

Outline

1. Introduction
2. Traffic Stream Parameters
a. Flow Rate
b. Spacing
c. Headway
d. Speed
e. Density
3. Relationships
4. Example

INTRODUCTION

TRAFFIC STREAM PARAMETERS

- It is important to realize that the primary

Uninterrupted Flow
A traffic stream that operates free from the influence of such traffic control devices as signals and stop signs.

- This mobility must be provided with safety in mind while achieving an acceptable level of performance (such as acceptable vehicle speeds).
- Interrupted Flow

Traffic streams that operate under the influence of signals and stop signs

- The analysis of vehicle traffic provides the basis for measuring the operating performance of highways. e.g. Volume, Speed. Densitv

Flow Rate (q)

- The number of vehicles (n) passing some designated roadway point in a given time interval (t)

$$
\begin{aligned}
& q=\frac{n}{t} \quad \begin{array}{l}
\text { where } \\
q=\text { traffic flow iv veticlesser nuit ine, } \\
n=\text { number of vechices ppssing some desi, }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& t=\text { duration of fime interal. }
\end{aligned}
$$

- Units are typically vehicles/hour
- Flow rate is different than volume

Headway (h)

- The time (in seconds) between successive vehicles, as their front bumpers pass a given point.

$$
t=\sum_{i=1}^{n} h_{i} \quad q=\frac{n}{\sum_{i=1}^{n} h_{i}}=\frac{1}{\bar{h}}
$$

Spacing

- The distance (ft) between successive vehicles in a traffic stream, as measured from front bumper to front bumper

Headway

Speed

- Time mean speed (spot speed)
- Arithmetic mean of all instantaneous vehicle speeds at a given "spot" on a roadway section

$$
\bar{u}_{t}=\frac{\sum_{i=1}^{n} u_{i}}{n}
$$

$\bar{u}_{t}=$ time-mean speed in unit distance per unit time,
$u_{i}=$ spot speed (the speed of the vehicle at the designated point on the highway, as might be obtained using a radar gun) of the ith vehicle, and
$n=$ number of measured vehicle spot speeds.

Space mean speed (u)

- The mean travel speed of vehicles traversing a roadway segment of a known distance (d)

$$
\begin{aligned}
& \bar{u}_{s}=\frac{l}{\bar{t}} \\
& \bar{u}_{s}=\text { space-mean speed in unit distance per unit time, } \\
& \begin{array}{l}
l=\text { length of roadway used for travel time measurement of vehicles, and } \\
\bar{t}=\text { average vehicle travel time defined as }
\end{array} \\
& \bar{t}=\text { average vehicle travel time, defined as } \\
& \bar{t}=\frac{1}{n} \sum_{i=1}^{n} t_{i} \quad \begin{array}{l}
t_{i}=\text { time necessary for vehicle } i \text { to travel a roadway section of length } l, \text { and } \\
n=\text { number of measured vehicle travel times. }
\end{array}
\end{aligned}
$$

Space Mean Speed

- More useful for traffic applications

$$
\bar{u}_{s}=\frac{l}{\frac{1}{n} \sum_{i=1}^{n} t_{i}} \quad \bar{u}_{s}=\frac{1}{\frac{1}{n} \sum_{i=1}^{n}\left[\frac{1}{\left(l / t_{i}\right)}\right]}
$$

- Space mean speed is always less than time mean speed

Example 1

- You are in a vehicle traveling a total of 10 miles. For the first 5 miles you travel at exactly 40 mph and for the next 5 miles you travel at exactly 60 mph . What is your average speed over the time you spent traveling that 10 miles?
- Intuitively, you were going at $\mathbf{4 0} \mathbf{~ m p h}$ for longer than you were going at 60 mph so your average velocity for the entire trip is going to be less than the arithmetic mean of 50 mph ???
- It's $\mathbf{4 8} \mathbf{~ m p h ~ b y ~ h a r m o n i c ~ m e a n ~}$
- distance $=$ speed $*$ time
- 5 miles at $40 \mathrm{mph}=7.5$ minutes
- 5 miles at $\mathbf{6 0 ~ m p h}=5$ minutes
- weighted average $=(40(7.5)+60(5)) /(7.5+5)=48 \mathrm{mph}$

Time Mean vs. Space Mean Speed
Example 2

Sourre: Drake et al. (1).
From HCM 2000

- The speeds of five vehicles were measured (with radar) at the midpoint of a 0.5 -mile section of roadway. The speeds for vehicles $1,2,3,4$, and 5 were $44,42,51,49$, and 46 mi / h, respectively. Assuming all vehicles were traveling at constant speed over this roadway section, calculate the time-mean and spacemean speeds.

$$
\bar{u}_{t}=\frac{\sum_{i=1}^{n} u_{i}}{n}
$$

$$
\bar{u}_{s}=\frac{1}{\frac{1}{n} \sum_{i=1}^{n}\left[\frac{1}{\left(l / t_{i}\right)}\right]}
$$

Other Concepts

- Free-flow speed (u_{f})
- Jam density (\mathbf{k}_{j})
- Capacity (q_{m})

$$
\begin{aligned}
& \text { Density }(\text { veh } / \mathrm{mi})=\frac{5,280}{\text { spacing }(f t / v e h)} \\
& \text { Headway }(s / \text { veh })=\frac{\text { spacing }(f t / \text { veh })}{\text { speed }(f t / s)} \\
& \text { Flow rate }(\text { veh } / \mathrm{hr})=\frac{3,600}{\text { headway }(s / \text { veh })}
\end{aligned}
$$

Speed vs. Density

$$
u=u_{f}\left(1-\frac{k}{k_{j}}\right)
$$

Flow vs. Density

Speed vs. Flow

3-D Model

Figure 2.20
Conceptualization of Traffic Operations on a Catastrophe Theory Surface Using the Maxwell Convention (Persaud and Hall 1989).

Example 3

- Solution:
- Maximum flow rate, $\mathrm{q}_{\mathrm{m}}=8200 \mathrm{veh} / \mathrm{hr}$ as given
- At maximum flow: $d q / d k=u_{f}\left(1-2 k_{m} / k_{j}\right)=0$
- Since u_{f} is not zero, $\mathbf{1 - 2 k _ { m }} / \mathbf{k}_{\mathrm{j}}=\mathbf{0}$
- Therefore $k_{m}=k_{j} / 2$
- Similarly, $u_{m}=u_{f} / 2$
- Therefore, $\mathrm{u}_{\mathrm{m}}=65 / 2=32.5 \mathrm{mph}$.
- Therefore, maximum density, $\mathrm{k}_{\mathrm{m}}=\mathrm{q}_{\mathrm{m}} / \mathrm{u}_{\mathrm{m}}=8200 / 32.5=\mathbf{2 5 2 . 3 1}$ vehicles $/ \mathrm{mile}$
- $\mathrm{k}_{\mathrm{j}}=2^{\star} \mathrm{k}_{\mathrm{m}}=2^{\star}(252.31)=\mathbf{5 0 4 . 6 2}$ veh/mile/lane
- Using the speed-flow relationship:
- $q=k_{j}\left(u-u^{2} / u_{f}\right)$
- Solve for $q=7034=504.62\left(u-u^{2} / 65\right)$
- $13.94=u-u^{2} / 65$
- $906.06=65 u-u^{2}$
- $u^{2}-65 u+906.06=0$
- $u=44.7$ or 20.2 mph
- Choose 44.7 since this is the higher of the two and the observed flow is less than q_{m} so we know we are not in the congested area of the curve

Traffic - Time of Day Patterns

Typical 24-Hour Traffic Volume Distribution I-82 West of Exit 122 (South of Tri-Cities)

Estimated Weekday Volume Profile: GP and HOV Lanes (Nov 98)

Primary References

- Mannering, F.L.; Kilareski, W.P. and Washburn, S.S. (2005). Principles of Highway Engineering and Traffic Analysis, Third Edition. Chapter 5
- Transportation Research Board. (2000). Highway Capacity Manual 2000. National Research Council, Washington, D.C.

