is a longterm pavement preservation solution while crack filling is a band-aid.

Chip Seal

Chip seal is a two-step process which includes first an application of asphalt emulsion and then a layer of crushed rock to an existing asphalt pavement surface. A chip seal gets its name from the "chips" or small crushed rock placed on the surface.

Slurry seal is the application of a mixture of water, asphalt emulsion, aggregate (very small crushed rock), and additives to an existing asphalt pavement surface. This combined mixture of the emulsion and aggregates represents "slurry." Polymer is commonly added to the asphalt emulsion to provide better mixture properties. The placement of this mixture on existing pavement is the "seal" as it is intended to seal the pavement surface. Slurry seals are generally used on residential streets

Slurry seal

Microsurfacing

micro surfacing is similar to slurry seal. It consists of the application of a mixture of water, asphalt emulsion, aggregate (very small crushed rock), and chemical additives to an existing asphalt concrete pavement surface. Polymer is commonly added to the asphalt emulsion to provide better mixture properties. The major difference between slurry seal and microsurfacing is in how they "break" or harden. Slurry relies on evaporation of the water in the asphalt emulsion. The asphalt emulsion used in micro surfacing contains chemical additives which allow it to break without relying on the sun or heat for evaporation to occur. Thus, micro surfacing is an application that hardens quicker than slurry seals and can be used when conditions would not allow slurry seal to be successfully placed. Streets that have a lot of shade and streets that have a lot of traffic are good candidates for micro surfacing

Milling is the removal of a small thickness (1 inch or less) of existing asphalt concrete prior to placing a surface treatment. Milling provides for a smoother surface and is typically used before a slurry seal or microsurfacing treatment.

Milling

Thin Asphalt Overlays

Thin HMA overlays, 1 ¹/₂" or less, are the cost effective solution for pavement preservation primarily because of their ability to:

- · Provide improved ride quality,
- · Reduce surface distresses,
- · Maintain surface geometrics,
- · Reduce noise levels,
- · Reduce life cycle costs, and
- · Provide long-lasting service.

Thin HMA overlays should be placed before the pavement deterioration has reached a critical stage where more extensive rehabilitation is required. This will maximize your performance and yield a more cost-effective solution for your pavement.

Thin HMA overlays can be expected to provide 10 years or more on existing asphalt surfaces.

Causes:

Temperature changes

Causes:

- Temperature changes
- Shrinkage of asphalt

Crack Seal

Chip Seal

Thin Overlay

Causes:

Aging and shrinking asphalt

Causes:

- Aging and shrinking asphalt
- Frost action
- Heavy traffic

Cures:

- Seal coating
- Overlays
- Reconstruction

+ 10

Causes:

Inadequate bonding

Causes:

- Inadequate bonding
- Reflection cracks

Causes:

- Inadequate bonding
- Reflection cracks
- Wheel track: heavy load

Longitudinal Joint Cracking Center Line

Causes:

Inadequate bonding
Reflection cracks
Wheel track: heavy load
Alligator Crack: insufficient thickness

Longitudinal Cracking

Cures

- Crack Seal
- Strengthening with overlay
- Reconstruction
- Excavate & rebuild
- Total reconstruction
- Improve drainage

Causes:

Weakened sub-base at edge

Causes:

- Weakened sub-base at edge
- Heavy loads

Causes:

- Weakened sub-base at edge
- Heavy loads
- Poor pavement edge support

Causes:

- Weakened sub-base at edge
- Heavy loads
- Poor pavement edge support
- Poor shoulder drainage

Cures:

Fill & Seal Cracks

Cures:

Fill & Seal Cracks
Strengthen with overlay or reconstruction
Widen lane or stabilize shoulders

Causes:

Improper asphalt density

Causes:

Improper asphalt density

Lack of compaction

Causes:

- Improper asphalt density
- Lack of compaction
- Traffic and heat

Causes:

- Improper asphalt density
- Lack of compaction
- Traffic and heat
- Weak subgrade

Cures

- Microsurfacing
- Mill & Fill
- Overlay
- Subgrade reconstruction

Causes:

Unstable asphalt mix

Causes:

- Unstable asphalt mix
- •Weak subgrade
- Traffic and heat

Cures:

Mill & Fill

Reconstruction

Improper compaction

- Improper compaction
- Poor tack coat

- Improper compaction
- Poor tack coat
- Insufficient layer thickness

Cures

- Partial depth patches
- Partial depth patches with microsurfacing
- Mill and overlay

Causes:

Improper compaction

Causes:

- Improper compaction
- Lack of density

Causes:

- Improper compaction
- Lack of density
- Uneven mixture

Causes:

- Improper compaction
- Lack of density
- Uneven mixture
- QC of gradation
- Clay in gravel

Causes:

- Improper compaction
- Lack of density
- Uneven mixture
- QC of gradation
- Clay in gravel
- Aging pavement, binders oxidized

Cures

Crack Sealing
Chip Sealing
Microsurfacing
Thin Overlay
Mill & Fill

Excess moisture in subbase or subgrade

- Excess moisture in subbase or subgrade
- Insufficient thickness

- Excess moisture in subbase or subgrade
- Insufficient thickness
- Freeze/thaw

- Excess moisture in subbase or subgrade
- Insufficient thickness
- Freeze/thaw
- Constant loading

Cures

Excavate and rebuildIncluding subgrade and subbase

Causes:

High asphalt cement content

Causes:

- High asphalt cement
 content
- Improper compaction

Causes:

- High asphalt cement content
- Improper compaction
- High truck counts

Causes:

- High asphalt cementcontent
- Improper compaction
- High truck counts
- Insufficient cooling

Cures:

- Microsurfacing
- Mill and Overlay

