

	
	
Sjaak	Laan
																																	
	

IT	Infrastructure	Architecture
	

Infrastructure	Building	Blocks	and	Concepts

	
Third	Edition

	

	
Title:														IT	Infrastructure	Architecture	–
																									Infrastructure	Building	Blocks	and	Concepts
																									Third	Edition
Author:										Sjaak	Laan
Publisher:					Lulu	Press	Inc.
ISBN:													978-1-326-92569-7
Edition:										Third	edition,	2017
Copyright:				©	Sjaak	Laan,	2017
	
All	rights	reserved.
No	part	of	 this	publication	may	be	 reproduced,	 stored	 in	a	 retrieval	 system,	or
transmitted,	in	any	form	or	by	any	means,	electronic,	mechanical,	photocopying,
recording,	or	otherwise,	without	the	prior	permission	of	the	author.
The	views	expressed	in	this	document	are	those	of	the	author	and	not	necessarily
of	his	employer	or	his	clients.

TRADEMARKS

All	trademarks	used	in	this	book	are	the	property	of	their	respective	owners.
·									IBM,	AIX,	IBM	MQ,	DB2,	and	ibm.com®	are	trademarks	or
registered	trademarks	of	International	Business	Machines	Corporation	in
the	United	States,	and/or	other	countries.
·									Linux	is	a	registered	trademark	of	Linus	Torvalds.
·									Microsoft®,	Hyper-V,	Windows,	Windows	NT®,	Microsoft	Azure
Cloud	Service,	Windows	.Net,	Microsoft	Internet	Information	Services,
BizTalk,	Microsoft	SQL	Server,	and	the	Windows	logo	are	trademarks	of
Microsoft	Corporation	in	the	United	States	and	other	countries.
·									Java	and	all	Java-based	trademarks	are	trademarks	of	Oracle,	Inc.	in
the	United	States,	other	countries,	or	both.
·									UNIX	is	a	registered	trademark	of	The	Open	Group	in	the	United
States	and	other	countries.
·									Apple,	Mac,	iOS,	and	Mac	OS	are	trademarks	of	Apple	Inc.,
registered	in	the	U.S.	and	other	countries.
·									AIX	is	a	trademark	of	IBM	Corp.,	registered	in	the	U.S.	and	other
countries.
·									DEC™,	DECnet™,	VMS™,	and	VAX™	are	trademarks	of	Digital
Equipment	Corporation.
·									Intel,	Intel	Core,	Xeon,	and	Thunderbolt	are	trademarks	of	Intel	Corp.
in	the	U.S.	and	other	countries.
·									Google,	Android,	Google	App	Engine,	and	Kubernetes	are	registered
trademarks	of	Google	Inc
·									IOS	is	a	trademark	or	registered	trademark	of	Cisco	in	the	U.S.	and
other	countries.
·									Apache®,	Apache	Tomcat,	and	Apache	Mesos	are	either	registered
trademarks	or	trademarks	of	the	Apache	Software	Foundation	in	the
United	States	and/or	other	countries.	No	endorsement	by	The	Apache

Software	Foundation	is	implied	by	the	use	of	these	marks.
·									The	Pivotal	CloudFoundry	trademark	is	the	property	of	Pivotal
Software,	Inc.	and	its	subsidiaries	and	affiliates	(collectively	“Pivotal”).
·									Oracle,	Sun	Microsystems,	and	Java	are	registered	trademarks	of
Oracle	Corporation	and/or	its	affiliates.
·									PowerPC™	and	the	PowerPC	logo™	are	trademarks	of	International
Business	Machines	Corporation.
·									SPEC®	is	a	registered	trademark	of	the	Standard	Performance
Evaluation	Corporation	(SPEC).	See	http://www.spec.org	for	more
information.
·									Cisco	is	a	registered	trademark	of	Cisco	in	the	U.S.	and	other
countries.
·									HP	is	a	registered	trademark	of	Hewlett-Packard	Company	in	the	U.S.
and	other	countries.
·									Wikipedia®	is	a	registered	trademark	of	the	Wikimedia	Foundation,
Inc.,	a	non-profit	organization.
·									Citrix,	XenServer,	XenMotion	XenServer	Marathon	everRun,
MetaFrame	Presentation	Server,	XenApp,	and	XenDesktop	are	trademarks
of	Citrix	Systems,	Inc.	and/or	one	or	more	of	its	subsidiaries,	and	may	be
registered	in	the	United	States	Patent	and	Trademark	Office	and	in	other
countries.
·									VMware,	VMware	tools,	VMware	Workstation,	VMware	Fault
Tolerance,	Sphere,	GSX,	ESX,	ESXi,	vCenter,	and	VMotion	are	registered
trademarks	or	trademarks	of	VMware,	Inc.	in	the	United	States	and/or
other	jurisdictions.
·									AMD	Opteron,	the	AMD	logo,	the	AMD	Opteron	logo	are	trademarks
or	registered	trademarks	of	Advanced	Micro	Devices.
·									Red	Hat	Enterprise	Linux	and	Red	Hat	JBoss	are	trademarks	of	Red
Hat,	Inc.	in	the	United	States	and	other	countries.
·									Docker	and	the	Docker	logo	are	trademarks	or	registered	trademarks
of	Docker,	Inc.	in	the	United	States	and/or	other	countries.	Docker,	Inc.
and	other	parties	may	also	have	trademark	rights	in	other	terms	used
herein.

Other	company,	product,	or	service	names	may	be	trademarks	or	service	marks
of	others.	All	terms	mentioned	in	this	book	that	are	known	to	be	trademarks	or
service	marks	have	been	appropriately	capitalized.
While	every	precaution	was	made	in	the	preparation	of	this	book,	the	author	can
assume	no	responsibility	for	errors	or	omissions.	If	you	feel	 the	author	has	not
given	you	proper	credit	or	feel	your	rights	were	violated,	please	notify	the	author
so	corrective	actions	can	be	taken.
Pictures	 used	 in	 this	 book	 are	 created	by	 the	 author	 of	 this	 book	or	 are	 freely
distributable	pictures,	retrieved	from	the	internet.	Most	of	the	used	pictures	are
from	the	public	domain.	When	a	picture	is	used	that	contained	copyrights,	a	link
to	 the	 source	 of	 the	 picture	 and	 its	 copyright	 notice	 is	 provided.	 If	 you	 feel	 a
picture	 used	 in	 this	 book	 is	 not	 freely	 distributable,	 or	 any	 other	 copyright	 is
violated,	please	 inform	the	author,	so	 it	can	be	corrected	in	 the	next	version	of
the	book.

I	think	there	is	a	world	market	for	maybe	five	computers.
Thomas	Watson,	IBM	Chairman,	1943

	
There	is	no	reason	for	any	individual	to	have	a	computer	in	his	home
Ken	Olsen,	founder	of	legendary	minicomputer	company	DEC,	1977

	
We	live	in	a	society	exquisitely	dependent	on	science	and	technology,	in
which	hardly	anyone	knows	anything	about	science	and	technology.

Carl	Sagan,	American	astronomer,	1990
	

It's	hardware	that	makes	a	machine	fast.	It's	software	that	makes	a	fast
machine	slow.
Craig	Bruce

	

INTRODUCTION

In	 the	 summer	 of	 2011,	Sjaak	 showed	me	 the	 first	 ever	 printed	 version	 of	 the
book	he	had	been	working	on	for	quite	some	time.	It	was	also	the	first	time	we
discussed	in	detail	the	reasons	for	writing	it,	and	the	target	audience	that	he	was
aiming	for.	After	some	hours	of	discussing	the	contents	of	the	book	Sjaak	asked
me	 if	 I	 was	 willing	 to	 write	 the	 introduction	 for	 it.	 Needless	 to	 say,	 I	 was
flattered	and	proud	he	suggested	this.
At	 first	 I	 was	 puzzled	 about	 his	 decision	 to	 have	 the	 introduction	 written	 by
someone	who	is	not	directly	involved	in	core	IT	infrastructures,	but	much	more
into	software	development.	For	17	years,	my	company	has	been	developing	back
and	front	office	applications	for	large	multinationals,	and	is	currently	involved	in
SaaS	 solutions	 in	 the	 field	 of	 Social	 Media	 Intelligence,	 Online	 Health
Applications,	 Event	 Management,	 and	 Storage	 Management.	 As	 I	 am	 much
more	into	the	"soft-side"	of	automation,	it	was	like	if	a	car	designer	asked	a	road
designer	to	write	an	introduction	on	engine	mechanics.
But	 from	 a	 different	 point	 of	 view,	 it	 seemed	 very	 obvious.	 Where	 would
software	 application	 developers	 be	 when	 the	 infrastructures	 their	 applications
run	on	were	not	working	flawlessly?	How	many	times	have	we	been	in	meetings
with	 customers	 trying	 to	 figure	 out	 why	 software	 applications	 were	 not
performing	 as	 they	were	 supposed	 to?	How	many	 times	did	 it	 occur	 that	 after
implementation	of	a	new	software	system	we	were	confronted	with	unforeseen
costs	 because	 the	 underlying	 computer	 systems	 had	 difficulties	 running	 the
developed	software?	How	many	times	did	we	accuse	the	infrastructure	guys	of
not	understanding	the	requirements	and	vice	versa?
I	 strongly	 believe	 that	 most	 of	 these	 problems	 originate	 from	 a	 lack	 of
knowledge	 software	 engineers	 have	 about	 the	 problems	 and	 challenges
infrastructure	specialists	face	when	setting	up	a	system	for	running	the	software
we	develop.	We	as	software	engineers	are	primarily	concerned	with	functionality
required	 by	 the	 customer.	 Customer	 assume	 that	 when	 they	 talk	 about	 an
application	handling	100,000	visitors	a	day,	or	running	large	reports	on	millions
of	 records,	 software	 engineers	 fully	 understands	 their	 needs.	 And	 indeed,
software	 engineers	 understand	 everything	 regarding	 select	 statements,	 thread

handling,	 and	 database	 calls,	 but	 they	will	 also	 assume	 that	 the	 hardware	 and
operating	systems	they	build	upon	are	capable	of	supporting	this.
I	think	there	is	a	great	need	for	software	engineers	to	understand	more	about	IT
infrastructures	 to	 allow	 them	 to	 communicate	with	 the	 infrastructure	 architects
on	a	more	professional	level.
What	 was	 really	 appealing	 to	 me	 in	 this	 book	 was	 that	 it	 was	 written	 out	 of
experience,	 rather	 than	presenting	 just	 theoretical	knowledge.	Far	 too	often	we
see	 that	 decisions	 made	 on	 IT	 infrastructures	 have	 little	 sense	 of	 reality.	 For
security	and	availability	sake,	systems	are	often	made	far	too	complex,	hence	far
too	 expensive,	 resulting	 in	 a	 system	 even	 less	 secure	 and	 less	 reliable	 than
intended.	Sjaak	has	hit	the	nail	right	on	the	head	with	his	chapters	on	availability
and	security.	What	this	book	really	shows	is	that	the	biggest	risks	for	failures	and
security	breaches	are	not	in	the	infrastructure	itself,	“but	it	sits	between	the	chair
and	the	keyboard”.
A	good	 example,	 from	my	own	 experience,	was	 the	 case	where	we	 needed	 to
implement	a	contingency	plan,	including	an	emergency	response	team.	In	order
to	minimize	downtime	in	case	of	a	failure,	we	found	it	was	much	more	effective
to	see	who	of	the	systems	management	team	was	living	closest	to	the	datacenter,
than	to	focus	on	"putting	the	best	man	on	the	job".	We	were	better	off	 training
the	guy	living	next	door,	then	to	have	the	chief	infrastructure	manager	drive	1.5
hours	to	the	datacenter!
The	 entire	 book	 is	 an	 excellent	 piece	 of	 work	 to	 be	 read	 by	 each	 software
developer,	 it	 is	 an	 outstanding	 educational	 tool	 for	 system	 engineers	 and	 it	 is
great	 reference	material	 for	 IT	consultants,	 regardless	of	 the	 specific	 area	 they
expertise	on.
If	you	take	IT	seriously,	you	have	to	read	this	book!
	
Herman	Vissia	PhD,	M.Sc.
	
Herman	 Vissia	 is	 the	 CEO	 and	 owner	 of	 Byelex	 Multimedia	 Products	 B.V.
Together	with	his	colleagues	from	Minsk	he	has	written	more	than	10	scientific
articles	 on	 software	 related	 technologies,	 more	 specifically	 on	 Artificial
intelligence	and	sentiment	analysis	on	the	World	Wide	Web.	In	2012	he	earned
his	PhD	from	the	State	University	in	Minsk,	Belarus.

FOREWORD	BY	THE	AUTHOR

When	 I	 started	writing	 this	 book	 I	 tried	 to	 remember	 the	 first	 time	 I	 came	 in
contact	 with	 technical	 infrastructures.	 And	 then	 I	 realized	 I	 have	 been	 in	 the
infrastructure	business	almost	all	my	life.
When	I	was	six	years	old,	I	spent	an	entire	afternoon	figuring	out	how	to	connect
a	D-type	battery	 to	a	bicycle	 light	bulb	using	a	small	wire	 in	order	 to	get	 it	 to
lighten	up.	For	some	reason,	I	could	not	get	 it	 to	work.	While	I	 tried	endlessly
my	mother	 (not	very	 technical	herself)	 told	me	 to	wait	 for	my	 father	 to	 return
from	his	work,	so	he	could	explain	to	me	how	to	do	it.	When	my	father	finally
arrived,	 and	 explained	 what	 I	 did	 wrong,	 and	 when	 the	 light	 bulb	 finally
lightened,	I	was	very	excited.	My	first	electrical	circuit	worked!	It	made	quite	an
impression	as	I	still	remember	it	after	all	these	years.
From	that	moment	on	I	explored	all	types	of	technical	equipment.	I	disassembled
my	 new	 toys	 and	 my	 alarm	 clock,	 just	 to	 see	 how	 they	 worked.	 After
disassembling,	sometimes	I	managed	to	get	the	pieces	back	together	again	to	get
a	working	device,	but	most	of	the	time	the	toys,	radios	and	other	equipment	were
not	working	anymore	after	my	exploration.	It	drove	my	parents	crazy.	Sorry	for
that,	mum	and	dad!
When	 I	 was	 around	 14	 years	 old,	 I	 was	 building	 electronics	 hardware	 in	 my
spare	time.	Starting	from	rebuilding	electronic	circuits	from	Elektor	magazine,	I
quickly	 started	 to	 design	 my	 own	 hardware.	 While	 most	 of	 those	 hardware
projects	were	just	for	fun,	when	I	was	about	18	years	old,	I	designed	and	built
electronic	devices	for	the	photo	lab	company	a	friend	of	mine	worked	for.

For	my	18th	birthday	I	got	a	very	special	 (and	for	my	parents	very	expensive)
present	 –	 a	 Sinclair	 ZX-81	 home	 computer,	 including	 a	 16	 kB	 memory
expansion	module.	After	writing	my	very	 first	 program	 in	BASIC	 (tic-tac-toe,
which	 I	 lost	 from	 the	 computer	 all	 the	 time)	 I	 could	not	 resist	 opening	up	 the
computer	to	examine	its	inner	workings.	After	breaking	down	the	computer	and
fixing	it,	I	eventually	expanded	the	system	to	connect	to	an	external	keyboard.

Picture	1:	ZX-81	with	16kB	expansion	module
[1]

The	 ZX-81	 was	 quite	 limited,	 because	 of	 its	 highly	 integrated	 electronics.
Coincidentally,	I	got	hold	of	a	Datapoint	2200	programmable	terminal.	It	turned
out	to	be	a	full-blown	computer	with	an	integrated	monitor	and	keyboard,	8kB	of
RAM,	two	cassette	tape	recorders,	capable	of	storing	130	kB	of	data	each,	and	a
bunch	of	software	programs	including	a	basic	interpreter,	a	Cobol-like	compiler
and	an	assembler.
	

Picture	2:	Datapoint	2200	computer
[2]

The	computer	came	with	the	full	schematics	of	the	system.	Its	processor	was	not
a	 single	 chip,	 but	was	 built	 from	 approximately	 100	 standard	TTL	 chips	 on	 a
circuit	board.	And	because	I	had	the	schematics,	I	studied	how	the	CPU	worked
in	detail.	I	found	out	how	numbers	were	added	using	discrete	flip-flops	and	how
memory	 addressing	 worked.	 This	 helped	 me	 a	 lot	 in	 understanding	 how
computer	 infrastructures	 worked.	 And	 programming	 the	 Datapoint	 system	 in

assembler	helped	me	understand	how	the	assembler	statements	were	handled	in
the	CPU	circuit.
Later,	from	my	earnings	delivering	newspapers,	I	bought	an	Acorn	Atom	home
computer	 running	 on	 an	 8-bit	 6502	 CPU.	 This	 was	 not	 only	 an	 affordable
machine	 for	 me,	 and	 much	 more	 modern	 than	 the	 Datapoint,	 but	 it	 also	 was
delivered	with	a	schematic	diagram	of	 the	circuitry.	 It	had	a	built-in	assembler
and	a	standard	BASIC	interpreter.	The	availability	of	the	circuit	diagram	enabled
me	 to	 expand	 the	memory	of	 the	 system	using	an	Elektor	16	kB	RAM	circuit
board	 I	built.	And	when	my	father	gave	me	a	 left-over	 large	and	heavy	8-inch
floppy	drive	from	his	work,	I	built	my	own	disk	drive	circuit	board	to	connect	it
to	 the	 Acorn	 Atom.	 I	 programmed	 a	 small	 disk	 operating	 system	 for	 it	 in
assembler	to	enable	me	to	store	my	programs	and	data	on	floppy	disk	instead	of
on	 a	 tape	 recorder.	Writing	my	 own	 disk	 operating	 system	 took	 up	 all	 of	my
spare	 time	 for	 about	 a	 year,	 but	 finally	 it	worked	 and	 I	 could	write,	 read	 and
catalog	multiple	files	on	one	8-inch	floppy	disk.
My	first	full-time	job	at	the	age	of	24	was	working	as	a	PC	repair	technician	for
a	 company	 called	 Checksum	Computer	 Repair.	 About	 25	 technicians	 repaired
PCs	 and	 their	 system	 boards	 by	 replacing	 defective	 components	 like	 ICs
(Integrated	Circuit),	 capacitors,	 and	 oscillators.	And	 apart	 from	 system	 boards
we	 repaired	 power	 supplies,	 monitors,	 hard	 disks,	 keyboards	 (!)	 and	 floppy
drives	(!!).	Believe	it	or	not,	but	we	could	actually	make	money	repairing	floppy
drives	and	keyboards	 in	 those	days.	During	 this	 job,	 I	 fixed	a	 large	number	of
IBM	 PS/2	 system	 boards	 and	 other	 components.	 This	 helped	 to	 gain	 much
knowledge	about	how	these	system	boards	were	designed	and	how	they	worked.
After	two	years,	I	became	head	of	the	R&D	department,	responsible	for	creating
new	 repair	 techniques.	 My	 team	 and	 I	 designed	 and	 built	 specialized	 testing
hardware	and	software	(like	a	multisync	video	board	to	test	multisync	monitors
and	 a	RAM	chip	 diagnostic	 tool	 that	 could	 test	RAM	chips	without	 removing
them	from	the	circuit	board).
Coincidentally,	we	could	get	our	hands	on	a	retired	Philips	minicomputer	from
1972.	We	could	get	 it	 for	 free	 from	a	 school,	where	 it	was	not	used	 for	many
years,	under	the	condition	that	we	managed	to	get	it	working	again.	The	machine
comprised	a	central	processing	unit	(fully	wire	wrapped)	with	core	memory,	reel
tapes,	 disk	 packs,	 and	 a	 line	 printer.	All	 documentation,	 software,	 schematics,
and	compilers	were	available	as	well.	The	system	had	the	size	of	half	a	room.

During	evening	hours,	with	a	group	of	colleagues	we	managed	to	refurbish	the
machine	 by	 adjusting	 the	 mechanics	 of	 the	 tape	 units,	 disk	 packs,	 and	 line
printer,	fixing	the	core	memory	and	fixing	numerous	faults	in	the	wire	wrapped
system.	After	about	half	a	year	 the	 job	was	done:	 the	machine	worked	and	we
played	minesweeper	on	it.	It	was	a	great	experience	and	we	learned	a	lot	from	it!
My	next	 job	was	more	 serious:	 IT	manager	 for	 a	 small	but	quickly	 expanding
company.	Here	I	not	only	managed	the	internal	IT	systems	for	five	international
subsidiaries,	 but	 also	worked	 on	 redesigning	 the	 internal	 logistic	 software	 and
processes	 for	 handling	 orders	 and	 purchases	 (the	 “business	 side”	 of	 IT).	 I
“invented”	a	rudimentary	application	transaction	system	that	we	would	now	call
an	application	server.
As	an	infrastructure	architect	at	a	computer	retailer	I	rationalized	a	Lotus	Notes
environment	of	approximately	25	servers	 to	a	smaller	set	more	reliable	servers
based	on	Windows	NT	4.0.	I	also	redesigned	the	Token	Ring	network	based	on	a
core	 networking	 consisting	 of	 three	 ATM	 (Asynchronous	 Transfer	 Mode)
switches.	 ATM	 was	 the	 fastest	 technology	 around	 these	 days	 running	 at	 a
stunning	155	Mbit/s!
In	2000	I	joined	CMG,	later	rebranded	to	Logica	and	CGI,	where	I	still	work.	In
my	 role	 as	 Principal	 IT	 architect	 and	 Security	 consultant	 I	 work	 for	 many
customers	 in	 the	 energy,	 public,	 and	 financial	 sector,	 designing	 and
implementing	 IT	 infrastructures	 and	 solutions,	 usually	 in	 a	 lead	 architect	 or
consultant	role.
More	than	45	years	of	 loving	electronics	and	IT	infrastructures.	A	good	reason
for	writing	a	book	about	it	I	think.
	
Sjaak	Laan
January	2017
	

PREFACE

What	this	book	is	about

This	 book	 is	 about	 Information	 Technology	 (IT)	 Infrastructure	 Architecture.
With	 infrastructure,	 I	 mean	 all	 hardware	 and	 system	 software	 components
needed	 to	 run	 IT	 applications.	 And	 infrastructure	 architecture	 describes	 the
overall	design	and	evolution	of	that	infrastructure.
This	 book	 explains	 how	 infrastructure	 components	 work	 on	 an	 architectural
level.	 With	 architectural	 level	 is	 meant	 that	 the	 components	 are	 described	 in
building	blocks,	bound	to	specific	technologies.	Choices	made	on	this	level	are
architecturally	 relevant,	meaning	 that	 once	 choices	on	building	block	 level	 are
made,	it	 is	relatively	hard	to	change	these	choices	afterwards.	For	instance,	 the
choice	 to	 use	 a	 certain	 network	 cable	 infrastructure	 in	 a	 datacenter	 cannot	 be
changed	easily	when	the	datacenter	is	in	operation.
This	book	does	not	provide	 in-depth	details	needed	by	 technicians,	but	 instead
describes	the	main	architectural	building	blocks	and	concepts.
IT	 infrastructures	are	complex	by	nature	and	provide	non-functional	attributes,
like	performance,	availability,	and	security,	to	applications.	This	book	describes
each	 infrastructure	 building	 block	 and	 their	 specific	 performance,	 availability,
and	security	concepts.
Until	 now	 there	 were	 no	 publications	 describing	 the	 complete	 field	 of	 IT
infrastructure.	 Books	 and	 papers	 are	 available	 about	 every	 part	 of	 IT
infrastructures,	 like	 networking,	 installation,	 and	 management	 of	 operating
systems,	 storage	 systems,	 and	 virtualization,	 but	 no	 publications	 existed	 yet
describing	IT	infrastructure	as	a	whole.	This	book	intends	to	fill	this	gap.

Intended	audience

This	 book	 is	 meant	 for	 infrastructure	 architects	 and	 designers,	 software
architects,	systems	managers,	and	IT	managers.	It	can	also	be	used	in	education,
for	instance	in	a	computer	science	class.	This	book	is	very	suitable	for	beginners,
since	 almost	 every	 term	 is	 explained,	while	 for	 experts	 and	 professionals	 this
book	is	more	of	a	review	and	overview.
Infrastructure	architects	and	designers	can	use	this	book	to	learn	more	about
infrastructure	 designs	 that	 are	 not	 their	 core	 competence.	 This	means	 that	 for
instance	network	designers	will	probably	not	learn	anything	new	on	networking,
but	 they	 will	 most	 likely	 learn	 quite	 a	 lot	 about	 all	 other	 parts	 of	 the
infrastructure,	 like	 datacenters,	 storage,	 and	 servers.	 The	 same	 goes	 for	 other
designers.
Software	architects	create	software	that	runs	on	infrastructures.	Good	software
architects	need	knowledge	of	 infrastructures	and	 their	properties.	They	need	 to
know	what	challenges	an	infrastructure	architect	faces	and	what	they	can	do	in
their	 software	 solution	 to	optimize	 for	 the	non-functional	 characteristics	of	 the
infrastructure.	 Understanding	 infrastructures	 helps	 software	 architects
build	 more	 reliable,	 faster	 applications	 that	 are	 better	 manageable	 and	 more
secure.
Systems	 managers	 learn	 to	 recognize	 crucial	 architectural	 decisions	 and
principles	 in	 an	 infrastructure	 and	 ways	 to	 update	 and	 change	 a	 running
infrastructure	without	jeopardizing	the	architecture	as	a	whole.
IT	managers	are	provided	with	a	complete	overview	of	IT	infrastructures	and	IT
architecture.	This	will	help	them	work	with	systems	managers	and	infrastructure
architects	by	having	a	better	understanding	of	their	concerns.
Computer	 science	 students	 will	 find	 a	 wealth	 of	 information	 about	 IT
infrastructures,	which	is	a	solid	base	for	computer	science	studies.	This	book	is
used	 by	 a	 number	 of	 universities	 around	 the	 world,	 as	 part	 of	 their	 IT
architecture	curricula.	It	 is	especially	suited	for	courses	based	on	the	IS	2010.4
curriculum.	 A	 reference	 matrix	 of	 the	 IS	 2010.4	 curriculum	 topics	 and	 the
relevant	 sections	 in	 this	 book	 is	 provided	 in	 appendix	 IS	 2010.4	 Curriculum
reference	matrix.
For	more	 information	on	using	 this	book	 in	a	university	course,	please	contact

the	 author.	 Some	 course	 material	 is	 available	 from	 the	 website
www.sjaaklaan.com.
Some	 basic	 IT	 knowledge	 is	 needed	 to	 read	 this	 book,	 but	 the	 reader	 is
introduced	to	each	topic	in	small	steps.

Acknowledgements

I	would	like	to	thank	my	wife,	Angelina,	for	the	patience	she	showed	when	I	was
working	again	on	this	book	for	a	whole	evening	or	weekend,	without	giving	her
the	attention	she	deserves,	and	my	three	children	Laura,	Maarten,	and	Andreas,
who	I	love.
Jan	 van	 Til	 inspired	 me	 to	 think	 more	 thoroughly	 about	 the	 definition	 of
infrastructure.	 His	 (Dutch)	 work	 on	 information	management	 can	 be	 found	 at
www.emovere.nl.
I	 want	 to	 thank	 Robert	 Elsinga,	 Olav	 Meijer,	 Esther	 Barthel,	 Raymond
Groenewoud,	Emile	Zweep,	Cathy	Ellis,	 Jacob	Mulder,	Robbert	 Springer,	 and
Marc	 Eilander	 for	 their	 criticism,	 useful	 suggestions,	 and	 hard	 work	 when
reviewing	this	book
Especially	 I	want	 to	 thank	Lodewijk	Bogaards,	who	 reviewed	 the	 book’s	 first
edition	and	provided	literally	hundreds	of	useful	tips	on	the	described	topics.	He
also	made	many	corrections	on	my	English	grammar.

http://www.emovere.nl

NOTE	TO	THE	THIRD	EDITION

In	 the	 third	 edition	 of	 this	 book,	 a	 number	 of	 corrections	 were	 made,	 some
terminology	 is	 explained	 in	 more	 detail,	 and	 several	 typos	 and	 syntax	 errors
were	fixed.	In	addition,	the	following	changes	were	made:

·									The	infrastructure	model	was	updated	to	reflect	the	Networking-
Storage-Compute	terminology	used	by	most	vendors	today,	and	to
emphasize	the	position	of	systems	management.
·									The	chapter	on	infrastructure	trends	was	removed.	The	text	was
blended	with	the	text	in	the	other	chapters.
·									The	amount	of	text	on	the	historic	context	for	each	building	block	was
reduced.
·									The	Virtualization	chapter	and	Server	chapter	were	combined	and
renamed	to	Compute.
·									The	storage	chapter	was	reorganized	to	reflect	the	new	storage
building	block	model.
·									The	chapter	on	Security	was	rearranged	and	updated.
·									Part	IV	on	infrastructure	management	was	added,	with	chapters	on	the
infrastructure	lifecycle,	deployment	options,	assembling	and	testing,
running	the	infrastructure,	systems	management	processes,	and
decommissioning.
·									In	various	parts	of	the	book,	new	cloud	technology	concepts	were
added,	like	Software	Defined	Networking	(SDN),	Software	Defined
Storage	(SDS),	Software	Defined	Datacenters	(SDDC),	Infrastructure	as	a
Service	(IaaS),	infrastructure	as	code,	and	container	technology.
·									A	chapter	was	added	explaining	the	infrastructure	purchase	process,	as
this	is	part	of	the	IS	2010.4	curriculum.
·									All	footnotes	were	converted	to	endnotes.
·									The	index	was	renewed.
·									Finally,	as	technology	advanced	in	the	past	years,	the	book	was
updated	to	contain	the	most	recent	information.

PART	I	-	INTRODUCTION	TO	IT	INFRASTRUCTURE

1				

THE	DEFINITION	OF	IT	INFRASTRUCTURE

1.1													Introduction

During	the	first	decades	of	IT	development,	most	infrastructures	were	relatively
simple.	While	applications	advanced	 in	 functionality	and	complexity,	hardware
basically	 only	 got	 faster.	 In	 recent	 years,	 IT	 infrastructures	 started	 to	 become
more	complicated	as	a	result	of	 the	rapid	development	and	deployment	of	new
types	of	applications,	such	as	e-commerce,	Enterprise	Resource	Planning	(ERP),
data	warehousing,	big	data,	the	Internet	of	Things,	and	cloud	computing.	These
applications	required	new	and	more	sophisticated	infrastructure	services,	secure,
highly	scalable,	and	available	24/7.
Most	current	 infrastructure	 landscapes	are	 the	 result	of	a	history	of	application
implementation	 projects	 that	 introduced	 their	 own	 specialized	 hardware	 and
infrastructure	 components.	Mergers	 and	 acquisitions	 made	 things	 even	 worse,
leaving	many	organizations	with	multiple	sets	of	the	same	infrastructure	services
that	are	hard	to	interconnect,	let	alone	integrate	and	consolidate.
Organizations	 benefit	 from	 infrastructure	 architecture	 when	 they	 want	 to	 be
more	 flexible	 and	 agile,	 because	 a	 solid,	 scalable,	 and	 modular	 infrastructure
provides	a	firm	foundation	for	agile	adaptations.	The	market	demands	a	degree
of	 flexibility	 that	 can	 no	 longer	 be	 supported	 by	 infrastructures	 that	 are
inconsistent	 and	 hard	 to	 expand.	We	 need	 infrastructures	 that	 are	 constructed
with	standardized,	modular	components.	And	to	make	infrastructures	consistent
and	in	line	with	business	needs,	architecture	is	crucial.
Architecture	 is	 the	philosophy	that	underlies	a	system	and	defines	 the	purpose,
intent,	and	structure	of	the	system.	Various	kinds	of	architecture	can	be	defined,
including	 business	 architecture,	 enterprise	 architecture,	 data	 architecture,
application	architecture,	and	infrastructure	architecture.	Each	of	these	disciplines
has	 certain	unique	characteristics,	 but	 at	 their	most	basic	 level,	 they	all	 aim	at
mapping	 IT	 solutions	 to	 business	 value.	 Architecture	 is	 needed	 to	 control	 the
infrastructure	when	it	is	designed,	in	use,	and	when	it	is	changed.

1.2													What	is	IT	infrastructure?

IT	infrastructures	have	been	around	for	quite	a	while.	But	surprisingly	enough	no
generally	 accepted	 definition	 of	 IT	 infrastructure	 seems	 to	 exist.	 I	 found	 that
many	people	 are	 confused	by	 the	 term	 IT	 infrastructure,	 and	a	 clear	definition
would	help	them	understand	what	IT	infrastructure	is,	and	what	it	is	not.
In	literature,	many	definitions	of	IT	infrastructure	are	described.	Some	of	them
are:

·									IT	infrastructure	consists	of	the	equipment,	systems,	software,	and
services	used	in	common	across	an	organization,	regardless	of
mission/program/project.	IT	Infrastructure	also	serves	as	the	foundation
upon	which	mission/program/project-specific	systems	and	capabilities	are
built.	(cio.gov	-	the	website	for	the	United	States	Chief	Information
Officers	Council).
·									All	of	the	components	(Configuration	Items)	that	are	necessary	to
deliver	IT	Services	to	customers.	The	IT	Infrastructure	consists	of	more
than	just	hardware	and	software.	(ITILv2).
·									All	of	the	hardware,	software,	networks,	facilities,	etc.,	that	are
required	to	develop,	test,	deliver,	monitor,	control,	or	support	IT	services.
The	term	IT	Infrastructure	includes	all	of	the	Information	Technology	but
not	the	associated	people,	Processes	and	documentation.	(ITILv3).
·									Information	technology	infrastructure	underpins	the	distributed
operational	and	administrative	computing	environment.	Hidden	from	the
application-based	world	of	end	users,	technology	infrastructure
encompasses	the	unseen	realm	of	protocols,	networks,	and	middleware
that	bind	the	computing	enterprise	together	and	facilitate	efficient	data
flows.	Yet	information	technology	infrastructure	involves	more	than	just
the	mechanics	of	data	systems;	it	also	includes	people	providing	support
and	services.	(Technology	Governance	Board	Definition	of	Information
Technology	Infrastructure).
·									Infrastructure	is	the	shared	and	reliable	services	that	provide	the
foundation	for	the	enterprise	IT	portfolio.	The	implementation	of	an
architecture	includes	the	processors,	software,	databases,	electronic	links,
and	datacenters	as	well	as	the	standards	that	ensure	the	components	work

together,	the	skills	for	managing	the	operation,	etc.	(Goethe	University	of
Frankfurt,	www.is-frankfurt.de).

Based	on	these	definitions	the	term	infrastructure	seems	a	bit	vague.	Let's	try	to
lighten	things	up	a	bit.
The	word	 infrastructure	 originates	 from	 the	words	 infra	 (Latin	 for	 “beneath”)
and	 structure.	 It	 encompasses	 all	 components	 that	 are	 “beneath	 the	 structure”,
were	the	structure	can	be	for	instance	a	city,	a	house,	or	an	information	system.
In	the	physical	world,	the	term	infrastructure	often	refers	to	public	utilities,	such
as	 water	 pipes,	 electricity	 wires,	 gas	 pipes,	 sewage,	 and	 telephone	 lines	 –
components	literally	beneath	a	city's	structure.
	

Figure	1:	Views	on	IT	infrastructure

For	most	people,	infrastructure	is	invisible	and	taken	for	granted.	When	business
processes	 are	 described	 by	 a	 business	 analyst,	 the	 information	 used	 in	 the
process	is	very	important.	How	this	information	is	managed	using	IT	systems	is
“below	 the	 surface”	 for	 the	 business	 analyst.	 They	 consider	 IT	 systems	 to	 be
infrastructure.
For	users	of	IT	systems,	applications	are	important,	as	they	use	them	every	day,
but	 the	 way	 they	 are	 implemented	 or	 where	 they	 are	 physically	 deployed	 is
invisible	(below	the	surface)	to	them	and	hence	considered	infrastructure.
For	 systems	managers,	 the	 building	 in	 which	 their	 servers	 are	 hosted	 and	 the
utility	 company	 that	 delivers	 the	 required	 electricity	 are	 considered
infrastructure.
So,	what	 infrastructure	 comprises	 dependents	 on	who	 you	 ask,	 and	what	 their
point	of	view	is.
The	scope	of	infrastructure	as	used	in	this	book	is	explained	in	chapter	2.

	

2				

THE	INFRASTRUCTURE	MODEL

2.1													IT	building	blocks

The	 definition	 of	 infrastructure	 as	 used	 in	 this	 book	 is	 based	 on	 the	 building
blocks	 in	 the	 model	 as	 shown	 in	 Figure	 2.	 In	 this	 model	 processes	 use
information,	 and	 this	 information	 is	 stored	 and	 managed	 using	 applications.
Applications	need	application	platforms	and	infrastructure	 to	run.	All	of	 this	 is
managed	by	various	categories	of	systems	management.

Figure	2:	The	infrastructure	model

A	model	 is	 always	 a	 simplified	 version	 of	 reality,	 useful	 to	 explain	 a	 certain
point;	not	covering	all	details.	Therefore,	the	infrastructure	model	is	not	perfect.
Remember,	as	George	E.	P.	Box	stated:	“Essentially,	all	models	are	wrong,	but

some	are	useful.”
[3]

The	following	sections	provide	a	high-level	description	of	the	building	blocks	in
the	infrastructure	model.

2.2													Processes	/	Information	building	block

Figure	3:	Processes	/	Information	building	block

Organizations	 implement	 business	 processes	 to	 fulfil	 their	mission	 and	 vision.
These	 processes	 are	 organization	 specific	 –	 they	 are	 the	 main	 differentiators
between	organizations.	As	an	example,	some	business	processes	in	an	insurance
company	could	be:	claim	registration,	claim	payment,	and	create	invoice.
Business	 processes	 create	 and	 use	 information.	 In	 our	 example,	 information
could	be	the	claim’s	date	or	the	number	of	dollars	on	an	invoice.	Information	is
typically	entered,	stored	and	processed	using	applications.
Functional	management	is	the	category	of	systems	management	that	ensures	the
system	is	configured	to	perform	the	needed	business	functions.

2.3													Applications	building	block

Figure	4:	Applications	building	block

The	applications	building	block	includes	three	types	of	applications:
·									Client	applications	typically	run	on	end	user	devices	like	PCs	and
laptops.	Examples	of	client	applications	are	web	browsers,	word
processors,	and	email	clients.
·									Office	applications	provide	standard	server	based	applications	most
organizations	use.	Examples	are	mail	servers,	portals,	collaboration	tools,
and	instant	messaging	servers.	Most	organizations	run	these	office
applications	more	or	less	out	of	the	box.
·									Business	specific	applications	are	applications	that	are	typically
highly	customized	or	custom	built.	Some	examples	are	Customer
Relationship	Management	(CRM),	Enterprise	Resource	Planning	(ERP),
Supervisory	Control	And	Data	Acquisition	(SCADA)	systems,	and
applications	that	are	created	for	a	specific	business	process	(like	an
insurance	management	system).

Applications	 management	 is	 responsible	 for	 the	 configuration	 and	 technical
operations	of	the	applications.

2.4													Application	Platform	building	block

Figure	5:	Application	Platform	building	block

Most	 applications	 need	 some	 additional	 services,	 known	 as	 application
platforms,	 that	enable	 them	to	work.	We	can	 identify	 the	 following	services	as
part	of	the	application	platform	building	block:

·									Front-end	servers	are	typically	web	servers	(like	Apache	HTTP
Server	and	Microsoft	Internet	Information	Services	–	IIS)	that	provide	end
users	with	interactions	to	applications	by	presenting	application	screens	in
web	browsers.
·									Application	servers	act	as	containers	running	the	actual	application.
Examples	are	Java	or	.Net	application	servers	and	frameworks	(like	IBM
WebSphere,	Apache	Tomcat,	Red	Hat	JBoss,	and	Windows	.Net).
·									Connectivity	entails	FTP	servers,	Extraction,	Transformation	and
Load	(ETL)	servers,	and	Enterprise	Service	Buses	(ESBs)	like	Microsoft
BizTalk,	the	TIBCO	Service	Bus,	IBM	MQ,	and	SAP	NetWeaver	PI.
·									Databases,	also	known	as	database	management	systems	(DBMSs),
provide	a	way	to	store	and	retrieve	structured	data.	Examples	are	Oracle
RDBMS,	IBM	DB2,	Microsoft	SQL	Server,	PostgreSQL,	and	MySQL.

Application	platforms	are	typically	managed	by	systems	managers	specialized	in
the	specific	technology.

2.5													Infrastructure	building	blocks

Figure	6:	Infrastructure	building	block

This	 book	 uses	 the	 selection	 of	 building	 blocks	 as	 depicted	 in	 Figure	 6	 to
describe	the	infrastructure	building	blocks	and	concepts	–	the	scope	of	this	book.
The	following	infrastructure	building	blocks	are	in	scope:

·									End	User	Devices	are	the	devices	used	by	end	users	to	work	with
applications,	like	PCs,	laptops,	thin	clients,	mobile	devices,	and	printers.
·									Operating	Systems	are	collections	of	programs	that	manage	a
computer’s	internal	workings:	its	memory,	processors,	devices,	and	file
system.
·									Compute	are	the	physical	and	virtual	computers	in	the	datacenter,	also
known	as	servers.
·									Storage	are	systems	that	store	data.	They	include	hard	disks,	tapes,
Direct	Attached	Storage	(DAS),	Network	Attached	Storage	(NAS),	and
Storage	Area	Networks	(SANs).
·									Networking	connects	all	components.	This	building	block	includes
routers,	switches,	firewalls,	WANs	(wide	area	networks),	LAN,	dial-in,
internet	access,	and	VPNs	(Virtual	Private	Network),	and	(on	the	network
application	level)	relatively	simple	services	like	DNS,	DHCP,	and	time
services,	necessary	for	the	infrastructure	to	work	properly.
·									Datacenters	are	locations	that	host	most	IT	infrastructure	hardware.

They	include	facilities	like	uninterruptible	power	supplies	(UPSs),
Heating,	Ventilation,	and	Air	Conditioning	(HVAC),	computer	racks,	and
physical	security	measures.

Please	 note	 that	 these	 building	 blocks	 are	 not	 per	 definition	 hierarchically
related.	 For	 instance,	 servers	 need	 both	 networking	 and	 storage,	 and	 both	 are
equally	important.
Infrastructure	management	includes	processes	like	ITIL	and	DevOps,	and	tools
like	monitoring,	backup,	and	logging.

2.6													Non-Functional	attributes

Figure	7:	Non-Functional	attributes

An	 IT	 system	 does	 not	 only	 provide	 functionality	 to	 users;	 functionality	 is
supported	by	non-functional	attributes.	Non-functional	attributes	are	the	effect	of
the	configuration	of	each	IT	system	component,	both	on	the	infrastructure	level
and	above.
	
	
Although	 many	 other	 non-functional	 attributes	 are	 defined,	 as	 described	 in
chapter	3,	availability,	performance,	and	security	are	almost	always	the	essential
ones	in	IT	infrastructure	architectures	(Figure	7).
	

	

PART	II	–	NON	FUNCTONAL	ATTRIBUTES

3				

INTRODUCTION	TO	NON-FUNCTIONAL
ATTRIBUTES

3.1													Introduction

IT	infrastructures	provide	services	 to	applications.	Some	of	 these	 infrastructure
services	can	be	well	defined	as	a	function,	like	providing	disk	space,	or	routing
network	 messages.	 Non-functional	 attributes,	 on	 the	 other	 hand,	 describe	 the
qualitative	 behavior	 of	 a	 system,	 rather	 than	 specific	 functionalities.	 Some
examples	of	non-functional	attributes	are:

·									Availability
·									Scalability
·									Reliability
·									Stability
·									Testability
·									Recoverability

In	 my	 experience,	 the	 most	 important	 non-functional	 attributes	 for	 most	 IT
infrastructures	are	security,	performance,	and	availability.
Non-functional	 attributes	 are	 very	 important	 for	 the	 successful	 implementation
and	use	of	an	IT	infrastructure,	but	in	projects,	they	rarely	get	the	same	attention
as	the	functional	services.
There	 is	much	confusion	about	 the	value	of	pursuing	non-functional	attributes.
The	name	suggests	they	have	no	function.	But	of	course,	these	attributes	do	have
a	function	 in	 the	business	process,	and	usually	a	 fairly	 large	one.	For	 instance,
when	the	infrastructure	of	a	corporate	website	is	not	performing	well,	the	visitors
of	 the	website	will	 leave,	which	has	 a	 direct	 financial	 impact	 on	 the	 business.
When	credit	card	transactions	are	not	stored	in	a	secure	way	in	the	infrastructure,
and	as	a	result	 leak	to	hackers,	 the	organization	that	stored	the	credit	card	data
will	have	a	lot	of	explaining	to	do	to	their	customers.
So,	non-functional	attributes	are	very	functional	indeed,	but	they	are	not	directly
related	to	the	primary	functionalities	of	a	system.	Instead	of	using	the	term	non-
functional	 attribute,	 it	would	be	much	better	 to	use	 the	 term	quality	 attributes.
While	this	term	much	better	represents	the	nature	and	importance	of	for	instance
performance,	 security,	 and	 availability,	 the	 term	 non-functional	 attribute	 (as
expressed	in	non-functional	requirements	or	NFRs)	is	more	frequently	used	and
widely	known.	Therefore,	 in	this	book	I	keep	on	using	the	term	non-functional

attribute,	although	I	do	realize	that	the	term	could	be	misleading.
While	architects	and	certainly	infrastructure	specialists	are	typically	very	aware
of	the	importance	of	non-functional	attributes	of	their	infrastructure,	many	other
stakeholders	may	not	have	the	same	feelings	about	 them.	Users	normally	think
of	functionalities,	while	non-functional	attributes	are	considered	a	hygiene	factor
and	 taken	 for	 granted	 (“of	 course,	 the	 system	 must	 perform	 well”).	 Users	 of
systems	most	of	the	time	don’t	state	non-functional	attributes	explicitly,	but	they
do	have	expectations	about	them.
An	example	is	the	functionality	of	a	car.
	

A	car	has	to	bring	you	from	A	to	B,	but	many	quality	attributes	are	taken	for
granted.
For	instance,	the	car	has	to	be	safe	to	drive	in	(leading	to	the	implementation
of	anti-lock	brakes,	air	bags,	and	safety	belts)	and	reliable	(the	car	should	not
break	down	every	day),	and	the	car	must	adhere	to	certain	industry	standards
(the	gas	pedal	must	be	the	right-most	pedal).
All	of	 these	extras	cost	money	and	might	complicate	 the	design,	construction,
and	 maintenance	 of	 the	 car.	 While	 all	 clients	 have	 these	 non-functional
requirements,	 they	 are	 almost	 never	 expressed	 as	 such	 when	 people	 are
ordering	a	new	car.

3.2													Non-functional	Requirements

It	is	the	IT	architect	or	requirements	engineer’s	job	to	find	implicit	requirements
on	non-functional	attributes	(the	non-functional	requirements	-	NFRs).	This	can
be	very	hard,	since	what	is	obvious	or	taken	for	granted	by	the	customers	or	end
users	 of	 a	 system	 is	 not	 always	 obvious	 to	 the	 designers	 and	 builders	 of	 the
system.	 And	 not	 to	 forget	 the	 non-functional	 requirements	 that	 other
stakeholders	 have,	 like	 the	 existence	 of	 service	 windows	 or	 monitoring
capabilities,	which	are	important	requirements	for	systems	managers.
It	is	important	to	remember	that	the	acceptance	of	a	system	is	largely	dependent
on	 the	 implemented	 non-functional	 requirements.	 A	 website	 can	 be	 very
beautiful	 and	 functional,	 but	 if	 loading	 the	 site	 (performance,	 a	non-functional
requirement)	takes	30	seconds,	most	customers	are	gone!
A	 large	 part	 of	 the	 budget	 for	 building	 an	 infrastructure	 is	 usually	 spent	 in
fulfilling	non-functional	requirements	 that	are	not	always	clearly	defined	("The
system	 obviously	 must	 work	 seamlessly	 with	 the	 existing	 systems"	 or	 "The
website	should	always	be	available").
	

Most	 stakeholders	have	no	 clue	how	hard	 it	 can	be	 to	 realize	a	 certain	non-
functional	 requirement.	 It	 sometimes	 helps	 to	 quantify	 these	 requirements;	 to
make	them	explicit:	“How	bad	would	it	be	if	the	website	was	not	available	for
5	 minutes	 per	 day?”	 or	 “What	 if	 it	 will	 take	 $500,000	 to	 implement	 this
requirement?	Is	it	still	important	then?”

	
Many	 of	 the	 non-functional	 attributes	 of	 an	 application	 are	 delivered	 by	 the
infrastructure.	An	application	using	an	IT	infrastructure	built	with	several	single
points	of	failure	will	probably	not	reach	very	high	availability	figures,	no	matter
how	well	the	application	is	built.	And	when	the	IT	infrastructure	is	not	designed
to	be	 scalable,	 the	 applications	built	 upon	 it	 cannot	 introduce	 scalability	 as	 an
afterthought.
The	 other	 way	 around	 is	 also	 true.	 When	 an	 IT	 infrastructure	 is	 setup	 to	 be
highly	 available,	 a	 badly	 designed	 application	 can	make	 the	 end	 result	 highly
unreliable.	 Similarly,	 security	 flaws	 on	 the	 processes	 level	 can	 undo	 all
security	measures	taken	in	the	infrastructure.

This	makes	it	very	important	to	consider	the	all	design	decisions	when	it	comes
to	non-functional	attributes.
It	is	not	unusual	to	have	conflicting	non-functional	requirements	in	a	system.	A
classic	example	is	security	versus	user	friendliness.	Users	expect	highly	secured
systems,	but	really	don’t	want	to	be	bothered	by	password	changes,	smart	card
authentication,	 and	 other	 annoying	 security	 measures.	 The	 same	 goes	 for
performance	and	cost.	Getting	a	high-performance	system	usually	means	getting
more	 and	 faster	 hardware,	 and	using	 strict	 implementation	 rules.	This	 leads	 to
higher	cost,	which	is	usually	not	in	line	with	some	requirement	about	the	cost	of
the	infrastructure.
It	is	the	infrastructure	architect’s	responsibility	to	balance	these	conflicting	non-
functional	requirements.	The	architect	must	present	 the	stakeholders	with	 these
conflicting	 requirements	 and	 their	 consequences,	 so	 they	 can	 make	 well
informed	decisions.
In	the	following	chapters	the	three	most	important	infrastructural	non-functional
attributes	 are	 discussed	 in	more	 detail:	 availability,	 performance,	 and	 security.
Each	of	 these	 topics	are	 too	complex	 to	fully	explain	 in	 this	book.	Many	good
books	and	articles	are	written	about	 them,	some	of	which	are	 recommended	 in
the	 appendix.	 In	 this	 book,	 I	 only	 describe	 those	 aspects	 of	 availability,
performance	and	security	that	are	strongly	related	to	IT	infrastructures.
	

4				

AVAILABILITY	CONCEPTS

4.1													Introduction

Everyone	expects	their	infrastructure	to	be	available	all	 the	time.	In	this	age	of
global,	 always-on,	 always	 connected	 systems,	 disturbances	 in	 availability	 are
noticed	 immediately.	 A	 100%	 guaranteed	 availability	 of	 an	 infrastructure,
however,	 is	 impossible.	 No	matter	 how	much	 effort	 is	 spent	 on	 creating	 high
available	infrastructures,	there	is	always	a	chance	of	downtime.	It's	just	a	fact	of
life.
	

According	to	a	survey	from	the	2014	Uptime	Symposium
[4]
,	46%	of	companies

using	 their	own	datacenter	had	at	 least	one	“business-impacting”	datacenter
outage	over	12	months.

	

Figure	8:	Availability	in	the	infrastructure	model

This	 chapter	 discusses	 the	 concepts	 and	 technologies	 used	 to	 create	 high
available	systems.	 It	 includes	calculating	availability,	managing	human	factors,
the	reliability	of	infrastructure	components,	how	to	design	for	resilience,	and	–	if
everything	else	fails	–	business	continuity	management	and	disaster	recovery.

4.2													Calculating	availability

In	general,	availability	can	neither	be	calculated,	nor	guaranteed	upfront.	It	can
only	 be	 reported	 on	 afterwards,	 when	 a	 system	 has	 run	 for	 some	 years.	 This
makes	designing	 for	high	availability	a	complicated	 task.	Fortunately,	over	 the
years,	 much	 knowledge	 and	 experience	 is	 gained	 on	 how	 to	 design	 high
available	 systems,	 using	 design	 patterns	 like	 failover,	 redundancy,	 structured
programming,	 avoiding	 Single	 Points	 of	 Failures	 (SPOFs),	 and	 implementing
sound	systems	management.	But	first,	let’s	discuss	how	availability	is	expressed
in	numbers.

4.2.1								Availability	percentages	and	intervals
The	availability	of	a	system	is	usually	expressed	as	a	percentage	of	uptime	in	a
given	 time	period	 (usually	one	year	or	one	month).	The	 following	 table	shows
the	maximum	downtime	for	a	particular	percentage	of	availability.
	
Availability	% Downtime

per	year
Downtime
per	month

Downtime
per	week

99.8% 17.5	hours 86.2	minutes 20.2	minutes

99.9%	("three	nines") 8.8	hours 43.2	minutes 10.1	minutes

99.99%	("four	nines") 52.6	minutes 4.3	minutes 1.0	minutes

99.999%	("five	nines") 5.3	minutes 25.9	seconds 6.1	seconds

Table	1:	Availability	levels

Typical	requirements	used	in	service	level	agreements	today	are	99.8%	or	99.9%
availability	 per	 month	 for	 a	 full	 IT	 system.	 To	 meet	 this	 requirement,	 the
availability	of	the	underlying	infrastructure	must	be	much	higher,	typically	in	the
range	of	99.99%	or	higher.
99.999%	 uptime	 is	 also	 known	 as	 carrier	 grade	 availability;	 this	 level	 of
availability	 originates	 from	 telecommunication	 system	 components	 (not	 full
systems!)	that	need	an	extremely	high	availability.	Higher	availability	levels	for
a	complete	system	are	very	uncommon,	as	they	are	almost	impossible	to	reach.
	

As	a	comparison:	the	electricity	supply	in	my	home	country,	The	Netherlands,

is	 very	 reliable.	Over	 the	 last	 years
[5]
,	 the	 average	 downtime	 per	 household

was	 23	 minutes	 per	 year.	 This	 is	 equivalent	 to	 an	 availability	 of	 99.9956%.
Some	other	European	countries:
Germany:	21	minutes	=	99.9960%
United	Kingdom:	75	minutes	=	99.9857%
France:	71	minutes	=	99.9865%
Poland:	260	minutes	=	99.9506%

The	average	downtime	in	the	USA
[6]
	is	127	minutes,	leading	to	an	availability

of	99.9759%.

	
While	99.9%	uptime	means	525	minutes	of	downtime	per	year,	 this	downtime
should	 not	 occur	 in	 one	 event,	 nor	 should	 one-minute	 downtimes	 occur	 525
times	a	year.	It	is	therefore	good	practice	to	agree	on	the	maximum	frequency	of
unavailability.	An	example	is	shown	in	Table	2.
	
Unavailability	(minutes)		 Number	of	events	

(per	year)
0	–	5														 <=	35

5	–	10 <=	10

10	–	20										 <=	5

20	–	30										 <=2

>	30																														 <=	1

Table	2:	Unavailability	frequency

In	this	example,	it	means	that	the	system	can	be	unavailable	for	25	minutes	no
more	 than	 twice	 a	 year.	 It	 is	 also	 allowed,	 however,	 to	 be	 unavailable	 for	 3
minutes	three	times	each	month.	For	each	availability	requirement,	a	frequency
table	should	be	provided,	in	addition	to	each	given	availability	percentage.

4.2.2								MTBF	and	MTTR
The	factors	involved	in	calculating	availability	are	Mean	Time	Between	Failures
(MTBF),	which	is	the	average	time	that	passes	between	failures,	and	Mean	Time
To	Repair	(MTTR),	which	is	the	time	it	takes	to	recover	from	a	failure.

Figure	9:	MTBF	and	MTTR

The	 term	"mean"	means	 that	 the	numbers	expressed	by	MTBF	and	MTTR	are
statistically	calculated	values.

4.2.2.1						Mean	Time	Between	Failures	(MTBF)
The	 MTBF	 is	 expressed	 in	 hours	 (how	 many	 hours	 will	 the	 component	 or
service	work	without	failure).	Some	typical	MTBF	figures	are	shown	in	Table	3.
	
Component MTBF	(hours)

Hard	disk 750,000

Power	supply 100,000

Fan 100,000

Ethernet	Network	Switch 350,000

RAM 1,000,000

Table	3:	MTBF	levels

It	is	important	to	understand	how	these	numbers	are	calculated.	No	manufacturer
can	test	if	a	hard	disk	will	continue	to	work	without	failing	for	750,000	hours	(=
85	years).	 Instead,	manufacturers	 run	 tests	 on	 large	batches	of	 components.	 In
case	of	for	instance	hard	disks,	1000	disks	could	have	been	tested	for	3	months.
If	in	that	period	of	time	five	disks	fail,	the	MTBF	is	calculated	as	follows:
The	 test	 time	 is	 3	months.	One	 year	 has	 four	 of	 those	 periods.	 So,	 if	 the	 test
would	have	lasted	one	year,	4	×	5	=	20	disks	would	have	failed.
In	one	year,	the	disks	would	have	run:
1000	disks	×	365	×	24	=	8,760,000	running	hours.

This	means	that	the	 	hours/failure.
So,	actually	MTBF	only	says	something	about	the	chance	of	failure	in	the	first
months	of	use.	It	is	an	extrapolated	value	for	the	probable	downtime	of	a	disk.	It
would	be	better	to	specify	the	annual	failure	rate	instead	(in	our	example,	2%	of
all	disks	will	fail	in	the	first	year),	but	that	is	not	very	good	advertising.

4.2.2.2						Mean	Time	To	Repair	(MTTR)
When	 a	 component	 breaks,	 it	 needs	 to	 be	 repaired.	 Usually	 the	 repair	 time
(expressed	as	Mean	Time	To	Repair	–	MTTR)	is	kept	 low	by	having	a	service
contract	with	the	supplier	of	the	component.	Sometimes	spare	parts	are	kept	on-
site	 to	 lower	 the	MTTR	 (making	MTTR	more	 like	Mean	 Time	 To	 Replace).
Typically,	 a	 faulty	 component	 is	 not	 repaired	 immediately.	 Some	 examples	 of
what	might	be	needed	for	to	complete	repairs	are:

·									Notification	of	the	fault	(time	before	seeing	an	alarm	message)
·									Processing	the	alarm
·									Finding	the	root	cause	of	the	error
·									Looking	up	repair	information
·									Getting	spare	components	from	storage
·									Having	technician	come	to	the	datacenter	with	the	spare	component
·									Physically	repairing	the	fault
·									Restarting	and	testing	the	component

Instead	 of	 these	 manual	 actions,	 the	 best	 way	 to	 keep	 the	 MTTR	 low	 is	 to
introduce	automated	redundancy	and	failover,	as	discussed	in	sections	4.4.1	and
4.4.2.

4.2.3								Some	calculation	examples
Decreasing	 MTTR	 and	 increasing	 MTBF	 both	 increase	 availability.	 Dividing
MTBF	by	the	sum	of	MTBF	and	MTTR	results	in	the	availability	expressed	as	a

percentage:	 .
For	example:
A	 power	 supply's	 MTBF	 is	 150,000	 hours.	 This	 means	 that	 on	 average	 this
power	supply	fails	once	every	150,000	hours	(=	once	per	17	years).	If	the	time	to
repair	the	power	supply	is	8	hours,	the	availability	can	be	calculated	as	follows:	

This	means	that	because	of	the	repair	time	alone	this	component	can	never	reach
an	average	availability	of	99.999%!	To	reach	five	nines	of	availability	the	repair
time	should	be	as	low	as	90	minutes	for	this	component.	Note	that	if	a	downtime

of	 99.999%	 is	 acceptable	 per	 year	 (and	 not	 over	 the	 total	 lifetime	 of	 the
component),	the	repair	time	must	be	even	lower	than	6	minutes!
As	 system	complexity	 increases,	usually	 availability	decreases.	When	a	 failure
of	 any	 one	 part	 in	 a	 system	 causes	 a	 failure	 of	 the	 system	 as	 a	 whole,	 the
availability	 is	 called	 serial	 availability.	 To	 calculate	 the	 availability	 of	 such	 a
complex	system	or	device,	multiply	the	availability	of	all	its	parts.
For	example,	 a	 server	consists	of	 the	 following	components	and	 the	MTTR	of
any	part	of	the	server	is	8	hours.
	

Figure	10:	System	with	serial	components

	
Component MTBF	(h) MTTR	(h) Availability in	%

Power	supply 100,000 8 0.9999200 99.99200

Fan 100,000 8 0.9999200 99.99200

System	board 300,000 8 0.9999733 99.99733

Memory 1,000,000 8 0,9999920 99.99920

CPU 500,000 8 0.9999840 99.99840

Network	Interface	Controller	(NIC) 250,000 8 0.9999680 99.99680

Table	4:	Availability	in	percentages

The	 availability	 of	 the	 total	 server	 is:	

.	This	 is	 lower	 than	 the
availability	 of	 any	 single	 component	 in	 the	 system.	 Therefore,	 the	 more
components	 a	 system	 includes	 (and	 each	 component	 is	 critical	 for	 the	 total
system),	the	lower	the	total	availability	becomes.
To	increase	the	availability,	systems	(composed	of	a	various	components)	can	be
deployed	 in	 parallel.	 This	 considerably	 increases	 the	 availability,	 since	 the
combined	system	no	longer	contains	a	Single	Point	Of	Failure.	If	one	component
becomes	unavailable,	 the	affected	system	goes	down,	but	 the	other	system	can
take	 over.	 Consider	 the	 example	 below.	 Two	 systems	 run	 in	 parallel,	 each
complete	system	having	an	availability	of	99%.

Figure	11:	Two	systems	in	parallel

The	chance	of	both	systems	being	unavailable	at	the	same	time	is	very	small	and
can	be	calculated	as	follows:

where
A	=	Availability		
n	=	Number	of	systems	in	parallel
A1	=	The	availability	of	one	system

When	A1	(the	availability	of	one	system)	is	estimated	to	be	99%	(which	is	very
pessimistic	as	explained	above),	the	combined	availability	in	a	parallel	setup	is:
	
Situation Availability Yearly	downtime

1	system 99% 87h	36m

2	systems 99.99% 52m

3	systems 99.9999% 32s

4	systems 99.999999% almost	0

Table	5:	Availability	with	multiple	components

In	this	situation,	it	is	important	to	have	no	single	point	of	failure	that	combines
the	set	of	systems	(for	 instance,	all	systems	run	on	the	same	power	supply).	In
that	 case,	 the	 availability	 of	 the	 system	 is	 fully	 dependent	 on	 that	 one
component.

4.3													Sources	of	unavailability

4.3.1								Human	errors
Usually	 only	 20%	 of	 the	 failures	 leading	 to	 unavailability	 are	 technology

failures.	 According	 to	 Gartner
[7]
,	 through	 2015,	 80%	 of	 outages	 impacting

mission-critical	services	will	be	caused	by	people	and	process	 issues	and	more
than	 50%	 of	 those	 outages	 will	 be	 caused	 by	 change/configuration/release
integration	and	hand-off	issues.
Of	course,	it	helps	to	have	highly	qualified	and	trained	staff,	with	a	healthy	sense
of	 responsibility.	 Errors	 are	 human,	 however,	 and	 there	 is	 no	 cure	 for	 it.	 End
users	can	introduce	downtime	by	misuse	of	the	system.	When	a	user	for	instance
starts	 the	 generation	 of	 ten	 very	 large	 reports	 at	 the	 same	 time,	 the
performance	of	the	system	could	suffer	in	such	a	degree	that	the	system	becomes
unavailable	 to	 other	 users.	 Also,	 when	 a	 user	 forgets	 a	 password	 (and	maybe
tries	an	incorrect	password	for	more	than	five	times)	he	or	she	is	locked	out	and
the	 system	 is	 unavailable	 for	 that	 user.	 If	 that	 user	has	 a	very	 responsible	 job,
like	approving	 some	steps	 in	 a	business	process,	being	 locked	out	 could	mean
that	a	business	process	is	unavailable	to	other	users	as	well.
Most	 unavailability	 issues,	 however,	 are	 the	 result	 of	 actions	 from	 systems
managers.	Some	typical	actions	(or	the	lack	thereof)	are:

·									Performing	a	test	in	the	production	environment	(not	recommended	at
all).
·									Switching	off	the	wrong	component	(not	the	defective	server	that
needs	repair,	but	the	one	still	operating).
·									Swapping	a	good	working	disk	in	a	RAID	set	instead	of	the	defective
one.
·									Restoring	the	wrong	backup	tape	to	production.
·									Accidentally	removing	files	(mail	folders,	configuration	files)	or
database	entries:	drop	table	x	instead	of	drop	table	y.
·									Making	incorrect	changes	to	configurations	(for	instance,	the	routing
table	of	a	network	router,	or	a	change	in	the	Windows	registry).
·									Incorrect	labeling	of	cables,	later	leading	to	errors	when	changes	are

made	to	the	cabling.
·									Performing	maintenance	on	an	incorrect	virtual	machine	(the	one	in
production	instead	of	the	one	in	the	test	environment).
·									Making	a	typo	in	a	system	command	environment	(for	instance	in
UNIX:	
sudo	rm	-rf	/	*.back		instead	of	
sudo	rm	-rf	/*.back			where	one	space	too	many	leads	to	a	complete	erasure	of
a	hard	disk	–	did	you	notice	the	difference?).
·									Insufficient	testing,	for	instance,	the	fallback	procedure	to	move
operations	from	the	primary	datacenter	to	the	secondary	was	never	tested,
and	failed	when	it	was	really	needed.

Many	of	 these	mistakes	 can	 be	 avoided	 by	 using	 proper	 systems	management
procedures,	like	have	having	a	standard	template	for	creating	new	servers,	using
formal	 deployment	 strategies	 with	 the	 appropriate	 tools,	 using	 administrative
accounts	only	when	absolutely	needed,	etc.
As	 an	 example,	 when	 in	 some	 UNIX	 environments	 users	 log	 in	 with	 an
administrative	account	(root),	they	automatically	get	the	following	message:
We	assume	you	have	received	the	usual	lecture	from	the	local	systems	manager.
It	usually	boils	down	to	these	three	things:
#1)	Respect	the	privacy	of	others.
#2)	Think	before	you	type.
#3)	With	great	power	comes	great	responsibility.
Simple	 measures	 like	 this	 make	 people	 aware	 of	 the	 impact	 of	 their	 actions,
leading	to	fewer	mistakes.
Of	course,	there	are	also	bad	people	out	there.	Hackers	can	create	downtime	by
for	 instance	 executing	a	Denial	of	Service	 attack.	More	on	 this	 subject	 can	be
found	the	chapter	6	on	security.

4.3.2								Software	bugs
After	human	errors,	software	bugs	are	the	number	two	reason	for	unavailability.
Because	 of	 the	 complexity	 of	most	 software	 it	 is	 nearly	 impossible	 (and	 very
costly)	 to	 create	 bug-free	 software.	 Software	 bugs	 in	 applications	 or	 system
drivers	 can	 stop	 an	 entire	 system	 (like	 the	 infamous	Blue	 Screen	 of	Death	 on

Windows	systems),	or	create	downtime	in	other	ways.	Since	operating	systems
are	software	too,	operating	systems	contain	bugs	that	can	lead	to	corrupted	file
systems,	network	failures,	or	other	sources	of	unavailability.

4.3.3								Planned	maintenance
Planned	 maintenance	 is	 sometimes	 needed	 to	 perform	 systems	 management
tasks	 like	 upgrading	 hardware	 or	 software,	 implementing	 software	 changes,
migrating	data,	or	the	creation	of	backups.
Since	most	systems	 today	must	be	available	24/7,	planned	maintenance	should
only	be	performed	on	parts	of	 the	 infrastructure	while	other	parts	keep	serving
clients.	When	the	infrastructure	has	no	single	point	of	failure	(SPOF),	downtime
of	a	single	component	does	not	lead	to	downtime	of	the	entire	system.	This	way
it	is	possible	to,	for	instance,	upgrade	an	operating	system	to	the	latest	software,
while	the	infrastructure	as	a	whole	remains	available.
During	 planned	 maintenance,	 however,	 the	 system	 is	 more	 vulnerable	 to
downtime	than	under	normal	circumstances.	When	the	systems	manager	makes	a
mistake	 during	 planned	 maintenance,	 the	 risk	 of	 downtime	 is	 higher	 than
normal.	When	planned	maintenance	is	performed	on	a	component,	a	SPOF	could
be	 introduced,	 being	 the	 component	 not	 under	 maintenance.	 When	 that
component	 breaks	 during	 the	 planned	 maintenance,	 the	 whole	 system	 can
become	unavailable.
Another	example	is	the	upgrade	of	systems	in	a	high	available	cluster.	When	one
component	 is	 upgraded	 and	 the	 other	 is	 not	 upgraded	 yet,	 it	 could	 be	 that	 the
high	available	cluster	is	not	working	as	such.	In	that	period	of	time	the	system	is
vulnerable	to	downtime.

4.3.4								Physical	defects
Of	 course,	 everything	 breaks	 down	 eventually,	 but	 mechanical	 parts	 are	most
likely	to	break	first.	Some	examples	of	mechanical	parts	are:

·									Fans	for	cooling	the	equipment.	Fans	usually	have	a	limited	lifespan.
They	usually	break	because	of	dust	in	the	bearings,	causing	the	motor	to
work	harder	until	it	breaks.
·									Disk	drives.	Disk	drives	contain	two	main	moving	parts:	the	motor
spinning	the	platters	and	the	linear	motor	that	moves	the	read/write	heads.

·									Tapes	and	tape	drives.	Tapes	are	very	vulnerable	to	defects	as	the
tape	is	spun	on	and	off	the	reels	all	the	time.	Tape	drives	and	especially
tape	robots	contain	very	sensitive	pieces	of	mechanics	that	can	break
easily.

Apart	 from	 mechanical	 failures	 because	 of	 normal	 usage,	 parts	 also	 break
because	 of	 external	 factors	 like	 ambient	 temperature,	 moist,	 vibrations,	 and
aging.
Most	 parts	 favor	 stable	 temperatures.	 When	 the	 temperature	 fluctuates,	 parts
expand	 and	 shrink,	 leading	 to	 for	 instance	 contact	 problems	 in	 connectors	 or
solder	 joints.	This	 effect	 also	occurs	when	parts	 are	 exposed	 to	 vibrations	 and
when	parts	are	switched	on	and	off	frequently.
Some	 parts	 also	 age	 over	 time.	 Not	 only	mechanical	 parts	 wear	 out,	 but	 also
some	electronic	parts	like	large	capacitors,	that	contain	fluids,	and	transformers,
that	 vibrate	 due	 to	 the	AC	 current	 creating	 fluctuating	magnetic	 fields.	 Solder
joints	also	age	over	time,	just	like	on/off	switches	that	are	used	frequently.
When	used	heavily	or	over	an	extended	period	of	time,	a	power	supply	will	wear
out;	 it	 slowly	 loses	 some	 of	 its	 initial	 power	 capacity.	 It	 is	 recommended	 to
calculate	 a	 surplus	 of	 at	 least	 25%	 of	 continuously	 available	 power	 for	 24/7
running	equipment.
Network	cables,	especially	when	they	are	moved	around	much,	tend	to	fail	over
time.	Another	type	of	cable	that	is	highly	sensitive	to	mechanical	stress	is	fiber
optics	cable.
Some	components,	like	PC	system	boards	and	external	disk	caches,	are	equipped
with	 batteries.	 Batteries,	 including	 rechargeable	 batteries,	 are	 known	 to	 fail
often.	Other	 typical	 components	 to	 fail	 are	 oscillators	 used	 on	 system	 boards.
These	oscillators	are	also	in	effect	mechanical	parts	and	prone	to	failure.
In	most	cases	the	availability	of	a	component	follows	a	so-called	bathtub	curve.
	

Figure	12:	Bathtub	curve

A	 component	 failure	 is	 most	 likely	 when	 the	 component	 is	 new.	 In	 the	 first
month	of	use	the	chance	of	a	components	failure	is	relatively	high.	Sometimes	a
component	 doesn't	 even	work	 at	 all	when	 unpacked	 for	 the	 first	 time.	 This	 is
called	a	DOA	component	–	Dead	On	Arrival.
When	 a	 component	 still	 works	 after	 the	 first	 month,	 it	 is	 likely	 that	 it	 will
continue	working	without	failure	until	the	end	of	its	technical	life	cycle.	This	is
the	other	end	of	the	bathtub	–	the	chance	of	failure	rises	suddenly	at	the	end	of
the	life	cycle	of	a	component.

4.3.5								Environmental	issues
Environmental	 issues	 can	 cause	 downtime	 as	 well.	 Issues	 with	 power	 and
cooling,	and	external	factors	like	fire,	earthquakes	and	flooding	can	cause	entire
datacenters	to	fail.
Power	can	fail	for	a	short	or	long	period	of	time,	and	can	have	voltage	drops	or
spikes.	Power	outages	can	cause	downtime,	and	power	spikes	can	cause	power
supplies	to	fail.	The	effect	of	these	power	issues	can	be	eliminated	by	using	an
Uninterruptable	Power	Supply	(UPS).	More	information	on	UPSs	can	be	found
in	section	7.2.4.2.
Failure	 of	 the	 air	 conditioning	 system	 can	 lead	 to	 high	 temperatures	 in	 the
datacenter.	 When	 the	 temperature	 rises	 too	 much,	 systems	 must	 (or	 will
automatically)	be	shut	down	to	avoid	damage.

4.3.6								Complexity	of	the	infrastructure
Adding	 more	 components	 to	 an	 overall	 system	 design	 can	 undermine	 high

availability,	 even	 if	 the	 extra	 components	 are	 implemented	 to	 achieve	 high
availability.	 This	 sounds	 like	 a	 paradox,	 but	 in	 practice	 I	 have	 seen	 such
situations.
Complex	systems	inherently	have	more	potential	points	of	failure	and	are	more
difficult	 to	 implement	 correctly.	Also,	 a	 complex	 system	 is	 harder	 to	manage;
more	 knowledge	 is	 needed	 to	 maintain	 the	 system	 and	 errors	 are	 made	 more
easily.
Sometimes	it	is	better	to	just	have	an	extra	spare	system	in	the	closet	than	to	use
complex	redundant	systems.	When	a	workstation	fails,	most	people	can	work	on
another	machine,	and	the	defective	machine	can	be	swapped	in	15	minutes.	This
is	probably	a	better	choice	than	implementing	high	availability	measures	in	the
workstation,	like	dual	network	cards,	dual	connections	to	dual	network	switches
that	can	 failover,	 failover	drivers	 for	 the	network	card	 in	 the	workstation,	dual
power	supplies	in	the	workstation	fed	via	two	separate	cables	and	power	outlets
on	two	fuse	boxes,	etc.	You	get	the	point.
The	same	goes	for	high	availability	measures	on	other	levels.
	

I	 once	 had	 a	 very	 instable	 set	 of	 redundant	 ATM	 (Asynchronous	 Transfer
Mode)	network	switches	in	the	core	of	a	network.	I	could	not	get	the	systems	to
failover	 reliably,	 leading	 to	multiple	 instances	 of	 downtime	 of	 a	 few	minutes
each.
When	I	removed	the	redundancy	in	the	network,	the	network	never	failed	again
for	 a	 least	 a	 year.	 The	 leftover	 switches	 were	 loaded	 with	 a	 working
configuration	and	put	in	the	closet.
If	the	core	switch	would	fail,	we	could	swap	it	in	10	minutes	(which,	given	that
this	would	not	happen	more	than	once	a	year	–	probably	even	less,	 led	 to	an
availability	of	at	least	99.995%).

4.4													Availability	patterns

A	single	point	of	 failure	 (SPOF)	 is	a	component	 in	 the	 infrastructure	 that,	 if	 it
fails,	 causes	 downtime	 to	 the	 entire	 system.	 SPOFs	 should	 be	 avoided	 in	 IT
infrastructures	as	they	pose	a	large	risk	to	the	availability	of	a	system.
For	example,	in	most	storage	systems,	the	failure	of	one	disk	does	not	affect	the
availability	of	the	storage	system.	Technologies	like	RAID	(Redundant	Arrays	of
Independent	Disks)	can	be	used	to	handle	the	failure	of	a	single	disk	(more	on
RAID	systems	in	section	9.2.3.1),	eliminating	disks	as	a	SPOF.	Server	clusters,
double	 network	 connections,	 and	 dual	 datacenters	 –	 they	 all	 are	 meant	 to
eliminate	SPOFs.	The	trick	is	to	find	SPOFs	that	are	not	that	obvious.
While	 it	 sounds	 easy	 to	 eliminate	 singe	 points	 of	 failure,	 in	 practice	 it	 is	 not
always	feasible	or	cost	effective.	Take	for	instance	the	internet	connection	your
organization	 uses	 to	 send	 e-mail.	 Do	 you	 have	 multiple	 internet	 connections
from	your	e-mail	server?	Are	these	connections	running	over	separate	cables	in
the	building?	What	about	outside	of	the	building?	Do	you	use	multiple	internet
providers?	Do	they	share	their	backbones?
	

While	users	should	not	notice	a	 failure,	 the	systems	managers	should!	 I	have
seen	 in	 practice	 that	 a	 failing	 disk	 was	 not	 stopping	 the	 system,	 because	 of
RAID	technology,	but	the	systems	managers	–	lacking	proper	monitoring	tools
–	did	not	notice	it.
But	 when	 the	 second	 disk	 failed,	 both	 the	 users	 and	 the	 system	 managers
noticed	the	downtime!

	
While	 eliminating	 SPOFs	 is	 very	 important,	 it	 is	 good	 to	 realize	 that	 there	 is
always	 something	 shared	 in	 an	 infrastructure	 (like	 the	 building,	 the	 electricity
provider,	 the	metropolitan	area,	or	 the	country).	We	 just	need	 to	know	what	 is
shared	and	if	the	risk	of	sharing	is	acceptable.
To	eliminate	SPOFs,	a	combination	of	redundancy,	failover,	and	fallback	can	be
used.

4.4.1								Redundancy

Redundancy	is	the	duplication	of	critical	components	in	a	single	system,	to	avoid
a	SPOF.	In	IT	infrastructure	components,	redundancy	is	usually	implemented	in
power	supplies	(a	single	component	having	two	power	supplies;	if	one	fails,	the
other	 takes	over),	network	interfaces,	and	SAN	HBAs	(Host	Bus	Adapters)	for
connecting	storage.

4.4.2								Failover
Failover	 is	 the	 (semi)automatic	 switch-over	 to	 a	 standby	 system	 (component),
either	 in	 the	 same	 or	 in	 another	 datacenter,	 upon	 the	 failure	 or	 abnormal
termination	of	the	previously	active	system	(component).
Examples	 are	 Windows	 Server	 failover	 clustering,	 VMware	 High
Availability	and	(on	the	database	level)	Oracle	Real	Application	Cluster	(RAC).
Failover	is	discussed	in	the	chapters	on	the	corresponding	building	blocks.

4.4.3								Fallback
Fallback	is	the	manual	switchover	to	an	identical	standby	computer	system	in	a
different	 location,	 typically	 used	 for	 disaster	 recovery.	 There	 are	 three	 basic
forms	of	fallback	solutions:

·									Hot	site
·									Warm	site
·									Cold	site

4.4.3.1						Hot	site
A	hot	 site	 is	 a	 fully	 configured	 fallback	datacenter,	 fully	 equipped	with	power
and	cooling.	The	applications	are	installed	on	the	servers,	and	data	is	kept	up-to-
date	to	fully	mirror	the	production	system.
Staff	and	operators	should	be	able	to	walk	in	and	begin	full	operations	in	a	very
short	time	(typically	one	or	two	hours).
This	type	of	site	requires	constant	maintenance	of	the	hardware,	software,	data,
and	applications	to	be	sure	the	site	accurately	mirrors	the	state	of	the	production
site	at	all	times.

4.4.3.2						Warm	site

A	warm	site	could	best	be	described	as	a	mix	between	a	hot	site	and	cold	site.
Like	a	hot	site,	the	warm	site	is	a	computer	facility	readily	available	with	power,
cooling,	and	computers,	but	the	applications	may	not	be	installed	or	configured.
But	external	communication	links	and	other	data	elements,	that	commonly	take	a
long	time	to	order	and	install,	will	be	present.
To	start	working	 in	a	warm	site,	applications	and	all	 their	data	will	need	 to	be
restored	from	backup	media	and	tested.	This	typically	takes	a	day.
The	benefit	of	a	warm	site	compared	to	a	hot	site	is	 that	 it	needs	less	attention
when	not	in	use	and	is	much	cheaper.

4.4.3.3						Cold	site
A	 cold	 site	 differs	 from	 the	 other	 two	 in	 that	 it	 is	 ready	 for	 equipment	 to	 be
brought	 in	 during	 an	 emergency,	 but	 no	 computer	 hardware	 is	 available	 at	 the
site.	 The	 cold	 site	 is	 a	 room	with	 power	 and	 cooling	 facilities,	 but	 computers
must	be	brought	on-site	if	needed,	and	communications	links	may	not	be	ready.
Applications	 will	 need	 to	 be	 installed	 and	 current	 data	 fully	 restored	 from
backups.
Although	a	cold	site	provides	minimal	fallback	protection,	if	an	organization	has
very	little	budget	for	a	fallback	site,	a	cold	site	may	be	better	than	nothing.

4.4.4								Business	Continuity
Although	 many	 measures	 can	 be	 taken	 to	 provide	 high	 availability,	 the
availability	of	the	IT	infrastructure	can	never	be	guaranteed	in	all	situations.	In
case	of	a	disaster,	the	infrastructure	could	become	unavailable,	in	some	cases	for
a	longer	period	of	time.
Business	 continuity	 is	 about	 identifying	 threats	 an	 organization	 faces	 and
providing	 an	 effective	 response.	Business	Continuity	Management	 (BCM)	 and
Disaster	 Recovery	 Planning	 (DRP)	 are	 processes	 to	 handle	 the	 effect	 of
disasters.

4.4.4.1						Business	Continuity	Management
BCM	 is	 not	 about	 IT	 alone.	 It	 includes	managing	 business	 processes,	 and	 the
availability	of	people	and	work	places	in	disaster	situations.	It	includes	disaster
recovery,	 business	 recovery,	 crisis	 management,	 incident	 management,

emergency	management,	product	recall,	and	contingency	planning.
A	Business	Continuity	Plan	 (BCP)	describes	 the	measures	 to	 be	 taken	when	 a
critical	 incident	 occurs	 in	 order	 to	 continue	 running	 critical	 operations,	 and	 to
halt	non-critical	processes.	The	BS:25999	norm	describes	guidelines	on	how	to
implement	BCM.

4.4.4.2						Disaster	Recovery	Planning
Disaster	recovery	planning	(DRP)	contains	a	set	of	measures	to	take	in	case	of	a
disaster,	 when	 (parts	 of)	 the	 IT	 infrastructure	 must	 be	 accommodated	 in	 an
alternative	location.
An	IT	disaster	 is	defined	as	an	irreparable	problem	in	a	datacenter,	making	the
datacenter	 unusable.	 In	 general,	 disasters	 can	 be	 classified	 into	 two	 broad
categories.	The	first	is	natural	disasters	such	as	floods,	hurricanes,	tornadoes	or
earthquakes.	 The	 second	 category	 is	 manmade	 disasters,	 including	 hazardous
material	spills,	infrastructure	failure,	or	bio-terrorism.
In	a	survey	performed	under	eighteen	very	experienced	IT	professionals,	I	found
that	a	disaster	as	defined	above	is	very	unlikely	in	western	Europe.	In	Figure	13,
the	estimated	occurrence	of	disasters	is	shown.	Based	on	this	figure,	disasters	in
western	Europe	are	expected	to	happen	no	more	than	once	every	30	years.
	

Figure	13:	Estimated	occurrence	of	disasters

The	 IT	 disaster	 recovery	 standard	 BS:25777	 can	 be	 used	 to	 implement	 DRP.
DRP	 assesses	 the	 risk	 of	 failing	 IT	 systems	 and	 provides	 solutions.	 A	 typical
DRP	solution	is	the	use	of	fallback	facilities	and	having	a	Computer	Emergency
Response	Team	(CERT)	in	place.	A	CERT	is	usually	a	team	of	systems	managers
and	 senior	 management	 that	 decides	 how	 to	 handle	 a	 certain	 crisis	 once	 it

becomes	reality.
The	steps	that	need	to	be	taken	to	resolve	a	disaster	highly	depend	on	the	type	of
disaster.	It	could	be	that	the	organization's	building	is	damaged	or	destroyed	(for
instance	in	case	of	a	fire),	maybe	even	people	got	hurt	or	died.	One	of	the	first
worries	is	of	course	to	save	people.	But	after	that,	procedures	must	be	followed
to	restore	IT	operations	as	soon	as	possible.	A	new	(temporary)	building	might
be	 needed,	 temporary	 staff	 might	 be	 needed,	 and	 new	 equipment	 must	 be
installed	 or	 hired.	 After	 that,	 steps	 must	 be	 taken	 to	 get	 the	 systems	 up	 and
running	 again	 and	 to	 have	 the	data	 restored.	Connections	 to	 the	outside	world
must	be	established	(not	only	to	the	internet,	but	also	to	business	partners)	and
business	processes	must	be	initiated	again.

4.4.4.3						RTO	and	RPO
Two	 important	objectives	of	disaster	 recovery	planning	are	 the	Recovery	Time
Objective	(RTO)	and	the	Recovery	Point	Objective	(RPO).	Figure	14	shows	the
difference.
	

Figure	14:	RTO	and	RPO

The	RTO	is	the	maximum	duration	of	time	within	which	a	business	process	must
be	 restored	 after	 a	disaster,	 in	 order	 to	 avoid	 unacceptable	 consequences	 (like
bankruptcy).	 RTO	 is	 only	 valid	 in	 case	 of	 a	 disaster	 and	 not	 the	 acceptable
downtime	under	normal	circumstances.	Measures	like	failover	and	fallback	must
be	taken	in	order	to	fulfill	the	RTO	requirements.
The	RPO	is	the	point	in	time	to	which	data	must	be	recovered	considering	some
"acceptable	 loss"	 in	 a	 disaster	 situation.	 It	 describes	 the	 amount	 of	 data	 loss	 a
business	is	willing	to	accept	in	case	of	a	disaster,	measured	in	time.	For	instance,
when	each	day	a	backup	is	made	of	all	data,	and	a	disaster	destroys	all	data,	the
maximum	RPO	is	24	hours	–	the	maximum	amount	of	data	lost	between	the	last
backup	and	the	occurrence	of	the	disaster.	To	lower	the	RPO,	a	different	back-up
regime	could	be	implemented.

	

5				

PERFORMANCE	CONCEPTS

5.1													Introduction

Performance	 is	 a	 typical	 hygiene	 factor.	 Nobody	 notices	 a	 highly	 performing
system.	But	when	 a	 system	 is	 not	 performing	well	 enough,	 users	 quickly	 start
complaining.

As	an	example,	according	to	Equation	Research
[8]
:

·									78%	of	website	visitors	have	gone	to	a	competitor’s	site	due	to	poor
performance	during	peak	times
·									88%	are	less	likely	to	return	to	a	site	after	a	poor	user	experience
·									47%	left	with	a	less	positive	perception	of	the	company

In	a	similar	investigation	in	2010,	Akamai	and	PhoCusWright
[9]
	found	that	57%

of	online	shoppers	will	wait	three	seconds	or	less	before	abandoning	the	site	and
65%	of	18-	to	24-year-olds	expect	a	site	to	load	in	two	seconds	or	less.
	

Figure	15:	Performance	in	the	infrastructure	model

5.2													Perceived	performance

Perceived	 performance	 refers	 to	 how	 quickly	 a	 system	appears	 to	 perform	 its
task.	Most	 people	 understand	 that	 running	 a	 very	 complex	 report	 takes	 longer
than	 opening	 an	 e-mail.	 But	 while	 people	 have	 implicit	 expectations	 about
performance,	they	are	seldom	expressed	in	hard	figures.	And	in	general,	people
tend	to	overestimate	their	own	patience.

People	tend	to	value	predictability	in	performance
[10]

.	When	the	performance	of
a	system	is	fluctuating,	they	remember	a	bad	experience,	even	if	the	fluctuation
is	 relatively	 rare.	For	 instance,	 even	when	 the	 system	has	a	bad	 response	 time
only	once	a	week,	in	the	perception	of	the	users	the	system	is	often	slow,	even	if
the	rest	of	the	time	the	system	is	performing	well.	It	is	therefore	important	for	a
system	to	have	a	predictable	and	consistent	performance.
If	a	certain	task	takes	a	long	time,	it	helps	to	inform	the	user	about	how	long	it
will	 take.	When	users	are	aware	they	have	to	wait	for	40	seconds	to	get	a	 task
done,	and	are	 informed	about	 it	 (for	 instance	by	showing	a	progress	bar),	 they
accept	the	waiting	time	more	easily.	On	the	other	hand,	when	the	system	seems
unresponsive	with	no	apparent	reason,	people	get	irritated	very	quickly.
	

Picture	3:	Progress	bar

Increasing	the	real	performance	of	a	system	is	one	way	to	increase	the	perceived
performance.	 But	 when	 real	 performance	 cannot	 be	 increased	 (because	 of
physical	limitations	for	instance),	or	if	the	cost	of	improving	the	performance	is
very	high,	some	techniques	can	be	used	to	increase	perceived	performance.	Two
of	those	techniques	are	splash	screens	and	progress	bars.
	

Picture	4:	Splash	screen	of	a	relatively	slow	starting	application

Of	course,	the	amount	of	time	an	application	takes	to	startup,	or	the	time	it	takes
for	a	set	of	files	to	copy,	is	not	made	any	faster	by	showing	a	splash	screen	or	a
progress	 bar.	 Showing	 these	 screens,	 however,	 satisfies	 a	 typical	 human	 need:
they	provide	visual	feedback	to	inform	the	users	that	the	system	is	handling	their
request	and	is	busy	working	for	them.
Drawing	and	refreshing	a	progress	bar	while	loading	a	file	satisfies	the	user	who
is	waiting,	but	steals	time	from	the	process	that	is	actually	performing	the	work.
Usually	 this	 is	only	a	very	 small	 amount	of	 time	and	 the	benefit	of	 a	 satisfied
user	is	much	higher.
	

A	nice	example	of	handling	perceived	performance	is	implemented	by	YouTube.
Many	of	the	videos	on	YouTube	are	stored	on	slow	storage	systems	–	some	of
them	are	even	stored	on	powered	down	disks.
The	 time	 it	 takes	 to	 spin	 the	 disk	 and	 fetch	 the	 video	 is	 hidden	 by	 showing
commercial	ads	in	the	meantime.

5.3													Performance	during	infrastructure	design

Most	IT	systems	will	respond	to	increased	load	with	some	degree	of	decreasing
performance.	 Designing	 for	 performance	 ensures	 that	 a	 solution	 is	 designed,
implemented,	and	supported	to	meet	the	performance	requirements,	even	under
increasing	load.
When	designing	a	 system,	performance	must	be	considered	not	only	when	 the
system	works	as	expected,	but	also	when	the	system	is	in	a	special	state.	When
for	instance:

·									Parts	have	failed	(like	the	failure	of	a	server	in	a	cluster).
·									The	system	is	in	maintenance	(for	instance	implementing	a	patch	in	an
operating	system).
·									A	backup	is	performed.
·									Batch	jobs	are	running.

Calculating	performance	of	 a	 system	 in	 the	design	phase	 is	 extremely	difficult
and	 very	 unreliable.	 Only	 on	 very	 small	 parts	 of	 the	 system,	with	 predictable
load,	the	performance	can	be	calculated	by	analyzing	each	and	every	step	of	the
implemented	 process.	 Because	 this	 is	 a	 complex,	 time	 consuming,	 and	 costly
process,	usually	other	means	are	used	to	determine	the	performance	of	a	system.
Some	generic	ways	to	do	this	are:

·									Benchmarking
·									Using	vendor	experience
·									Prototyping
·									User	Profiling

5.3.1								Benchmarking
With	 today’s	 complex	 infrastructures	 it	 is	 difficult	 to	 compare	 the
performance	 of	 various	 components	 simply	 by	 looking	 at	 their	 specifications.
Benchmarks	can	be	used	as	an	alternative.
A	benchmark	uses	a	specific	test	program	to	assess	the	relative	performance	of
an	 infrastructure	 component.	 Benchmarking	 is	 used	 to	 assess	 the	 performance
characteristics	of	computer	hardware,	 for	example,	 the	 floating-point	operation

performance	(Floating	Point	Operations	Per	Second	–	FLOPS)	or	the	number	of
instructions	 per	 second	 (Million	 Instructions	 Per	 Second	 –	 MIPS)	 of	 a	 CPU.
Benchmarks	 provide	 a	 method	 of	 comparing	 the	 performance	 of	 various
subsystems	across	different	system	architectures.
Many	benchmark	programs	perform	only	a	 small	 subset	of	 tasks	 that	only	 test
one	small	part	of	an	infrastructure,	like	the	CPU,	memory,	or	disk	drives.	They
measure	the	raw	performance,	not	taking	into	account	the	typical	usage	of	such
components.	Therefore,	benchmarks	are	only	useful	for	comparing	the	raw	speed
of	 parts	 of	 an	 infrastructure	 (like	 the	 speed	 difference	 between	 processors	 or
between	disk	drives).

5.3.2								Using	vendor	experience
The	best	way	to	determine	the	performance	of	a	system	in	the	design	phase	is	to
use	 the	 experience	 of	 vendors.	 Vendors	 of	 applications	 and	 infrastructure
components	like	IBM,	Oracle,	Dell,	SAP,	HP,	HDS,	EMC	or	Microsoft,	all	have
a	 lot	 of	 experience	 running	 their	 products	 in	 various	 infrastructure
configurations.	Usually	they	can	provide	tools,	figures,	and	best	practices	to	help
design	the	appropriate	infrastructure	for	their	products.	Using	their	experience	is
extremely	valuable.	I	strongly	recommend	using	it.

5.3.3								Prototyping
To	measure	 the	performance	of	 a	 system	at	 an	 early	 stage,	 a	 prototype	 can	be
built.	For	 infrastructure	 systems,	 this	 could	be	done	by	hiring	 equipment	 from
suppliers,	by	using	datacenter	capacity	at	a	vendor’s	premise	or	by	using	cloud
computing	 resources.	 I	 strongly	 recommend	 prototyping	 in	 order	 to	 find
potential	performance	issues	as	early	as	possible	in	the	design	process.
Prototyping	should	focus	on	those	parts	of	the	system	that	pose	the	highest	risk.
An	example	from	my	own	experience	is	described	below.
	

In	2002,	I	was	involved	in	a	project	to	create	a	Business	Intelligence	system	for
a	Short	Message	Service	(SMS)	texting	system.
The	system	would	insert	a	copy	of	the	log	records	from	the	SMS	system	into	an
Oracle	database,	and	would	use	that	data	to	create	reports	 for	 the	marketing
department	 of	 the	 telecom	 provider	 (for	 instance	 to	 find	 patterns	 in

demographics,	 like	 “At	 what	 time	 do	 most	 teenagers	 use	 SMS	 to	 text	 their
friends?”).
The	database	was	to	be	used	by	the	helpdesk	of	the	telecom	provider	as	well,	to
answer	questions	of	end	users	(for	instance,	when	a	text	message	was	sent	but
not	delivered,	why	it	was	not	delivered?).
The	 project	 was	 already	 running	 for	 a	 few	 months,	 and	 BI	 specialists	 were
working	on	data	models,	 reporting,	and	user	 interfaces,	when	 I	was	asked	 to
look	at	the	infrastructural	aspects.	One	of	the	first	questions	I	asked	was	how
many	log	records	the	system	was	supposed	to	insert	in	the	Oracle	database	for
processing.	The	answer	was	stunning.
10,000	records	per	second.
The	system	was	supposed	to	insert	10,000	records	in	an	Oracle	database	each
and	every	second	24/7.	Of	course,	the	next	question	was	how	they	were	going
to	do	this.	The	answer	was	also	stunning.
By	inserting	them	in	the	database	one	by	one.
The	 project	 members	 didn’t	 have	 a	 clue	 that	 this	 was	 quite	 a	 challenge
(certainly	 in	2002!).	When	 looking	 for	 information	on	 the	maximum	speed	at
which	 records	 could	 be	 inserted	 in	 an	 Oracle	 database,	 I	 found	 that	 the
maximum	speed	reported	at	that	time	was	around	1,000	inserts	per	second;	10
times	 too	 slow	 for	us.	 I	 suggested	 to	 the	project	 team	 to	build	a	prototype	 to
find	out	how	fast	we	could	actually	 insert	records	 in	our	database	setup.	The
outcome:	 500.	 A	 factor	 twenty	 too	 slow.	 A	 bit	 disappointing	 and	 clearly	 a
project	risk!
We	 eventually	 reached	 an	 acceptable	 solution	 by	 doing	 some	 fancy	 Oracle
tricks.	 After	 using	 the	 same	 prototype	 setup,	 we	 eventually	 reached	 an
acceptable	5,000	 inserts	per	 second	 (it	may	have	been	a	world	 record	at	 the
time).
Apparently,	 the	 project	 needed	 an	 infrastructure	 architect	 to	 show	 them	 the
highest	 risk	 of	 the	 project	 (low	 performance).	 A	 small	 prototype	 setup	 was
enough	 to	 show	 the	 actual	 performance	 of	 the	 system.	 Obviously,	 such	 a
prototype	should	have	been	one	of	the	first	activities	in	the	project.

	
I	 have	 positive	 experiences	 with	 using	 prototypes	 (also	 known	 as	 proof	 of
concepts)	 in	 projects.	 A	 proof	 of	 concept	 should	 be	 used	 to	 test	 the	 most

challenging	parts	of	your	solution	early	in	the	project.	This	is	not	a	natural	thing
to	do.	Most	people	start	with	the	part	of	the	project	they	feel	most	comfortable
with.	The	more	challenging	part	usually	is	addressed	at	a	 later	stage.	But	these
challenging	parts	need	to	be	addressed	anyway,	and	could	lead	to	a	delay	in	the
project	 or	 even	 a	 halt.	A	 proof	 of	 concept	 shows	 this	 at	 a	 time	 not	 too	much
money	is	spent	yet	and	shows	to	both	the	project	team	and	the	customer	that	the
project's	highest	risk	has	been	taken	care	of.

5.3.4								User	profiling
User	profiling	can	be	used	to	predict	the	load	a	new	software	system	will	pose
on	 the	 infrastructure,	 and	 to	be	 able	 to	 create	performance	 test	 scripts	 that	put
representative	load	in	the	infrastructure	before	the	software	is	actually	built.
In	order	to	predict	the	load	on	the	infrastructure,	it	is	important	to	have	a	good
indication	of	the	expected	usage	of	the	system.	This	can	be	done	by	defining	a
number	of	typical	user	groups	of	the	new	system	(also	known	as	personas)	and
by	creating	a	list	of	tasks	they	will	perform	on	the	new	system.
As	 a	 first	 step,	 a	 limited	 list	 of	 personas	must	 be	 defined.	 Representatives	 of
these	persona	groups	must	be	 interviewed	 to	understand	how	they	will	use	 the
new	 system.	 A	 list	 can	 be	 compiled	 with	 the	main	 tasks	 (like	 login,	 start	 the
application,	open	a	document,	create	a	report,	etc.)	 they	will	perform	when	the
system	is	in	operation.
For	 each	of	 these	 tasks,	 estimations	 can	be	made	on	how,	 and	how	often	 they
will	 use	 the	 system’s	 functionality	 to	 perform	 the	 task.	 Based	 on	 these
estimations,	and	the	number	of	users	the	personas	represent,	a	calculation	can	be
made	 on	 how	 often	 each	 system	 task	 is	 used	 in	 a	 given	 time	 frame,	 and	 how
these	 relate	 to	 infrastructure	 load.	 A	 very	 simplified	 example	 is	 given	 in	 the
following	table.

	
Persona Number	of	users	per

persona
System	task Infrastructure	load	as	a	result	of	the	system	task Frequency

Data	entry
officer

100 Start	application Read	100	MB	data	from	SAN Once	a	day

Data	entry
officer

100 Start	application Transport	100	MB	data	to	workstation Once	a	day

Data	entry
officer

100 Enter	new	data Transport	50	KB	data	from	workstation	to	server 40	per
hour

Data	entry
officer

100 Enter	new	data Store	50	KB	data	to	SAN 40	per
hour

Data	entry
officer

100 Change	existing
data

Read	50	KB	data	from	SAN 10	per
hour

Data	entry
officer

100 Change	existing
data

Transport	50	KB	data	from	server	to	workstation 10	per
hour

Data	entry
officer

100 Change	existing
data

Transport	50	KB	data	from	workstation	to	server 10	per
hour

Data	entry
officer

100 Change	existing
data

Store	50	KB	data	to	SAN 10	per
hour

Data	entry
officer

100 Close	application Transport	500	KB	configuration	data	from	workstation	to
server

Once	a	day

Data	entry
officer

100 Close	application Store	500	KB	data	to	SAN Once	a	day

Table	6:	Personas	and	tasks

	
This	leads	to	the	following	profile	for	this	persona	group:
	
Infrastructure	load Per	day Per	second

Data	transport	from	server	to	workstation	(KB) 10,400,000 361.1

Data	transport	from	workstation	to	server	(KB) 2,050,000 71.2

Data	read	from	SAN	(KB) 10,400,000 361.1

Data	written	to	SAN	(KB) 2,050,000 71.2

Table	7:	Infrastructure	tasks

Of	course,	in	real	life,	this	exercise	is	much	more	complicated.	There	might	be
many	personas,	complex	tasks,	 tasks	are	spread	in	time,	or	show	hotspots	(like
starting	the	application	or	logging	in,	which	typically	happens	at	the	start	of	the
day),	 the	 system	 can	 have	 background	 processes	 running,	 and	 the	 load	 on	 the
system	for	a	specific	task	can	be	very	hard	to	predict.
But	as	this	very	simplified	example	shows,	user	profiling	can	help	determining
the	 load	 on	 various	 parts	 of	 the	 infrastructure,	 even	 before	 the	 application
software	is	written.

5.4													Performance	of	a	running	system

5.4.1								Managing	bottlenecks
The	performance	of	a	system	is	based	on	the	performance	of	all	its	components,
and	 the	 interoperability	 of	 various	 components.	 Therefore,	 measuring	 the
performance	 of	 a	 system	 only	 has	 value	 if	 the	 complete	 system	 is	 taken	 into
account.	 For	 instance,	 building	 an	 infrastructure	 with	 really	 fast	 networking
components	has	little	benefits	when	the	used	hard	disks	are	slow.
A	performance	problem	may	be	identified	by	slow	or	unresponsive	systems.	This
usually	 occurs	 because	 of	 high	 system	 loads,	 causing	 some	 component	 of	 the
system	 to	 reach	some	 limit.	This	component	 is	 referred	 to	as	 the	bottleneck	of
the	system,	because	the	performance	or	capacity	of	the	entire	system	is	limited
by	 a	 single	 component,	 slowing	 down	 the	 system	 as	 a	 whole.	 To	 find	 this
bottleneck,	performance	measurements	are	needed.
Only	when	we	know	where	 in	 the	system	 the	bottleneck	occurs,	we	can	 try	 to
improve	performance	by	removing	that	bottleneck.
When	 a	 bottleneck	 is	 removed,	 usually	 another	 bottleneck	 arises.	 In	 fact,	 no
matter	how	much	performance	tuning	is	done,	there	will	always	be	a	bottleneck

somewhere.	 According	 to	 the	 Bottleneck	 law
[11]

,	 every	 system,	 regardless	 of
how	 well	 it	 works,	 has	 at	 least	 one	 constraint	 (a	 bottleneck)	 that	 limits	 its
performance.	 This	 is	 perfectly	 okay	 when	 the	 bottleneck	 does	 not	 negatively
influence	performance	of	the	complete	system	under	the	highest	expected	load.
Benchmarking	 is	 a	 way	 to	 measure	 individual	 components,	 while	 system
performance	tests	measure	the	system	as	a	whole.

5.4.2								Performance	testing
There	are	three	major	types	of	performance	tests	for	testing	complete	systems:

·									Load	testing	-	This	test	shows	how	a	system	performs	under	the
expected	load.	It	is	a	check	to	see	if	the	system	performs	well	under
normal	circumstances.
·									Stress	testing	-	This	test	shows	how	a	system	reacts	when	it	is	under
extreme	load.	Goal	is	to	see	at	what	point	the	system	"breaks"	(the

breakpoint,	as	shown	in	Figure	16)	and	where	it	breaks	(the	bottleneck).
·									Endurance	testing	-	This	test	shows	how	a	system	behaves	when	it	is
used	at	the	expected	load	for	a	long	period	of	time.	Typical	issues	that
arise	are	memory	leaks,	expanding	database	tables,	or	filling	disks,	leading
to	performance	degradation.

	

Figure	16:	Performance	breakpoint

Performance	 testing	 software	 typically	 uses	 one	 or	 more	 servers	 to	 act	 as
injectors	 –	 each	 emulating	 a	 number	 of	 users,	 each	 running	 a	 sequence	 of
interactions	 (recorded	 as	 a	 script,	 or	 as	 a	 series	 of	 scripts	 to	 emulate	 different
types	of	user	interaction).	A	separate	server	acts	as	a	test	conductor,	coordinating
the	 tasks,	 gathering	 metrics	 from	 each	 of	 the	 injectors,	 and	 collecting
performance	data	for	reporting	purposes.
The	 usual	 sequence	 is	 to	 ramp	 up	 the	 load	 –	 starting	with	 a	 small	 number	 of
virtual	users	and	increasing	the	number	over	a	period	of	time	to	some	maximum.
The	test	result	shows	how	the	performance	varies	with	the	load,	given	as	number
of	users	versus	response	time.
Performance	 testing	 should	 be	 done	 in	 a	 production-like	 environment.
Performance	tests	in	a	development	environment	usually	lead	to	results	that	are
highly	unreliable.	To	reduce	cost,	 sometimes	 it	 is	advisable	 to	use	a	 temporary
test	 environment,	 for	 instance	 one	 hired	 from	 your	 hardware	 vendor	 that
comprises	 the	 same	 components	 as	 the	 production	 environment.	 If	 the	 test
environment	has	a	lower	capacity	(the	machines	are	not	as	fast	as	production,	the
disks	are	of	a	different	 type,	etc.)	 the	test	results	cannot	be	relied	upon,	as	 that
they	 are	 not	 comparable	 to	 the	 production	 environment.	 Even	 when

underpowered	 test	 systems	 perform	 well	 enough	 to	 get	 good	 test	 results,	 the
faster	production	system	could	show	performance	issues	that	did	not	occur	in	the
tests.
	

I	have	experienced	such	a	situation:	A	production	system	was	much	faster	than
the	test	system	we	used.	While	the	tests	showed	no	performance	issues	on	the
slower	 test	 system,	 the	 application	 performed	 badly	 on	 the	 faster	 production
systems.
The	reason	was	a	network	protocol	that	could	not	receive	network	packages	as
fast	as	the	production	systems	could	provide	it.

5.5													Performance	patterns

There	 are	 various	 ways	 to	 improve	 the	 performance	 of	 systems.	 This	 section
describes	 caching,	 scaling,	 load	 balancing,	 high	 performance	 clusters,	 grids,
designing	for	performance,	and	capacity	management.
But	 first	 a	 quick	 word	 on	 increasing	 performance	 on	 other	 levels	 than	 the
infrastructure.

5.5.1								Increasing	performance	on	upper	layers
Experience	learns	that	80%	of	the	performance	issues	are	due	to	badly	behaving
applications.	 While	 much	 effort	 can	 be	 put	 in	 optimizing	 infrastructure
performance,	it	 is	good	practice	to	first	check	for	performance	optimizations	in
the	upper	layers.	Database	and	application	tuning	typically	provides	much	more
opportunity	 for	 performance	 increase	 than	 installing	 more	 computing	 power.
Especially	in	the	interfaces	between	applications	and	underlying	databases	much
performance	gain	can	be	achieved.
	

I	have	seen	a	management	report	that	used	to	run	for	45	minutes.	After	tuning
the	 database,	 it	 ran	 in	 3	 minutes,	 just	 by	 optimizing	 some	 SQL	 queries	 and
adding	 a	 database	 index.	 Increasing	 the	 performance	 that	 much	 in	 the
infrastructure	 layer	 instead	 is	 not	 only	 very	 complicated	 but	 also	 very
expensive!
Another	 example	was	 a	 badly	 programmed	application	where	 each	 read	 and
write	to	disk	opened	and	closed	the	file,	instead	of	opening	the	file	at	the	start
of	the	application	and	keeping	it	open	until	the	application	is	stopped.
Since	 opening	 and	 closing	 files	 is	 much	 slower	 than	 the	 actual	 reading	 or
writing	of	data,	just	keeping	files	open	vastly	increased	the	performance	of	the
application!

	
Application	 performance	 can	 benefit	 from	 prioritizing	 tasks,	 working	 from
memory	 as	much	 as	 possible	 (as	 opposed	 to	working	with	 data	 on	 disk),	 and
making	good	use	of	queues	and	schedulers.
Of	course,	bad	behaving	applications	can	only	be	fixed	when	you	have	access	to

the	 application's	 source	 code.	 For	 commercial	 off-the-shelf	 software,	 this	 is
usually	 not	 feasible.	 Tuning	 the	 databases	 used	 by	 the	 application,	 by	 for
instance	 adding	 indexes,	 can	 be	 an	 opportunity	 to	 significantly	 improve
performance.	 Fortunately,	 today’s	 databases	 use	 automated	 query	 optimizing,
where	the	performance	of	often	used	queries	automatically	gets	better	over	time.
In	 the	 current	 era	 of	 multi-core	 processors,	 it	 is	 important	 for	 application
developers	 to	 understand	 how	 applications	 work	 on	 a	 multithreaded	 system.
Unfortunately,	this	is	not	always	the	case	and	many	applications	run	on	only	one
of	the	available	cores	of	the	CPU.
	

Intel	introduced	circuitry	in	its	latest	processors	that	can	boost	the	clock	speed
of	one	of	the	cores	when	a	running	single	threaded	application	is	detected.	This
boost	 of	 the	 clock	 speed	 would	 normally	 introduce	 too	 much	 heat	 in	 the
processor,	 but	 since	 the	other	 cores	are	not	 performing	any	work	 in	a	 single
threaded	application,	the	overall	temperature	of	the	CPU	stays	within	range.

5.5.2								Caching
Caching	improves	performance	by	retaining	frequently	used	data	in	high	speed
memory,	reducing	access	times	to	data.
Some	sources	that	provide	data	are	slower	than	others.	The	approximate	speed	of
retrieving	data	from	various	sources	is	shown	in	Table	8.
	
Component Time	it	takes	to	fetch	1	MB	of	data	(ms)

Network,	1	Gbit/s 675

Hard	disk,	15k	rpm,	4	KB	disk	blocks
[12] 105

Main	memory	DDR3	RAM
[13] 0.2

CPU	L1	cache
[14] 0.016

Table	8:	Approximate	speeds	of	fetching	data

Especially	in	situations	where	retrieving	data	takes	relatively	long	(for	instance
reading	 from	 hard	 disk	 or	 from	 the	 network),	 caching	 in	 memory	 can
significantly	improve	performance.

5.5.2.1						Disk	caching
Disks	are	mechanical	devices	that	are	slow	by	nature.	To	speed	up	the	reading	of
data	from	disk,	disk	drives	contain	cache	memory.	This	cache	memory	stores	all
data	recently	read	from	disk,	and	some	of	the	disk	blocks	following	the	recently
read	disk	blocks.	When	 the	data	 is	 read	again,	or	 (more	 likely)	 the	data	of	 the
following	disk	block	is	needed,	it	is	fetched	from	high	speed	cache	memory.
Disk	caching	can	be	 implemented	 in	 the	storage	component	 itself	 (for	 instance
cache	used	on	 the	physical	disks	or	cache	 implemented	 in	 the	disk	controller),
but	also	in	the	operating	system.	The	general	rule	of	thumb	that	adding	memory
in	servers	improves	performance	is	due	to	the	fact	that	all	non-used	memory	in
operating	systems	is	used	for	disk	cache.	Over	time,	all	memory	gets	filled	with
previously	 stored	 disk	 requests	 and	 prefetched	 disk	 blocks,	 speeding	 up
applications.

5.5.3								Web	proxies
Another	example	of	caching	is	 the	use	of	web	proxies.	When	users	browse	the
internet,	instead	of	fetching	all	requested	data	from	the	internet	each	time,	earlier
accessed	data	can	be	cached	in	a	proxy	server	and	fetched	from	there.	This	has
two	benefits:	users	get	their	data	faster	than	when	it	would	be	retrieved	from	a
distant	 web	 server,	 and	 all	 other	 users	 are	 provided	 more	 bandwidth	 to	 the
internet,	as	the	data	did	not	have	to	be	downloaded	again.

5.5.4								Operational	data	store
An	 Operational	 Data	 Store	 (ODS)	 is	 a	 read-only	 replica	 of	 a	 part	 of	 a
database	for	a	specific	use.	Instead	of	accessing	the	main	database	for	retrieving
information,	 often	 used	 information	 is	 retrieved	 from	 a	 separate	 small	 ODS
database,	not	degrading	the	performance	of	the	main	database.
	

A	good	 example	 of	 this	 is	 a	website	 of	 a	 bank.	Most	 users	want	 to	 see	 their
actual	 balance	 when	 they	 login	 (and	 maybe	 the	 last	 10	 mutations	 of	 their
balance).	When	every	balance	change	is	not	only	stored	in	the	main	database
of	the	bank,	but	also	in	a	small	ODS	database,	the	website	only	needs	to	access
the	ODS	 to	 provide	 users	with	 the	 data	 they	most	 likely	 need.	 This	 not	 only
speeds	 up	 the	 user	 experience,	 but	 also	 decreases	 the	 load	 on	 the	 main

database.

5.5.5								Front-end	servers
In	web	facing	environments	storing	most	accessed	(parts	of)	pages	on	 the	web
front-end	server	(like	the	static	pictures	used	on	the	landing	page)	significantly
lowers	the	amount	of	traffic	to	back-end	systems.	Reverse-proxies	can	be	used	to
automatically	cache	most	requested	data	as	well.

5.5.6								In-memory	databases
In	 special	 circumstances,	 entire	 databases	 can	 be	 run	 from	memory	 instead	 of
from	 disk.	 These	 so-called	 in-memory	 databases	 are	 used	 in	 situations	 where
performance	 is	 crucial	 (like	 in	 real-time	 SCADA	 systems).	 Of	 course,	 special
arrangements	 must	 be	 made	 to	 ensure	 data	 is	 not	 lost	 when	 a	 power	 failure
occurs.
As	an	example,	in	2011	SAP	AG	introduced	HANA,	an	in-memory	database	for
SAP	systems.

5.5.7								Scalability
Scalability	 indicates	 the	 ease	 in	 with	 which	 a	 system	 can	 be	 modified,	 or
components	 can	 be	 added,	 to	 handle	 increasing	 load.	 A	 system	 whose
performance	 improves	 after	 adding	 hardware,	 proportionally	 to	 the	 capacity
added,	is	considered	to	scale	well.
In	 general,	 there	 are	 two	ways	 to	 increase	 the	 scalability	 of	 a	 system:	 vertical
scaling	and	horizontal	scaling.	Vertical	scaling	(also	known	as	scale	up)	means
adding	 resources	 to	a	 single	component	 in	a	 system,	 typically	adding	CPUs	or
memory	to	a	server.	While	vertical	scaling	is	easy	to	do,	there	is	always	a	limit	to
how	 far	 a	 system	 can	 be	 expanded.	 There	 is	 only	 so	much	memory	 a	 system
board	supports	and	the	number	of	CPUs	is	also	limited.
An	alternative	 to	vertical	 scaling	 is	horizontal	 scaling.	Horizontal	 scaling	 (also
known	as	scale	out)	means	adding	more	components	to	the	infrastructure,	such
as	adding	a	new	web	server	in	a	pool	of	web	servers,	or	adding	disks	in	a	storage
system.	 As	 a	 drawback,	 larger	 numbers	 of	 components	 also	 mean	 increased
management	 complexity,	 as	well	 as	 a	more	 complex	 programming	model	 and
issues	 such	 as	 throughput	 and	 latency	 between	 nodes.	 But	 while	 horizontal

scaling	is	more	complex	to	implement	than	vertical	scaling	it	pays	off	in	the	long
run,	as	it	is	possible	to	scale	up	much	more	since	there	is	a	much	higher	upper
limit.
Horizontal	scalability	works	best	when	the	system	is	partitioned.	This	way,	parts
of	 the	system	can	scale	 independently	of	other	parts	of	 the	system.	Below	is	a
typical	example	of	a	partitioned	system.
	

Figure	17:	Partitioned	system

When	more	load	is	placed	on	the	system,	somewhere	in	the	system	a	bottleneck
will	occur.	At	that	point	additional	infrastructure	components	are	added	to	cope
with	the	load.	In	Figure	18,	additional	web	servers	are	implemented.
	

Figure	18:	Added	web	servers

When	needed,	the	system	can	be	expanded	further,	either	in	the	same	tier,	or	on
another	tier,	as	shown	in	Figure	19.
	

Figure	19:	Added	database	servers

Doubling	 the	 number	 of	 components	 does	 not	 necessarily	 double	 the
performance.	Because	of	overhead	(for	instance,	the	extra	scheduling	needed	in

multiprocessor	 systems,	 or	 buffering	 and	 link	 state	 issues	 in	 network
connections)	 doubling	 components	 usually	 only	 provides	 about	 70%	 to	 80%
performance	increase.	Adding	more	components	leads	to	even	more	diminishing
returns.

5.5.8								Load	balancing
To	make	 optimal	 use	 of	 a	 horizontally	 scaled	 system,	 typically	 some	 form	 of
load	balancing	is	needed	to	spread	the	load	over	various	machines.
Load	 balancing	 uses	 multiple	 components	 –	 usually	 servers	 –	 that	 perform
identical	tasks.	Examples	would	be	a	web	server	farm,	a	mail	server	farm,	or	an
FTP	(File	Transfer	Protocol)	server	farm.	A	load	balancer	automatically	redirects
tasks	to	members	in	the	server	farm.
	

Figure	20:	Load	balancer

The	load	balancer	checks	the	current	load	on	each	server	in	the	farm	and	sends
incoming	 requests	 to	 the	 least	 busy	 server.	More	 advanced	 load	 balancers	 can
spread	 the	 load	 based	 on	 the	 number	 of	 connections	 a	 server	 has,	 or	 the
measured	response	time	of	a	server.	A	load	balancer	also	increases	availability:
when	a	server	in	the	server	farm	is	unavailable,	the	load	balancer	notices	this	and
ensures	 no	 requests	 are	 sent	 to	 the	 unavailable	 server	 until	 it	 is	 back	 online
again.	 Of	 course,	 the	 availability	 of	 the	 load	 balancer	 itself	 becomes	 very
important	 in	 this	 setting	 and	 load	 balancers	 are	 typically	 setup	 in	 a	 failover
configuration.
It	 is	 also	 important	 to	 realize	 that	 server	 load	 balancing	 introduces	 new
challenges.	 The	 servers	 must	 be	 functionally	 identical	 to	 each	 other.	 For

instance,	each	web	server	in	a	load	balancing	situation	must	be	able	to	provide
the	same	 information.	Furthermore,	 the	application	running	on	a	 load	balanced
system	must	be	able	to	cope	with	the	fact	that	each	request	can	be	handled	by	a
different	 server.	 The	 application	 (or	 at	 least	 the	 load	 balanced	 parts	 of	 the
application)	must	be	stateless	for	this	to	work.
A	 typical	 example	 is	 a	 web	 application	 asking	 the	 user	 for	 a	 username	 and
password.	When	the	request	is	sent	from	web	server	number	one,	and	the	reply
(the	 filled-in	 form)	 is	 sent	 to	web	server	number	 two	by	 the	 load	balancer,	 the
web	 application	 must	 be	 able	 to	 handle	 this.	 If	 this	 is	 not	 the	 case,	 the	 load
balancer	must	be	made	more	 intelligent;	being	able	 to	contain	 the	states	of	 the
application.
Using	 for	 instance	 a	 session	 directory	 or	 affinity	 settings,	 the	 load	 balancing
mechanism	 can	 arrange	 that	 a	 user’s	 session	 is	 always	 connected	 to	 the	 same
server.	 Of	 course,	 if	 a	 server	 in	 the	 server	 farm	 goes	 down,	 its	 per-session
information	becomes	inaccessible,	and	sessions	depending	on	it	are	lost.
In	 the	 network	 realm,	 load	 balancing	 is	 done	 to	 spread	 network	 load	 over
multiple	network	connections.	For	instance,	most	network	switches	support	port
trunking	 (also	 known	 as	 Fast	 Ethernet	 Channel	 or	 bonding).	 In	 such	 a
configuration,	 multiple	 Ethernet	 connections	 are	 combined	 to	 get	 a	 virtual
Ethernet	connection	providing	higher	throughput.	For	instance,	a	network	switch
can	 trunk	 three	 1	 Gbit/s	 Ethernet	 connections	 to	 one	 (virtual)	 3	 Gbit/s
connection.	The	load	is	then	balanced	over	the	three	connections	by	the	network
switch.
In	 storage	 systems,	 multiple	 connections	 are	 also	 common.	 Not	 only	 for
increasing	the	bandwidth	of	the	connections,	but	also	to	increase	availability.

5.5.9								High	performance	clusters
High	 performance	 clusters	 provide	 a	 vast	 amount	 of	 computing	 power	 by
combining	many	 computer	 systems.	Usually	 a	 large	 number	 of	 cheap	 off	 the-
shelf	servers	are	used,	connected	by	a	high-speed	network	like	gigabit	Ethernet
or	InfiniBand.	Such	a	combination	of	relatively	small	computers	can	create	one
large	supercomputer.
High	 performance	 clusters	 are	 used	 for	 calculation-intensive	 systems	 like
weather	forecasts,	geological,	nuclear,	or	pharmaceutical	research.	The	challenge
is	to	have	all	systems	doing	useful	calculations	all	of	the	time,	without	wasting

too	many	resources	and	 too	much	 time	communicating	 to	other	systems	 in	 the
cluster.
On	 www.top500.org	 a	 list	 of	 the	 world's	 500	 most	 powerful	 computers	 is
published.	Most	of	these	systems	are	in	fact	high	performance	clusters,	based	on
a	 large	number	of	 smaller	 systems.	Many	of	 these	 systems	 run	Linux.	A	well-
known	high	performance	open	source	project	for	Linux	is	Beowulf.

5.5.10				Grid	Computing
A	computer	grid	 is	a	high	performance	cluster	 that	consists	of	systems	that	are
spread	 geographically.	 The	 limited	 bandwidth	 is	 the	 bottleneck	 when
architecting	grid	systems.	Therefore,	grids	can	only	be	used	for	specific	tasks.
The	 best	 known	 (and	 relatively	 old)	 example	 of	 a	 grid	 is	 the	 SETI@HOME
project	 in	 which	 a	 large	 number	 of	 PCs	 of	 internet	 users	 are	 searching	 for
extraterrestrial	life.	These	types	of	grids	utilize	the	unused	computer	time	of	PCs
(for	 instance	 when	 the	 computer	 is	 displaying	 its	 screensaver).	 Tasks	 are
distributed	through	the	internet	and	are	calculated	on	the	idle	PCs.	When	a	piece
of	calculation	is	finished,	the	result	is	sent	back	via	the	internet	and	a	new	task	is
retrieved.	A	more	serious	example	of	a	grid	 is	a	project	 that	 is	 searching	 for	a
cure	for	cancer	and	a	project	 to	perform	the	analyses	of	 the	human	DNA.	And
the	LHC	Computing	Grid	consists	of	140	computing	centers	in	35	countries	that
was	 designed	 by	CERN	 to	 handle	 the	 significant	 volume	 of	 data	 produced	 by
Large	Hadron	Collider	(LHC)	experiments.
Broker	 firms	 exist	 for	 commercial	 exploitation	 of	 grids.	 People	 and
organizations	 can	 get	 paid	 for	 contributing	 computer	 time,	 and	 other
organizations	 pay	 money	 to	 get	 computer	 time	 on	 the	 grid.	 This	 way
organizations	can	have	access	 to	a	virtual	 supercomputer	 for	a	 relatively	 small
amount	of	money,	and	just	for	the	time	they	need	it.
An	 important	aspect	of	a	grid	 is	 its	 security.	PCs	 running	calculations	must	be
sufficiently	 secured	 against	 illegal	 use	 by	 third	 parties.	 Also,	 it	 should	 not	 be
possible	to	alter	data	that	is	sent	through	the	grid	and	the	grid	infrastructure	must
ensure	the	PCs	calculate	their	tasks	as	expected.	One	way	of	handling	this	is	to
have	each	calculation	executed	twice,	by	two	different	PCs	in	the	grid,	and	check
for	mismatches.

5.5.11				Design	for	use

Special	performance	measures	must	be	taken	when	an	infrastructure	is	to	support
performance	critical	applications.	Here	are	some	tips:

·									In	general,	it	must	be	known	what	the	system	will	be	used	for.	A	large
data	warehouse	needs	a	different	infrastructure	design	than	an	online
transaction	processing	system	or	a	web	application.	Interactive	systems
have	other	performance	characteristics	and	need	different	infrastructure
solutions	than	batch	systems	or	systems	that	must	support	high	peak
demands.
·									In	some	cases,	special	products	must	be	used	for	certain	systems.
Real-time	operating	systems,	in-memory	databases,	or	even	specially
designed	file	systems	can	be	a	solution	for	special	performance	sensitive
systems.
·									Most	vendors	of	databases,	web	servers,	operating	systems,	and
storage	or	network	solutions	have	standard	implementation	plans	that	are
proven	in	practice.	In	general,	try	to	follow	the	vendor's	recommended
implementation.	It	is	also	always	a	good	idea	to	have	the	vendors	check
the	design	you	created.	Not	only	can	they	approve	your	design,	they	can
also	suggest	improvements	that	you	might	not	have	considered.	I	have
good	experiences	with	having	vendors	check	my	designs!
·									When	possible,	try	to	spread	the	load	of	the	system	over	the	available
time.	Maybe	it	is	not	such	a	great	idea	to	have	a	complex	batch	job	running
at	09:00	AM	when	all	people	get	to	work	and	start-up	their	PCs.	Making
certain	that	a	backup	job	is	not	scheduled	when	some	critical	report	is
compiled	is	also	a	good	idea.
·									To	increase	performance,	sometimes	it	is	possible	to	move	rarely	used
data	from	the	main	systems	to	other	systems.	Large	databases	are	slower
than	small	ones.	Moving	old	data	to	a	large	historical	database	can	speed
up	a	smaller	sized	database.

5.5.12				Capacity	management
To	 guarantee	 high	 performance	 of	 a	 system	 in	 the	 long	 term,	 capacity
management	must	be	implemented.	With	capacity	management,	the	performance
of	 the	 system	 is	monitored	 on	 a	 continuous	 base,	 to	 ensure	 performance	 stays
within	 acceptable	 limits.	 Trend	 analyses	 can	 be	 used	 to	 predict	 performance
degradation	before	users	start	to	notice	it.	This	enables	systems	managers	to	take

action	 to	 ensure	 sustained	high	performance.	And	 regular	 communication	with
the	 business	 allows	 systems	managers	 to	 anticipate	 on	 business	 changes	 (like
forthcoming	marketing	campaigns).
	

6				

SECURITY	CONCEPTS

6.1													Introduction

Creating	secure	IT	systems	is	more	important	than	ever.	Year	after	year	IT	gets
more	complex,	more	business	processes	rely	on	it,	and	attacks	are	getting	more
sophisticated.
In	 general,	 information	 systems	 security	 can	 be	 defined	 as	 the	 combination	 of
availability,	 confidentiality,	 and	 integrity,	 focused	 on	 the	 recognition	 and
resistance	of	attacks.
	

Figure	21:	Security	in	the	infrastructure	model

Computer	crimes	use	some	form	of	gaining	control	over	–	in	the	context	of	this
book	 –	 IT	 infrastructures.	 There	 are	 various	 reasons	 for	 committing	 crime
against	IT	infrastructures:

·									Personal	exposure	and	prestige.	In	the	past,	the	hacker	community
was	very	keen	on	getting	personal	or	group	exposure	by	hacking	into	a
secured	IT	infrastructure.	When	hackers	proved	that	they	could	enter	a
secured	system	and	made	it	public,	they	gained	respect	from	other	hackers.
While	nowadays	most	hacking	activity	is	done	for	other	reasons,	there	are
still	large	communities	of	hackers	that	enjoy	the	game.
·									Creating	damage	to	organizations	to	create	bad	publicity.	For
instance,	by	defacing	websites,	bringing	down	systems	or	websites,	or
making	internal	documents	public.

·									Financial	gain.	For	instance,	by	holding	data	hostage	and	asking	for
ransom,	stealing	credit	card	data,	changing	account	data	in	bank	systems,
or	stealing	passwords	of	customers	and	ordering	goods	on	their	behalf.
·									Terrorism.	The	main	purpose	of	terrorism	is	creating	fear	in	a	society.
A	well-planned	attack	targeted	at	certain	computer	systems,	like	the
computer	system	that	manages	the	water	supply	or	a	nuclear	power	plant,
could	result	in	chaos	and	fear	amongst	citizens.
·									Warfare.	Certain	governments	use	hacking	practices	as	acts	of	war.
Since	economies	and	societies	today	largely	depend	on	the	IT
infrastructures,	bringing	important	IT	systems	down	in	a	certain	country
could	cause	the	economy	to	collapse.	Bringing	down	the	internet	access	of
a	country	for	example	means:	no	access	to	social	media,	no	e-mails,	no
web	shops,	no	stock	trading,	no	search	engines,	etc.

In	 this	 chapter,	 security	 is	 explained	 from	 a	 risk	 management	 perspective.
Security	 patterns	 like	 identity	 and	 access	 management,	 layered	 security,	 and
cryptography	are	explained	as	well.

6.2													Risk	management

Managing	 security	 is	 all	 about	managing	 risks.	 If	 there	 are	 no	 risks,	we	 don't
need	 any	 security	 controls.	 The	 effort	 we	 put	 in	 securing	 the	 infrastructure
should	therefore	be	directly	related	to	the	risk	at	hand.	Risk	management	is	the
process	of	determining	an	acceptable	level	of	risk,	assessing	the	current	level	of
risk,	 taking	 steps	 to	 reduce	 risk	 to	 the	 acceptable	 level,	 and	 maintaining	 that
level.
A	 risk	 list	 can	 be	 used	 to	 quantify	 risks.	 Such	 a	 list	 can	 be	 compiled	 in	 a
Business	Impact	Analysis	(BIA)	workshop	with	all	relevant	stakeholders.	A	risk
list	contains	the	following	parts:

·									Asset	name:	the	component	that	needs	to	be	protected.
·									Vulnerability:	a	weakness,	process	or	physical	exposure	that	makes
the	asset	susceptible	to	exploits.
·									Exploit:	a	way	to	use	one	or	more	vulnerabilities	to	attack	an	asset.
·									Probability:	an	estimation	of	the	likelihood	of	the	occurrence	of	an
exploit	(how	often	do	we	estimate	this	will	happen).	For	example:

o				5:	Frequent
o				4:	Likely
o				3:	Occasional
o				2:	Seldom
o				1:	Unlikely

·									Impact:	the	severity	of	the	damage	when	the	vulnerability	is
exploited.	For	example:

o				4:	Catastrophic:	Complete	mission	failure,	death,	bankruptcy
o				3:	Critical:	Major	mission	degradation,	major	system	damage,
exposure	of	sensitive	data
o				2:	Moderate:	Minor	mission	degradation,	minor	system	damage,
exposure	of	data
o				1:	Negligible:	Some	mission	degradation

·						Risk	=	Probability	 	Impact.

	
A	typical	risk	list	would	look	like	this	(P=Probability;	I=Impact;	R=Risk):
	
Asset Vulnerability Exploit P I R

Laptop Laptop	gets	stolen Sensitive	data	on	hard	disk	is	exposed 5 3 15

Printer Printer	hard	disk	contains	sensitive
data

Repair	man	could	swap	hard	disk	and	the	hard	disk	could	get	on	the
market	with	sensitive	data

1 3 3

Work-	stations Virus	attack	unknown	to	virus
scanner

Unavailability	or	disclosure	of	data 2 3 6

SAN	storage
system

Data	protection	via	LUN	masking
contains	error

Data	could	get	exposed	to	wrong	server 1 2 2

Table	9:	Example	of	part	of	a	risk	list

Controls	mitigate	these	risks.	For	example,	a	control	for	the	risk	of	laptops	with
sensitive	 data	 getting	 stolen	 is	 to	 encrypt	 the	 hard	 disk	 to	 make	 the	 data
unreadable	for	anyone	but	the	owner.	Controls	can	be	designed	and	implemented
based	on	the	identified	severity	of	the	risk	in	the	risk	list.

6.2.1								Risk	response
For	 each	 risk,	 the	 risk	 response	must	 be	decided	upon	by	 senior	management.
There	four	risk	responses:

·									Acceptance	of	the	risk	–	for	instance,	the	risk	could	be	accepted	if	the
risk	is	very	unlikely	to	happen	and	the	costs	of	the	damage	imposed	by
exploitation	of	the	risk	is	low	and	the	cost	of	mitigating	the	risk	is	high.
·									Avoidance	of	the	risk	–	do	not	perform	actions	that	impose	risk	(for
instance,	don’t	host	your	own	website	or	e-mail	server).
·									Transfer	of	the	risk	–	for	instance	transfer	the	risk	to	an	insurance
company	(if	it	happens,	the	insurance	company	will	pay	for	the	damage).
·									Mitigation	of	the	risk	and	accepting	the	residual	risk.	Some	ways	of
doing	this	are:

o				Design	for	minimum	risk.	Design	the	system	to	eliminate	as	much
vulnerabilities	as	possible.	This	can	for	instance	be	done	using
source	code	analysis	in	software	development	and	by	running	critical
systems	stand-alone	instead	of	connected	to	other	systems.

o				Incorporate	safety	devices.	Reduce	risk	using	devices	like
firewalls	and	hardened	screened	routers.	These	devices	usually	don’t
affect	the	probability,	but	reduce	the	severity	of	an	exploit:	an
automobile	seat	belt	doesn’t	prevent	a	collision,	but	reduces	the
severity	of	injuries.	A	firewall	does	not	prevent	attacks,	but	reduces
the	chance	of	an	attacker	connecting	to	sensitive	parts	of	the
network.
o				Provide	warning	devices.	Warning	devices	may	be	used	to	detect
an	undesirable	condition,	and	to	alert	staff,	or	take	automated
actions.	An	example	is	an	Intrusion	Detection	System	that	alerts
systems	managers	when	a	system	is	under	attack	(see	section	8.6.2
for	more	information	on	IDSs).
o				Implement	training	and	procedures.	These	can	mitigate	risks	that
are	people-bound	like	social	engineering	attacks.

6.2.2								Exploits
Information	can	be	 stolen	 in	many	ways.	Here	 are	 some	of	 the	more	 common
exploits	related	to	infrastructure:

·									Key	loggers	can	be	maliciously	installed	on	end	user	devices.	They
can	send	sensitive	information	like	passwords	to	third	parties.
·									Network	sniffers	can	show	network	packages	that	contain	sensitive
information	or	replay	a	logon	sequence	by	which	a	hacker	can	successfully
authenticate	to	an	IT	system.
·									Data	on	backup	tapes	outside	of	the	building	can	get	into	wrong	hands.
·									PCs	or	disks	that	are	disposed	of	can	get	into	the	wrong	hands.
·									Corrupt	or	dissatisfied	staff	can	copy	information.
·									End	users	are	led	to	a	malicious	website	that	steals	information	(also
known	as	phishing).

6.2.3								Security	controls
CIA	 is	 short	 for	 the	 three	core	goals	of	 security:	Confidentiality,	 Integrity,	 and
Availability	of	information.	Security	controls	must	address	at	least	one	of	these.

·									Confidentiality	prevents	the	intentional	or	unintentional	unauthorized

disclosure	of	data.
·									Integrity	ensures	that:

o				No	modifications	to	data	are	made	by	unauthorized	staff	or
processes.
o				Unauthorized	modifications	to	data	are	not	made	by	authorized
staff	or	processes.
o				Data	is	consistent.

·									Availability	ensures	the	reliable	and	timely	access	to	data	or	IT
resources	by	the	appropriate	staff.

While	 availability	 is	 considered	 part	 of	 security,	 for	 IT	 infrastructures
availability	 is	 a	 non-functional	 attribute	 in	 its	 own	 right.	 In	 this	 chapter,
availability	 is	 only	 considered	 where	 security	 is	 involved.	 Availability	 of	 IT
infrastructure	is	explained	in	much	more	detail	in	chapter	4.
Information	 can	 be	 classified	 based	 on	CIA	 levels,	 typically	 between	 one	 and
five.	An	example	of	a	set	of	CIA	levels	is	given	in	the	following	tables.
	
Confidentiality	Level Description

1 Public	information

2 Information	for	internal	use	only

3 Information	for	internal	use	by	restricted	group

4 Secret:	reputational	damage	if	information	is	made	public

5 Top	secret:	damage	to	organization	or	society	if	information	is	made	public

Table	10:	Confidentiality	levels

	
	
Integrity	Level Description

1 Integrity	of	information	is	of	no	importance

2 Errors	in	information	are	allowed

3 Only	incidental	errors	in	information	are	allowed

4 No	errors	are	allowed,	leads	to	reputational	damage

5 No	errors	are	allowed,	leads	to	damage	to	organization	or	society

Table	11:	Integrity	levels

	
Availability	Level Description

1 No	requirements	on	availability

2 Some	unavailability	is	allowed	during	office	hours

3 Some	unavailability	is	allowed	only	outside	of	office	hours

4 No	unavailability	is	allowed,	24/7/365	availability,	risk	for	reputational	damage

5 No	unavailability	is	allowed	risk	for	damage	to	organization	or	society

Table	12:	Availability	levels

For	each	application	or	data	set	the	CIA	classification	should	be	determined.	For
instance,	for	a	mail	server	the	CIA	criteria	can	be	classified	as:

·									C	=	3:	Information	for	internal	use	by	restricted	group.
·									I	=	3:	Only	incidental	errors	in	information	are	allowed.
·									A	=	3:	Some	unavailability	is	allowed	only	outside	of	office	hours.

Based	on	the	CIA	classification	and	the	risk	list,	controls	can	be	implemented	to
mitigate	 the	 identified	 risks.	A	 sample	 list	 of	CIA	based	 infrastructure	 specific
controls	is	provided	next.

	
	
Control C1 C2 C3 C4 C5 	 I1 I2 I3 I4 I5 	 A1 A2 A3 A4 A5

Standard	security	policy X X X X X 	 X X X X X 	 X X X X X

Central	archiving	of	documents 	 X X X X 	 	 	 	 	 	 	 	 	 	 	 	

User	based	password	protection 	 X X X X 	 	 X X X X 	 	 X X X X

Anti-virus	measures 	 X X X X 	 	 X X X X 	 	 X X X X

Classification	of	information 	 	 X X X 	 	 	 X X X 	 	 	 	 	 	

Strong	authentication 	 	 X X X 	 	 	 X X X 	 	 	 X X X

Restricted	remote	access 	 	 X X X 	 	 	 X X X 	 	 	 X X X

Internal	firewalls 	 	 X X X 	 	 	 X X X 	 	 	 X X X

Screensaver	lock	when	leaving
workplace

	 	 X X X 	 	 	 X X X 	 	 	 	 	 	

Webmail	not	allowed 	 	 X X X 	 	 	 	 	 	 	 	 	 	 	 	

Logging	of	authentication	and
authorization	requests

	 	 X X X 	 	 	 X X X 	 	 	 X X X

Secured	datacenter	and	systems
management	room

	 	 	 X X 	 	 	 	 X X 	 	 	 	 X X

Encrypted	laptops 	 	 	 X X 	 	 	 	 	 	 	 	 	 	 	 	

Security	key	management 	 	 	 X X 	 	 	 	 	 	 	 	 	 	 	 	

No	single	sign	on	based	on	operating
system	credentials

	 	 	 X X 	 	 	 	 X X 	 	 	 	 	 	

Two	factor	authentication 	 	 	 X X 	 	 	 	 X X 	 	 	 	 	 	

Specific	passwords	for	critical	systems 	 	 	 X X 	 	 	 	 X X 	 	 	 	 X X

Encrypted	network	communication 	 	 	 X X 	 	 	 	 	 	 	 	 	 	 	 	

Digital	signatures 	 	 	 X X 	 	 	 	 X X 	 	 	 	 	 	

No	remote	access	for	third	parties 	 	 	 X X 	 	 	 	 X X 	 	 	 	 X X

Penetration	hack-tests 	 	 	 X X 	 	 	 	 X X 	 	 	 	 X X

IDS	systems 	 	 	 X X 	 	 	 	 X X 	 	 	 	 X X

Internet	access	limited	to	specific	sites 	 	 	 X X 	 	 	 	 X X 	 	 	 	 X X

Encrypted	e-mail 	 	 	 X X 	 	 	 	 	 	 	 	 	 	 	 	

Printing	only	allowed	in	specific	closed
rooms

	 	 	 X X 	 	 	 	 	 	 	 	 	 	 	 	

Systems	managers	cannot	read
unencrypted	data

	 	 	 X X 	 	 	 	 	 	 	 	 	 	 	 	

Testing	only	allowed	with	test	data,	not
production	data

	 	 	 X X 	 	 	 	 	 	 	 	 	 	 	 	

Double	check	on	authorization	requests
(4	eyes	principle)

	 	 	 X X 	 	 	 	 X X 	 	 	 	 	 	

Staff	screening 	 	 	 	 X 	 	 	 	 	 X 	 	 	 	 	 X

No	remote	access 	 	 	 	 X 	 	 	 	 	 X 	 	 	 	 	 X

Encryption	based	on	specific	hardware 	 	 	 	 X 	 	 	 	 	 X 	 	 	 	 	 	

Network	physically	separated	from	other
environments

	 	 	 	 X 	 	 	 	 	 X 	 	 	 	 	 X

No	internet	access 	 	 	 	 X 	 	 	 	 	 X 	 	 	 	 	 X

Redundant	local	systems 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X X

Systems	management	with	on	demand
stand-	by	24/7/365	support

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X X

Dual	datacenter 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X

On-going	and	online	backup 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X

Systems	management	with	on-site
24/7/365	support

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 X

Table	13:	Example	of	CIA	based	controls

Using	such	a	list	makes	it	clear	to	all	stakeholders	(designers,	project	managers,
systems	managers,	and	auditors)	how	risks	are	controlled.	Auditors	can	use	the
list	 to	check	 if	all	controls	are	 implemented,	and	project	managers	can	use	 the
list	to	calculate	the	effort	needed	to	make	a	system	secure.	The	shown	list	is	just
an	example.	In	every	situation,	tailored	controls	must	be	considered.

6.2.4								Attack	vectors
Attacks	 on	 the	 infrastructure	 can	 be	 executed	 using	malicious	 code,	 denial	 of
service	attacks,	social	engineering,	and	phishing.

6.2.4.1						Malicious	code
Malicious	 code	 are	 applications	 that,	 when	 activated,	 can	 cause	 network	 and
server	overload,	steal	data	and	passwords,	or	erase	data.
Malicious	software	can	come	in	multiple	forms,	such	as	viruses,	Trojan	horses,
and	worms.

·									Worms	are	self-replicating	programs	that	spread	from	one	computer
to	another,	leaving	infections	as	they	travel.
·									A	virus	is	a	self-replicating	program	fragment	that	attaches	itself	to	a
program	or	file	enabling	it	to	spread	from	one	computer	to	another,	leaving
infections	as	it	travels.
·									A	Trojan	Horse	appears	to	be	useful	software	but	will	actually	do
damage	once	installed	or	run	on	your	computer.	Those	on	the	receiving
end	of	a	Trojan	Horse	are	usually	tricked	into	starting	them	because	they
appear	to	be	receiving	legitimate	software	or	files	from	a	legitimate	source.
Trojan	horses	can	be	used	to	deliver	viruses	or	worms.

	

Users	 can	 be	 tempted	 to	 run	 an	 application,	 when	 it	 is	 sent	 to	 them	 in	 an
irresistible	format.	The	best-known	case	is	that	of	the	Anna	Kournikova	virus	in
2001.	 It	 was	 designed	 to	 trick	 e-mail	 users	 into	 opening	 a	 mail	 message
purportedly	containing	a	picture	of	Anna	Kournikova,	a	young	and	attractive
tennis	player	at	the	time.

The	Kournikova	virus	tempted	users	with	the	message:	"Hi:	Check	This!”	with
what	appeared	to	be	a	picture	file	labeled	"AnnaKournikova.JPG.vbs".
But	 when	 a	 user	 clicked	 on	 it,	 the	 file	 did	 not	 display	 a	 picture	 of	 Anna
Kournikova,	 but	 launched	a	 viral	Visual	Basic	Script	 that	 forwarded	 itself	 to
everybody	in	the	Microsoft	Outlook	address	book	of	the	victim.

	
Since	 more	 than	 90%	 of	 all	 PCs	 run	 on	 Microsoft	 Windows,	 this	 operating
system	 is	a	very	attractive	platform	for	malicious	software	programmers.	Most
malicious	 code	 can	 be	 detected	 and	 removed	 by	 virus	 scanners.	 In	 an	 ever-
enduring	 battle	 between	 virus	 programmers	 and	 anti-virus	 programmers,	 virus
programmers	constantly	try	to	find	new	vulnerabilities	in	the	Windows	operating
system	or	in	applications	running	on	top	of	it	like	Internet	Explorer	or	Microsoft
Outlook.	When	such	vulnerability	is	found,	and	malicious	software	is	set	free	to
exploit	 the	 vulnerability,	 anti-virus	 software	 companies	 try	 to	 detect	 the	 virus
and	warn	users	to	stop	the	virus	from	spreading.
While	most	malware	 is	 still	 targeted	at	Microsoft	Windows,	Apple	 iOS,	Linux
and	Google’s	Android	are	increasingly	becoming	attractive	targets	as	well.
Detecting	 viruses	 is	 mostly	 done	 using	 a	 so-called	 virus	 signature–	 a	 unique
string	 of	 bits	 that	 identifies	 a	 part	 of	 the	 virus.	 When	 a	 file	 contains	 this
signature,	it	is	assumed	that	the	file	is	infected	with	the	viral	code.
To	be	pro-active,	anti-virus	detection	software	also	uses	techniques	like	heuristic
scanning.	Heuristic	scanning	looks	for	certain	instructions	or	commands	within	a
program	or	script	that	are	not	found	in	typical	applications.	This	way,	viruses	can
be	 detected	 even	 before	 their	 signature	 is	 known	 to	 the	 anti-virus	 software
vendor.

6.2.4.2						Denial	of	service	attack
A	Denial	of	Service	(DoS)	attack	 is	an	attempt	 to	overload	an	 infrastructure	 to
cause	disruption	of	a	service.	This	overload	can	lead	to	downtime	of	a	system,
disabling	an	organization	to	do	its	business.
To	 perform	 a	 DoS	 attack,	 an	 attacker	 fires	 off	 a	 large	 number	 of	 (often
malformed)	 requests	 to	 a	 server	 reachable	 from	 the	 internet	 –	 typically	 a	web
server.	 Because	 of	 the	 high	 load	 the	 server	 needs	 to	 process,	 or	 because	 the
requests	fill	up	the	request	queues,	the	server	either	crashes,	or	performs	so	slow

that	in	effect	it	is	not	functioning	anymore.
Because	 usually	 one	 attacking	 computer	 alone	 has	 insufficient	 power	 or
bandwidth	 available	 to	 bring	 down	 a	 server,	 most	 of	 the	 time	 a	 Distributed
Denial	 of	 Service	 (DDoS)	 attack	 is	 used.	 In	 this	 case	 the	 attacker	 uses	many
computers	 to	 overload	 the	 server.	 Since	 nowadays	 attackers	 are	 often
professionally	 organized,	 they	 use	 groups	 of	 computers	 that	 are	 infected	 by
malicious	code,	called	botnets,	to	perform	an	attack.
Some	preventive	measures	to	a	DDos	attack	are:

·									Split	business	and	public	resources	so	that	in	case	of	an	attack	the
business	processes	are	not	effected
·									Move	all	public	facing	resources	to	an	external	cloud	provider
·									Setup	automatic	scalability	(auto	scaling,	auto	deployment)	using
virtualization	and	cloud	technology
·									Limit	bandwidth	for	certain	traffic	–	for	instance	limit	the	bandwidth
or	the	maximum	number	of	calls	per	second	on	ports	53	(DNS)	and	123
(NTP),	as	not	much	data	is	exchanged	using	these	ports	in	normal
situations
·									Lower	the	Time	to	Live	(TTL)	of	the	DNS	records	to	be	able	to
reroute	traffic	to	other	servers	when	an	attack	occurs
·									Setup	monitoring	for	early	detection	on:

o				Traffic	volume
o				Source	and	number	of	requests
o				Transaction	latency

There	is	not	much	that	can	be	done	about	a	DDoS	attack	when	it	occurs.	When	a
DDoS	attack	actually	occurs,	some	actions	could	be:

·									Immediately	inform	your	internet	provider	and	ask	for	help
·									Run	a	script	to	terminate	all	connections	coming	from	the	same	source
IP	address	if	the	number	of	connections	is	larger	than	ten
·									Change	to	an	alternative	server	(with	another	IP	address)
·									Scale-out	the	public	facing	environment	under	attack
·									Reroute	or	drop	suspected	traffic

A	worldwide	 distributed	 Content	 Distribution	Network	 (CDN)	 can	 be	 used	 to
route	 traffic	 to	 your	 website.	 When	 a	 DDoS	 attack	 occurs	 CDNs	 can	 take
mitigating	 actions,	 for	 instance	 by	 limiting	 the	 requests	 coming	 from	 certain
parts	of	the	world.
	

More	 recent	 attacks	 show	 an	 alternative	 DDoS	 attack,	 called	 Low	 &	 Slow,
where	a	website	 is	used	 in	a	normal	way	(low	key),	but	at	an	extremely	slow
pace.	 In	 this	 type	 of	 attack,	 legitimate	 data	 is	 sent	 to	 a	 webserver	 (using	 a
HTTP	 POST	 command),	 but	 only	 one	 byte	 at	 a	 time,	 with	 a	 long	 wait	 time
between	the	bytes.
The	web	server	keeps	on	waiting	for	bytes,	while	keeping	a	channel	occupied
and	 busy.	 Eventually,	 this	 will	 drain	 application	 level	 resources,	 as	 a	 large
number	 of	 connections	 are	 open,	 which	 effectively	 halts	 the	 service	 to	 other
users.
This	type	of	attack	takes	relatively	few	attacking	machines.	Low	&	Slow	attacks
are	 typically	 not	 detected	 by	 DDoS	 monitors,	 as	 they	 break	 no	 networking
rules.	It	is	therefore	important	to	implement	specific	monitoring	for	this	type	of
attack,	checking	application	level	resources.

6.2.4.3						Social	engineering
In	 social	 engineering,	 social	 skills	 are	 used	 to	 manipulate	 people	 to	 obtain
information,	 such	 as	 passwords	 or	 other	 sensitive	 information,	 which	 can	 be
used	in	an	attack.
All	 social	 engineering	 techniques	 are	 based	 on	 specific	 attributes	 of	 human
decision-making,	known	as	cognitive	biases.	In	short:	by	nature,	people	want	to
help	 other	 people.	 If	 someone	 from	 the	 systems	management	 department	 calls
and	asks	for	your	help	in	solving	a	computer	issue,	most	people	tend	to	help	the
caller,	without	checking	if	he	or	she	really	is	a	systems	manager.	When	the	caller
asks	the	user	to	click	on	a	link	that	was	sent	via	e-mail,	most	users	will	do	so,
installing	malicious	software	without	realizing	it.

6.2.4.4						Phishing	
Phishing	is	a	technique	of	obtaining	sensitive	information.	Typically,	the	phisher
sends	 an	 e-mail	 that	 appears	 to	 come	 from	a	 legitimate	 source,	 like	 a	 bank	or

credit	card	company,	requesting	"verification"	of	information.	The	e-mail	usually
contains	 a	 link	 to	 a	 fraudulent	 web	 page	 that	 seems	 legitimate	 —	 with	 the
company	logo	and	content	on	it	—	and	has	a	form	requesting	everything	from	a
home	address	to	an	ATM	card's	PIN.

6.2.4.5						Baiting
Baiting	uses	physical	media,	like	an	USB	flash	drive,	and	relies	on	the	curiosity
of	people	to	find	out	what	is	on	it.
For	 instance,	 an	 attacker	 leaves	 a	 malware	 infected	 USB	 flash	 drive	 in	 some
location	where	it	will	be	easily	found,	like	the	elevator	or	the	parking	lot	of	an
organization	it	wants	to	attack.	The	device	is	given	a	legitimate	looking	label	to
increase	 the	 curiosity	 of	 anyone	 finding	 it.	 For	 instance,	 the	 organization	 logo
could	 be	 put	 on	 the	 device,	 or	 a	 label	 called	 “Financial	 year	 results”.	 The
attacker	 hopes	 some	 employee	 picks	 up	 the	 device	 and	 brings	 it	 inside	 the
organization.	When	the	device	is	put	into	an	organization	owned	PC,	malicious
software	is	installed	automatically.
The	 effect	 of	 this	 kind	of	 attack	 can	 largely	be	mitigated	by	 switching	off	 the
"auto-run"	feature	on	all	organization	PCs.

6.3													Security	Patterns

6.3.1								Identity	and	Access	Management
Identity	and	Access	management	(IAM)	is	the	process	of	managing	the	identity
of	 people	 and	 systems,	 and	 their	 permissions.	 The	 IAM	process	 follows	 three
steps:

·									Users	or	systems	claim	who	they	are:	identification	–	they	provide
their	identity,	typically	their	name.
·									The	claimed	identity	is	checked:	authentication	–	identities	provide	for
instance	a	password,	which	is	checked.
·									Permissions	are	granted	related	to	the	identity	and	the	groups	it
belongs	to:	authorization	–	identities	are	allowed	into	the	system.

Most	 systems	 have	 a	 way	 to	 connect	 identities	 and	 their	 permissions.	 For
instance,	the	kernel	of	an	operating	system	owns	an	administration	of	users	and	a
list	 of	 user	 rights	 that	 describes	 which	 identities	 are	 allowed	 to	 read,	 write,
modify,	or	delete	files.	This	is	primary	task	of	the	kernel	and	the	basis	of	security
of	the	operating	system	–	the	so-called	Trusted	Computing	Base	(TCB).
IAM	 is	 not	 only	 used	 on	 the	 operating	 system	 level,	 but	 also	 in	 applications,
databases,	 or	 other	 systems.	 Often	 these	 systems	 have	 their	 own	 stand-alone
IAM	system,	which	leads	to	users	having	to	log	in	to	each	and	every	system	they
use.
With	 Single	 Sign-On	 (SSO),	 a	 user	 logs	 in	 once	 and	 is	 passed	 seamlessly,
without	 an	 authentication	 prompt,	 to	 SSO	 enabled	 applications.	 SSO	 provides
ease	 of	 use,	 but	 does	 not	 necessarily	 enhance	 security	 –	 when	 the	 login
credentials	 of	 a	 user	 are	 known,	 an	 attacker	 gains	 access	 to	 all	 SSO	 enabled
systems	 for	 that	 user.	 SSO	 is	 typically	 implemented	 using	 identity	 providing
systems	like	LDAP,	Kerberos,	or	Microsoft	Active	Directory.	Users	authenticate
to	 these	 identity	providers,	 and	applications	 trust	 the	 identity	provider,	 so	 they
allow	access	when	a	user	is	authenticated.
Federated	identity	management	extends	SSO	above	the	enterprise	level,	creating
a	 trusted	 identity	 provider	 across	 organizations.	 In	 a	 federated	 system,
participating	 organizations	 share	 identity	 attributes	 based	 on	 agreed-upon
standards,	 facilitating	authentication	 from	other	members	of	 the	 federation	and

granting	appropriate	access	to	systems.
In	the	IAM	process,	users	can	be	authenticated	in	one	of	three	ways:

·									Something	you	know,	like	a	password	or	PIN
·									Something	you	have,	like	a	bank	card,	a	token	or	a	smartphone
·									Something	you	are,	like	a	fingerprint	or	an	iris	scan

Many	 systems	 only	 use	 a	 username/password	 combination	 (something	 you
know),	 but	 more	 and	 more	 systems	 use	 multi-factor	 authentication,	 where	 at
least	two	types	of	authentication	are	required.	An	example	is	an	ATM	machine,
where	both	a	bank	card	is	needed	(something	you	have)	and	a	PIN	(something
you	know).
Typically,	 identities	 are	 members	 of	 one	 or	 more	 groups	 (typically	 related	 to
their	roles	in	the	organization)	and,	instead	of	granting	permissions	to	individual
identities,	 groups	 are	 granted	 permissions.	 And	 since	 groups	 can	 be	 nested	 (a
group	 is	 member	 of	 another	 group),	 this	 so-called	 Role	 Based	 Access
Control	(RBAC)	model	is	very	powerful	and	used	in	almost	all	organizations.

6.3.2								Segregation	of	duties	and	least	privilege
Segregation	 of	 duties	 (also	 known	 as	 separation	 of	 duties)	 assigns	 related
sensitive	 tasks	 to	 different	 people	 or	 departments.	 The	 reasoning	 is	 that	 if	 no
single	 person	 has	 total	 control	 of	 the	 system’s	 security	mechanisms,	 no	 single
person	can	compromise	the	system.
This	concept	is	related	to	the	principle	of	least	privilege.	Least	privilege	means
that	 users	 of	 a	 system	 should	 have	 the	 lowest	 level	 of	 privileges	 necessary	 to
perform	their	work,	and	should	only	have	them	for	the	shortest	length	of	time.
In	 many	 organizations,	 a	 systems	 manager	 has	 full	 control	 of	 the	 system’s
administration	 and	 security	 functions.	 In	 general,	 this	 is	 a	 bad	 idea.	 Security
tasks	 should	 not	 automatically	 be	 given	 to	 the	 systems	 manager.	 In	 secure
systems,	 multiple	 distinct	 administrative	 roles	 should	 be	 configured,	 like	 a
security	manager,	a	systems	manager,	and	a	super	user.
The	security	manager,	systems	manager,	and	super	user	may	not	necessarily	be
different	 people	 (but	 this	 would	 be	 preferred	 of	 course).	 But	 whenever	 for
instance	 a	 systems	 manager	 takes	 the	 role	 of	 the	 security	 manager,	 this	 role
change	is	controlled,	logged,	and	audited.	While	it	may	be	cumbersome	for	the

person	to	switch	from	one	role	to	another,	the	roles	are	functionally	different	and
must	be	executed	as	such	in	order	to	maintain	a	high	level	of	security.
In	 addition,	 a	 two-man	 control	 policy	 can	 be	 applied,	 in	 which	 two	 systems
managers	must	review	and	approve	each	other’s	work.	The	purpose	of	two-man
control	 is	 to	 minimize	 fraud	 or	 mistakes	 in	 highly	 sensitive	 or	 high-risk
transactions.	 With	 two-man	 control,	 two	 systems	 managers	 are	 needed	 to
complete	every	security	sensitive	task.

6.3.3								Layered	security
A	layered	security	strategy	is	a	good	practice	to	enhance	the	overall	IT	security.
The	essence	of	layered	security	(also	known	as	a	Defense-In-Depth	strategy)	is
to	 implement	 security	measures	 in	 various	 parts	 of	 the	 IT	 infrastructure.	 This
approach	is	comparable	with	physical	security.
	

If	 a	burglar	wants	 to	 steal	money	 from	your	house,	he	has	 to	 climb	over	 the
fence	in	the	garden,	then	he	has	to	get	through	a	closed	front	door	with	locks,
then	he	has	to	find	the	safe	with	the	money,	he	has	to	break	into	the	safe,	get	the
money,	and	leave	the	premise.	All	of	 this	must	be	done	without	being	seen	or
heard;	he	must	not	be	noticed	by	anyone	during	all	of	these	steps.
It	is	obvious	why	this	layered	security	works	so	well:

-	Many	barriers	must	be	crossed	(fence,	door,	safe).
-	Opening	every	barrier	takes	different	technical	skills	(climbing	over	the	fence,
lock	picking	a	door	with	a	mechanical	lock,	opening	a	safe	with	a	digital	lock).
-	 The	 burglar	 is	 slowed	 down	 by	 every	 barrier	 he	 tempts	 to	 cross,	 which
increases	the	possibility	of	detection.
-	The	burglar	doesn't	know	in	advance	how	many	barriers	he	has	to	cross,	how
much	 time	 each	 barrier	 takes,	 and	 which	 knowledge	 is	 needed	 for	 every
barrier.
-	The	chance	of	getting	caught	is	present	in	every	step.
-	When	one	barrier	is	crossed,	the	security	of	all	other	barriers	is	still	intact.

	

In	IT	infrastructure,	instead	of	having	one	big	firewall	and	have	all	your	security
depend	on	it,	it	is	better	to	implement	several	layers	of	security.	Preferably	these
layers	make	use	of	different	technologies,	which	makes	it	harder	for	hackers	to
break	through	all	barriers;	they	will	need	a	lot	of	knowledge	for	each	step.
Each	 layer	 can	 be	 integrated	 with	 an	 Intrusion	 Detection	 System	 (IDS	 –	 see
section	8.6.2)	or	 some	other	 system	 that	detects	break-ins,	which	 increases	 the
chance	of	getting	caught.	On	 top	of	 this,	more	 layers	 introduce	uncertainty	 for
the	hacker:	 it	 is	unknown	many	barriers	must	be	passed	 to	get	 to	 the	data,	and
how	 long	 will	 this	 take,	 leading	 to	 demotivation.	 And	 if	 one	 layer	 is	 passed
unnoticed,	or	 if	one	 security	 layer	contains	a	vulnerability,	 the	 total	 security	 is
still	intact,	albeit	with	less	layers.
A	 disadvantage	 of	 implementing	 layered	 security	 is	 that	 it	 increases	 the
complexity	of	 the	 system.	Every	 security	 layer	must	be	managed,	 and	 systems
managers	must	have	knowledge	about	all	used	technologies.

6.3.4								Cryptography
Cryptography	 is	 the	 practice	 of	 hiding	 information	 using	 encryption	 and
decryption	 techniques.	 Encryption	 is	 the	 conversion	 of	 information	 from	 a
readable	 state	 to	 apparent	 random	 data.	 Only	 the	 receiver	 has	 the	 ability	 to
decrypt	this	data,	transforming	it	back	to	the	original	information.
A	cipher	 is	a	pair	of	algorithms	that	 implements	 the	encryption	and	decryption
process.	The	operation	of	a	cipher	is	controlled	by	a	key.	The	key	is	a	secret	only
known	by	the	sender	and	receiver,	much	like	the	key	of	a	mechanical	lock.
Two	 types	 of	 ciphers	 exist:	 block	 ciphers	 and	 stream	 ciphers.	 A	 block	 cipher
takes	as	input	a	block	of	plaintext	and	a	key,	and	outputs	a	block	of	cipher	text.
Several	 block-encryption	 systems	 have	 been	 developed.	 The	 Data	 Encryption
Standard	 (DES)	 and	 the	 Advanced	 Encryption	 Standard	 (AES)	 are	 the	 most
popular	 block	 cipher	 designs.	 Despite	 its	 deprecation	 as	 an	 official	 standard,
DES	 (especially	 its	 still-approved	 and	 much	 more	 secure	 triple-DES	 variant)
remains	quite	popular.	It	is	used	across	a	wide	range	of	applications,	from	ATM
machine	data	encryption	to	e-mail	privacy	and	secure	remote	access.
Stream	 ciphers	 create	 an	 arbitrarily	 long	 stream	 of	 key	 material,	 which	 is
combined	with	the	plaintext	bit-by-bit	or	character-by-character.	Stream	ciphers
are	used	when	data	is	 in	transit	using	a	network.	In	a	stream	cipher,	 the	output
stream	 is	created	based	on	a	hidden	 internal	 state	which	changes	as	 the	cipher

operates.	That	internal	state	is	initially	set	up	using	a	secret	key.	RC4	is	a	widely-
used	stream	cipher.

6.3.4.1						Symmetric	key	encryption
Symmetric	key	encryption	 is	 an	encryption	method	where	both	 the	 sender	and
receiver	share	the	same	key.
	

Figure	22:	Symmetric	key	encryption

In	Figure	 22,	 Pete	 sends	 a	 file	 to	 John	 and	 encrypts	 it	 before	 sending	 using	 a
cipher	and	a	 secret	 shared	key.	Upon	 receiving	 the	 file,	 John’s	cipher	decrypts
the	data	stream	using	the	same	key,	leading	to	the	original	file.	Both	ciphers	use
the	same	secret	shared	key,	only	known	by	Pete	and	John.
A	significant	disadvantage	of	symmetric	key	encryption	is	the	key	management
necessary	to	use	them	securely.	Each	pair	of	communicating	parties	must	share	a

different	key.	The	number	of	keys	required	or	a	group	of	N	systems	is	 .	With

three	systems,	this	leads	to	 	keys.	With	four	systems,	this	leads	to	
keys.	Table	14	shows	the	number	of	keys	needed	with	an	increasing	number	of
systems.
	
Number	of	systems Number	of	keys

2 1

3 3

4 6

5 10

6 15

7 21

8 28

9 36

10 45

Table	14:	Number	of	keys	needed	for	symmetric	key	encryption

This	 effect	 very	 quickly	 requires	 complex	 key	 management	 schemes	 to	 keep
them	all	aligned,	correct,	and	secret.
The	difficulty	of	securely	establishing	a	secret	key	between	two	communicating
parties,	 when	 a	 secure	 channel	 does	 not	 already	 exist	 between	 them,	 also
presents	a	chicken-and-egg	problem.

6.3.4.2						Asymmetric	key	encryption
In	asymmetric	key	cryptography,	 two	different	but	mathematically	related	keys
are	 used:	 a	 public	 key	 and	 a	 private	 key.	 The	 public	 key	 may	 be	 freely
distributed	and	is	for	instance	published	on	the	organization’s	website.	Its	paired
private	key	must	remain	secret	by	the	organization.
	

Figure	23:	Asymmetric	key	encryption

In	Figure	 23,	 Pete	 sends	 a	 file	 to	 John	 and	 encrypts	 it	 before	 sending	 using	 a
cipher	 and	 John’s	 public	 key.	 The	 encrypted	 file	 can	 only	 be	 decrypted	 using
John’s	 private	 key	 (which	must	 be	 kept	 a	 secret	 to	 everyone	 but	 John).	Upon
receiving	the	file,	John’s	cipher	decrypts	the	data	using	his	private	key,	leading
to	the	original	file.
When	John	wants	to	send	a	file	to	Pete,	Pete’s	public	and	private	keys	are	used.
Because	public	key	cryptography	is	a	very	slow	process	(about	1000	to	10,000
times	 slower	 than	 symmetric	 key	 encryption),	 it	 is	 mostly	 used	 to	 setup	 a
channel	 between	 two	 parties,	 to	 safely	 exchange	 a	 new,	 temporary	 symmetric
key,	solving	the	chicken-and-egg	problem	and	key	management	mentioned	in	the
previous	 section.	 After	 exchanging	 symmetric	 keys,	 the	 rest	 of	 the
communication	is	done	using	much	faster	symmetric	key	encryption.

Here	is	how	it	works:
·									Pete	creates	a	random	secret	key	and	encrypts	it	using	the	public	key
from	John.
·									The	encrypted	secret	key	is	sent	to	John	using	an	open	channel	(like
the	internet).
·									John	is	the	only	party	that	can	decrypt	the	message,	because	he	has	the
private	key	that	is	related	to	the	public	key.	John	decrypts	the	message	and
now	knows	the	secret	key.
·									Pete	and	John	start	communicating	using	symmetric	key	encryption,
using	the	exchanged	secret	key.
·									When	the	communication	is	finished,	the	shared	key	is	no	longer	valid
and	is	deleted.

Diffie–Hellman	 and	 RSA	 algorithms	 are	 the	 most	 widely	 used	 algorithms	 for
public	key	encryption.

6.3.4.3						Hash	functions	and	digital	signatures
Hash	 functions	 take	 some	 piece	 of	 data,	 and	 output	 a	 short,	 fixed	 length	 text
string	(the	hash)	 that	 is	unique	for	 that	piece	of	data	and	which	can	be	used	to
validate	the	integrity	of	the	data.
It	is	practically	impossible	to	find	two	pieces	of	data	that	produce	the	same	hash.
If	the	hash	of	a	piece	of	data	is	known,	and	the	hash	is	recalculated	later	and	it
matches	the	original	hash,	the	data	must	be	unaltered.	An	example:
The	input	string	“hello	world”	produces	the	following	MD5	hash:
5eb63bbbe01eeed093cb22bb8f5acdc3
The	input	string	“hallo	world”	produces	the	following	MD5	hash:
5fd591a948dc76dd731f8998e19c773a
While	only	one	letter	was	changed,	the	hash	is	completely	different.
The	length	of	this	hash	will	not	grow,	even	if	the	input	for	the	hash	function	is
the	entire	text	of	this	book,	yet	it	will	be	nearly	impossible	to	find	another	input
that	produces	the	exact	same	hash	output.
MD5	is	a	very	popular	hash	function.	SHA1	and	SHA512	are	also	widely	used
and	more	secure	than	MD5.

To	create	a	digital	signature,	a	hash	is	created	of	some	text	(like	an	e-mail)	and
encrypted	with	the	private	key	of	the	sender.	The	receiver	decrypts	the	hash	key
using	 the	 sender's	 public	 key.	The	 receiver	 also	 calculates	 the	hash	of	 the	 text
and	compares	it	with	the	decrypted	hash	to	ensure	the	text	wasn't	tampered	with.
Since	the	hash	was	encrypted	using	a	private	key,	it	is	guaranteed	that	the	hash
was	created	by	 the	owner	of	 the	private	key	–	 the	only	person	 that	could	have
created	the	encrypted	hash.
Digital	 signatures	are	central	 to	 the	operation	of	public	key	 infrastructures	and
many	network	security	schemes	(like	SSL/TLS	and	many	VPNs).

6.3.4.4						Cryptographic	attacks
It	is	common	knowledge	that	every	encryption	method	can	be	broken.	Yet	this	is
not	entirely	true.	It	is	scientifically	proven	that	a	so-called	one-time	pad	cipher	is
unbreakable,	 provided	 the	 key	 material	 is	 truly	 random,	 never	 reused,	 kept
secret	 from	 all	 possible	 attackers,	 and	 of	 equal	 or	 greater	 length	 than	 the
message.	 But	 it	 is	 very	 impractical,	 as	 the	 key	 must	 be	 exchanged	 between
sender	and	receiver	in	a	safe	way,	and	the	key	has	the	same	length	as	the	data	to
be	transferred.	So,	you	might	as	well	exchange	the	data	in	a	safe	way	instead	of
the	key.
Most	 ciphers,	 apart	 from	 the	 one-time	 pad,	 can	 be	 broken	 given	 enough
computational	 effort	 by	 what	 is	 known	 as	 a	 brute	 force	 attack.	 A	 brute	 force
attack	consists	of	systematically	checking	all	possible	keys	until	the	correct	key
is	 found.	 The	 amount	 of	 effort	 needed,	 however,	 is	 usually	 exponentially
dependent	 on	 the	 size	 of	 the	 key.	 Effective	 security	 could	 be	 achieved	 if	 it	 is
proven	that	no	efficient	method	(as	opposed	to	 the	 time	consuming	brute	force
method)	can	be	found	to	break	the	cipher.
Most	 successful	 attacks	 are	 based	 on	 flaws	 in	 the	 implementation	 of	 an
encryption	 cipher.	 It	 is	 extremely	 difficult	 to	 create	 a	 flawless	 cipher	 and	 it	 is
therefore	absolutely	not	recommended	to	create	your	own.	To	ensure	a	cipher	is
flawless,	 the	source	code	is	usually	open	source	and	thus	open	to	inspection	to
everyone.	Experience	shows	that	open	source	ciphers	are	the	most	secure	ones,
while	closed	source	ciphers	tend	to	be	breakable.
	

PART	III	–	ARCHITECTURE	BUILDING	BLOCKS

7				

DATACENTERS

7.1													Introduction

Most	 IT	 infrastructure	 hardware,	 except	 for	 end	 user	 devices,	 are	 hosted	 in
datacenters.	 A	 datacenter	 provides	 power	 supply,	 cooling,	 fire	 prevention	 and
detection,	 equipment	 racks,	 and	 other	 facilities	 needed	 to	 host	 the	 installed
infrastructure	components.
	

Figure	24:	Datacenters	in	the	infrastructure	model

Early	 datacenters	 (or	 computer	 rooms	 as	 they	 were	 called	 at	 the	 time)	 were
designed	 and	 built	 for	 large	 mainframe	 systems.	 In	 those	 days,	 a	 single
mainframe,	together	with	its	peripheral	systems	like	punch	card	readers	and	tape
units	easily	filled	up	a	fairly	large	computer	room.
	

Picture	5:	Computer	room	in	1962

Individual	terminals	of	all	end	users	in	the	offices	were	connected	directly	to	the
mainframe,	 leading	 to	 large	 cable	 bundles	 in	 the	 computer	 room.	 Apart	 from
these	 terminal	 cables,	 power	 cables	 were	 installed	 to	 connect	 power	 to	 all
equipment	and	data	connection	cables	to	connect	the	peripheral	equipment	with
the	 communications	 units	 of	 the	 mainframe.	 To	 store	 all	 of	 these	 cables,
computer	 rooms	were	equipped	with	a	 raised	 floor	 (also	known	as	a	computer
floor).	Cables	were	installed	in	cable	trays	underneath	this	raised	floor.
Since	the	mainframe	and	peripheral	equipment	used	to	run	quite	hot,	they	were
cooled	 using	 water	 cooling	 systems.	 Water	 pipes	 used	 for	 this	 water	 cooling
were	 installed	 under	 the	 raised	 floor	 as	well.	Many	 datacenters	 today	 still	 use
raised	floors	for	cabling	and	cooling	purposes	(although	not	using	water	cooling
anymore).
Because	 most	 peripheral	 equipment	 was	 installed	 in	 the	 computer	 room,
operators	had	to	be	present	in	the	computer	room	most	of	the	time.	They	had	to
perform	 tasks	 like	 loading	 punch	 card	 decks,	 replacing	 paper	 in	 printers,
switching	tapes	in	tape	units,	or	collecting	printed	paper.
With	the	emergence	of	smaller	midrange	and	x86	based	systems,	datacenters	got
equipped	with	standardized	19"	racks	that	could	house	servers,	storage	devices,
and	 network	 equipment.	 These	 racks	were	 installed	 in	 rows	 forming	 corridors
between	them.
	

Picture	6:	Computer	racks
[15]

More	flexible	air	cooling	replaced	the	traditional	water	cooling	and	sophisticated
fire	 prevention,	 detection	 and	 extinguishing	 systems	 were	 installed.	 Because
almost	 all	 work	 on	 the	 servers	 could	 be	 done	 without	 touching	 the	 physical
equipment,	 lights-out	 datacenters	 were	 introduced,	 where	 during	 normal
operations	no	people	are	needed	inside	the	datacenter,	and	the	lights	could	thus
be	switched	off.
The	 pace	 of	 innovation	 in	 datacenters	 is	 increasing.	 There	 has	 been	 more
innovation	in	the	last	ten	years	than	in	the	previous	decades.	This	innovation	is
driven	 by	 cloud	 service	 providers	 and	 large	 scale	 datacenters	 running	 internet
applications	like	search	engines,	video	streaming,	and	social	media.
Very	large	datacenters	today	contain	shipping	containers	packed	with	thousands
of	 servers	 each.	 When	 repairs	 or	 upgrades	 are	 needed,	 entire	 containers	 are
replaced	(rather	than	repairing	individual	servers).

7.2													Datacenter	building	blocks

7.2.1								Datacenter	categories
A	datacenter	can	occupy	one	room	in	a	building,	one	or	more	floors,	or	an	entire
building.	Below	are	four	typical	datacenter	categories.

·									Sub	Equipment	Room	(SER)	–	a	SER	is	also	known	as	a	patch
closet.	They	contain	patch	panels	for	connections	to	wall	outlets	in	offices
and	some	small	equipment	like	network	switches.
·									Main	Equipment	Room	(MER)	–	a	MER	is	a	small	datacenter	in	the
organization’s	subsidiaries	or	buildings.
·									Organization	owned	datacenter	–	a	datacenter	that	contains	all
central	IT	equipment	for	the	organization.	An	organization	can	have
multiple	datacenters,	often	with	failover	and	fallback	capabilities.
·									Multi-tenant	datacenter	–	this	datacenter	category	is	used	by	service
providers	that	provide	services	for	multiple	other	organizations.	These
datacenters	are	typically	the	largest.

If	 the	datacenter	is	used	for	one	organization	only,	it	makes	sense	to	install	 the
datacenter	inside	one	of	the	office	buildings.	But	when	the	datacenter	is	used	by
multiple	 organizations,	 like	 in	 case	 of	 an	 internet	 service	 provider,	 choosing	 a
location	of	the	datacenter	is	more	difficult.

7.2.2								Location	of	the	datacenter
Finding	 a	 good	 location	 to	 build	 a	 datacenter	 can	 be	 a	 nontrivial	 task.	Many
variables	 should	 be	 considered	 to	 determine	 where	 a	 datacenter	 could	 be
installed.
Below	is	a	checklist	that	can	be	used	as	guidance	when	choosing	a	location	for	a
datacenter:

·									Environment
o				Is	enough	space	available	to	expand	the	datacenter	in	the	future?
The	initial	datacenter	should	be	designed	with	enough	free	space	and
spare	capacity	in	utilities	to	allow	for	growth.

o				Is	the	location	vulnerable	to	flooding?	Some	countries	are	below
sea	level,	are	in	a	vulnerable	delta,	or	are	close	to	a	river.	In	that	case
make	sure	the	datacenter	is	not	located	at	the	ground	floor	or	(worse)
the	basement,	but	for	instance	on	the	third	floor.

	

In	 2015,	 outside	 of	 the	 Amsterdam	 AMC	 hospital	 a	 large	 water	 supply	 pipe
broke.	The	water	flooded	not	only	the	ground	floor	of	the	hospital,	but	also	the
basement,	that	hosted	steam	systems	needed	to	sterilize	the	hospital’s	tools.	All
patients	 in	 the	 hospital	 were	 evacuated	 immediately	 and	 the	 hospital	 was
closed	for	two	weeks,	leading	to	multi-million	dollar	damages.
Later,	 the	hospital	management	acknowledged	 that	putting	critical	 systems	 in
the	basement	was	a	design	flaw	in	the	building’s	architecture.

	
o				Is	the	datacenter	located	in	a	hurricane	prone	area?
o				What	is	the	chance	of	an	earthquake?
o				What	is	the	climate	like?	Datacenter	cooling	can	be	easier
accomplished	and	is	much	cheaper	in	places	with	a	low	ambient
temperature	with	low	temperature	fluctuations.
o				Is	the	datacenter	close	to	possible	external	hazards	like	fireworks
storage,	a	waste	dump,	or	a	chemical	plant?
o				What	is	the	crime	rate?	Are	there	many	burglaries	in	the
neighborhood?	What	about	vandalism	or	the	possibility	of	terrorism?
o				Is	the	datacenter	near	an	airport	(chance	of	crashing	airplanes)?
o				Is	the	datacenter	near	an	area	that	is	likely	to	be	closed	because	of
unforeseen	circumstances	(like	a	car	crash	on	a	nearby	highway,	a
forest	fire,	a	military	location,	or	a	nuclear	plant)?
o				Is	the	location	close	to	the	home	or	office	of	maintenance	staff,
systems	managers,	and	external	expertise?
o				Can	the	datacenter	be	reached	easily	in	case	of	emergencies?
o				Are	hospitals,	police,	and	fire	fighters	located	in	the	vicinity?

·									Visibility
o				Is	the	location	of	the	datacenter	included	in	public	maps	(like

http://www.datacentermap.com)?
o				Does	the	building	have	windows?	Windows	are	not	preferred	as
they	are	easy	to	break	into	the	building.
o				Are	markings	on	the	building	showing	that	this	building	contains
a	datacenter?

·									Utilities
o				Is	it	possible	to	have	two	independent	power	providers	and
internet	providers?
o				Can	cabling	routes	to	the	building	be	determined?	Is	it	possible	to
have	double	power	and	data	connections	leave	the	building	from	two
different	places?
o				Can	cabling	routes	inside	the	building	be	determined	in	a	flexible
way?	Are	there	multiple	paths	available	to	the	patch	panels,	floors,
and	end	users?
o				Is	the	datacenter	located	in	a	shared	building?	What	if	the
building	must	be	evacuated?	What	if	the	power	must	be	shut	down
due	to	maintenance	activities	performed	by	another	user	of	the
building?
o				Is	enough	power	available	to	supply	the	datacenter?	How	reliable
is	the	power	supply?
o				Is	cheap	power	available?	Can	the	datacenter	use	renewable
energy	like	wind	or	water	generated	power?
o				What	is	the	available	bandwidth	of	the	external	data	connections?
Is	the	datacenter	close	to	an	internet	exchange	point?	Are	dark	fiber
connections	possible?	How	reliable	are	the	data	connections?

·									Foreign	countries
o				Can	the	country	be	reached	at	all	times?
o				Is	the	country	politically	stable?	Are	there	specific	laws	and
regulations	you	need	to	adhere	to	or	be	aware	of?
o				Does	the	country	have	a	high	level	of	corruption?	How	reliable	is
the	staff?
o				What	is	the	legal	status	of	the	data	and	the	datacenter	itself?

http://www.datacentermap.com

7.2.3								Physical	structure
The	physical	structure	of	a	datacenter	includes	floors,	wall,	windows,	doors,	and
water	and	gas	pipes.	These	components,	 together	with	 the	 layout	of	 the	 rooms
around	the	actual	computer	room,	are	discussed	in	this	section.

7.2.3.1						Floors
In	datacenters,	the	floor	is	quite	important,	mostly	because	of	the	weight	of	the
installed	equipment.	In	a	typical	datacenter,	the	floor	must	be	able	to	carry	1500
to	2000	kg/m2.	For	instance,	one	fully	filled	19”	computer	rack	weighs	up	to	700
kg.	The	footprint	of	a	rack	is	about	60x100	cm,	leading	to	a	floor	load	of	1166
kg/m2.	 By	 comparison,	 in	 office	 buildings	 typically	 the	 floor	 can	 carry
approximately	500	kg/m2.
Many	datacenters	have	raised	floors.	Raised	floors	consist	of	a	metal	framework
carrying	 removable	 floor	 tiles.	These	 tiles	 are	 usually	 60×60	 cm	 in	 size.	Tiles
can	be	lifted	individually	to	reach	cables	installed	under	the	raised	floor.	To	lift
the	tiles,	a	"floor	puller"	or	"tile	lifter"	is	used,	as	shown	below.
	

Picture	7:	Removable	tiles	in	a	raised	floor

Raised	floors	are	typically	installed	at	heights	between	40	cm	and	120	cm.	Vents
in	the	raised	floor	provide	cool	air	flow	to	the	racks	placed	on	the	floor.	Under
the	raised	floor,	data	and	power	cables	are	installed	(usually	in	cable	trays).
It	is	important	to	keep	data	cables	and	power	cables	separated	from	each	other,

as	 electrical	 current	 flowing	 through	 the	 power	 cables	 can	 interfere	 with	 data
being	 sent	 through	 the	 data	 cables.	 A	 rule	 of	 thumb	 is	 to	 keep	 one	 phase
electricity	and	data	20	cm	apart	 from	data	cables,	and	3	phase	power	and	data
cables	60	cm	apart.
Not	 all	 datacenters	 use	 raised	 floors	 anymore,	 since	 raised	 floors	 have	 the
following	disadvantages:

·									Raised	floors	are	expensive.
·									The	total	available	height	in	the	datacenter	is	decreased,	which	could
lead	to	regulation	problems	and	problems	installing	large	equipment.
·									The	maximum	floor	load	is	limited.
·									Doors	and	equipment	loading	slopes	are	hard	to	install	due	to	the
difference	in	floor	height.
·									Under	the	raised	floor	fire,	for	instance	caused	by	a	short	circuit,	could
easily	spread	through	the	entire	datacenter.

Instead	of	installing	cables	under	raised	floors,	overhead	cable	trays	can	be	used.
In	either	situation,	cable	trays	can	be	installed	with	several	layers.	For	instance,
the	bottom	layer	can	be	used	 for	data	copper	UTP	cables,	 the	middle	 layer	 for
fiber	cables,	and	the	top	layer	for	power	cables.

7.2.3.2						Walls,	windows,	and	doors
Because	of	fire	safety	and	physical	intrusion	prevention,	walls	should	reach	from
the	floor	 to	 the	building’s	ceiling.	Walls	should	have	an	adequate	 fire	 rating	 to
serve	as	a	physical	firewall.
Windows	 in	 the	 outside	 of	 the	 building,	 facing	 the	 computer	 room,	 are	 not
desirable	 in	a	datacenter.	 If	 they	are	present	however,	 they	must	be	 translucent
and	shatterproof,	and	it	must	be	impossible	to	open	them.
Doors	 in	 the	datacenter	must	 resist	 forced	entry	and	have	a	fire	rating	equal	 to
the	 walls.	 Emergency	 exits	 must	 be	 clearly	 marked,	 monitored,	 and	 alarmed.
Doors	 should	 be	 large	 enough	 to	 have	 equipment	 brought	 in,	 with	 a	minimal
width	of	1	m	and	a	minimal	height	of	2.10	m.

7.2.3.3						Water	and	gas	pipes
When	 the	datacenter	 is	 part	 of	 a	 larger	 building,	water	 or	 gas	 pipes	may	have

been	installed	under	the	floor,	in	the	walls,	or	(even	worse)	above	the	ceiling	of
the	datacenter.	At	multiple	occasions,	 I	have	 seen	 leakage	 from	water	pipes	 in
the	ceiling	of	a	datacenter	that	led	to	damage	of	equipment.	Datacenter	operators
should	know	where	the	shutoff	valves	are	to	water	or	gas	pipes	in	the	building.

7.2.3.4						Layout	of	the	datacenter
Figure	 25	 shows	 a	 possible	 layout	 of	 a	 datacenter.	 Of	 course,	 this	 is	 just	 an
example,	 in	 practice	 many	 considerations	 lead	 to	 an	 optimal	 layout	 for	 any
specific	environment.
																															

Figure	25:	Typical	layout	of	a	datacenter

In	 this	 example,	 separate	 rooms	 are	 located	 around	 the	 main	 computer	 room
providing	optimal	use	of	the	available	space.	The	datacenter	contains:

·									Computer	room	–	This	is	where	the	actual	IT	infrastructure
components	like	servers,	storage,	and	network	equipment	are	installed.
·									UPS	generator	–	A	diesel	generator	providing	electrical	power	in
case	the	utility	power	input	fails.	The	fuel	for	the	generator	should	be	kept
outside	of	the	building	or	in	an	isolated	room,	but	also	close	by	and
secured.
·									Input	Power	Transformers	–	Input	transformers	from	the	power
utility	company.

·									UPS	–	The	Uninterruptable	Power	Supply	system	(see	section
7.2.4.2).
·									UPS	batteries	–	A	set	of	batteries	providing	short	term	power	used	in
the	system.
·									Cooling	–	The	cooling	systems.
·									Fire	extinction	–	Fire	extinction	systems.
·									Operator	room	–	Room	for	the	datacenter	operators.	This	room	has	a
large	window	looking	into	the	computer	room	to	spot	unusual	activity.
·									Storage	room	for	spare	material	–	Spare	hardware	and	other
equipment	like	tools	and	boxes	can	be	stored	here.
·									Entrance	–	Entrance	room	to	the	other	rooms.	This	entrance	does	not
have	windows.
·									Meeting	room	–	For	staff	meetings	and	visitor	meetings.	This	room
has	a	window	to	allow	direct	sunlight,	but	this	window	must	be	secured
(shatter	proof).

In	this	example,	the	datacenter	provides	three	entries:
·									One	main	entry	in	the	entrance	room.
·									One	entry	(opposite	of	the	storage	room)	for	utilities	maintenance	staff
(these	people	cannot	enter	or	pass	the	computer	room).
·									One	entry	directly	into	the	computer	room	for	loading	of	equipment
This	entry	also	serves	as	an	(additional)	fire	escape.

All	 entries	 are	 secured	 and	 can	 only	 be	 opened	 upon	 request	 from	 inside	 the
building.	Camera	surveillance	(CCTV)	is	used	to	monitor	activity	at	all	doors.

7.2.4								Power	supply
Energy	usage	is	a	key	issue	for	datacenters.	Power	drawn	by	datacenters	ranges
from	 a	 few	 kilowatts	 (kW)	 for	 one	 rack	 of	 servers	 in	 a	 small	 server	 room,	 to
dozens	of	megawatts	(MW)	for	large	facilities.

7.2.4.1						Power	density
The	 amount	 of	 power	 available	 in	 a	 datacenter	 is	 typically	 expressed	 as	 the
number	of	kilowatts	(or	more	accurate:	kVA	–	1000	*	Volt	*	Ampere)	per	m2.	A

value	of	between	2	and	6	kW/m2	is	typical	in	a	normal	density	datacenter.	One
19”	rack,	including	its	space	around	it,	typically	occupies	approximately	1	m2.
For	 example,	 a	 HP	 DL380	 server	 uses	 250W	 power,	 which	 means	 that	 only
between	8	and	24	servers	can	be	placed	in	one	19”	rack	when	2	to	6	kW/m2	is
available,	 even	 if	 the	 rack	 could	 physically	 hold	 40	 servers.	 This	 means	 in
practice	that	most	server	racks	cannot	be	fully	equipped.

In	 a	 high-density	 datacenter,	 the	 power	 supply	 is	 between	 10	 and	 20	 kW/m2.
This	allows	racks	to	be	filled	with	approximately	40	to	80	servers.
Blade	server	enclosures	(see	section	10.2.1)	can	hold	even	more	servers	in	one
rack,	 and	because	blade	 servers	each	can	have	multiple	multi-core	CPUs,	 they
could	use	much	more	power	than	a	classical	rack	mounted	server	as	well.	This	is
not	only	needs	to	be	addressed	when	designing	the	power	supply	and	distribution
of	power	to	the	racks,	but	also	when	designing	the	cooling	system!

7.2.4.2						Uninterruptable	Power	Supply	(UPS)
Several	 types	 of	 power	 issues	 can	 occur	 in	 the	 utility	 power	 supply,	 possibly
leading	 to	 downtime	 or	 damage	 to	 equipment	 in	 the	 datacenter	 if	 not	 handled
properly.	Some	examples	are:

·									Blackout	-	A	total	loss	of	power	(also	known	as	a	power	failure),
which	can	have	many	causes,	like	human	errors,	lightning	strikes	or
damaged	cables	as	a	result	of	construction	work	of	digging.
·									Surge	-	A	period	of	high-voltage	(also	known	as	a	swell),	typically
caused	due	to	switching	off	heavy	equipment.
·									Spike	-	Instantaneous	jumps	in	voltage,	typically	caused	by	lightning
strikes.
·									Brownout	-	A	voltage	drop	(also	known	as	a	sag),	usually	for	a	few
seconds,	typically	caused	by	an	overload	in	the	electrical	grid	caused	by
switching	on	heavy	equipment.
·									Waveform	issues	-	Frequency	variations	or	waveform	distortion
change	the	shape	or	frequency	of	the	50/60Hz	AC	power,	sometimes
caused	by	switching	power	supplies	or	rectifier	issues	in	AC/AC
converters.

An	Uninterruptable	Power	Supply	(UPS)	provides	high	quality	electrical	power
that	is	independent	of	the	utility	power	supply.	A	UPS	typically	includes	filters
to	reduce	the	effect	of	spikes	and	other	power	issues.	It	also	provides	emergency
power	to	the	datacenter	in	case	the	utility	power	supply	fails.
A	 UPS	 installation	 consists	 of	 filters,	 a	 diesel	 power	 generator,	 and	 a	 set	 of
batteries	or	a	flywheel	system.	The	batteries	or	flywheel	temporarily	power	the
datacenter	during	the	startup	time	of	the	power	generator	or	during	short	power
outages.

7.2.4.3						Power	generators
A	power	generator	can	power	the	datacenter	for	an	indefinite	period	of	time	(as
long	 as	 diesel	 fuel	 is	 available),	 until	 the	 utility	 power	 supply	 is	 restored.	 A
typical	power	generator	can	provide	between	0.5	and	2	MW	of	power.
	

Picture	8:	2	MW	diesel	generator
[16]

Note	that	diesel	cannot	be	stored	forever.	After	about	a	year,	unused	diesel	loses
some	of	 its	 calorific	 value.	This	means	 that	more	 diesel	 fuel	 is	 needed	 by	 the
generator	in	order	to	provide	the	needed	electrical	power.	When	diesel	is	stored
for	many	years,	chances	are	that	the	diesel	generator	will	not	start	at	all.
A	fuel	re-circulation/filtration	system	can	be	installed	to	overcome	this	problem.
Regular	fuel	testing	to	monitor	fuel	integrity	is	a	good	practice.
Periodically	 adding	 fuel	 stabilizer	 is	 another	 common	 practice	 for	 diesel
powered	generators.

It	 is	 good	 practice	 to	 use	 the	 generator	 regularly	 and	 to	 refill	 the	 diesel	 tanks
every	 two	months	or	 so.	Because	 the	diesel	generator	must	be	 tested	 regularly
anyway,	I	recommend	using	the	testing	period	for	three	reasons:

·									Test	the	working	of	the	generator	(does	it	start?	can	it	provide	power
to	the	datacenter?).
·									Use	up	"old"	diesel	to	empty	the	tanks	and	refill	them	with	new	diesel.
·									Use	the	generated	power	to	run	the	datacenter	when	a	peak	load	is
expected	–	for	instance	on	Monday	morning.	At	that	time	the	generator
can	be	used	to	power	the	datacenter	while	the	office	buildings	get	power
from	the	utility	provider.	This	can	prevent	costly	power	peaks	from	the
utility	power	net	leading	to	reduced	cost.

7.2.4.4						Battery	powered	UPS	systems
A	battery	powered	UPS	is	most	common	today.	In	a	typical	setup,	these	batteries
last	 about	 5	 to	 15	 minutes	 before	 they	 get	 discharged	 too	 much.	 During	 this
period	 the	power	generator	must	be	started	and	be	online	 in	order	 to	 take	over
power	supply	to	the	datacenter.
	

Picture	9:	UPS	battery	array
[17]

There	are	three	types	of	battery	powered	UPSs:
·									Standby	UPS	systems	(also	known	as	off-line	systems)	are	typically
used	in	small	setups	(a	few	workstations	or	servers).	Incoming	utility
power	is	fed	to	the	IT	systems	and	monitored	for	interruptions.	In	case	of	a
power	interruption,	the	UPS	system	provides	AC	power	from	a	battery
using	an	electronic	inverter	circuit.
·									Line	interactive	UPS	systems	use	a	transformer	between	the	utility
power	and	the	IT	equipment	that	works	as	a	filter	for	many	of	the	power
issues	(like	spikes	or	waveform	issues).	Like	the	Standby	UPS	systems,	in
case	of	a	power	interruption,	the	UPS	system	provides	AC	power	from	a
battery	using	an	electronic	inverter	circuit.
·									Double	conversion	UPS	systems	convert	the	AC	utility	power	to	DC
power	and	then	back	to	high	quality	AC	power	again	using	an	inverter.
This	way	the	AC	power	to	the	IT	systems	is	always	generated	locally	and
is	free	of	most	of	the	power	issues.	In	case	of	a	power	interruption,	the
UPS	system	uses	DC	power	from	a	battery	instead	of	the	converted	DC
power	from	the	utility	provider.	This	eliminates	(even	brief)	switch-over
moments	if	the	power	fails	and	avoids	AC	power	phase	changes.

A	 battery	 powered	 UPS	 used	 in	 a	 datacenter	 typically	 uses	 a	 large	 set	 of
batteries,	 usually	 racks	 full	 of	 them.	 As	 an	 alternative,	 several	 small	 battery-
powered	UPSs	can	be	installed	near	the	servers	in	the	racks.

7.2.4.5						Flywheel	UPS	systems
Flywheel	UPS	systems,	also	known	as	 rotary	UPS	systems,	are	 relatively	new,
although	 the	 flywheel	 technology	 itself	 is	 already	 decades	 old.	 Flywheels	 use
kinetic	 energy	 stored	 in	 a	 rotating	 heavy	wheel	 to	 drive	 a	 generator.	A	motor,
which	uses	electric	current	 from	the	utility	grid	 to	provide	energy	 to	 rotate	 the
flywheel,	 spins	 constantly	 to	 maintain	 a	 ready	 source	 of	 kinetic	 energy.	 A
generator	 then	 converts	 the	 kinetic	 energy	 of	 the	 flywheel	 into	 electricity.	 To
make	 this	 system	 energy	 efficient	 the	 mechanical	 friction	 of	 the	 flywheel	 is
minimized.	Magnetic	bearings	are	used	and	the	flywheel	is	placed	in	a	vacuum.
Flywheels	rotate	at	a	speed	of	between	5,000	and	55,000	rotations	per	minute.
Flywheels	 provide	 power	 for	 about	 10	 to	 20	 seconds	 before	 they	 get	 slowed
down	 too	 much.	 In	 this	 time	 frame	 the	 power	 generator	 must	 be	 started	 and
brought	 online.	 The	 10	 to	 20	 seconds	 is	 much	 less	 than	 the	 5	 to	 15	 minutes

available	 in	 battery	 powered	 UPSs.	 It	 is	 sufficient	 time,	 however,	 to
automatically	 start	 a	 generator.	 But	 when	 10	 to	 20	 seconds	 is	 not	 considered
enough,	multiple	flywheels	can	be	used	to	extend	the	failover	period.
The	flywheel	can	also	be	mechanically	connected	to	the	diesel	generator,	acting
as	startup	for	the	generator,	replacing	the	electric	starter	motor.

7.2.4.6						UPS	maintenance
UPS	systems	need	regular	maintenance	and	attention.

·									Batteries	are	the	weakest	link	in	a	UPS	system	and	must	be	replaced	at
regular	intervals,	typically	every	three	to	five	years.	Battery	capacity	can
get	less	over	time,	especially	when	they	are	charged	and	discharged
frequently.
·									Flywheels	last	for	30	years	or	more,	but	do	need	regular	maintenance
such	as	bearing	replacement.
·									Diesel	power	generators	should	be	preheated	(so	they	can	start
immediately	when	needed)	and	tested	regularly	(preferably	monthly)	to
ensure	proper	function	and	emergency	readiness.

For	 maintenance	 activities,	 the	 UPS	 should	 provide	 a	 maintenance	 bypass
circuit.	Remember:	during	maintenance,	the	datacenter	is	completely	dependent
on	the	utility	power	supply	unless	multiple	UPS	systems	are	used!

7.2.4.7						Power	distribution
A	 power	 distribution	 unit	 (PDU,	 also	 known	 as	 a	 Mains	 Distribution	 Unit	 –
MDU)	 is	 a	 device	 with	 multiple	 power	 outlets	 that	 distributes	 power	 to
equipment	located	in	the	datacenter.	Two	types	of	PDUs	exist:

·									Large	floor	mounted	PDUs	which	take	main	feeds	(usually	3	phase
power)	and	distribute	it	into	multiple	smaller	feeds	to	computer	racks.
·									Power	Strips,	sometimes	called	Rack-PDUs	that	feed	equipment	in
racks.

Most	 servers,	 network	 switches,	 and	 other	 infrastructure	 components	 can	 be
equipped	 with	 two	 power	 supplies	 for	 redundancy.	 For	 availability	 reasons	 at
least	 two	power	 strips	 are	 needed	 to	 power	 equipment	 in	 a	 rack,	 each	 feeding
one	of	the	two	power	supplies	in	the	equipment.

Connecting	both	power	strips	to	the	same	UPS	will	make	the	UPS	a	single	point
of	failure.	To	avoid	this,	two	completely	separated	UPS	systems	can	be	used,	but
this	can	be	costly.	A	more	cost-effective	option	is	to	connect	one	power	supply	to
the	UPS	and	the	other	to	the	utility	power,	like	in	Figure	26.
	

Figure	26:	Connecting	UPS	to	rack

Connected	 this	 way,	 two	 separate	 distribution	 paths	 are	 created.	 If	 the	 utility
power	 fails,	 the	 equipment	 is	 still	 powered	by	 the	UPS.	 If	 the	utility	power	 is
available,	but	the	UPS	fails	(a	situation	I	have	seen	occur	more	than	once),	the
equipment	keeps	running	on	utility	power.	This	practice	also	allows	maintenance
of	 the	UPS	 during	which	 the	 datacenter	 runs	 on	 utility	 power	 only	 (but	 for	 a
limited	amount	of	time	of	course).

7.2.5								Cooling
More	than	90%	of	all	power	used	by	IT	infrastructure	components	is	converted
into	heat.	This	means	that	in	a	1	MW	datacenter,	900	kW	of	heat	is	produced,	all
of	which	has	to	be	dissipated	by	a	cooling	system.
In	general,	there	are	two	types	of	cooling	systems:	CRAC	and	CRAH.	Computer
Room	Air	Conditioners	(CRAC)	are	refrigerant-based	units	connected	to	outside
condensing	units.	A	Computer	Room	Air	Handler	(CRAH)	is	chilled	water	based
and	 connected	 to	 outside	 chillers.	 A	 chiller	 produces	 chilled	 water	 via	 a
refrigeration	process.
Both	CRAC	and	CRAH	units	move	air	through	the	datacenter	via	a	fan	system.

They	 deliver	 cool	 air	 to	 the	 racks	 and	 exhaust	 fans	 remove	 hot	 air	 from	 the
datacenter	 to	 the	CRAC	or	CRAH.	Most	CRAC	and	CRAH	systems	 include	a
humidifier	that	ensures	humidity	levels	are	within	a	specific	range.
The	efficiency	of	a	cooling	system	is	specified	in	one	of	three	metrics:

·									EER	-	Energy	Efficiency	Ratio.	This	is	the	measure	of	efficiency	at
maximum	air	conditioning	load.	
EER	is	the	ratio	between	output	cooling	in	BTU	(British	Thermal	Unit	–	a
unit	of	energy	equal	to	about	1,055	joules)	per	hour	and	the	electric	energy
input	in	Watts	at	a	given	operating	point.	For	example,	if	a	cooling	system
provides	20,000	BTU	cooling	capacity	and	consumes	1,500	watts	of

electricity,	its	EER	is	 .
·									SEER	-	Seasonal	Energy	Efficiency	Ratio.	
SEER	is	exactly	the	same	as	EER,	but	seasonal	data	is	used	for	the
measurement;	the	time	of	year	the	cooling	system	is	used	most	(typically
in	the	summer).	The	SEER	is	the	output	cooling	in	BTU	during	summer
time	divided	by	the	total	electric	energy	input	in	watt-hours	in	that	period.
·									COP	-	Coefficient	Of	Performance.
This	is	the	ratio	between	cooling	load	in	kW	and	the	electric	energy	input
in	kW.	Normal	values	are	between	3	and	10.	For	example,	to	cool	150	kW
with	a	cooling	system	with	a	COP	of	3.2,	the	cooling	system	uses	47	kW
of	electricity.

7.2.5.1						Operating	temperatures
The	 air	 temperature	 in	 the	 datacenter	 usually	 ranges	 from	 18	 degrees	 to	 27
degrees	Celsius.	The	ASHRAE	(American	Society	of	Heating,	Refrigerating	and

Air-conditioning	 Engineers)	 provides	 recommendations
[18]

	 for	 air	 temperature
and	humidity	 levels	 in	a	datacenter.	While	a	 few	years	ago,	 the	 temperature	 in
datacenters	was	kept	as	low	as	18	degrees	Celsius	to	avoid	hotspots	in	racks	and
inside	 infrastructure	 components,	 today	 more	 efficient	 cooling	 allows
datacenters	 to	operate	at	much	higher	 temperatures	 (up	 to	27	degrees	Celsius).
Using	 higher	 temperatures	 saves	 cooling	 capacity	 and	 power.	 Raising	 the
temperature	in	a	datacenter	with	one	degree	Celsius	lowers	the	cost	for	cooling
by	approximately	5%!
But	 infrastructure	 components	 have	maximum	 operating	 temperatures.	 If	 their

http://en.wikipedia.org/wiki/Joule

temperature	 gets	 too	 high,	 the	 component	 gets	 damaged	 or	 is	 switched	 off
automatically.	 For	 instance,	 some	 servers	will	 shut	 themselves	 down	 at	 an	 air
inlet	 temperature	of	40	degrees	Celsius	 to	protect	 the	CPU(s)	 inside	 the	server
that	might	be	as	warm	as	80	degrees	Celsius	at	that	moment.

7.2.5.2						Airflow
There	are	several	ways	to	provide	cool	air	to	equipment.	An	optimized	air	flow
eliminates	 hot	 spots	 in	 racks	 and	 components	 as	 much	 as	 possible	 without
having	to	cool	the	air	in	the	datacenter	too	much.
One	way	 of	 providing	 a	 good	 air	 flow	 is	 to	 have	 cold	 air	 blown	 through	 the
raised	floor	using	perforated	tiles,	crating	cold	isles.	The	cold	air	is	sucked	in	by
the	 fans	 in	 the	 components,	 resulting	 in	 air	 flowing	 horizontally	 through	 the
racks.	The	warm	air	from	the	components	 leaves	 the	racks	at	 the	opposite	side
where	it	gets	sucked	back	into	the	cooling	unit,	as	shown	in	Figure	27.
	

Figure	27:	Air	flow	example

An	alternative	is	to	blow	air	horizontally	through	each	individual	rack	using	one
cooling	 unit	 per	 rack.	 This	makes	 the	 air	 flow	more	 precise,	 but	 is	 also	more
expensive,	as	more	cooling	units	are	needed.	The	advantage	is	that	this	solution
is	more	 scalable	 (an	 extra	 rack	means	 an	 extra	 cooling	 unit)	 and	 can	 provide
more	cooling	capacity	to	high	density	racks.

7.2.5.3						Humidity	and	dust

The	 humidity	 of	 the	 air	 in	 a	 datacenter	 is	 critical	 for	 the	 IT	 infrastructure
components.	 When	 air	 is	 too	 humid,	 corrosion	 of	 metal	 parts	 can	 occur,
especially	in	printed	circuit	boards,	and	tape	and	disk	drives	can	get	mechanical
problems.	 When	 the	 air	 is	 too	 dry	 Electro	 Static	 Discharge	 (ESD)	 up	 to
thousands	 of	 volts	 can	 cause	 damage	 to	 integrated	 circuits	 on	 circuit	 boards.
Therefore,	 the	 relative	 air	 humidity	 in	 a	 datacenter	 should	 between	 40%	 and
60%.
Finally,	 the	number	of	dust	particles	 in	a	datacenter	 should	be	minimized.	Not
allowing	 people	 (visitors)	 in	 the	 datacenter	 is	 a	 good	way	 to	 avoid	 dust.	 And
when	people	need	to	get	in	for	some	reason	they	should	wear	dust-free	clothing
(like	white	coats)	and	protective	sleeves	around	their	shoes.

7.2.6								Fire	prevention,	detection,	and	suppression
Fire	is	one	of	the	main	enemies	of	a	datacenter.	Because	of	the	large	density	of
equipment	and	cables,	a	short	circuit	in	a	cable,	or	a	defect	in	the	equipment	can
easily	lead	to	fire.	And	because	of	the	air	flow	in	the	datacenter	and	the	frequent
use	 of	 raised	 floors	 fires	 can	 spread	 around	 very	 quickly.	 Even	 if	 a	 fire	 starts
outside	 of	 the	 datacenter’s	 computer	 room,	 the	 smoke	 of	 such	 a	 fire	 could
damage	equipment	in	the	datacenter.
	

I	 know	 of	 situations	where	 the	 fire	was	 not	 in	 the	 computer	 room,	 but	 in	 an
office	in	the	same	building.
The	 smoke	 was	 not	 entering	 the	 datacenter	 at	 all,	 but	 the	 fire	 fighters
demanded	to	have	the	power	of	the	entire	building	(including	the	datacenter’s
UPS)	shut	down	before	they	could	start	extinguishing	the	fire.

	
Smoke	 should	 be	 taken	 seriously	 as	 well.	 Even	 if	 there	 is	 no	 fire	 breakout,
smoke	exposure	alone	can	cause	extensive	damage	to	 the	electronic	equipment
within	the	datacenter.
Suppressing	fire	in	a	datacenter	consists	of	four	levels:

·									Fire	prevention	–	measures	to	avoid	a	fire	in	the	first	place.
·									Passive	fire	protection	–	measures	to	limit	the	exposure	of	the	fire
once	it	has	started.

·									Fire	detection	systems	–	systems	to	detect	smoke	and	fire.
·									Fire	suppression	systems	–	systems	to	extinguish	the	fire	once	it	is
detected.

Each	of	 the	 levels	 above	 should	be	 taken	 care	 of.	They	 are	 described	 in	more
detail	below.

7.2.6.1						Fire	prevention
The	best	way	to	avoid	fire	damage	is	to	ensure	fires	don’t	start	at	all.	Respecting
regulations	 and	 implementing	 fire	 prevention	 guidelines	 is	 of	 course	 a	 good
practice.	 In	 datacenters,	 the	 most	 common	 source	 of	 fires	 is	 overheating	 of
equipment	 or	 cables.	 Avoiding	 “cable	 spaghetti”	 is	 a	 very	 useful	 step	 in	 fire
prevention,	as	is	not	overloading	the	power	supply	connections.

7.2.6.2						Passive	fire	protection
Passive	fire	protection	 limits	 the	exposure	of	 fire	once	 it	has	started.	Measures
include	the	installation	of	fire	resistant	walls,	floors,	and	ceilings	to	keep	the	fire
from	spreading	 fast,	 and	 firewalls	 around	parts	of	 the	datacenter	 to	 restrict	 the
fire	to	a	certain	datacenter	compartment.
Be	aware	of	vulnerable	 fire	entry	points,	 such	as	cables,	coolant	 tubes,	and	air
ducts.	These	entry	points	should	be	filled	with	fire	resistant	material.

7.2.6.3						Fire	detection	systems
Fire	detection	systems	allow	investigation,	interruption	of	power,	and	manual	or
automatic	fire	suppression	before	the	fire	spreads	too	much.
Smoke	detectors,	 flame	detectors,	 and	heat	detectors	 should	be	 installed	 in	 the
datacenter	 to	 provide	 early	 warning	 of	 a	 developing	 fire.	 Installation	 of	 these
detectors	 is	 a	delicate	 task,	 as	 the	 air	 flow	of	 the	datacenter’s	 cooling	 systems
must	be	considered.
Early	warning	signs	should	enable	staff	to	investigate	the	alarm	and	if	possible
stop	the	fire	using	for	instance	hand	fire	extinguishers,	or	by	simply	shutting	off
the	power	to	overheated	equipment.

7.2.6.4						Fire	suppression	systems
Fire	 needs	 three	 components	 to	 exist:	 heat,	 fuel,	 and	 oxygen.	 If	 any	 of	 these

three	lack,	a	fire	will	stop.
	

Figure	28:	Fire	triangle

	
So,	in	general	there	are	three	ways	to	stop	a	fire:

·									Reduction	or	isolation	of	fuel.
·									Reduction	of	heat.
·									Reduction	or	isolation	of	oxygen.

Putting	out	a	fire	by	reducing	heat	using	water	(as	used	by	sprinkler	systems	or
by	 firemen)	 is	 not	 preferred	 in	 a	 datacenter.	The	damage	 created	by	 the	water
might	be	worse	than	the	fire	itself.
Therefore,	 in	 the	 early	days	of	 datacenters	 fire	 extinguishing	was	mostly	done
using	Halon	gas.	Halon	extinguishes	fire	without	damaging	electronic	equipment
by	 replacing	 the	 oxygen	 in	 normal	 air	 with	 Halon	 gas.	 But	 Halon	 is	 bad	 for
people,	as	it	causes	dizziness	–	not	a	good	combination	with	a	spreading	fire.
Today	most	fire	extinction	systems	in	datacenters	are	still	gas	based,	but	they	use
other	 types	 of	 inert	 gases,	 like	 Argon	 and	 special	 patented	 gas	 types	 (usually
combinations	of	Argon	and	for	 instance	Nitrogen	 in	a	special	mix).	They	have
all	the	benefits	of	Halon	but	none	of	its	disadvantages.
	

Picture	10:	Argon	fire	suppression	system
[19]

Because	 releasing	 fire	 suppression	 gas	 in	 the	 datacenter	 increases	 the	 air
pressure	in	the	datacenter	with	some	50%	in	a	very	short	time,	the	pressure	peak
can	 break	 windows,	 or	 hurt	 people.	 This	 means	 that	 proper	 vents	 must	 be
installed	when	gas	based	fire	extinguishing	is	used.

7.2.7								Equipment	racks
While	mainframes	and	large	midrange	systems	are	typically	housed	in	dedicated
floor	 standing	 chassis,	 most	 x86	 and	 midrange	 systems	 today	 are	 installed	 in
racks.
A	rack	is	a	standardized	metal	enclosure	to	house	IT	infrastructure	components.
Typically,	components	placed	in	the	rack	have	a	front	panel	of	19	inches	(49	cm)
wide,	which	is	why	these	racks	are	also	known	as	19”	racks.
The	height	of	a	rack	is	measured	in	rack	unit	or	'U',	where	one	U	is	44.5	mm.	A
typical	 rack	 is	 42U	 high	 and	 components	 installed	 in	 the	 rack	 are	 usually
between	1U	and	10U	high;	rack	mountable	servers	are	typically	1U	or	2U	high,
while	blade	server	enclosures	are	typically	10U	high.
	

Figure	29:	19"	Rack

Usually	 racks	 are	 equipped	 with	 rack	 mount	 rails	 and	 cable	 trays	 to	 enable
equipment	to	be	sled	out	of	the	rack	easily	for	maintenance	or	upgrades,	without
cables	getting	disconnected.

7.2.7.1						Rack	design	tips
When	planning	rack	placement	consider	the	following:

·									Check	if	the	racks	will	fit	through	doors	and	in	elevators	if	needed.
·									Make	sure	the	racks	are	deep	enough	for	the	equipment	to	be	installed
in	them.
·									Place	racks	in	the	datacenter	such	that	one	can	walk	around	them.
·									Put	the	racks	in	isles	and	use	blind	plates	in	open	spaces	in	the	rack	to
optimize	airflow.
·									Make	sure	there	is	enough	room	in	the	datacenter	for	extra	racks	and
don't	fill	up	the	racks	completely	to	enable	future	expansion.
·									Make	certain	the	rack	doors	can	be	opened,	both	on	the	front	side	and

the	back.	It	should	be	possible	to	open	doors	in	neighboring	racks	as	well.
·									Usually	network	equipment	like	switches	and	routers	are	installed	at
the	back	of	the	rack	to	enable	easy	handling	of	the	cables.	Ensure	there	is
enough	room	for	patch	panels	in	the	back	of	the	rack,	while	not	interfering
with	equipment	placed	in	the	front	of	the	rack.
·									Non-19"	equipment	(like	modems,	keyboard	switches,	and	external
disk	drives)	can	be	installed	in	a	rack	using	shelves.	Rack	manufacturers
usually	have	shelves	available	that	can	be	mounted	in	the	rack.	Ensure	that
equipment	that	is	placed	on	shelves	is	tightened	to	prevent	the	equipment
from	falling	off	and	to	prevent	cable	disconnects.
·									Make	sure	all	cables	are	labeled	and	fit	properly	in	the	rack.	This
avoids	mistakes	like	pulling	a	wrong	cable,	leading	to	downtime.
·									If	possible,	try	to	install	the	heaviest	equipment	at	the	lowest	position
in	the	rack	to	provide	mechanical	stability	and	to	guard	the	rack	from
falling	over	when	the	equipment	is	sled	out	of	the	rack.

7.2.7.2						KVM	switches
When	there	are	a	 large	number	of	servers	 in	a	single	 rack,	 it	 is	 impractical	 for
each	 one	 to	 have	 its	 own	 separate	 keyboard,	 mouse,	 and	 monitor.	 Instead,	 a
KVM	 (Keyboard,	 Video,	 Mouse)	 switch	 can	 be	 used,	 combined	 with	 a	 rack
mounted	keyboard	and	display.
A	 KVM	 switch	 is	 a	 hardware	 device	 that	 allows	 a	 user	 to	 control	 multiple
servers	from	a	single	keyboard,	video	monitor,	and	mouse.	Control	 is	switched
from	one	server	to	another	by	the	use	of	a	switch	or	buttons	on	the	KVM	switch.
	

Picture	11:	KVM	switch
[20]

Most	 KVM	 switches	 also	 allow	 control	 to	 be	 switched	 through	 keyboard
commands	(such	as	hitting	a	certain	key,	often	Scroll	Lock,	rapidly	two	or	three
times),	or	via	an	On-Screen	Display	(OSD)	menu.

Some	KVM	switches	are	UTP	wired	and	operate	over	TCP/IP,	allowing	a	normal
PC	to	work	on	one	of	the	servers	remotely.

7.2.8								Datacenter	cabling	and	patching
In	2005	the	Telecommunications	Industry	Association	(TIA)	introduced	the	TIA
942	Telecommunications	Infrastructure	standards	for	Datacenters.	This	standard
describes	 how	 datacenters	 should	 be	 designed	 based	 on	 a	 hierarchical	 cable
structure.	 It	 defines	 a	 standard	 and	 structured	 cabling	 infrastructure	 for
datacenters.
Cables	and	patching	are	discussed	in	more	detail	in	chapter	8	on	networking.

7.2.8.1						Demarcation	point
A	demarcation	point	 is	 the	point	at	which	 the	 telecom	provider’s	network	ends
(including	 its	 responsibility)	 and	 the	 datacenter	 network	 (and	 responsibility)
begins.
The	demarcation	point	is	usually	a	cable	strip	in	a	locked	location	of	which	one
part	can	only	be	accessed	by	the	telecom	provider	and	the	other	part	only	by	the
systems	managers.
If	possible	two	or	more	demarcation	points	should	be	installed	in	the	datacenter,
to	avoid	a	single	point	of	failure.	Ensure	operators	know	where	the	demarcation
points	 are.	 The	 cables	 from	 the	 demarcation	 points	 should	 leave	 the
building	using	different	routes.

7.2.9								Datacenter	energy	efficiency
The	 US	 EPA	 estimates	 that	 servers	 and	 datacenters	 are	 responsible	 for	 up	 to

1.5%	of	 the	 total	US	 electricity	 consumption
[21]

.	And	 according	 to	 a	 study	 by

Gartner
[22]

,	IT	accounts	for	approximately	2%	of	all	the	world’s	CO2	emissions.
This	is	approximately	the	same	volume	as	all	airplanes	combined.
The	amount	of	money	that	can	be	saved	by	implementing	power	efficient	IT	can
be	substantial.	For	instance,	during	the	lifetime	of	a	server	the	amount	of	money
spent	 on	 electricity	 can	 be	much	 higher	 than	 the	 cost	 of	 the	 server	 itself.	 The

price	of	electricity	raised	78%	between	2000	and	2015
[23]

,	and	the	electricity	bill

will	probably	only	go	up	in	the	forthcoming	years.
It	is	important	to	know	who	pays	the	electricity	bill	in	an	organization.	In	most
cases,	 the	 facilities	 department	 pays	 the	 electricity	 bill,	 not	 the	 IT	department.
Often	 systems	 managers	 and	 architects	 know	 pretty	 well	 how	 much	 a	 server
costs,	but	they	rarely	have	a	clue	about	the	cost	of	electricity.	Do	you	know	how
much	one	kWh	cost	for	your	organization?
Apart	from	the	power	used	by	the	IT	infrastructure	components	in	the	datacenter,
the	 datacenter	 itself	 uses	 power	 as	 well.	 Most	 of	 this	 power	 is	 used	 by	 the
cooling	 system,	 but	 power	 is	 also	 needed	 for	 lighting,	 heating	 of	 the	 operator
rooms,	etc.
To	 measure	 the	 power	 used	 by	 the	 datacenter	 the	 Power	 Usage
Effectiveness	 (PUE)	 metric	 is	 most	 used.	 In	 a	 white	 paper	 published	 by	 the
Green	 Grid	 in	 February	 2007	 called	 "Green	 Grid	 Metrics:	 Describing	 Data

Center	Power	Efficiency"
[24]

	the	use	of	the	PUE	metric	was	introduced.
The	PUE	is	calculated	by	dividing	the	amount	of	power	used	by	the	datacenter,
by	the	power	used	to	run	the	IT	equipment	in	it.	PUE	is	therefore	expressed	as	a
ratio,	with	efficiency	improving	as	the	metric	decreases	towards	1.
For	example,	running	a	datacenter	with	a	PUE	of	1.5	means	that	for	each	watt	of
power	 used	 by	 the	 IT	 equipment	 an	 extra	 half	watt	 is	 used	 by	 the	 rest	 of	 the
datacenter.	 This	 means	 that	 if	 this	 datacenter	 has	 1	 MW	 of	 IT	 components
installed,	 another	 0.5	MW	 is	 “wasted”	 by	 the	 datacenter	 (mainly	 for	 cooling,
which	does	not	directly	lead	to	better	or	more	customer	service).

In	this	example,	with	an	average	electricity	cost	of	$0.12	per	kWh
[25]

,	every	year
	is	spent	on	running	the	datacenter	alone	(not

including	the	actual	IT	equipment)!
In	 this	 example	 by	 optimizing	 the	 datacenter’s	 power	 usage	 to	 a	 PUE	 of	 1.3,
$210,240	per	year	can	be	saved.
Over	the	years,	the	trend	has	been	to	decrease	the	PUE	from	more	than	2	a	few

years	ago	to	a	typical	value	of	1.7	today
[26]

.	Google	claims	its	datacenters	reach

a	PUE	of	1.14
[27]

,	and	the	Facebook	datacenter	in	Prineville	even	claims	to	reach

a	 PUE	 of	 only	 1.06
[28]

,	 as	 a	 result	 of	 cooling	 optimizations	 and	 large	 scale

operations.	 In	 other	 words,	 apart	 from	 powering	 their	 servers,	 this	 Facebook
datacenter	 uses	 only	 six	 percent	 additional	 power	 for	 all	 sources	 of	 overhead
combined.
The	best	way	to	lower	the	PUE	of	a	datacenter	is	to	implement	efficient	cooling
systems.	More	information	on	cooling	systems	is	provided	in	section	7.2.5.
It	 is	 important	 to	 understand	 that	 PUE	 only	 measures	 datacenter	 power
efficiency,	 and	 not	 for	 instance	 server	 efficiency,	 the	 efficiency	 of	 the	 power
supplies	 used,	 let	 alone	 the	 amount	 of	 useful	 work	 that	 is	 done	 by	 the	 IT
equipment!
Another	thing	to	remember	is	that	a	high	PUE	is	not	always	bad.	If	a	datacenter
uses	its	IT	infrastructure	components	very	efficiently,	for	instance	by	virtualizing
all	 servers	 to	a	 few	 large	physical	 systems,	much	energy	 is	 saved	compared	 to
using	 many	 individual	 servers.	 The	 PUE,	 however,	 will	 be	 relatively	 high	 as
much	cooling	is	needed	for	the	fully	loaded	physical	machines.

7.3													Datacenter	availability

7.3.1								Availability	tiers

Some	years	ago,	the	Uptime	institute
[29]

	introduced	an	availability	classification
for	 datacenters.	 The	 classification	 consists	 of	 four	 tiers,	 in	 which	 a	 tier	 1
datacenter	 has	 a	 lower	 availability	 than	 a	 tier	 4	 datacenter.	Datacenters	 can	be
certified	by	The	Uptime	Institute	for	a	certain	tier.
Below	is	a	high-level	overview	of	the	four	tiers,	the	availability	they	provide	and
the	measures	that	must	be	implemented	to	reach	the	classification.
	
Tier Measures Expected	downtime

Tier	1
Availability
99.671%
Type	
Basic

Single	path	for	power	and	cooling	distribution
No	redundant	components

Downtime	very	likely	for	planned
and	unplanned	maintenance

Tier	2
Availability
99.741%
Type
Redundant
components

Fulfills	all	Tier	1	requirements
Single	path	for	power	and	cooling	distribution
Redundant	components

Downtime	likely	for	planned	and
unplanned	maintenance

Tier	3
Availability
99.982%
Type	Concurrently
maintainable

Fulfills	all	Tier	1	and	Tier	2	requirements
Multiple	active	power	and	cooling	distribution	paths
Only	one	path	active
Redundant	components
All	IT	equipment	must	be	dual-powered

No	downtime	due	to	planned
maintenance
Downtime	unlikely	for	unplanned
maintenance

Tier	4
Availability
99.995%
Type
Fault	tolerant

Fulfills	all	Tier	1,	Tier	2,	and	Tier	3	requirements
Multiple	active	power	and	cooling	distribution	paths
Redundant	components
All	cooling	equipment	is	independently	dual-powered,	including	chillers	and
Heating,	Ventilating	and	Air	Conditioning	(HVAC)	systems

No	downtime	due	to	planned	or
unplanned	maintenance

Table	15:	Datacenter	tiers

The	 table	 above	 only	 describes	 the	 highlights	 of	 the	 tier	 classification.	 The
classification	system	documentation	contains	much	more	detail.
While	 a	 datacenter	 can	 have	 different	 tier	 levels	 for	 different	 portions	 of	 the
datacenter,	the	overall	rating	of	the	datacenter	is	equal	to	the	lowest	tier	rating.
There	is	no	such	thing	as	a	tier	2.5	or	tier	3+	datacenter.
The	tier	classification	only	describes	the	availability	of	the	datacenter	facilities,
not	the	availability	of	the	IT	infrastructure	components.	The	availability	of	the	IT

infrastructure	in	a	datacenter	must	therefore	be	multiplied	by	the	availability	of
the	datacenter	to	get	the	overall	availability.
For	instance,	a	tier	3	datacenter	running	an	IT	infrastructure	with	an	availability
of	99.990%	will	have	a	total	availability	of	

7.3.2								Redundant	datacenters
Building	a	tier	4	datacenter	is	sometimes	not	possible,	for	instance	in	places	with
only	 one	 power	 supply	 company.	 Tier	 4	 datacenters	 are	 also	 extremely
expensive.	There	are	only	a	few	certified	tier	4	datacenters	in	the	world.
Instead	of	using	a	Tier	4	datacenter,	multiple	redundant	datacenters	can	be	used
to	increase	availability.	Multiple	datacenters	are	a	must	when	higher	availability
than	 99.995%	 is	 needed.	 Typically,	 two	 datacenters	 are	 used,	 but	 highly
redundant	systems	can	use	as	many	datacenters	as	needed.
As	an	example,	if	a	datacenter	with	all	its	equipment	has	an	availability	of	99.5%
(lower	than	tier	1),	two	datacenters	can	reach	an	availability	of	the	same	level	as
one	tier	4	datacenter:	
(see	section	4.2.3	for	an	explanation	of	this	formula)	given	that	there	is	no	single
point	 of	 failure	 for	 both	 datacenters,	 and	 the	 uninterrupted	 availability	 for	 the
end	users	is	guaranteed	if	one	of	the	datacenters	is	available.
Based	 on	 the	 effect	 of	 incidents	 like	 the	 9/11	 terrorist	 attacks	 in	 the	USA	 and
reports	 of	 explosions	 in	 factory	 plants	 and	 fireworks	 storage,	 the	 datacenters
should	be	at	least	5	km	apart.

7.4													Datacenter	performance

The	datacenter	itself	does	not	provide	performance	to	IT	Infrastructures,	except
for	the	bandwidth	of	the	internet	connectivity	and	the	scalability	of	the	location.
As	 explained	 in	 section	 7.2.2,	 the	 location	 of	 the	 datacenter	 should	 be	 chosen
with	these	properties	in	mind.

7.5													Datacenter	security

Datacenter	 security	 is	 mostly	 a	 matter	 of	 physical	 security,	 ensuring	 that
equipment	 is	 physically	 safe	 behind	 the	 datacenter	 doors.	 To	 implement	 this,
doors,	windows,	and	other	entry	points	must	be	secured.
Physical	access	to	the	datacenter	must	be	restricted	to	selected	and	qualified	staff
and	 an	 entry	 registration	 system	 should	 be	 used.	 A	 log	 should	 be	maintained
containing	all	staff	entering	and	leaving	the	datacenter.
Doors	must	be	secured	using	conventional	 locks	(for	 instance	for	dock	loading
doors)	 or	 electronic	 locks.	 The	 electronic	 locks	 should	 open	 only	 after	 proper
authentication.	This	can	be	done	using	card	access	control	systems	using	either
proximity	based	cards	or	swipe	cards.
Entry	points	can	be	implemented	as	regular	doors,	but	also	as	mantraps	(where
staff	is	routed	through	a	set	of	double	doors	that	may	be	monitored	by	a	guard)
or	 revolving	doors,	where	only	one	person	at	a	 time	can	enter	 the	datacenter’s
restricted	 area.	 These	 entries	 can	 be	 equipped	with	 weighing	 scales	 to	 ensure
only	one	person	enters	the	restricted	area.
	

Figure	30:	Revolving	door

Doors	 and	 windows	 should	 have	 monitoring	 and	 preferably	 CCTV	 camera
surveillance	 to	 alert	 upon	 opening.	 Motion	 detection	 systems	 can	 be	 used	 to
detect	movement	inside	and	outside	the	building.	In	general,	the	number	of	entry

and	exit	points	of	the	datacenter	should	be	kept	to	a	minimum.
Permanent	 security	 guards	 (possibly	 with	 dogs)	 could	 be	 considered	 if	 the
datacenter	is	large	or	contains	sensitive	information.
Finally,	anti-ram	raid	equipment	can	be	installed	to	protect	from	frontal	assaults
using	vehicles.

	

8				

NETWORKING

8.1													Introduction

Mainframe	computers	in	the	1960s	were	stand-alone	machines.	They	performed
computing	jobs	based	on	input	(usually	on	punched	cards	or	tapes)	and	created
output,	 usually	 on	 printed	 paper.	 Mainframe	 computers	 were	 large	 expensive
systems	typically	in	use	at	universities	and	large	corporations.	Since	a	university
or	corporation	had	only	one	computer	(the	mainframe),	 there	was	little	need	to
have	networking.
Even	with	 time	sharing	systems	like	 the	early	UNIX	systems	in	 the	1970s,	 the
user's	 terminals	 or	 teletypes	 were	 connected	 to	 the	 central	 computer	 through
serial	(RS-232)	lines.

Figure	31:	Networking	in	the	infrastructure	model

In	 the	 late	1960s,	 for	 the	 first	 time	a	number	of	 computers	were	connected	by
means	 of	 the	 ARPANET	 –	 the	 predecessor	 of	 the	 internet.	 The	 ARPANET
network	consisted	of	Interface	Message	Processors	(IMPs)	which	we	would	now
call	network	routers.

Picture	12:	The	first	IMP
[30]

The	first	e-mail	system	via	ARPANET	was	 implemented	back	 in	1971,	and	by
1973,	 the	File	Transfer	Protocol	(FTP)	was	defined	and	implemented,	enabling
file	transfers	over	the	ARPANET.
In	1973,	engineers	started	to	connect	the	ARPANET	to	the	packet	radio	network
(PRNET)	 and	 the	 Satellite	 Network	 (SATNET).	 They	 called	 the	 connection
between	these	networks	inter-networking,	or	the	internet	for	short.
ARPANET	 originally	 used	 the	 Network	 Control	 Protocol	 (NCP),	 which	 was
replaced	by	TCP/IP	in	1983.
When	Personal	Computers	 (PCs)	 found	 their	way	 into	 the	office	 in	 the	1980s,
the	 need	 arose	 for	 sharing	 data	 between	 office	 PCs.	 Local	 Area	 Networks
(LANs)	 were	 designed	 to	 allow	 PCs	 to	 connect	 to	 each	 other	 and	 to	 shared
resources	like	a	file	server,	a	printer	or	a	router	to	the	internet.
In	 the	 early	 years,	 LANs	were	 built	 using	 technologies	 like	ARCNET,	 Token
Ring,	Ethernet	 and	others.	Most	of	 these	 technologies	are	phased	out	now	and
today	Ethernet	is	the	norm	for	LANs.
The	 internet	 became	 available	 for	 the	 average	 business	 and	 home	user	 around
1996.	One	of	the	reasons	was	the	introduction	of	Windows	95,	which	came	with
a	web	browser.	The	first	billion	internet	users	were	reached	in	2005,	the	second
billion	 in	2010	and	the	 third	billion	 in	2014.	 It	 is	estimated	 that	 in	2017,	more

than	3.5	billion	people	use	the	internet
[31]

.

8.2													Networking	building	blocks

8.2.1								OSI	Reference	Model
The	 architecture	 of	 almost	 every	 network	 is	 based	 on	 the	 Open	 Systems
Interconnection	 (OSI)	 standard	 reference	 model.	 The	 OSI	 Reference	 Model
(OSI-RM)	 was	 developed	 in	 1984	 by	 the	 International	 Organization	 for
Standardization,	 a	 global	 federation	 of	 national	 standards	 organizations
representing	approximately	130	countries.
A	host	or	node	is	a	component	on	the	network,	like	a	server,	a	router,	a	switch	or
a	firewall.	The	OSI-RM	consists	of	a	set	of	seven	layers	that	define	the	different
stages	 that	 data	 must	 go	 through	 to	 travel	 from	 one	 host	 to	 another	 over	 a
network.	 Figure	 32	 shows	 these	 seven	 layers,	 including	 some	 examples	 of
implementations	of	that	layer.

Figure	32:	OSI	layers

The	layers	can	easily	be	recalled	using	the	mnemonic:
People	Do	Need	To	See	Pamela	Anderson,

where	the	first	letter	of	each	word	is	the	first	letter	of	each	layer,	starting	from
layer	one.

	
The	main	benefit	of	implementing	the	OSI	stack	is	that	it	allows	implementing
network	 components	 independently	 of	 each	 other,	 while	 still	 ensuring	 all
components	 work	 together.	 For	 instance,	 TCP/IP,	 which	 is	 used	 to	 send
information	over	the	internet,	comprises	the	TCP	protocol	in	layer	4	with	the	IP
protocol	 in	 layer	3.	Without	changing	 the	 IP	protocol,	an	UDP/IP	stack	can	be
used	as	well,	by	just	changing	the	level	4	protocol	from	TCP	to	UDP.
Because	each	layer	in	the	OSI	stack	can	be	implemented	independently	from	the
layer	below	and	above.	This	provides	freedom	to	implement	the	network	stack	in
an	 optimal	 way	 for	 a	 certain	 usage.	 For	 instance,	 local	 area	 networks	 use
different	building	blocks	than	wide	area	networks	or	the	internet.
Each	 layer’s	 payload	 contains	 the	 protocol	 for	 the	 next	 layer.	 Consider	 the
example	in	Figure	33.
	

Figure	33:	Frames	embedded	in	each	other

Figure	33	shows	an	Ethernet	frame	with	an	IP	packet	in	it,	with	a	TCP	segment
in	it,	with	a	HTTP	command	in	it.	The	nesting	of	these	protocols	allows	sending
HTTP	traffic	(like	web	pages)	to	another	computer	using	an	Ethernet	network	in
a	reliable	way.
This	chapter	is	organized	based	on	the	OSI	model,	starting	from	the	bottom	layer
and	 working	 up	 to	 the	 top	 of	 the	 stack.	 For	 each	 layer	 the	 most	 used
implementations	are	discussed.

8.2.2								Physical	layer
The	physical	 layer	defines	physical	hardware	components	of	 the	network,	such
as	Network	Interface	Cards	(NICs),	copper	and	fiber	optic	cables,	 leased	 lines,
cable	internet,	and	DSL.

8.2.2.1						Cables
At	the	most	elementary	level,	networking	is	about	cables.	In	early	networks	coax
cables	were	used	to	interconnect	computers,	but	most	copper	based	cables	today
are	 of	 the	 twisted	 pair	 type.	Apart	 from	 copper	 cabling,	 fiber	 optic	 cabling	 is
used	quite	often	as	well.

8.2.2.1.1			Twisted	pair	cables
Twisted	pair	cables	consist	of	paired	insulated	wires	that	are	twisted	around	each
other	 to	prevent	 interference.	A	cable	contains	multiple	wire	pairs,	 that	 can	be
shielded	(Shielded	Twisted	Pair	-	STP)	or	unshielded	(Unshielded	Twisted	Pair	-
UTP).	UTP	is	the	most	common	cable	in	networking	today.
	

Picture	13:	UTP	cable

Having	 separate	 pairs	 of	 wires	 for	 transmitting	 data	 (TX)	 and	 receiving	 data
(RX)	allows	for	full	duplex	communication.	Full	duplex	communication	means
that	data	may	be	transmitted	and	received	by	a	host	at	the	same	time.
UTP	comes	 in	 several	 quality	 ratings	 called	 categories.	The	 rating	 is	 based	on
how	tightly	the	copper	wires	are	intertwined:	The	tighter	the	wind,	the	higher	the
rating	 and	 its	 resistance	 to	 interference	 and	 attenuation.	 This	 resistance	 to
interference	 is	 crucial	 for	providing	higher	data	 rates.	Table	16	 shows	a	 list	of
today’s	most	used	categories	and	their	maximum	bandwidth.
	

Category Maximum	bandwidth

5	or	5e 1	Gbit/s

6 10	Gbit/s

7 10	Gbit/s

8 40	Gbit/s

Table	16:	Twisted	pair	cables	and	their	bandwidth

8.2.2.1.2			Coax	cable
Coax	 cable	 consists	 of	 an	 inner	 conductor	 surrounded	 by	 a	 flexible,	 tubular
insulating	layer,	surrounded	by	a	tubular	conducting	shield.
	

Picture	14:	Coax	cable
[32]

Historically,	 coax	 cable	 provided	 the	 highest	 bandwidth	 possible	 in	 copper
cabling.	 It	 is	 still	 heavily	used	by	 cable	 companies,	 but	 improvements	 in	UTP
and	STP	cables	allow	higher	bandwidths,	eliminating	coax	cables	for	most	other
uses.

8.2.2.1.3			Fiber	optic	cable
A	fiber	optic	cable	contains	multiple	strands	of	 fiber	glass	or	plastic,	 that	each
provide	an	optical	path	 for	 light	pulses.	The	 light	 source	can	either	be	a	 light-
emitting	diode	(LED)	or	a	laser.
The	 maximum	 transmission	 distance	 depends	 on	 the	 optical	 power	 of	 the
transmitter,	 the	optical	wavelength	utilized,	 the	quality	of	 the	 fiber	 optic	 cable
and	the	sensitivity	of	the	optical	receiver.
Two	types	of	fiber	optic	cable	are	most	common:

·									Multi-Mode	Fiber	(MMF)
·									Single	Mode	Fiber	(SMF)

SMF	is	used	for	long	distance	communication	(up	to	80	km),	and	MMF	is	used
for	distances	of	 500m	or	 less,	 typically	used	 in	 the	datacenter	or	 on	 a	 campus
setup.
Light	 waves	 in	Multi-Mode	 Fiber	 (MMF)	 are	 dispersed	 into	 numerous	 paths,
also	known	as	modes,	as	they	travel	through	the	cable's	core	–	hence	the	name.
	

Figure	34:	Multi-Mode	Fiber

Single-Mode	Fiber	(SMF)	is	designed	to	carry	only	a	single	narrow	band	of	ray
wavelengths	of	light	(a	single	mode).
	

Figure	35:	Single-Mode	Fiber

SMF	 requires	 a	 light	 source	 with	 a	 narrow	 spectral	 width	 (typically	 a	 laser).
SMF	has	a	much	smaller	core	than	MMF.	The	small	core	and	single	light-wave
virtually	 eliminates	 any	 distortion	 that	 could	 result	 from	 overlapping	 light
pulses,	providing	transmissions	over	long	distances.	SMF	is	more	expensive	than
MMF,	not	only	because	of	cable	costs,	but	also	because	of	the	more	expensive
interface	cards	needed	to	send	a	single	ray	of	light.
Using	 one	 light	 source,	 the	maximum	bandwidth	 of	 a	 fiber	 optics	 cable	 (both
MMF	and	SMF)	is	approximately	10	Gbit/s.	Using	Dense	Wavelength-Division
Multiplexing	(DWDM)	the	capacity	of	fiber	optics	cables	can	be	extended.	By
using	multiple	light	sources,	each	having	a	distinct	color	(wave	length),	multiple
channels	can	travel	though	the	fiber	optics	cable	simultaneously.	This	way	up	to
80	 channels	 can	 be	 created,	 leading	 to	 a	 total	 bandwidth	 of	 800	 Gbit/s	 for	 a

single	strand	of	fiber	cable.

8.2.2.1.4			Vertical	and	horizontal	cabling	and	patch	panels
Cables	in	buildings	are	most	visible	in	patch	panels.	Patch	panels	are	installed	in
racks	 in	 the	 datacenter	 and	 in	 patch	 closets	 (or	 SERs	 –	 see	 7.2.1)	 in	 various
locations	 in	 (office)	 buildings.	 They	 are	 used	 to	 connect	 systems	 in	 a	 flexible
way,	without	having	to	change	the	installed	cabling	in	the	building.
After	 the	 initial	 installation,	over	 the	years,	cables	 in	 the	datacenter	and	rest	of
the	 buildings	 sometimes	 have	 to	 be	 added,	 moved,	 replaced,	 or	 removed.	 To
enable	this	flexibility,	cables	are	terminated	on	patch	panels;	not	directly	on	the
network	switches,	servers	or	PCs.
Patch	 panels	 are	 passive	 connecting	 devices	 with	 port	 locations	 or	 jacks,	 in
which	 so-called	 patch	 cables	 can	 be	 plugged.	 Connecting	 systems	 is	 done	 by
connecting	them	through	the	patch	panel.
	

Picture	15:	Patch	panel
[33]

The	 main	 distribution	 cabling	 in	 buildings	 connects	 the	 patch	 panels	 on	 the
various	floors	to	the	patch	panels	in	the	datacenter,	as	shown	in	Figure	36.	This
cabling	 is	 also	 known	 as	 the	 vertical	 cabling,	 as	 the	 cables	 typically	 span
multiple	 floors.	On	 the	 floors,	horizontal	cabling	connects	 the	endpoints	 in	 the
walls	to	the	patch	panels.
	

Figure	36:	Vertical	and	horizontal	cabling

It	 is	 good	 practice	 to	 implement	 redundant	 vertical	 cabling.	 If	 possible,	 try	 to
create	two	different	physical	routes	for	connecting	patch	panels	on	each	floor	to
the	datacenter,	preferably	using	a	ring	layout.
Try	 to	 avoid	 having	 redundant	 cables	 using	 the	 same	 physical	 path.	 Vertical
cabling	 is	 sometimes	 installed	 in	elevator	 shafts.	While	 this	 seems	 like	a	good
(and	 relatively	 cheap)	 idea,	 when	 the	 elevator	 is	 repaired,	 cables	 can	 get
damaged	causing	entire	floors	to	become	disconnected.
Of	 course,	 in	 buildings	 with	 multiple	 elevators	 redundant	 connections	 can	 be
implemented	using	multiple	elevator	shafts.	In	other	situations,	alternative	paths
should	be	used.
Patch	panels	usually	 contain	multiple	 types	of	patching,	 including	 for	 instance
UTP	 Ethernet	 patching,	 analog	 telephone	 patching,	 and	 fiber	 optics	 patching.
Using	 separate	 patch	 panels	 for	 these	 types	 of	 patch	 cables	 is	 highly
recommended,	 and	 using	 color	 coding	 of	 cables	 is	 also	 good	 practice	 (for
instance	green	cables	for	telephony,	blue	for	LAN,	orange	for	fiber	optics	to	the
datacenter).
Patch	 cables	 can	 easily	 become	 tangled,	 making	 them	 difficult	 to	 work	 with,
sometimes	resulting	in	infrastructure	components	accidentally	getting	unplugged

in	attempts	to	move	a	cable.	Such	cases	are	known	as	"cable	spaghetti".
	

I	 have	 seen	 this	many	 times	 in	 practice.	Originally	 the	 cables	were	 installed
properly,	but	after	some	years,	and	many	changes,	cable	routing	got	messy.
We	 found	 rack	 doors	 could	 not	 be	 closed	 because	 of	 excessive	 bundles	 of
cables	hanging	out	of	the	rack.	At	several	occasions,	we	had	cleanup	sessions
(in	evenings	or	weekends)	to	completely	re-cable	all	racks.

	
Proper	cable	management	is	needed	to	avoid	this	situation.	It	is	a	good	practice
to	color	code	patch	cables	 to	 identify	 the	 type	of	connection	and	 to	 label	 them
properly.	 Use	 cable	 management	 trays	 wherever	 possible	 and	 use	 different
racks	for	copper	and	fiber	cables	patch	panels.

8.2.2.2						Leased	lines
Leased	lines	are	dedicated	data	connections	between	two	locations	provided	by	a
third	party,	 typically	a	telecom	provider.	Leased	lines	are	based	on	a	long-term
contract	and	the	physical	connection	is	often	created	especially	for	that	contract.
Leased	lines	are	based	on	T	or	E	carrier	lines,	SONET,	SDH,	or	dark	fiber.

8.2.2.2.1			T	and	E	carrier	lines
T	 (USA,	 Canada,	 and	 Japan)	 and	 E	 (most	 other	 countries)	 carrier	 lines	 are
copper	based	leased	lines.	This	does	not	necessarily	mean	there	is	an	end-to-end
copper	bundle	used,	but	the	end	user	is	connected	using	copper	cables.
There	are	many	types	of	T	and	E	versions,	each	providing	different	bandwidths.
In	practice,	only	the	following	bandwidths	are	used:

	
	
Type

T-Bandwidth E-Bandwidth

1 1.5	Mbit/s 2	Mbit/s
3 45	Mbit/s 34	Mbit/s
4 275	Mbit/s 140	Mbit/s
5 400	Mbit/s 565	Mbit/s

Table	17:	T	and	E	carrier	lines

For	example,	as	shown	in	Table	17,	a	T3	line	has	a	bandwidth	of	45	Mbit/s.
T	 and	 E	 carrier	 lines	 actually	 consist	 of	 multiple	 individual	 channels.	 Most
telecom	providers	allow	leasing	one	or	more	individual	channels;	this	is	known
as	 fractional	 access.	 T	 and	 E	 carrier	 lines	 are	 symmetric,	 meaning	 that	 their
upload	and	download	bandwidths	are	the	same.
T	and	E	definitions	are	part	of	the	SONET/SDH	standard	as	described	next.

8.2.2.2.2			SONET	and	SDH
Synchronous	Optical	Networking	(SONET)	and	Synchronous	Digital	Hierarchy
(SDH)	 are	 protocols	 that	 transfer	multiple	 data	 streams	 over	 optical	 fiber,	 for
instance	bundles	of	multiple	T	or	E	carrier	 lines	 in	 the	backbone	of	 a	 telecom
provider.
SONET	and	SDH	are	essentially	 the	same.	SONET	is	used	most	 in	 the	United
States	and	Canada,	while	SDH	is	used	in	most	of	the	rest	of	the	world.
Optical	 Carrier	 (OC)	 levels	 are	 used	 to	 specify	 the	 bandwidth	 of	 fiber	 optic
networks	 conforming	 to	 the	 SONET	 standard,	 while	 Synchronous	 Transport
Module	(STM)	is	used	in	SDH.	Commonly	used	speeds	are:

·									OC3/	STM1	-	155Mbit/s
·									OC12/	STM4	-	622	Mbit/s
·									OC48/	STM16	-	2.5	Gbit/s
·									OC192/	STM64	-	9.5	Gbit/s
·									OC768	/	STM256	–	38	Gbit/s

8.2.2.2.3			Dark	fiber
Rather	 than	 leasing	 high	 speed	 leased	 line	 capacity,	 which	 requires	 expensive
SONET	 or	 SDH	 equipment,	 dark	 fiber	 provides	 a	 dedicated	 fiber	 optic

connection	without	management	or	prescribed	protocols	between	two	end	points.
The	user	can	send	anything	he	or	she	wants	through	the	fiber,	as	it	 is	a	private
link.	This	allows	dark	fiber	networks	to	operate	using	the	latest	optical	protocols,
adding	 capacity	 where	 needed.	 For	 example,	 many	 dark	 fiber	 networks	 use
cheap	Gigabit	Ethernet	equipment,	rather	than	expensive	SONET	systems.
Due	 to	 the	 cost	 of	 installing	 dark	 fiber	 networks,	 they	 are	 generally	 only
available	in	high-population-density	areas	where	fiber	optic	cables	have	already
been	installed.

8.2.2.3						Cable	internet	access
Cable	 internet	 uses	 the	 cable	 television	 infrastructure,	 already	 installed	 and
available	 in	many	places.	With	 cable	 internet,	 data	 is	 transmitted	 and	 received
using	 the	 same	 cable	 as	 analog	 and	 digital	 television	 signals.	 The	 internet
connection	uses	an	asymmetric	type	of	transmission.	The	data	from	the	internet
has	 download	 data	 rates	 up	 to	 400	 Mbit/s	 and	 data	 to	 the	 internet	 is	 sent	 at
upload	data	rates	up	to	20	Mbit/s.
The	physical	coax	cable	runs	to	a	wiring	closet	of	the	cable	company	(called	“the
curb”),	 where	 the	 data	 connection	 is	 converted	 to	 optical	 fiber	 for	 further
transportation.

8.2.2.4						DSL
DSL	is	an	abbreviation	of	Digital	Subscriber	Line.	It	provides	data	transmission
using	 existing	 wires	 of	 a	 local	 telephone	 network.	 Since	 DSL	 uses	 normal
telephone	 lines,	 no	 dedicated	 physical	 cable	 needs	 to	 be	 installed	 (like	 with
leased	lines).	The	speed	of	a	DSL	line	is	highly	dependent	on	the	quality	of	the
telephone	wiring,	and	the	distance	between	the	DSL	connection	and	the	telecom
provider's	equipment	(POP	–	point	of	presence	–	or	local	exchange).
There	are	various	types	of	DSL	connections.

·									Asymmetric	DSL	(ADSL)	is	the	most	common	deployed	type	of
DSL,	supporting	data	rates	up	to	25	Mbit/s	when	receiving	data
(download)	and	up	to	3.5	Mbit/s	when	sending	data	(upload).
·									Symmetric	DSL	(SDSL)	supports	data	rates	up	to	3	Mbit/s,	both
upload	and	download.
·									Very	High	DSL	(VDSL)	offers	fast	data	rates	over	relatively	short

distances.	The	shorter	the	distance,	the	faster	the	connection	rate,
providing	speeds	up	to	100	Mbit/s.

8.2.2.5						Network	Interface	Controllers	(NICs)
A	network	 interface	 controller	 (NIC)	 is	 a	hardware	 component	 that	 connects	 a
server	or	end	user	device	to	a	physical	network	cable.	NICs	can	be	implemented
on	expansion	cards	that	plug	into	the	computer's	physical	PCI	bus	or	built	 into
the	motherboard.
The	 NIC	 is	 actually	 both	 a	 physical	 layer	 and	 data	 link	 layer	 device,	 as	 it
provides	 physical	 access	 to	 a	 networking	 cable	 and	 an	 implementation	 of	 a
datalink	protocol	like	Ethernet.	A	NIC	has	a	fixed	MAC	address	that	is	uniquely
assigned	to	its	network	interface.

8.2.3								Data	link	layer
In	layer	2,	data	is	encapsulated	in	the	physical	protocol,	and	the	type	of	network
and	the	packet	sequencing	is	defined.	Typical	implementations	are	Ethernet,	Wi-
Fi,	switching,	and	WANs.

8.2.3.1						Ethernet
Ethernet	was	developed	at	Xerox	PARC	between	1973	and	1975	by	a	team	led
by	Robert	Metcalfe.	Metcalfe	 later	 founded	3Com	that	built	 the	first	10	Mbit/s
Ethernet	adapters	in	1981.
Ethernet	originally	employed	a	 shared	medium	 topology,	based	on	coax	cable.
All	machines	were	connected	to	a	single,	shared	Ethernet	cable	that	ran	around
the	building,	connecting	each	machine.	Later	Ethernet	used	twisted	pair	cabling
with	hubs	and	switches	 to	decrease	 the	vulnerability	of	 the	network	caused	by
broken	cables	or	bad	connectors.
Ethernet	 is	 also	 the	 basis	 for	Wi-Fi.	 Today’s	 speeds	 are	 up	 to	 100	 Gbit/s	 for

wired	Ethernet	 (with	400	Gbit/s	 expected	by	 late	2017
[34]

)	 and	300	Mbit/s	 for
wireless	Wi-Fi.
Each	 Ethernet	 adapter	 is	 programmed	 with	 a	 48	 bit	 globally	 unique	 number,
called	 a	 Media	 Access	 Control	 (MAC)	 address.	 MAC	 addresses	 are	 used	 to
specify	both	the	destination	and	the	source	of	each	Ethernet	packet.

An	 Ethernet	 packet	 starts	 with	 a	 header	 including	 the	 source	 and	 destination
MAC	 addresses,	 followed	 by	 the	 data	 that	 needs	 to	 be	 transported	 (called	 the
payload).	 The	 packet	 ends	 with	 a	 cyclic	 redundancy	 check,	 which	 is	 used	 to
detect	any	corruption	of	data	after	it	is	received.
	

Figure	37:	Ethernet	packet

Each	network	interface	listens	to	all	 traffic	on	the	Ethernet	cable.	When	it	sees
an	 Ethernet	 packet	with	 its	 own	MAC	 address	 in	 the	 destination	 field,	 it	 will
copy	the	packet	and	deliver	the	payload	of	the	packet	to	the	protocol	handler	of
the	higher	level	OSI	layer	for	further	processing.
Network	 interfaces	normally	only	accept	packets	addressed	 to	 their	own	MAC
address.	A	packet	with	a	destination	address	equal	to	the	broadcast	MAC	address
(all	48	bits	 set	 to	one)	 is	 intended	 for	every	network	 interface	on	 the	network,
and	every	network	interface	will	process	this	type	of	packet.
The	Ethernet	protocol	allows	any	machine	to	start	transmitting	packets	when	the
shared	 carrier	 (coax	 cable,	 twisted-pair	 hub	or	Wi-Fi	 radio	 signal	 spectrum)	 is
not	 in	use.	To	avoid	two	systems	from	sending	data	at	 the	same	time,	Ethernet
uses	carrier	sensing	circuitry	 that	checks	 the	activity	on	 the	carrier.	Only	when
the	carrier	is	not	in	use	a	station	can	start	sending	its	data.	When	two	machines
detect	that	the	carrier	is	not	in	use,	and	start	to	transmit	a	packet	at	the	same	time
(which	 is	 quite	 likely	 with	 many	 active	 machines),	 a	 packet	 collision	 occurs.
When	this	happens,	it	is	detected	by	all	sending	machines	and	they	will	stop	the
transmission	 immediately.	After	a	short	waiting	 time,	 they	will	 retransmit	 their
packet	when	 the	 carrier	 is	not	 in	use	 anymore.	This	 technology	 is	 the	basis	of
Ethernet,	 and	 is	called	Carrier	Sense	Multiple	Access	with	Collision	Detection
(CSMA/CD).	 By	 nature,	 CSMA/CD	 is	 half-duplex,	 meaning	 a	 station	 either
transmits	or	receives	data,	but	not	both	at	the	same	time.
Due	 to	 the	 time	 required	 to	 recover	 from	 collisions,	 the	 performance	 of
CSMA/CD	Ethernet	degrades	dramatically	if	too	many	machines	attempt	to	send
packets	at	the	same	time.	Throughput	is	therefore	limited	to	40%	to	60%	of	the
available	bandwidth.

8.2.3.2						WLAN	(Wi-Fi)
A	wireless	 local	 area	network	 (WLAN)	 links	 two	or	more	devices	using	 radio
transmissions.	Wi-Fi	 is	 a	 term	used	 to	 describe	WLANs	 that	 are	 based	 on	 the
IEEE	802.11	protocol	family.
Wi-Fi	is	a	special	implementation	of	Ethernet.	Wi-Fi	listens	to	the	shared	radio
spectrum	for	 radio	signals	before	starting	 transmitting.	 If	 the	 radio	spectrum	is
occupied,	 the	Wi-Fi	 radio	will	 not	 transmit.	 The	 source	 of	 the	 signal	 is	 of	 no
concern	to	the	Wi-Fi	radio.	This	is	why	Wi-Fi	is	still	reliable,	but	very	slow	in
environments	with	much	noise	in	the	radio	spectrum,	as	created	by	for	instance
microwave	ovens	or	other	sources	of	interference.
The	wireless	communication	range	of	Wi-Fi	 is	 typically	about	30	m.	However,
the	 distance	 limit	 highly	 depends	 on	 whether	 the	 wireless	 network	 is	 used
indoors	or	outdoors	and	on	the	type	of	802.11	standard	used.
Access	 points	 are	 base	 stations	 for	 a	 wireless	 network.	 Wireless	 clients	 are
usually	mobile	devices	such	as	laptops,	tablets,	and	smartphones.
Wi-Fi	networks	work	in	one	of	three	modes:

·									Basic	Service	Set	(also	known	as	infrastructure	mode),	where	clients
communicate	only	to	the	access	point	and	not	directly	to	each	other.
Clients	on	the	same	Wi-Fi	network	can	only	communicate	to	each	other
through	the	access	point.
·									Independent	Basic	Service	Set	(also	known	as	peer-to-peer	or	ad-hoc
mode),	where	clients	communicate	directly	to	each	other.	Wireless	devices
within	range	of	each	other	can	discover	and	communicate	directly	without
an	access	point.
·									Extended	Services	Set,	where	a	set	of	access	points	are	connected	by
a	wired	LAN,	providing	roaming	of	Wi-Fi	clients.

Since	Wi-Fi	 uses	 radio	 transmissions,	 data	 can	 be	 received	 by	 anyone	 in	 the
neighborhood.	Encrypting	data	in	transit	is	therefore	much	more	important	than
in	wired	networks.	Data	encryption	in	Wi-Fi	networks	is	implemented	using	Wi-
Fi	 Protected	 Access	 (WPA).	WPA	 dynamically	 generates	 a	 new	 key	 for	 each
packet	 sent	 over	 the	 Wi-Fi	 network.	 WPA	 also	 includes	 a	 Message	 Integrity
Check	 to	 prevent	 an	 attacker	 from	 capturing,	 altering	 and/or	 resending	 data
packets.	 WPA	 version	 2	 is	 now	 widely	 implemented	 and	 considered	 secure
enough	for	most	applications.

8.2.3.3						Switching
To	 increase	 usable	 bandwidth,	 switches	 are	 deployed	 to	 split	 a	 single	 network
segment	into	multiple	segments,	each	with	fewer	devices	(usually	only	one).
When	 started	 up,	 switches	 send	 all	 data	 to	 all	 ports.	But	 after	 communicating
with	 a	 port	 they	 learn	 which	 MAC	 address	 is	 connected	 to	 which	 port.
Subsequent	 packets	 with	 the	 same	MAC	 address	 are	 sent	 only	 to	 the	 correct
ports.	This	way	 the	amount	of	 traffic	 is	 reduced	–	data	 sent	 to	 a	 certain	MAC
address	will	 only	 be	 forwarded	 to	 the	 switch	 port	 that	 has	 that	MAC	 address
connected.	Switches	will	still	forward	broadcasts	to	all	connected	switch	ports.
Switches	 typically	 have	 dozens	 of	 physical	 ports.	 Specialized	 hardware
components	 (ASICs)	 are	 used	 to	 switch	 the	 packets,	 leading	 to	 very	 high
throughput	and	low	latency.

Picture	16:	Cisco	Nexus	7000	enterprise	switch
[35]

On	 a	 switched	 network,	 many	 simultaneous	 data	 transfers	 can	 take	 place.
Because	the	only	devices	on	the	segments	are	the	switch	and	the	end	station,	the
connection	is	always	collision	free.	This	enables	faster	communications,	without
resending	packets	due	to	collisions	and	without	having	to	wait	for	other	stations
sending	data.
	

Figure	38:	Switch

Switches	 enable	 communications	 using	 both	 receive	 (RX)	 and	 transmit	 (TX)
pairs	in	the	UTP	cable	simultaneously,	known	as	full	duplex	communication.

8.2.3.4						WAN
Wide	Area	Networks	(WANs)	started	to	appear	in	the	1980s	when	organizations
started	 to	 need	 a	 network	 connection	 between	 their	 central	 servers	 and	 their
subsidiaries	and	(sometimes)	to	other	organizations.	The	first	WANs	consisted	of
point-to-point	 connections	 using	 modems	 and	 the	 analog	 public	 telephone
system.	Modems	were	connected	to	routers	that	routed	the	data	packets	between
the	end	points.
Later,	 telecom	 providers	 started	 to	 offer	 dedicated	 analog	 leased	 lines.	 These
leased	lines	eliminated	the	need	to	setup	a	call	and	were	considerably	cheaper	in
use	 than	 dial-up	 lines.	 When	 more	 and	 more	 WAN	 connections	 appeared,
telecom	 providers	 started	 to	 offer	 digital	 leased	 lines.	Digital	 leased	 lines	 like
T1/E1	 lines	 and	 ISDN	 (Integrated	 Services	 Digital	 Network)	 provided	 higher
bandwidths	because	they	eliminated	the	need	for	modems	to	convert	digital	data
to	 analog	 frequencies	 that	 would	 fit	 the	 characteristics	 of	 telephone
conversations.
Most	WAN	 connections	 today	 are	 based	 on	 packet	 switching	 technologies,	 in
which	devices	transport	packets	via	a	virtual	point-to-point	link	across	a	carrier
network.	 Packet	 switched	 networks	 are	 very	 reliable	 and	 provide	 robust	WAN
connections.
Most	 Wide	 Area	 Network	 (WAN)	 connections	 today	 are	 based	 on	 packet
switching	technologies,	in	which	devices	transport	packets	via	a	virtual	point-to-
point	 link	across	a	carrier	network.	Packet	 switched	networks	are	very	 reliable
and	provide	robust	WAN	connections.	While	originally	Frame	Relay	and	ATM
were	 extensively	 used	 technologies	 for	 WANs,	 in	 recent	 years	 most	 WAN
connections	 have	 been	 migrated	 to	 VPNs	 running	 on	 one	 of	 the	 following

technologies:
·									The	MPLS	network	of	a	network	provider	(see	section	8.2.4.6	for
more	information	on	MPLS)
·									The	internet	using	IPsec	or	SSL	(see	section	8.2.6.1)
·									Dark	fiber	(see	section	8.2.2.2.3)

8.2.3.5						Public	wireless	networks
In	 the	 past	 years,	 wireless	 networks	 have	 become	 more	 popular	 than	 wired
networks	 for	 end	 user	 devices.	 Apart	 from	 WLANs	 based	 on	 Wi-Fi,	 public
wireless	 (mobile)	 networks	 are	 getting	more	 popular	 every	 day.	 The	 reason	 is
obvious	–	public	wireless	networks	provide	freedom	to	move	around	for	mobile
users	 and	 provide	 connectivity	 from	 places	 where	 wired	 connections	 are
impossible	(like	on	the	road).
Public	wireless	networks	are	much	less	reliable	than	private	wireless	networks.
Users	moving	around	will	 often	 temporarily	 lose	 connectivity,	 and	bad	 signals
lead	 to	 frequent	 re-sending	 of	 network	 packets.	 The	 bandwidth	 is	 also	 much
lower	 than	 when	 using	 private	 networks;	 noise	 and	 other	 signal	 interference,
usage	of	available	bandwidth	by	(many)	other	users	and	retransmissions	lead	to
low	effective	bandwidth	per	end	point.

8.2.3.5.1			1G	and	2G:	GSM,	CDMA,	GPRS	and	EDGE
Global	System	for	Mobile	Communications	(GSM)	is	the	world's	most	popular
standard	 for	 mobile	 telephone	 systems	 in	 which	 both	 signaling	 and	 speech
channels	 are	 digital.	 This	 technology	 is	 also	 called	 1G:	 the	 first-generation	 of
mobile	technology.
In	 1991,	 2G	 was	 introduced.	 With	 2G,	 phone	 conversations	 were	 digitally
encrypted,	and	data	services	for	mobile	were	introduced,	starting	with	SMS	text
messages.
While	GSM	is	a	worldwide	standard,	an	alternative	is	known	as	Code	Division
Multiple	Access,	or	CDMA.	It	is	most	popular	in	the	United	States	and	Russia,
but	 it’s	 also	 used	 in	 some	 Asian	 and	 African	 countries,	 often	 alongside
competing	 GSM	 carriers.	 GSM	 and	 CDMA	 are	 not	 interchangeable	 and	 need
their	own	equipment	and	end	points.
General	Packet	Radio	Service	(GPRS)	 is	a	packet	oriented	mobile	data	service

providing	 data	 rates	 of	 56	 to	 114	 kbit/s	 based	 on	 GSM	 technology.	 This
technology	is	also	called	2.5G.
Enhanced	 Data	 rates	 for	 GSM	 Evolution	 (EDGE),	 also	 known	 as	 Enhanced
GPRS,	 allows	 improved	 data	 transmission	 rates	 as	 a	 backward-compatible
extension	of	GSM.	EDGE	delivers	data	rates	up	to	384	kbit/s.

8.2.3.5.2			3G:	UMTS	and	HSDPA
Universal	Mobile	Telecommunications	System	(UMTS)	is	an	umbrella	term	for
the	 third-generation	 (3G)	 mobile	 telecommunications	 transmission	 standard.
Compared	 to	 GSM,	 UMTS	 requires	 new	 base	 stations	 and	 new	 frequency
allocations,	 but	 it	 uses	 a	 core	 network	 derived	 from	GSM,	 ensuring	 backward
compatibility.	UMTS	was	designed	to	provide	maximum	data	transfer	rates	of	45
Mbit/s.
High	Speed	Downlink	Packet	Access	 (HSDPA)	 is	part	of	 the	UMTS	standard,
providing	a	maximum	speed	of	7.2	Mbit/s.	HSDPA+	is	also	known	as	HSDPA
Evolution	and	Evolved	HSDPA.	It	is	an	upgrade	to	HSDPA	networks,	providing
42	Mbit/s	download	and	11.5	Mbit/s	upload	speeds.

8.2.3.5.3			4G:	LTE
LTE	(Long	Term	Evolution)	is	a	4G	network	technology,	designed	from	the	start
to	 transport	 data	 (IP	 packets)	 rather	 than	 voice.	 In	 order	 to	 use	 LTE,	 the	 core
UMTS	 network	 must	 be	 adapted,	 leading	 to	 changes	 in	 the	 transmitting
equipment.	The	LTE	specification	provides	download	rates	of	at	least	100	Mbit/s
(up	to	326	Mbit/s),	and	an	upload	speed	of	at	least	50	Mbit/s	(up	to	86.4	Mbit/s).
Today’s	LTE-Advanced	(also	known	as	4G+)	can	provide	download	rates	of	at
least	225	Mbit/s	(up	to	1	Gbit/s).
LTE	is	not	designed	to	handle	voice	transmissions.	When	placing	or	receiving	a
voice	call,	LTE	handsets	will	typically	fall	back	to	old	2G	or	3G	networks	for	the
duration	of	the	call.	In	2017,	the	Voice	over	LTE	(VoLTE)	protocol	is	launched
to	allow	the	decommissioning	of	the	old	2G	and	3G	networks	in	the	future.

8.2.4								Network	layer
The	network	layer,	often	referred	to	as	 layer	3,	defines	 the	route	via	which	the
data	is	sent	to	the	recipient	device.	The	IPv4	and	IPv6	protocols	and	their	routing
and	addressing	are	implementations	of	this	layer.

8.2.4.1						The	IP	protocol
The	IP	protocol	is	by	far	the	most	used	layer	3	protocol	in	the	world.	IP	stands
for	Internet	Protocol.	IP	in	combination	with	TCP	(which	is	discussed	in	section
8.2.5.1),	 was	 invented	 by	 Robert	 Kahn	 and	 Vinton	 Cerf	 in	 1973.	 The	 TCP
protocol	 determines	whether	 a	 packet	 has	 reached	 its	 destination,	while	 the	 IP
address	is	a	numeric	address	that	locates	a	device	on	a	network.
Two	 versions	 of	 IP	 are	 used	 in	 practice:	 IPv4	 and	 IPv6.	 IPv4	 is	 the	 dominant
protocol	on	the	internet	today.	IPv6	is	not	used	much	yet,	but	it	probably	will	be
used	much	more	in	the	future,	due	to	the	almost	limitless	number	of	addressable
end	 points.	 This	 is	 needed,	 since	 the	 internet	 community	 ran	 out	 of	 available

public	IPv4	addresses	in	2011
[36]

.
The	IP	protocol	assumes	 that	 the	network	 is	 inherently	unreliable	and	 that	 it	 is
dynamic	in	terms	of	availability	of	links	and	nodes.
IP	 uses	 data	 packets	 that	 contain	 a	 source	 and	 destination	 address,	 and	 some
payload	 data	 (typically	 an	 Ethernet	 packet).	 IP	 routing	 protocols	 dynamically
define	the	path	of	IP	packets	from	source	to	destination.	The	destination	address
of	 each	 packet	 is	 inspected	 by	 each	 router,	which	 then	makes	 an	 independent
decision	on	where	to	send	the	packet	next.
When	sending	much	data,	 the	IP	protocol	splits	 the	data	 in	multiple	smaller	 IP
packets.	 Since	 each	 IP	 packet	 is	 routed	 individually,	 the	 route	 from	 source	 to
destination	 can	 be	 different	 for	 each	 IP	 packet,	 possibly	 leading	 to	 IP	 packets
arriving	 at	 the	 destination	 out	 of	 order.	 It	 is	 good	 practice	 for	LAN	networks,
however,	 to	be	configured	 for	packet	 flows	 (packets	with	 the	 same	source	and
destination	 addresses)	 to	 use	 a	 consistent	 network	 path,	 thus	 avoiding
(performance)	issues	caused	by	re-ordering	of	packets.
Due	 to	 network	 disruption,	 IP	 packets	 can	 get	 lost	 or	 corrupted.	 Corrupted
packets	are	detected	by	calculating	a	checksum	of	each	packet	at	each	node	the
IP	packet	passes.	When	an	error	is	detected,	the	IP	packet	is	dropped	by	the	node
that	found	the	error.	Because	of	today’s	highly	reliable	network	connections,	and
because	 checksums	 are	 also	 calculated	 on	 lower	 and	 higher	 layers,	 IPv6	 has
abandoned	this	use	of	IP	header	checksums	for	 the	benefit	of	 rapid	forwarding
through	the	network.
The	effects	of	dropped	IP	packets	and	IP	packets	arriving	out	of	order	is	handled
by	upper	layer	protocols	like	TCP.

8.2.4.2						IPv4
IPv4	 addresses	 are	 composed	 of	 4	 bytes	 (32	 bits),	 represented	 by	 4	 decimal
numbers,	and	divided	by	a	period,	for	example:	192.168.1.1.	Each	host	(server,
switch,	 router,	 firewall,	 etc.)	 in	 the	 IP	 network	 needs	 at	 least	 one	 IP	 address.
Within	a	network	all	IP	addresses	must	be	unique.
An	IP	address	actually	consists	of	two	parts,	a	network	prefix	and	a	host	number.
For	 instance,	 in	 the	 IP	 address	 10.121.12.16,	 the	 network	 prefix	 is	 10	 and	 the
host	number	is	121.12.16.

Figure	39:	IP	network	prefix	and	host	number

All	hosts	with	the	same	network	prefix	can	communicate	directly	to	each	other.
Hosts	in	other	networks	can	only	be	reached	using	a	router.
The	 first	 three	 bits	 of	 the	 first	 byte	 of	 an	 IP	 address	 define	 the	 class	 of	 the
address.	Three	classes	of	networks	are	defined:

Figure	40:	IP	network	Classes

In	a	typical	class	C	address,	like	195.23.221.23,	the	network	is	195.23.221	and
the	host	number	is	23.
	
Class First	byte Max	number	of	hosts Number	of	available	networks

A 0–127 16,777,214 128

B 128–191 65,534 16,384

C 192–223 254 2,097,152

Table	18:	IP	network	classes	in	detail

Table	18	shows	that	the	IP	address	170.32.43.12	is	a	host	in	a	class	B	network.
This	network	can	have	65,534	hosts	in	it.
The	problem	is	that	there	are	only	16,384	class	B	networks	available	worldwide,
and	only	128	class	A	networks.	Only	very	large	companies	(like	IBM)	and	some
governments	 own	 a	 class	A	 network.	All	 other	 organizations	 sometimes	 use	 a
class	B,	and	mostly	use	a	class	C	network.
Classful	network	design	 served	 its	 purpose	 in	 the	 startup	 stage	of	 the	 internet,
but	it	lacked	scalability	during	the	rapid	expansion	of	the	internet	in	the	1990s.
For	instance,	when	an	organization	only	needs	five	hosts	in	their	network,	they
needed	to	get	a	class	C	network,	even	if	they	used	only	five	of	its	254	available
host	addresses.
To	solve	 the	problem	of	 the	 inefficient	use	of	IP	addresses,	 the	classful	system
was	 replaced	 with	 Classless	 Inter-Domain	 Routing	 (CIDR)	 in	 1993.	 CIDR	 is
based	on	variable-length	 subnet	masking	 to	allow	allocation	and	 routing	based
on	arbitrary-length	prefixes.	This	system	is	also	known	as	subnetting.

8.2.4.2.1			Subnetting
Subnetting	is	used	to	split	up	the	host	part	of	an	IP	network	in	smaller	subnets,
each	forming	a	new	IP	network.
Consider	the	following	example:
	

Figure	41:	Class	C	address	without	subnetting

In	 this	case,	 the	IP	address	196.121.12.241	has	a	network	prefix	of	196.121.12
and	a	host	number	of	241	(in	the	host	range	between	1	and	254).
For	IPv4	a	network	mask	is	a	32-bit	number	(expressed	in	four	decimals)	where

bits	 set	 to	 1	 signify	 the	 network	 prefix	 and	 bits	 set	 to	 0	 the	 host	 part	 of	 the
address.	 The	 default	 subnet	 mask	 of	 a	 class	 C	 network	 is	 therefore
255.255.255.0.
As	an	alternative,	the	routing	prefix	can	also	be	expressed	in	CIDR	notation.	It	is
written	as	the	address	of	a	network,	followed	by	a	slash	character	(/),	and	ending
with	the	bit-length	of	the	host	space.	For	example,	255.255.255.0	is	the	network
mask	for	the	192.168.1.0/24	notation.
Now	consider	the	following	example	using	a	subnet:
	

Figure	42:	Class	C	address	with	subnetting

In	this	case,	the	IP	address	196.121.12.129	has	a	network	prefix	of	196.121.12,	a
subnet	of	240	and	a	host	number	of	1	(in	the	host	range	between	1	and	14).
Using	subnets,	the	available	IP	address	space	can	be	used	much	more	efficiently,
as	 unused	 host	 addresses	 are	 not	 reserved	 or	 wasted,	 but	 used	 in	 a	 different
subnet.	 In	 Table	 19,	 the	 number	 of	 hosts	 that	 can	 be	 used	 for	 certain	 subnet
masks	is	shown.
	
CIDR	prefix Subnet	mask Available	subnets Hosts	per	subnet

/24 255.255.255.0 1 254

/25 255.255.255.128 2 126

/26 255.255.255.192 4 62

/27 255.255.255.224 8 30

/28 255.255.255.240 16 14

/29 255.255.255.248 32 6

/30 255.255.255.252 64 2

/31 255.255.255.254 128 2	(only	point-to-point)

Table	19:	Hosts	per	subnet	mask

To	 directly	 connect	 two	 routers	 with	 each	 other,	 a	 subnet	 with	 4	 addresses	 is
needed	 (each	 router	 needs	 one	 IP	 address,	 plus	 the	 subnet	 needs	 a	 broadcast

address	and	a	network	address),	 leading	 to	a	 subnet	mask	of	255.255.255.252.
Point-to-point	connections	need	no	broadcast	or	network	address	and	can	use	a
subnet	mask	of	255.255.255.254.
Using	 subnets	 allows	 Internet	 Service	 Providers	 to	 for	 instance	 provide	 32
organizations	with	 six	public	 IP	 addresses	 each	and	only	using	one	class	C	 IP
network	for	it.

8.2.4.2.2			Private	IP	ranges
Since	the	number	of	unique	IP	addresses	on	the	internet	is	limited	and	because
hosts	with	public	internet	IP	addresses	can	reach	the	internet	directly,	private	IP
addresses	should	be	used	for	LANs	instead.	The	following	IPv4	address	ranges
can	be	used	for	internal	use	–	so-called	private	IP	address	ranges:

·									10.0.0.0	to	10.255.255.255	(class	A	address	range)
·									172.16.0.0	to	172.31.255.255	(class	B	address	range)
·									192.168.0.0	to	192.168.255.255	(class	C	address	range)

These	IP	addresses	are	not	used	on	the	internet	and	by	default	they	are	not	routed
by	 internet	 routers.	 This	 means	 each	 organization	 can	 use	 these	 IP	 ranges
internally	without	introducing	conflicts	on	the	internet.
To	maximize	the	number	of	IP	addresses	available	in	the	various	LAN	segments
in	 an	 internal	 network	 and	 to	minimize	 the	 size	 of	 routing	 tables	 in	 routers,	 a
well-designed	 IP	 addressing	 plan	 is	 needed.	 In	 such	 an	 addressing	 plan	 the
available	IP	ranges	of	the	organization	are	divided	in	various	subnets,	each	with
its	own	set	of	users.
It	 is	a	good	practice	to	create	separate	subnets	within	the	chosen	address	range
for:

·									Production	environment	workstations
·									Production	environment	servers
·									Office	environment	workstations
·									Office	environment	servers
·									Development	and	test	environments
·									De-Militarized	Zone	(DMZ	–	explained	in	section	8.6.3)
·									Systems	management	network	segment

·									Printers
·									Remote	users
·									Server	clusters
·									Guest	users’	workstations

Routing	between	these	subnets	should	be	done	using	routers	with	access-lists,	to
block	undesired	network	traffic.

8.2.4.3						IPv6
The	internet's	growth	has	created	a	need	for	more	addresses	than	IPv4	is	capable
of	delivering.	IPv6	was	introduced	in	1998	as	a	successor	of	the	widely	deployed
IPv4	to,	among	other	things,	solve	the	problem	of	limited	IP	address	space.
IPv6	 uses	 128-bit	 addresses	 represented	 in	 eight	 groups	 of	 four	 hexadecimal
digits	separated	by	colons,	for	example:
2001:0bb8:86a2:0000:0000:8b1e:1350:7c34.
IPv6	has	the	following	benefits	over	IPv4:

·									Expanded	address	space	-	With	IPv4,	the	number	of	hosts	on	the
internet	can	theoretically	be	no	more	4	billion	(in	practice	it	is	much	less,
due	to	poor	allocation	of	IP	address	blocks,	with	approximately	14%	of	all
available	addresses	utilized).	With	IPv6	the	maximum	number	of	hosts	on
the	internet	is	practically	unlimited	(approximately	3.4x1038	or	34
thousand	billion	billion	billion	billion).
·									Better	support	for	mobile	IP,	which	is	an	important	feature	for	the
billions	of	smartphones	in	use	and	the	rise	of	the	internet	of	Things.
·									Fixed	header	length	-	Because	IPv6	uses	fixed	length	headers,
hardware	based	routers	can	be	made	much	more	efficient	leading	to	faster
networks.
·									Auto	configuration	-	IPv6	hosts	can	automatically	configure
themselves	without	the	need	for	DHCP	servers	(see	8.2.8.1).
·									Quality	of	Service	is	built	in	IPv6,	supporting	specialized	traffic	like
Voice	over	IP	(VoIP)	or	streaming	video.
·									Security	-	IPv6	supports	authentication	and	privacy	in	the	protocol
itself.

·									MTU	discovery	-	Before	sending	packets	from	a	source	to	a
destination,	IPv6	discovers	the	maximum	packet	length	(MTU)	supported
in	the	route,	optimizing	for	the	transportation	of	large	files.

While	 IPv6	 has	 clear	 advantages	 over	 IPv4,	 and	 while	 it	 is	 supported	 by	 all
major	 operating	 systems	 and	 network	 equipment	 today,	 it	 is	 not	 widely
deployed.	The	main	reason	for	this	is	that	IPv6	is	not	backwards	compatible	with
IPv4,	leading	to	the	need	for	complex	deployments.

	
The	most	obvious	deployment	models	for	IPv6	are:

·									Use	IPv6	on	the	LAN	and	on	dedicated	WAN	links	-	This	is	a	full
IPv6	implementation	between	multiple	locations	of	an	organization,	where
all	locations	use	IPv6	only	and	the	locations	are	connected	using	an	IPv6
WAN	network.	Connection	to	the	internet	can	be	implemented	using
Protocol	Translation.
·									Protocol	translation	-	In	this	scenario	a	separate	router	runs	IPv4	on
one	port	and	IPv6	on	another.	The	router	performs	protocol	translation
between	both	ports,	much	like	the	way	NAT	works	in	IPv4	networks	(see
section	8.2.5.2).
·									Dual	stack	-	Dual	stack	in	an	operating	system	implements	IPv4	and
IPv6	protocol	stacks	in	a	hybrid	form.	Within	network	equipment	dual
stack	means	that	the	2	protocols	run	simultaneously	and	independently.
·									IPv6	over	IPv4	tunnels	-	Encapsulating	IPv6	packets	within	IPv4,	in
effect	using	IPv4	as	a	link	layer	for	IPv6.	This	is	also	known	as	“6to4”.

Dual	stack	is	the	simplest	way	to	begin	deploying	IPv6.	If	all	the	devices	in	an
IPv6-enabled	 network	 have	 dual	 stacks,	 they	 can	 speak	 to	 any	 destination
whether	 it	 is	 IPv4	 or	 IPv6.	 This	 is	 extremely	 important	 in	 the	 early	 stages	 of
deployment,	when	the	vast	majority	of	destinations	on	the	public	internet	are	still
IPv4-only.

8.2.4.4						ICMP
The	 Internet	 Control	 Message	 Protocol	 (ICMP)	 is	 an	 integral	 part	 of	 the	 IP
protocol.	 It	 is	not	used	 to	send	data,	but	 to	send	signals	 like	error	messages	or
test	messages	related	to	the	network.	The	best-known	use	of	ICMP	are	the	'ping'
and	 'traceroute'	 commands	 that	 use	 ICMP	 to	 check	 network	 connectivity	 and
diagnose	common	network	problems.

8.2.4.5						Routing
A	 router	 copies	 IP	 packages	 between	 (sub)networks	 as	 discussed	 in	 section
8.2.4.2.	To	be	able	 to	make	 IP	packet	 forwarding	decisions	between	networks,
routers	 compile	 routing	 tables.	 Routing	 tables	 determine	 the	 network	 port	 via
which	IP	packets	should	exit	the	router	for	all	destination	IP	address	ranges.

Routing	and	switching	functionality	may	be	combined	 in	one	device.	A	switch
capable	of	handling	routing	protocols	is	also	known	as	a	layer	3	switch	(which	is
actually	an	incorrect	name	–	there	is	no	switching	on	layer	3,	 just	routing.	The
switching	is	done	on	layer	2).

8.2.4.5.1			Routing	protocols
In	 small	 networks,	 IP	 routing	 tables	 can	 be	 configured	 manually.	 In	 larger
networks	manually	editing	these	tables	is	not	practical.	Instead,	dynamic	routing
protocols	 automatically	 create	 routing	 tables	 based	 on	 information	 exchange
with	neighboring	routers.	When	a	network	connection	experiences	problems,	the
routing	protocol	automatically	reconfigures	the	routing	tables	to	use	alternative
routes.
In	general,	LAN	and	WAN	routing	protocols	can	be	divided	in	three	classes:

·									Distance	vector	protocols	(like	RIP	and	IGRP)
·									Link	state	protocols	(like	OSPF	and	IS-IS)
·									Path	vector	routing	(like	BGP)

Each	of	these	3	protocol	classes	are	described	in	the	following	sections.

8.2.4.5.2			Distance	vector	protocols
With	 distance	 vector	 protocols	 like	 RIP	 and	 IGRP,	 each	 router	 periodically
(every	 30	 or	 60	 seconds)	 sends	 its	 up-to-date	 routing	 table	 to	 its	 immediate
neighbors.	 Once	 a	 neighboring	 router	 receives	 this	 information	 it	 is	 able	 to
amend	its	own	routing	table	to	reflect	the	changes	and	then	inform	its	neighbors
of	 the	 changes.	 Routers	 using	 the	 distance	 vector	 protocol	 don’t	 have
information	about	the	entire	path	to	a	destination,	but	they	do	know	the	direction
(to	which	exit	 interface	a	packet	should	be	forwarded)	and	 the	distance	from	a
destination.	Routes	are	advertised	by	a	Distance	Vector	protocol	as	a	vector	of
distance	 and	 direction.	 Direction	 is	 the	 next	 router	 hop	 address	 (e.g.,	 the
destination	 can	 be	 reached	 via	 router	B),	 and	 distance	 is	 the	 router	 hop	 count
(e.g.,	the	destination	via	this	route	is	5	hops	away).

8.2.4.5.3			Link	state	protocols
In	 a	 link	 state	 routing	 protocol,	 each	 router	 knows	 its	 IP	 addresses,	 their
connected	 links,	and	 the	state	of	 these	 links.	This	 information	 is	 flooded	 to	all
routers	 in	 the	 network	 if	 changes	 in	 a	 link	 state	 occur	 (for	 instance,	 when	 a
connection	 to	 a	 router	 goes	 down).	 Each	 router	makes	 a	 copy	 of	 the	 received

information	and	forwards	it	 to	all	other	routers.	Each	router	 then	calculates	 the
best	path	to	each	destination	network,	maintaining	a	map	of	the	network	as	they
see	it.
Link	state	routing	is	seen	as	superior	to	distance	vector	routing,	because	of	the
possibility	 of	 routing	 loops	 occurring	 in	 distance	 vector	 routing	due	 to	 delays.
All	routers	running	a	link	state	routing	protocol	always	have	the	same	(correct)
image	of	the	network.	While	this	makes	link	state	protocols	better,	it	also	makes
them	more	complex.

8.2.4.5.4			Path	vector	routing
Distance	vector	 and	 link	 state	 routing	 are	 both	 intra-domain	 routing	protocols.
They	are	used	within	an	organization's	network	(also	known	as	an	autonomous
system),	but	not	between	autonomous	systems.	In	contrast,	path	vector	routing	is
very	effective	for	inter-domain	routing.	The	Border	Gateway	Protocol	(BGP)	is
the	 best-known	 path	 vector	 protocol	 and	 the	 standard	 routing	 protocol	 on	 the
internet.
Each	 entry	 in	 a	 BGP	 routing	 table	 contains	 the	 destination	 network,	 the	 next
router,	and	the	path	to	reach	the	destination.	BGP	makes	routing	decisions	based
on	path,	network	policies,	and/or	rule	sets.	BGP	is	a	fairly	complicated	protocol
and	is	therefore	seldom	used	in	enterprise	networks.

8.2.4.6						MPLS
Multiprotocol	Label	 Switching	 (MPLS)	 routes	 data	 from	one	 network	 node	 to
the	 next	 with	 the	 help	 of	 labels.	 This	 enables	MPLS	 to	 carry	 many	 different
kinds	of	traffic,	including	IP	packets,	SONET,	and	Ethernet	frames.	In	practice,
MPLS	is	mainly	used	to	forward	IP	and	Ethernet	traffic.
In	 an	MPLS	 network,	 all	 data	 packets	 are	 assigned	 labels.	 Packet	 forwarding
decisions	 are	 made	 solely	 on	 the	 contents	 of	 this	 label,	 without	 the	 need	 to
examine	the	packet	itself.	The	MPLS	label	is	stripped	from	the	packet	at	the	end
point.	 This	 allows	 setting	 up	 end-to-end	 circuits	 across	 any	 type	 of	 physical
transport	medium,	using	any	protocol.

8.2.5								Transport	layer
The	 transport	 layer	 routes	data	 streams	coming	 from	multiple	 applications	and
integrates	them	into	a	single	stream	for	the	network	layer.	At	the	receiving	end

the	data	is	split	again	to	be	routed	to	the	destination	applications.	The	transport
layer	can	maintain	flow	control,	and	can	provide	error	checking	and	recovery	of
data	between	network	devices.	The	most	used	transport	layer	protocols	are	TCP
and	UDP.

8.2.5.1						TCP	and	UDP
Applications	 typically	 don't	 use	 IP	 directly,	 but	 use	 an	 upper	 layer	 protocol	 –
usually	TCP	or	UDP.
The	Transmission	Control	Protocol	(TCP)	uses	the	IP	protocol	to	create	reliable
transmission	 of	 so-called	 TCP/IP	 packets.	 TCP	 provides	 reliable,	 ordered
delivery	 of	 a	 stream	 of	 data	 between	 applications.	 TCP,	 however,	 introduces
quite	a	bit	of	overhead.	Not	only	because	of	the	introduction	of	TCP	header	data,
but	also	because	of	the	acknowledgements	the	sender	requires	from	the	receiver
for	each	packet	(or	series	of	packets).
In	contrast,	the	User	Datagram	Protocol	(UDP)	emphasizes	reduced	latency	over
reliability.	 It	 sends	 data	 without	 checking	 if	 the	 data	 arrived,	 which	 reduces
much	overhead.	UDP	is	typically	used	when	some	packet	loss	is	acceptable,	like
in	 real-time	voice	 and	video	 streams,	 or	when	only	 small	 amounts	 of	 data	 are
transmitted,	that	fit	in	one	IP	packet	(like	DNS,	where	queries	must	be	fast	and
only	consist	of	a	single	request	followed	by	a	single	reply	packet).	UDP	is	also
used	by	SNMP	and	DHCP,	explained	later	in	this	chapter	(17.3).
TCP	and	UDP	use	logical	port	numbers.	An	application	on	a	host	typically	binds
itself	to	one	logical	port	number	so	it	can	be	addressed	separately	from	the	other
applications	 on	 that	 host.	 Each	 side	 of	 a	 TCP	 or	 UDP	 connection	 uses	 an
associated	port	 number	between	0	 and	65,535.	Received	TCP	or	UDP	packets
are	identified	as	belonging	to	a	specific	connection	by	its	combination	of	the	IP
address,	and	the	TCP	or	UDP	port	number.	For	instance:	192.168.1.2:80,	where
the	number	after	the	colon	represents	the	port	number.
Servers	 running	 a	 specific	 service	 listen	 to	well-known	 ports,	 so	 clients	 know
what	 port	 to	 use	 to	 connect	 to	 the	 service.	 Examples	 of	well-known	 ports	 are
FTP	(port	21),	SSH	(port	22),	SMTP	(port	25),	DNS	(port	53),	and	HTTP	(port
80).

8.2.5.2						Network	Address	Translation	(NAT)
Network	Address	Translation	(NAT)	allows	the	use	of	a	private	addressing	space

within	an	organization,	while	using	globally	unique	addresses	for	routing	data	to
the	internet.	Typically,	NAT	is	performed	by	the	router	connected	to	the	internet.
As	a	packet	passes	a	NAT	enabled	router	from	its	 internal	network	interface	to
its	internet	interface,	NAT	replaces	the	packet’s	private	IP	address	with	its	public
IP	address.
	

Figure	43:	Network	Address	Translation

TCP	 and	UDP	headers	 support	 up	 to	 65,536	 port	 numbers,	most	 of	which	 are
unused.	 By	 mapping	 an	 internal	 address/port	 combination	 to	 an	 internet
address/port	combination,	NAT	can	support	a	large	number	of	sessions	with	one
internet	address.
With	NAT,	all	connections	from	within	the	organization	seem	to	come	from	one
internet	 IP	 address,	 limiting	 the	 number	 of	 IP	 addresses	 needed	 by	 an
organization.	With	NAT,	an	organization	needs	a	small	set	of	IP	addresses,	even
if	they	have	many	systems	directly	connecting	to	the	internet,	as	each	IP	address
can	be	used	to	setup	64,535	IP	connections.	In	practice,	only	systems	that	need
to	be	reachable	from	the	internet,	or	systems	that	need	to	send	data	directly	to	the
internet,	need	NAT	addresses.	Examples	are	email	servers,	web	servers	or	web
proxy	 servers.	End	user	workstations	 typically	 only	 indirectly	 communicate	 to
the	internet	using	one	of	these	servers,	so	they	don’t	need	a	NAT	address.

8.2.6								Session	layer
The	 session	 layer	 provides	 mechanisms	 for	 opening,	 closing	 and	 managing	 a
session	 between	 end-user	 application	 processes.	 Session-layer	 services	 are
commonly	used	in	application	environments	that	make	use	of	remote	procedure

calls	 (RPCs).	 The	 session	 layer	 also	 implements	 VPNs	 using	 protocols	 like
PPTP	and	L2TP.

8.2.6.1						Virtual	Private	Network	(VPN)
A	Virtual	Private	Network	(VPN)	uses	a	public	network	to	interconnect	private
sites	in	a	secure	way	(also	known	as	a	VPN	tunnel).	While	VPNs	typically	use
the	 internet,	 a	 VPN	 could	 also	 make	 use	 of	 a	 telecom	 provider’s	 backbone
separate	from	the	internet	–	dedicated	for	business	use.
As	 an	 alternative	 to	 a	 dedicated	 leased	 line,	 a	VPN	uses	 "virtual"	 connections
based	on	IPsec/SSL	(Secure	Sockets	Layer).	Most	network	providers	also	offer
private	VPNs	based	on	MPLS.
	

Figure	44:	VPN	tunnel

VPN	tunnels	can	be	deployed	relatively	fast.	As	soon	as	an	internet	connection	is
available,	 a	 remote	 site	 can	 create	 a	 VPN	 tunnel	 to	 the	 organization’s
headquarters,	extending	the	LAN	to	the	new	location.
Since	 VPNs	 use	 strong	 encryption	 and	 strong	 user	 authentication,	 using	 the
internet	 for	 transmitting	sensitive	data	 is	considered	safe.	The	 reliability	of	 the
internet	 connections,	 however,	 can	 be	 a	 barrier	 for	 using	 VPNs	 for	 WAN
connections.
VPN	tunnels	are	also	often	used	for	remote	access	to	the	LAN	by	users	outside
of	 the	organization's	premises.	An	 internet	 connection	and	a	computer	 running
VPN	 client	 software	 is	 all	 that	 is	 required	 to	 allow	 a	 remote	 user	 the	 same
network	access	as	in	the	office.
The	 following	 are	 the	 three	 most	 common	 VPN	 communications	 protocol
standards:

·									The	Point-to-Point	Tunneling	Protocol	(PPTP)	is	designed	for
individual	client	to	server	connections.	It	enables	only	a	single	point-to-
point	connection	per	session.	This	standard	is	very	common	with

Windows	clients.	PPTP	uses	native	Point-to-Point	Protocol	(PPP)
authentication	and	encryption	services.
·									The	Layer	2	Tunneling	Protocol	(L2TP)	was	also	designed	for
single	point-to-point	client	to	server	connections.	Multiple	protocols	can
be	encapsulated	within	the	L2TP	tunnel.
·									IPsec	enables	multiple	and	simultaneous	tunnels	and	can	encrypt	and
authenticate	IP	data.	It	is	built	into	IPv6	standard	and	is	implemented	as	an
add-on	to	IPv4.	While	PPTP	and	L2TP	are	aimed	more	at	VPNs	for	ad-hoc
end	user	connections,	IPsec	focuses	more	on	network-to-network
connectivity.

8.2.7								Presentation	layer
This	layer	takes	the	data	provided	by	the	application	layer	and	converts	it	into	a
standard	 format	 that	 the	 other	 layers	 can	 understand.	 Many	 protocols	 are
implemented	in	the	presentation	layer,	but	SSL	and	TLS	are	the	most	important
ones.

8.2.7.1						SSL	and	TLS
Transport	Layer	Security	(TLS)	and	Secure	Sockets	Layer	(SSL)	–	both	of	which
are	frequently	incorrectly	referred	to	as	'SSL'	–	are	two	communication	protocols
that	 allow	 applications	 to	 communicate	 securely	 over	 the	 internet	 using	 data
encryption.	TLS	is	based	on	SSL,	but	has	a	different	initial	handshake	protocol
and	is	more	extensible.
The	SSL	protocol	was	originally	developed	by	Netscape.	Version	1.0	was	never
publicly	 released;	version	2.0	was	 released	 in	1995	but	contained	a	number	of
security	flaws,	which	ultimately	led	to	the	design	of	SSL	version	3.0,	released	in
1996.	Nowadays,	SSL	is	considered	insecure	and	should	not	be	used.
TLS	1.0	was	first	defined	in	1999	as	an	upgrade	to	SSL	3.0.	A	prominent	use	of
TLS	 is	 securing	WWW	 traffic	 carried	 by	HTTP	 to	 form	HTTPS.	As	 of	 2017,
TLS	version	1.2	is	considered	secure	and	version	1.3	is	in	a	draft	state.
TLS	 relies	 on	 an	 application	 capable	 of	 handling	 the	 protocol	 (like	 a	 Web
browser)	 instead	 of	 custom	 VPN	 clients	 to	 logon	 to	 the	 private	 network.	 By
utilizing	the	TLS	network	protocols	built	 into	standard	Web	browsers	and	Web
servers,	TLS	VPNs	are	easier	to	set	up	and	maintain	than	IPsec	VPNs.

8.2.8								Application	layer
This	is	the	layer	that	interacts	with	the	operating	system	or	application	whenever
the	 user	 chooses	 to	 transfer	 files,	 read	 messages,	 or	 performs	 other	 network
related	activities.	Protocols	like	HTTP,	FTP,	SMTP	and	POP3	(e-mail),	and	CIFS
(Common	 Internet	 File	 System)	 Windows	 file	 sharing,	 also	 known	 as	 SMB
(Server	Message	Block),	are	all	examples	of	application	layer	protocols.
This	 layer	 also	 contains	 the	 relatively	 simple	 infrastructure	 services	 like	DNS,
BOOTP,	 DHCP,	 and	 NTP.	 These	 infrastructure	 services	 are	 used	 by	 the
infrastructure	 itself,	 and	 are	 not	 necessarily	 used	 by	 upper	 layer	 applications.
Please	 note	 that	 if	 infrastructure	 services	 fail	 usually	 the	 entire	 infrastructure
fails!	Therefore,	these	services	must	be	implemented	in	a	high	available	manner
and	 care	 must	 be	 taken	 of	 the	 performance,	 as	 low	 performing	 infrastructure
services	will	also	stall	the	rest	of	the	infrastructure.
In	the	next	sections	the	BOOTP,	DHCP,	DNS,	and	NTP	protocols	are	discussed.

8.2.8.1						BOOTP	and	DHCP
BOOTP	was	designed	in	1984	to	automatically	assign	IP	addresses	to	hosts	from
a	 centralized	 BOOTP	 server.	 A	 BOOTP	 server	 uses	 a	 list	 of	 hardware	MAC
addresses	of	the	hosts	in	the	network.	When	a	BOOTP	enabled	host	starts	up,	it
sends	a	BOOTP	broadcast	packet.	The	BOOTP	server	receives	the	broadcast	and
looks	for	 the	MAC	address	of	 the	broadcast	packet	 in	 its	 list.	 It	 then	sends	 the
corresponding	 IP	 address	 back	 to	 the	 requesting	 host.	 The	 host	 uses	 that	 IP
address	for	further	communications.
The	Dynamic	Host	Configuration	Protocol,	or	DHCP,	was	defined	in	1993	as	an
extension	to	BOOTP,	mainly	because	BOOTP	required	manual	configuration	for
each	 host	 in	 the	 network,	 and	 did	 not	 provide	 a	 mechanism	 for	 reclaiming
unused	 IP	 addresses.	 DHCP	 can	 dynamically	 assign	 the	 following	 network
related	parameters	to	hosts:

·									IP	addresses
·									Subnet	masks
·									Default	gateway	to	be	used	for	routing
·									DNS	server	to	be	used

DHCP	 superseded	 BOOTP	 because	 it	 has	 more	 options.	 DHCP	 provides

addresses	to	hosts	from	a	pre-configured	list	or	range	of	IP	addresses.	Typically,
DHCP	 assigns	 addresses	 to	workstations	 and	 remote	 or	mobile	 devices,	while
servers,	 printers,	 routers,	 and	 other	 network	 equipment	 are	 assigned	 static	 IP
addresses	(with	or	without	the	help	of	DHCP).
Similar	to	BOOTP,	when	a	new	host	is	connected	to	the	network,	the	operating
system	on	that	host	sends	a	DHCP	broadcast	to	the	network	asking	for	a	DHCP
response.	The	DHCP	server	then	sends	the	IP	configuration	to	the	client's	MAC
address.	The	client	configures	its	IP	stack	with	the	received	configuration.
In	 principle,	 each	 IP	 subnet	 needs	 a	 DHCP	 server,	 since	 DHCP	 broadcasts
cannot	pass	routers.	Fortunately,	routers	can	be	configured	to	act	as	relay	agents
passing	 DHCP	 messages,	 eliminating	 the	 need	 for	 a	 DHCP	 server	 on	 each
subnet.
A	DHCP	assigned	IP	address	has	a	limited	life	span,	typically	a	few	hours.	This
is	called	a	 lease.	When	the	 lease	expires,	 the	host	can	ask	for	a	renewal	of	 the
lease	 to	 keep	 its	 current	 IP	 settings.	 The	DHCP	 server	 decides	 if	 the	 lease	 is
renewed,	or	if	the	host	gets	new	IP	settings.	When	a	network	connection	is	lost
the	 host	 always	 asks	 the	DHCP	 server	 for	 a	 renewal.	This	 allows	 for	 instance
laptops	to	be	reconnected	at	another	network	connection	without	rebooting.	The
DHCP	server	of	the	(sub)	network	provides	the	laptop	automatically	with	a	new
IP	address	at	this	new	location.
DHCP	servers	can	be	configured	to	provide	the	same	IP	address	to	a	certain	host
at	all	times	(for	instance	when	DHCP	is	used	to	provide	IP	addresses	to	servers).
The	MAC	address	of	the	host	is	then	bound	to	a	fixed	IP	address	in	the	DHCP
server's	configuration.

8.2.8.2						DNS
The	 Domain	 Name	 System	 (DNS)	 is	 a	 distributed	 database	 that	 links	 IP
addresses	 with	 domain	 names.	 It	 translates	 domain	 names,	 meaningful	 to
humans,	into	IP	addresses.
When	for	instance	a	web	browser	tries	to	connect	to	www.sjaaklaan.com,	in	the
background	 the	 web	 server’s	 hostname	 www.sjaaklaan.com	 is	 sent	 to	 a	 DNS
server	that	translates	the	hostname	to	the	corresponding	IP	address	(in	this	case
217.149.139.184).	 This	 IP	 address	 is	 then	 used	 by	 the	 browser	 to	 actually
connect	 to	 the	 web	 server.	 DNS	 is	 also	 used	 to	 find	 mail	 servers	 (like	 when
sending	 an	 e-mail	 to	 sjaak@sjaaklaan.com)	 and	 aliases	 to	 URLs	 of	 a	 certain

domain.
The	DNS	protocol	was	developed	in	the	early	1980s.	Over	the	years,	DNS	was
implemented	on	all	major	operating	systems.	The	most	used	 implementation	 is
BIND	 (Berkeley	 Internet	 Name	 Domain).	 BIND	 was	 originally	 created	 for
UNIX	systems,	but	later	it	was	also	used	on	almost	all	other	operating	systems.
Windows,	however,	uses	its	own	implementation	of	DNS.
Before	DNS,	systems	managers	kept	so-called	hosts	 files	 that	contained	 the	 IP
addresses	of	all	other	hosts	a	host	could	connect	to.	When	such	a	list	is	relatively
small	this	is	a	workable	solution	(hosts	files	still	work	in	most	operating	systems,
including	Windows,	UNIX,	 and	Linux).	But	with	 the	 growth	 of	 the	 internet	 a
more	scalable	solution	was	needed.
DNS	distributes	the	responsibility	of	mapping	domain	names	to	IP	addresses	by
designating	 authoritative	 name	 servers	 for	 each	 domain.	 Authoritative	 name
servers	are	responsible	for	their	particular	domains,	and	in	turn	can	assign	other
authoritative	name	servers	for	their	sub-domains.	This	mechanism	has	made	the
DNS	distributed	and	fault	tolerant.
	

Figure	45:	Distributed	DNS	tree

DNS	resolution	allows	for	caching	of	received	records.	The	period	of	validity	of
the	cached	records	 is	configurable	and	may	vary	from	seconds	to	days	or	even
weeks.	 Because	 of	 this	 caching	 mechanism,	 changes	 to	 DNS	 records	 don’t
propagate	throughout	 the	network	immediately,	but	require	all	caches	to	expire
and	refresh.	This	means	that	changes	in	DNS	records	can	take	several	hours	or
even	days	to	propagate	through	the	entire	internet.

8.2.8.2.1			DNSSEC

DNS	was	not	 designed	with	 security	 in	mind,	 and	 it	 has	 a	 number	of	 security
issues.	 For	 example,	 updates	 to	DNS	 records	 are	 done	 in	 non-encrypted	 clear
text,	and	the	authorization	is	based	on	IP	addresses	only.
To	 overcome	 these	 issues,	 in	 1999	 DNS	 Security	 Extensions	 (DNSSEC)	 was
introduced	to	add	security	to	DNS.	DNSSEC	is	a	set	of	extensions	to	DNS	that
provides	origin	authentication	of	DNS	data	and	data	 integrity.	By	checking	 the
digital	 signature	 (see	section	6.3.4.3),	a	DNS	resolver	 is	able	 to	verify	 that	 the
information	used	by	the	DNS	resolver	is	identical	(correct	and	complete)	to	the
information	on	the	authoritative	DNS	server.
DNSSEC	 does	 not	 solve	 all	 DNS	 security	 issues.	 For	 example,	 it	 does	 not
provide	confidentiality	of	data	–	the	transferred	DNS	records	are	still	transferred
in	clear	text.	Also,	DNSSEC	does	not	protect	against	DDoS	attacks	against	DNS
servers.
While	 the	benefits	of	using	DNSSEC	are	obvious,	 it	 is	still	not	 in	wide	spread
use	today,	mainly	because	all	DNS	servers	must	implement	DNSSEC	in	order	to
make	full	use	of	all	benefits.

8.2.8.3						IPAM	systems
IP	address	management	(IPAM)	systems	are	appliances	that	can	be	used	to	plan,
track,	 and	 manage	 IP	 addresses	 in	 a	 network.	 IPAM	 systems	 integrate	 DNS,
DHCP,	 and	 IP	 address	 administration	 in	 one	 high	 available	 redundant	 set	 of
appliances.	Functions	in	the	IPAM	system	are	integrated,	so	that	DNS	is	updated
based	on	 IP	addresses	delivered	 to	clients	by	DHCP.	Most	 IPAM	systems	also
provide	some	reporting	capabilities	on	the	number	of	active	IP	addresses	and	the
usage	of	subnets.

8.2.8.4						Network	Time	Protocol	(NTP)
The	Network	Time	Protocol	(NTP)	version	1	was	introduced	in	1988.	It	ensures
that	 all	 infrastructure	 components	 use	 the	 same	 time	 in	 their	 real-time	 clocks.
This	is	particularly	important	for	usage	in:

·									Log	file	analysis	–	When	tracing	information	through	various
infrastructure	components,	log	files	show	what	happened	at	what	point	in
time.	It	is	crucial	for	the	time	stamps	in	each	of	the	log	files	of	the	all
infrastructure	components	to	be	synchronized	and	correct.

·									Clustering	software	–Clocks	of	the	nodes	in	a	cluster	must	run	as
much	in	sync	as	possible.
·									Kerberos	authentication	–	In	order	for	Kerberos	authentication	to
function	correctly	all	clocks	must	be	in	sync.

NTP	can	maintain	time	to	within	10	milliseconds	over	the	internet,	and	achieves
accuracies	of	0.2	milliseconds	or	better	in	LANs.	NTP	uses	complex	algorithms
to	minimize	the	influence	of	network	latency	introduced	by	the	physical	distance
of	NTP	servers.
NTP	servers	can	be	implemented	as	software	on	most	operating	systems,	routers,
and	switches,	but	can	also	be	implemented	using	dedicated	hardware	appliances
–	often	using	some	external	signal	 like	 long	wave	radio	clocks	or	GPS	clocks.
NTP	time	synchronization	services	are	also	widely	available	on	the	internet.
NTP	operates	within	a	hierarchy,	where	each	level	in	the	hierarchy	is	assigned	a
number	 called	 the	 stratum.	The	 stratum	defines	 its	distance	 from	 the	 reference
clock.	Devices	such	as	atomic	clocks,	GPS	clocks,	or	radio	clocks	have	stratum
0.	 Stratum	 1	 NTP	 servers	 are	 directly	 synchronized	 with	 stratum	 0	 devices.
Stratum	2	(secondary)	servers	are	synchronizing	to	stratum	1	servers	and	so	on.
	

Figure	46:	NTP

When	 the	 time	 in	 an	 operating	 system	 is	 incorrect,	 the	 NTP	 client	 in	 the
operating	system	changes	the	operating	system	clock.	This	is	usually	not	done	at
once.	 Sudden	 changes	 in	 time	 could	 introduce	 undesirable	 results,	 especially
when	 the	 clock	 is	 set	 back	 in	 time.	For	 instance,	 log	 files	 could	 start	 showing
double	entries	and	timeouts	could	get	mixed	up.	Therefore,	the	time	is	adjusted
in	small	steps,	and	the	clock	“drifts”	to	the	correct	time.	The	amount	of	time	this

takes	 is	 dependent	 on	 the	 time	 difference	 between	 the	 NTP	 time	 and	 the
operating	system	time,	but	it	typically	takes	minutes	to	hours	to	complete.	When
the	operating	system	time	 is	off	 to	a	 large	degree,	usually	NTP	does	not	 try	 to
correct	it,	but	sends	a	warning	to	the	operating	system	log	files	instead.
NTP	provides	time	in	Coordinated	Universal	Time	(UTC,	previously	known	as
Greenwich	Mean	Time	–	GMT).	The	translation	to	the	local	time	zone,	including
the	 switch	 to	 and	 from	 daylight	 saving	 time,	 is	 done	 at	 the	 operating	 system
level,	not	in	NTP	clocks.
When	using	virtual	machines	(see	section	10.2.5.3),	each	virtual	machine	should
be	 configured	 to	 synchronize	 the	 time	 individually,	 instead	 of	 using	 tools	 that
synchronize	 the	 time	 with	 the	 hardware	 clock	 of	 the	 physical	 machine.	 This
makes	the	time	in	the	virtual	machines	much	more	accurate.

8.3													Network	virtualization

Network	virtualization	can	be	implemented	in	a	number	of	ways.	In	this	section,
we	discuss	VLANs,	virtual	switches,	software	defined	networking	and	network
function	virtualization.

8.3.1								Virtual	LAN	(VLAN)
Virtual	LANs	(VLANs)	enable	 logical	grouping	of	network	nodes	on	 the	same
LAN.	VLANs	are	 configured	on	network	 switches	 and	operate	 at	 the	Ethernet
level.	No	extra	configuration	is	needed	on	hosts	using	a	VLAN.
General	purpose	of	 implementing	VLANs	 is	 to	allow	segmenting	a	network	at
the	data	link	layer	without	depending	on	network	layer	devices,	such	as	routers.
	

Figure	47:	Two	VLANs	in	one	LAN

VLANs	have	the	same	attributes	as	a	physical	LAN,	but	they	allow	end	stations
to	 be	 grouped	 together	 even	 if	 they	 are	 not	 physically	 connected	 to	 the	 same
switch.	VLANs	offer	the	flexibility	to	adapt	to	changes	in	network	requirements
and	allow	simplified	administration.
For	VLANs	to	communicate	with	each	other	a	router	is	needed.
Because	 of	 the	 stretched	 broadcast	 domain,	 it	 is	 not	 recommended	 to	 have	 a
VLAN	spanning	multiple	locations.
VLANs	 can	 enhance	 security	 by	 preventing	 traffic	 in	 one	 VLAN	 from	 being
seen	 by	 hosts	 in	 a	 different	 VLAN.	 It	 is	 a	 weak	 security	 control,	 however,
because	when	traffic	 is	 routed	between	VLANs,	or	when	multi-homed	systems
are	used,	VLANs	can	see	each	other’s	traffic	again.

8.3.2								VXLAN
Virtual	Extensible	LAN	(VXLAN)	is	an	encapsulation	protocol	that	can	be	used
to	create	a	logical	switched	layer	2	network	across	routed	layer	3	networks.	Like
VLANs,	 only	 servers	 within	 the	 same	 logical	 network	 can	 communicate	 with
each	other.
VXLANs	 are	 heavily	 used	 in	 multi-tenant	 cloud	 environments,	 as	 they	 allow
many	fully	separated	LAN	segments	to	co-exist	in	a	shared	environment.	Where
VLANs	only	allow	for	a	maximum	of	4,096	network	IDs,	VXLAN	increases	the
number	of	available	IDs	to	16	million.

8.3.3								Virtual	NICs
Physical	machines	contain	physical	NICs.	Virtual	machines	running	on	physical
machines	 share	 these	 NICs,	 where	 the	 hypervisor	 (see	 section	 10.2.5.3.3	 for
more	information	on	hypervisors)	provides	virtual	NICs	to	the	virtual	machines,
enabling	 them	 to	 communicate	 to	other	virtual	machines	on	 the	 same	physical
machine.	 Communications	 between	 virtual	 machines	 on	 the	 same	 physical
machine	are	 routed	directly	 in	memory	 space	by	 the	hypervisor,	without	using
the	physical	NIC	at	all.
When	a	virtual	machine	wants	 to	communicate	 to	a	virtual	machine	hosted	on
another	 physical	 machine,	 the	 hypervisor	 routes	 Ethernet	 packages	 from	 the
virtual	NIC	on	the	virtual	machine	to	the	physical	NIC	on	the	physical	machine.
Virtual	machines	 are	 only	 aware	 of	 virtual	NICs	 provided	 to	 them.	And	 since
physical	NICs	are	invisible	to	virtual	machines,	so	is	the	way	the	physical	NICs
are	connected	to	the	physical	network.	The	hypervisor	can	use	NIC	teaming	or
other	 technologies	 to	 redundantly	connect	physical	machines,	while	 the	virtual
machines	 still	 only	 see	 one	 virtual	 NIC.	 This	 simplifies	 the	 network
configuration	within	the	virtual	machine’s	operating	system.

8.3.4								Virtual	switch
In	 virtual	 machines,	 virtual	 NICs	 are	 connected	 to	 virtual	 switches.	 A	 virtual
switch	is	an	application	running	in	the	hypervisor	(see	section	10.2.5.3.3),	with
most	 of	 the	 capabilities	 of	 a	 physical	 network	 switch.	 A	 virtual	 switch	 is
dynamically	configured,	and	since	the	ports	in	the	virtual	switch	are	configured
at	runtime,	the	number	of	ports	on	the	switch	is	in	theory	unlimited.

In	a	virtual	switch,	no	transformations	to	and	from	physical	cables	are	needed,	so
no	 cable	 disconnects	 can	 occur,	 there	 is	 no	 need	 for	 auto-detecting	 network
speed,	 and	 a	 virtual	 switch	 doesn’t	 have	 to	 learn	 the	 MAC	 addresses	 of	 the
connected	NICs,	 as	 they	 are	 already	 known	 by	 the	 hypervisor.	 This	 increases
speed	and	reliability,	and	reduces	complexity,	compared	to	physical	switches.
Virtual	networking	also	 improves	security,	as	 there	 is	no	easy	way	 to	 intercept
network	communications	between	virtual	machines	from	outside	of	the	physical
machine.	 Virtual	 networking	 also	 improves	 availability	 because	 there	 are	 no
network	hubs,	routers,	adapters,	or	cables	that	could	physically	fail.
	

Figure	48:	Virtual	switch

A	virtual	switch	can	be	connected	to	multiple	physical	NICs,	but	a	physical	NIC
can	only	be	connected	 to	one	virtual	 switch.	This	 avoids	unwanted	and	 illegal
network	paths.
A	 tradeoff	 of	 a	 virtual	 switch	 is	 that	 they	 are	 software	 based	 only,	 which	 is
slower	than	a	hardware	based	switch,	as	physical	network	switches	benefit	from
hardware	acceleration	using	specialized	hardware	circuitry	(Application-specific
Integrated	Circuits	–	ASICs)	for	high	speed	packet	switching.

8.3.5								Software	Defined	Networking
Software	 Defined	 Networking	 (SDN)	 is	 a	 relatively	 new	 concept.	 It	 allows
networks	 to	 be	 defined	 and	 controlled	 using	 software	 external	 to	 the	 physical

networking	devices.
With	SDN,	a	relatively	simple	physical	network	can	be	programmed	to	act	as	a
complex	virtual	network.	A	set	of	physical	network	switches	can	be	programmed
as	 a	 hierarchical,	 complex	 and	 secured	 virtual	 network	 that	 can	 easily	 be
changed	without	touching	the	physical	network	components.
This	 is	 particularly	 useful	 in	 a	 cloud	 environment,	 where	 networks	 change
frequently	as	machines	are	added	or	removed	from	a	tenant’s	environment.	With
a	single	click	of	a	button	or	a	single	API	call,	complex	networks	can	be	created
within	seconds.
	

Figure	49:	Software	Defined	Networking

SDN	works	by	decoupling	the	control	plane	and	data	plane	from	each	other,	such
that	the	control	plane	resides	centrally	and	the	data	plane	(the	physical	switches)
remain	distributed,	as	shown	in	Figure	49.
This	way,	 the	 SDN	 can	 be	 controlled	 from	 a	 single	management	 console	 that
provides	 open	APIs	 that	 can	 be	 used	 to	manage	 the	 network	 using	 third	 party
software.
In	 a	 traditional	 switch	 or	 router,	 network	 devices	 dynamically	 learn	 packet
forwarding	rules	and	store	them	in	each	device	as	ARP	or	routing	tables.	In	an
SDN,	 the	 distributed	 data	 plane	 devices	 are	 only	 forwarding	 network	 packets
based	on	ARP	or	 routing	 rules	 that	are	preloaded	 into	 the	devices	by	 the	SDN

controller	 in	 the	 control	 plane.	 This	 allows	 the	 physical	 devices	 to	 be	 much
simpler	and	more	cost	effective.

8.3.6								Network	Function	Virtualization
In	 addition	 to	 SDN,	 Network	 Function	 Virtualization	 (NFV)	 is	 a	 way	 to
virtualize	networking	devices	like	firewalls,	VPN	gateways	and	load	balancers.
Instead	of	having	hardware	appliances	for	each	network	function,	in	NFV,	these
appliances	 are	 implemented	 in	 virtual	 machines	 running	 applications	 that
perform	the	network	functions.
Using	APIs,	NFV	virtual	appliances	can	be	created	and	configured	dynamically
and	 on-demand,	 leading	 to	 a	 flexible	 network	 configuration.	 It	 allows,	 for
instance,	 deploying	 a	 new	 firewall	 as	 part	 of	 a	 script	 that	 creates	 a	 number	of
connected	virtual	machines	in	a	cloud	environment.

8.4													Network	availability

Since	 networks	 are	 one	 of	 the	 basic	 IT	 infrastructure	 components,	 their
reliability	is	of	the	utmost	importance.	High	availability	in	networking	is	reached
through	concepts	like:

·									Layered	network	topology
·									Spine	and	Leaf	topology
·									Network	teaming
·									The	spanning	tree	protocol
·									Multihoming

Each	of	these	concepts	are	discussed	in	the	next	sections.

8.4.1								Layered	network	topology
To	 improve	 availability	 and	 performance,	 a	 network	 infrastructure	 should	 be
built	up	in	layers.	Figure	50	gives	an	example	of	a	layered	switched	network.
	

Figure	50:	Layered	network	topology

Layering	 provides	 scalability	 and	 deterministic	 routing	 and	 avoids	 unmanaged
ad-hoc	data	streams.	Because	the	layering	provides	multiple	paths	 to	any	piece
of	equipment,	the	availability	of	this	setup	is	very	high.
The	 design	 of	 a	 layered	 network	 is	 often	 driven	 by	 the	 bandwidth	 and	 port
density	 required	 at	 the	 top	 and	 bottom	 of	 the	 network,	 but	 Ethernet	 broadcast
boundaries	are	also	a	major	design	consideration.
Typical	layers	are:

·									The	core	layer	-	This	is	the	center	of	the	network,	providing
redundant	connectivity	to	the	distribution	layer.
·									The	distribution	layer	-	The	distribution	layer	is	an	intermediate
layer	between	the	core	layer	in	the	datacenter	and	the	access	switches	in
the	patch	closets.	Because	typically	many	access	switches	are	used	in	a
building	and	core	switch	ports	are	expensive,	the	distribution	layer
combines	the	access	layer	data	and	sends	its	combines	data	to	one	or	two

ports	on	the	core	switches.
·									The	access	layer	-	Switches	in	this	layer	are	used	to	connect
workstations	and	servers	to	the	distribution	layer.	For	servers,	they	are
typically	located	at	the	top	of	the	individual	server	racks	or	in	blade
enclosures.	For	workstations,	these	are	typically	placed	in	patch	closets	in
various	parts	of	the	building	(typically	each	floor	in	a	building	has	its	own
patch	closet,	sometimes	more	than	one).

An	oversubscription	ratio	can	be	used	to	handle	the	increased	bandwidth	needs
when	 approaching	 the	 core	 of	 the	 network.	 Between	 the	 access	 layer	 and	 the
distribution	layer	an	oversubscription	ratio	of	20:1	is	common.	This	means	that
the	 bandwidth	 of	 the	 uplink	 of	 the	 access	 layer	 to	 the	 distribution	 layer	 is	 20
times	less	 than	the	combined	bandwidth	of	 the	connections	on	the	access	 layer
itself.
For	instance,	with	an	oversubscription	ratio	of	20:1,	when	an	access	layer	switch
is	equipped	with	200	ports	of	100	Mbit/s	each	(a	total	bandwidth	of	20	Gbit/s),
an	uplink	of	1	Gbit/s	is	needed	to	the	distribution	layer	switches.
A	much-used	oversubscription	ratio	between	the	distribution	layer	and	the	core
layer	is	4:1.

8.4.2								Spine	and	Leaf	topology
In	a	Software	Defined	Network	(see	section	8.3.5),	a	simple	physical	network	is
used	 that	 can	 be	 programmed	 to	 act	 as	 a	 complex	 virtual	 network.	 Such	 a
network	can	be	organized	in	a	spine	and	leaf	topology,	as	shown	in	Figure	51.
	

Figure	51:	Spine	and	leaf	topology

In	 contrast	with	 a	 layered	 network	 topology,	 in	 a	 spine	 and	 leaf	 topology,	 the

spine	switches	are	not	interconnected.	Each	leaf	switch	is	connected	to	all	spine
switches	and	each	server	is	connected	to	two	leaf	switches.
The	 connections	 between	 spine	 and	 leaf	 switches	 typically	 have	 ten	 times	 the
bandwidth	of	the	connectivity	between	the	leaf	switches	and	the	servers.
This	topology	has	a	number	of	benefits:

·									With	today’s	high	density	switches,	typically	populated	with	48	ports,
many	physical	servers	(each	containing	several	virtual	servers)	can	be
connected	using	relatively	few	switches.
·									Each	server	is	always	exactly	four	hops	away	from	every	other	server,
which	leads	to	a	very	predictable	latency.
·									The	topology	is	simple	to	scale:	just	add	spine	or	leaf	servers.
·									Since	there	are	no	interconnects	between	the	spine	switches,	the
design	is	highly	scalable.

8.4.3								Network	teaming
Network	 teaming,	 also	 known	 as	 link	 aggregation,	 port	 trunking	 (see	 section
5.5.8),	or	network	bonding,	provides	a	virtual	network	connection	using	multiple
physical	cables	for	high	availability	and	increased	bandwidth.
	

Figure	52:	Network	teaming

The	technology	bonds	physical	NICs	(Network	Interface	Controllers)	together	to
form	 a	 logical	 network	 team	 that	 sends	 traffic	 to	 the	 team’s	 destination	 to	 all
NICs	 in	 the	 team.	This	allows	a	single	NIC,	cable,	or	switch	 to	be	unavailable
without	interrupting	Ethernet	traffic.
Network	 teaming	 allows	 (physical)	 network	 maintenance	 on	 active	 network
connections.	When	maintenance	 is	 performed	 on	 one	 cable,	 the	 team	uses	 the
other	cables.	And	when	the	first	cable	is	ready,	another	cable	can	be	taken	down

for	maintenance.

8.4.4								Spanning	Tree	Protocol
The	 Spanning	 Tree	 Protocol	 (STP)	 is	 an	 Ethernet	 level	 protocol	 that	 runs	 on
switches.	 STP	 guarantees	 that	 only	 one	 path	 is	 active	 between	 two	 network
endpoints	 at	 any	 given	 time.	 With	 STP,	 redundant	 paths	 are	 automatically
activated	when	the	active	path	experiences	problems.
For	example,	in	Figure	53,	when	Server	A	wants	to	communicate	with	Server	B
the	communication	path	is:
Server	A	=>	Switch	3	=>	Switch	1	=>	Switch	4	=>	Server	B
In	this	situation	Switch	1	is	the	root	of	the	spanning	tree.
	

Figure	53:	Spanning	tree	with	root	switch	1

If	 switch	 1	 fails	 for	 some	 reason,	 the	 STP	 protocol	 reconfigures	 the	 network
automatically.
In	 the	new	configuration,	when	server	A	wants	 to	communicate	with	server	B,
the	communication	path	is:
Server	A	=>	Switch	3	=>	Switch	2	=>	Switch	4	=>	Server	B
In	this	situation	switch	2	is	the	root	of	the	spanning	tree.
	

Figure	54:	Spanning	tree	with	root	switch	2

STP	also	ensures	that	no	loops	are	created	when	redundant	paths	are	available	in
the	 network.	 Without	 STP,	 network	 switches	 with	 redundant	 links	 can	 cause
broadcasts	to	continuously	circle	the	network	–	also	known	as	a	broadcast	storm.
STP	avoids	this	by	switching	off	redundant	links	when	they	are	not	needed.
A	disadvantage	of	using	the	spanning	tree	protocol	is	that	it	is	not	using	half	of
the	network	links	in	a	network,	since	it	blocks	redundant	paths.
STP	was	designed	at	a	 time	when	 the	 recovery	of	connectivity	after	an	outage
within	 a	minute	was	 considered	 adequate.	Within	 datacenters	 Rapid	 Spanning
Tree	 Protocol	 (RSTP)	 is	 preferred.	 The	 RSTP	 provides	 for	 fast	 spanning	 tree
convergence	after	a	 topology	change.	While	STP	can	 take	30	 to	60	seconds	 to
respond	 to	 a	 topology	 change,	 RSTP	 is	 typically	 able	 to	 respond	 to	 changes
within	6	seconds,	or	within	a	few	milliseconds	in	case	of	a	physical	link	failure.

8.4.5								Multihoming
Connecting	a	network	to	two	different	Internet	Service	Providers	(ISPs)	is	called
multihoming.	 Multihoming	 is	 a	 good	 practice	 to	 enhance	 the	 availability	 of
internet	 connectivity	 by	 providing	 redundant	 internet	 connections	 and/or
gateways.	 It	 also	provides	network	optimization	by	 selecting	 the	 ISP	or	 router
which	offers	the	best	path	to	an	online	resource.
In	general,	there	are	four	options	for	multihoming,	which	are	(in	ascending	order
of	complexity	and	cost):

·									Single	router	with	dual	links	to	a	single	ISP.
·									Single	router	with	dual	links	to	two	separate	ISPs.
·									Dual	routers,	each	with	its	own	link	to	a	single	ISP.
·									Dual	routers,	each	with	its	own	link	to	a	separate	ISP.

While	 the	 last	 option	 provides	 the	 highest	 availability,	 it	 also	 is	 the	 most
expensive	and	complex	configuration.
In	WANs	 try	 to	ensure	 redundant	physical	 cables	are	used.	Since	WAN	cables
are	typically	installed	alongside	highways	and	railway	tracks,	and	because	they
are	used	by	multiple	carrier	providers,	it	is	not	always	guaranteed	that	multiple
network	paths	actually	run	on	a	different	set	of	cables.

8.5													Network	performance

Modem	 and	 line	 speeds	 have	 become	 much	 faster	 over	 the	 years.	 Nielsen's
law	states	that	network	connection	speeds	for	high-end	home	users	increase	50%
per	year,	or	double	every	21	months.	Mr.	Nielsen	predicted	this	in	1983	and	it	is
still	very	accurate,	as	shown	in	Figure	55.
	

I	remember	in	1998	we	needed	a	2	Mbit/s	leased	line	to	a	frame	relay	network,
and	we	had	to	pay	$8,000	per	month	for	that	connection!
At	the	time	of	writing	(2017)	my	home	internet	subscription	costs	me	$70	per
month,	delivering	120	Mbit/s;	sixty	times	as	much	bandwidth	for	less	than	one
percent	of	the	cost!

	
	

Figure	55:	Nielsen's	law

There	 is	no	reason	 to	assume	Nielsen’s	 law	will	become	invalid	 in	 the	coming
years.	Regular	bandwidths	should	be	15	Gbit/s	in	2025,	still	for	a	price	of	about
$50	per	month.
There	are	many	ways	to	measure	the	performance	of	a	network,	as	each	network

is	different	 in	design.	Throughput,	 latency,	 the	 type	of	 information	 transmitted,
and	the	way	that	 information	is	applied	all	affect	 the	speed	of	a	connection.	In
the	next	sections	the	following	concepts	are	discussed:

·									Throughput	and	bandwidth
·									Latency
·									Quality	of	Service	(QoS)
·									WAN	link	compression

8.5.1								Throughput	and	bandwidth
Throughput	is	the	amount	of	data	that	is	transferred	through	the	network	during
a	 specific	 time	 interval.	 Throughput	 is	 limited	 by	 the	 available	 bandwidth.
Therefore,	the	terms	'throughput'	and	'bandwidth'	are	often	used	interchangeably.
When	 an	 application	 requires	more	 throughput	 than	 a	 network	 connection	 can
deliver,	 queues	 in	 the	 network	 components	 temporarily	 buffer	 data.	 Buffered
data	 is	 sent	 as	 soon	 as	 the	 network	 connection	 is	 free	 again.	When	more	 data
arrives	 than	 the	queues	can	store	 in	 the	buffer,	packet	 loss	can	occur.	To	avoid
packet	loss,	the	higher	layer	network	protocols	typically	throttle	the	data	stream.
If	possible,	try	to	schedule	throughput-intensive	applications	(like	batch	jobs	and
backup	jobs)	at	a	time	the	network	is	least	busy	with	interactive	users.

8.5.2								Latency
Latency	is	defined	as	the	time	from	the	start	of	packet	transmission	to	the	start	of
packet	reception.	Latency	is	dependent	on	the	distance	(in	km)	that	a	packet	has
to	 travel,	 given	 that	 it	 travels	 at	 nearly	 the	 speed	 of	 light,	 and	 the	 number	 of
switches	and	routers	the	packet	has	to	pass.
As	a	rule	of	thumb,	latency	due	to	distance	is	6	ms	per	100	km.	In	WANs	expect
each	switch	in	the	path	to	add	another	10	ms	to	the	one-way	delay,	and	in	LANs
add	1	ms	for	each	switch.
In	a	packet-switched	network	latency	is	measured	either	one-way	(the	time	from
the	 source	 sending	 a	 packet	 to	 the	 destination	 receiving	 it),	 or	 round-trip	 (the
one-way	 latency	 from	source	 to	destination	plus	 the	one-way	 latency	 from	 the
destination	back	to	the	source).
Most	operating	systems	and	network	equipment	provide	a	tool	called	“ping”	that

can	be	used	to	measure	round-trip	latency.	Ping	performs	no	packet	processing;
it	merely	sends	a	response	back	when	it	 receives	a	packet	and	it	 is	a	relatively
accurate	way	of	measuring	latency.

8.5.3								Quality	of	Service	(QoS)
Quality	of	service	(QoS)	is	 the	ability	to	provide	different	data	flow	priority	to
different	applications,	users,	or	types	of	data.	QoS	allows	better	service	to	certain
important	 data	 flows	 compared	 to	 less	 important	 data	 flows.	 This	 is	 done	 by
treating	 high	 priority	 traffic	 different	 than	 low	 priority	 traffic,	 for	 instance	 by
dropping	 low	 priority	 traffic	 when	 buffers	 fill	 up	 or	 by	 using	 queues	 with
different	priorities.
QoS	is	mainly	used	for	real-time	applications	like	video	and	audio	streams	and
VoIP	telephony.	This	allows,	for	example,	a	large	download	via	FTP	and	a	VoIP
call	to	use	the	same	bandwidth	without	causing	jittering	on	the	VoIP	audio.	The
FTP	 download	 will	 slow	 down	 slightly	 as	 bandwidth	 is	 needed	 for	 VoIP,
provided,	of	course,	VoIP	was	given	a	higher	priority.
There	are	four	basic	ways	to	implement	QoS:

·									Congestion	management	-	This	defines	what	must	be	done	if	the
amount	of	data	to	be	sent	exceeds	the	bandwidth	of	the	network	link.
Packets	can	either	be	dropped	or	queued	(using	multiple	queues	for
multiple	QoS	streams).	It	should	be	noted	that	the	TCP	protocol	already
automatically	slows	down	when	packet	loss	is	detected.
·									Queue	management	-	When	queues	are	full,	packets	will	be	dropped.
Queue	management	defines	criteria	for	dropping	packets	that	are	of	lower
priority	before	dropping	higher	priority	packets.
·									Link	efficiency	-	This	ensures	that	the	link	is	used	in	an	optimized
way,	for	instance	by	fragmenting	large	packets	with	a	low	QoS,	allowing
packets	with	a	high	QoS	to	be	sent	between	the	fragments	of	low	QoS
packets.
·									Traffic	shaping	–	By	limiting	the	full	bandwidth	of	streams	with	a
low	QoS	to	benefit	streams	with	a	high	QoS,	high	QoS	streams	have	a
reserved	amount	of	bandwidth.

8.5.4								WAN	link	compression

Data	compression	can	be	used	to	reduce	the	size	of	data	before	it	is	transmitted
over	 a	 WAN	 connection.	 WAN	 acceleration	 appliances	 can	 be	 deployed	 to
provide	 this	 compression	 task	 and	 to	 perform	 some	 caching	 of	 regularly	 used
data	at	remote	sites.
Note	 that	 compression	 uses	 CPU	 resources	 in	 the	 routers	 handling	 the
compression.	 When	 routers	 are	 heavily	 loaded,	 compression	 is	 not
recommended.

8.6													Network	security

Network	 security	 can	 be	 implemented	 using	 firewalls,	 DMZs,	 RADIUS	 and
NAC.

8.6.1								Firewalls
Firewalls	 separate	 two	 or	 more	 LAN	 or	WAN	 segments	 for	 security	 reasons.
Firewalls	block	all	unpermitted	network	traffic	between	network	segments,	and
permitted	traffic	must	be	explicitly	enabled	by	configuring	the	firewall	to	allow
it.	 Firewalls	 can	 be	 implemented	 in	 hardware	 appliances,	 as	 an	 application	 on
physical	servers,	or	in	virtual	machines.
A	special	 type	of	firewall	 is	a	host	based	firewall,	 that	protects	a	server	or	end
user	computer	against	network	based	attacks.	This	type	of	firewall	is	often	part
of	the	operating	system	(like	the	Windows	firewall	or	Linux’	IP	tables).
Firewalls	use	one	or	more	of	the	following	methods	to	control	traffic:

·									Packet	filtering	–	Data	packets	are	analyzed	using	preconfigured
filters.	A	typical	filter	can	be:	“TCP/IP	packets	sent	to	port	80	of	any
machine	to	the	internet	network	segment	are	allowed”.	This	functionality
is	almost	always	available	on	routers	and	most	operating	systems.
·									Proxy	(also	known	as	application	layer	firewalls)	–	A	proxy
terminates	the	session	on	the	application	level	on	behalf	of	the	server
(proxy)	or	the	client	(reverse	proxy)	and	creates	a	new	session	to	the	client
or	server.	Typical	use	is	a	HTTP	proxy	server,	which	fetches	web	pages
from	the	internet	on	behalf	of	a	client	in	the	internal	LAN.	The	application
layer	firewall	needs	to	have	knowledge	of	the	used	application	protocol
and	is	able	to	detect	anomalies	in	these	protocols.
·									Stateful	inspection	–	This	type	of	firewall	inspects	the	placement	of
each	individual	packet	within	a	packet	stream.	The	firewall	maintains
records	of	all	connections	passing	through	the	firewall	and	determines
whether	a	packet	is	the	start	of	a	new	connection,	part	of	an	existing
connection,	or	is	an	invalid	packet.

8.6.2								IDS/IPS

An	 Intrusion	 Detection	 System	 (IDS)	 or	 Intrusion	 Prevention	 System
(IPS)	 detects	 and	 –	 if	 possible	 –	 prevents	 activities	 that	 either	 compromise
system	security,	or	 are	a	hacking	attempt.	An	 IDS/IPS	monitors	 for	 suspicious
(and	 possibly	 hostile)	 activity	 and	 alerts	 the	 systems	 manager	 when	 these
activities	are	detected.	A	typical	example	of	an	IDS/IPS	alert	is	the	occurrence	of
a	 port	 scan,	 often	 used	 by	 hackers	 to	 find	 vulnerabilities	 in	 internet-attached
devices.
IDS	 monitors	 a	 server	 or	 a	 network	 and	 provides	 alerts	 when	 something
suspicious	 happens.	 An	 IPS,	 however,	 can	 also	 stop	 attacks	 by	 for	 instance
changing	 firewall	 rules	 on	 the	 fly	 to	 block	 detected	 unwanted	 traffic.	 IPS
systems	are	often	combined	with	firewall	functionality	or	have	a	direct	interface
to	it.
Two	 types	 of	 IDS/IPS	 systems	 exist:	 Network-based	 IDS	 (NIDS)	 and	 Host-
based	IDS	(HIDS).

·									A	NIDS	is	typically	placed	at	a	strategic	point	within	the	network	to
monitor	traffic	to	and	from	all	devices	on	that	network.	A	good	place
would	be	a	central	firewall,	a	core	switch	or	a	DMZ	router.	The	NIDS	is
not	part	of	the	network	flow,	but	just	“looks	at	it”,	to	avoid	detection	of	the
NIDS	by	hackers.
·									A	HIDS	runs	on	individual	servers	or	network	devices,	where	it
monitors	the	network	traffic	of	that	device.	It	also	monitors	user	behavior
and	the	alteration	of	critical	(system)	files.	A	good	place	for	a	HIDS	is	a
critical	(production)	server,	or	a	server	that	can	be	reached	from	the
internet,	like	a	webserver,	an	email	server	or	an	FTP	server.

An	IDS	system	works	in	one	of	two	ways:
·									Looking	for	specific	signatures	of	known	threats;	similar	to	the	way
antivirus	software	works	(also	known	as	a	statistical	anomaly-based	IDS)
·									Comparing	traffic	patterns	against	a	baseline	(the	known	normal
behavior)	and	looking	for	anomalies	(also	known	as	a	signature-based
IDS)

8.6.3								DMZ
DMZ	 is	 short	 for	De-Militarized	Zone,	 also	 known	 as	 screened	 subnet,	 or	 the
Perimeter	Network.

	

Originally,	 DMZ	 was	 a	 term	 used	 during	 the	 Korean	War	 to	 indicate	 a	 no-
man's	 land	where	 troops	 residing	 in	North	Korea	 and	 South	Korea	were	 not
allowed	 to	enter.	The	DMZ	was	a	 zone	of	 security	 created	 to	prevent	attacks
and	intrusions	from	either	side.

	
In	 IT	 networks	 a	DMZ	 is	 a	 network	 that	 serves	 as	 a	 buffer	 between	 a	 secure
protected	internal	network	and	the	insecure	internet.
Figure	 56	 shows	 an	 example	 of	 such	 a	 network.	 It	 shows	 segmentation	 in	 an
internal	LAN,	a	DMZ	LAN	segment,	and	the	internet.
	

Figure	56:	Back-to-back	DMZ

Each	of	 the	LAN	segments	 is	 separated	 from	 the	other	 segments	 by	 firewalls.
This	 is	called	a	back-to-back	DMZ.	A	fast	packet	 filtering	router	can	be	set	as
the	outside	firewall	(connected	to	the	internet)	and	an	application	level	firewall
as	the	inside	firewall	(connected	to	the	LAN).

Figure	57:	Trihomed	DMZ

As	an	alternative,	a	Trihomed	DMZ	uses	a	single	firewall	with	three	interfaces;
one	interface	for	the	internet,	the	second	for	the	internal	LAN,	and	the	third	for
the	DMZ	LAN	segment.	Separate	rules	must	be	configured	for	each	traffic	flow
based	on	the	origin	and	the	destination.
While	a	 trihomed	 firewall	 solution	 is	cheaper	 than	using	 two	 firewalls,	 I	don’t
recommend	 it.	 If,	 by	 chance,	 the	 systems	 manager	 makes	 a	 mistake	 when
configuring	 the	 firewall,	 the	 security	 of	 the	 whole	 network	 could	 be
compromised.	Using	two	firewalls	at	least	keeps	basic	security	in	place	in	such
cases.
No	 direct	 traffic	 is	 allowed	 from	 the	 internal	 LAN	 to	 the	 internet	 (or	 other
external	networks)	and	vice	versa.	This	traffic	must	be	terminated	on	a	system	in
the	DMZ	(like	a	web	server,	a	mail	relay,	or	a	web	browsing	proxy	server).
While	in	practice	exceptions	will	occur	to	this	rule	(when	a	“hole”	is	created	in
the	 firewall),	 these	 exceptions	 should	 be	 kept	 to	 a	 minimum.	 Typically,	 all
sessions	 initiated	by	external	 systems	 trying	 to	 connect	 to	 internal	 systems	are
strictly	forbidden.
The	servers	in	the	DMZ	should	preferably	have	no	data	storage	to	lower	the	risk
of	data	exposure	when	a	server	in	the	DMZ	is	compromised.	But	when	data	must
be	stored	in	the	DMZ,	an	isolated	SAN	should	be	used,	or	better:	only	use	direct
attached	 storage	 (local	 disks)	 to	 avoid	 attacks	 through	 the	 Fibre	 Channel
interfaces.	 All	 devices	 in	 the	 DMZ	 should	 be	 hardened	 with	 limited
functionality.

Windows	servers	in	the	DMZ	should	not	be	part	of	the	Windows	domain	of	the
servers	 in	 the	 internal	 LAN.	 Preferably	 the	 servers	 should	 not	 be	 part	 of	 any
domain,	but	if	they	must,	a	separate	Windows	domain	should	be	created	that	is
used	only	in	the	DMZ	LAN	segment.

8.6.4								RADIUS
Remote	Authentication	Dial	In	User	Service	(RADIUS)	is	a	networking	protocol
that	 provides	 centralized	 user	 and	 authorization	 management	 for	 network
devices	 such	 as	 routers,	 modem	 servers,	 switches,	 VPN	 routers,	 and	 wireless
network	access	points.
RADIUS	 is	 supported	 by	 virtually	 all	 network	 components.	 These	 devices
generally	 cannot	 deal	 with	 a	 large	 number	 of	 users	 and	 specific	 authorization
details,	since	that	would	require	more	storage	than	most	devices	have.
RADIUS	 authenticates	 users	 or	 devices	 before	 granting	 them	 access	 to	 a
network	and	authorizes	users	or	devices	for	certain	network	services.	A	RADIUS
client	sends	encrypted	user	credentials	to	a	RADIUS	server.	The	RADIUS	server
authenticates	 and	 authorizes	 the	 RADIUS	 client	 request,	 and	 sends	 back	 a
RADIUS	message	response	(accepted	or	rejected).
The	RADIUS	client	and	 the	RADIUS	server	use	encryption	based	on	a	shared
secret.	 The	 shared	 secret	 is	 commonly	 configured	 as	 a	 text	 string	 on	 both	 the
RADIUS	client	and	server.

8.6.5								Network	Access	Control	(NAC)
Network	Access	Control	 (NAC)	 is	 used	 at	 the	 network	 end	 points,	where	 end
user	devices	(like	laptops)	can	be	connected	to	the	network.	It	allows	predefined
levels	of	network	access	based	on	a	client's	identity	(is	the	laptop	known	to	the
organization?),	the	groups	to	which	a	client	belongs,	and	the	degree	to	which	a
client’s	device	complies	with	the	organization's	governance	policies	(does	it	run
the	most	recent	virus	scanner?).
If	a	client	device	is	not	compliant,	NAC	provides	a	mechanism	to	automatically
bring	 it	 into	 compliance,	 for	 instance	 by	 installing	 the	 latest	 virus	 scanner
updates	while	connected	on	an	isolated	LAN	segment.	After	the	update	finishes,
access	is	granted	to	the	rest	of	the	network.
	

9				

STORAGE

9.1													Introduction

Every	 day,	 approximately	 15	 petabytes	 of	 new	 information	 is	 generated
worldwide,	and	the	total	amount	of	digital	data	doubles	approximately	every	two

years
[37]

.	About	70%	of	this	data	is	unstructured	(office	files,	audio	and	video,	e-
mail),	 the	 rest	 is	 structured	 (stored	 in	databases).	To	store	all	 this	data,	 storage
systems	are	used.
	

Figure	58:	Storage	in	the	infrastructure	model

Early	computers	used	a	very	basic	persistent	storage	system,	based	on	punched
cards	or	paper	 tape.	Each	 time	 these	computers	were	 switched	on,	 instructions
were	 loaded	 in	 main	 memory	 and	 executed	 by	 manually	 flipping	 physical
switches.	 These	 keyed-in	 instructions	 instructed	 the	 computer	 to	 load	 an
application	program	in	main	memory	from	a	paper	tape	or	from	punched	cards.
Input	data	was	also	stored	on	paper	tape	or	punched	cards	and	output	was	printed
on	paper.
Drum	memory	was	one	of	the	first	magnetic	read/write	storage	systems.	It	was
widely	used	in	the	1950s	and	into	the	1960s.	For	many	computers	in	those	days,
the	drum	formed	the	main	working	memory	of	the	machine.
	

Picture	17:	Drum	memory

Drum	memory	consisted	of	a	large	rotating	metal	cylinder	that	was	coated	on	the
outside	 with	 magnetic	 recording	 material.	 Multiple	 rows	 of	 fixed	 read-write
heads	were	 placed	 along	 the	 drum,	 each	 head	 reading	 or	writing	 to	 one	 track.
The	drum	could	store	62	kB	of	data.
Later,	 hard	 disks	 were	 constructed	 with	 a	 set	 of	 rotating	 disk	 platters	 and
magnetic	 read/write	 heads	 mounted	 on	 a	 movable	 arm.	 This	 made	 the
construction	much	 smaller	 than	drum	memory,	 and	 still	 allowed	 the	 read/write
heads	to	reach	any	place	on	the	disk.

Picture	18:	RAMAC	350	Random	Access	Magnetic	Disk	Drive
[38]

The	first	commercial	digital	disk	storage	device	was	part	of	 the	IBM	RAMAC
350	 system,	 shipped	 in	 1956.	 It	 could	 store	 approximately	 5	MB	of	 data,	was
composed	of	fifty	61	cm	diameter	disks,	and	weighed	over	a	ton.	In	contrast,	in
1980,	Seagate	Technology	created	the	first	hard	disk	drive	that	fit	in	a	PC,	also

with	a	5MB	capacity.
Over	 the	years,	 the	physical	 size	of	hard	disks	 shrunk,	disk	capacity	 increased
because	of	 increased	magnetic	density,	 the	rotation	speed	increased	from	3,600
rpm	to	15,000	rpm,	and	seek	times	lowered	as	a	result	of	using	servo	controlled
read/write	heads	instead	of	stepper	motors.	But	the	fundamental	design	of	a	hard
disk	has	not	changed.
Tapes	are	another	popular	type	of	magnetic	storage.
The	IBM	726,	introduced	in	1952,	was	one	of	the	first	magnetic	tape	systems.	It
could	store	2	MB	per	20-centimeter-diameter	reel	of	tape	–	an	enormous	amount
at	the	time.	Reel	tapes	were	used	until	the	late	1980s,	mostly	in	mainframes.
	

Picture	19:	Reel	tape
[39]

In	1984,	DEC	introduced	the	Digital	Linear	Tape	(DLT)	cartridge,	superseded	by
Super	DLT	(SDLT)	tape	cartridges,	that	can	store	up	to	300	GB	of	data.
Linear	 Tape	 Open	 (LTO)	 was	 originally	 developed	 in	 the	 late	 1990s.	 LTO
cartridges	look	similar	to	SDLT	cartridges,	and	have	roughly	the	same	size,	but
they	 are	 not	 interchangeable.	 The	 most	 recent	 version	 (LTO	 version	 7)	 was

released	in	2015	and	can	hold	up	to	6	TB	of	data
[40]

.
	

Picture	20:	LTO	tape	cartridge
[41]

Today,	 the	 only	 alternative	 to	 LTO	 in	 capacity	 and	 performance	 is	 the

Oracle/StorageTek	T10000	tape,	that	can	store	8.5	TB
[42]

.

9.2													Storage	building	blocks

Servers	can	use	internal	storage	only,	but	most	use	external	storage,	sometimes
combined	with	internal	storage.	A	model	of	storage	building	blocks	is	shown	in
Figure	59.	Each	building	block	is	discussed	in	detail	in	de	subsequent	sections,
starting	at	the	lowest	building	blocks.
	

Figure	59:	Storage	model

9.2.1								Disks
Two	types	of	disks	are	in	use	today:

·									Mechanical	hard	disks
·									SSD	disks

Disks	 are	 connected	 to	 disk	 controllers	 using	 a	 command	 set,	 based	 on	 either
ATA	or	SCSI.

9.2.1.1						Command	sets
Disks	 communicate	with	 disk	 controllers	 using	 a	 protocol	 based	 on	 either	 the
ATA	or	SCSI	command	set.
Advanced	Technology	Attachment	(ATA),	also	known	as	IDE,	uses	a	relatively
simple	 hardware	 and	 communication	 protocol	 to	 connect	 disks	 to	 computers
(mostly	 PCs).	 For	many	 years,	ATA	 provided	 the	most	 common	 and	 the	 least
expensive	disk	interface.
Small	 Computer	 System	 Interface	 (SCSI)	 is	 a	 set	 of	 standards	 for	 physically
connecting	 and	 transferring	 data	 between	 computers	 (mostly	 servers)	 and
peripheral	 devices,	 like	 disks	 and	 tapes.	 The	 SCSI	 standard	 defines	 command
sets	 for	 specific	 peripheral	 device	 types.	The	SCSI	 command	 set	 is	 complex	 -
there	are	about	60	different	SCSI	commands	in	total.
The	 need	 for	 increased	 bandwidth	 and	 flexibility	 in	 storage	 systems	made	 the
original	parallel	SCSI	and	ATA	standards	an	inefficient	option.	Serial	interfaces
replaced	the	parallel	interfaces,	but	the	disk	commands	are	still	the	same.

9.2.1.2						Mechanical	hard	disks
Mechanical	 disks	 consist	 of	 vacuum	 sealed	 cases	 with	 one	 or	 more	 spinning
magnetic	disks	on	one	spindle	and	a	number	of	read/write	heads	that	can	move
to	reach	each	part	of	the	spinning	disks.	Picture	21	shows	a	mechanical	hard	disk
with	its	cover	removed,

Picture	21:	Hard	disk	internal	mechanical	construction

In	 today’s	 systems,	 three	mechanical	 (spinning)	 disk	 types	 are	most	 common,
depicted	by	their	used	interface:

·									Serial	ATA	(SATA)	disks

·									Serial	Attached	SCSI	(SAS)	disks
·									Near-Line	SAS	(NL-SAS)	disks

SATA	 disks	 are	 low-end	 high-capacity	 disks.	 SATA	 disks	 are	 ideal	 for	 bulk
storage	 applications	 (like	 archiving	 or	 backup)	 as	 they	 have	 a	 low	 cost	 per
gigabyte.	SATA	disks	are	also	often	used	in	PCs	and	laptops.	SATA	disks	use	the
SMART	command	set	to	control	the	disk.	This	command	set	is	limited,	but	easy
to	implement.
SAS	disks	 are	 relatively	 expensive,	 high	 end	 disks	with	 spinning	 disk	 platters
with	a	rotational	speed	of	10,000	or	15,000	rpm.	This	makes	them	very	fast,	but
they	typically	have	25%	of	the	capacity	of	SATA	or	NL-SAS	disks.
SAS	 disks	 are	 high-end	 disks,	 because	 they	 have	 better	 error	 correction
capabilities	 than	 SATA	 disks,	 and	 can	 move	 erroneous	 disk	 sectors	 to	 spare
sectors	automatically,	making	the	disks	very	reliable.	In	addition,	SAS	uses	the
SCSI	 command	 set	 that	 includes	 error-recovery	 and	 error-reporting	 and	 more
functionality	than	the	SMART	commands	used	by	SATA	disks.
NL-SAS	disks	have	a	SAS	interface,	but	the	mechanics	of	SATA	disks.	Because
NL-SAS	 disks	 use	 the	 SAS	 protocol,	 they	 can	 be	 combined	 with	 faster	 SAS
disks	 in	one	 storage	array.	They	are	used	 for	bulk	 storage	applications	as	 they
can	store	much	data,	have	a	low	cost	per	gigabyte	and	use	much	less	energy	than
SAS	disks,	as	they	typically	spin	at	just	7,200	rpm.

9.2.1.3						Solid	State	Drives	(SSDs)
A	Solid	State	Drive	(SSD)	is	a	disk	that	doesn’t	have	moving	parts	and	is	based
on	 flash	 technology.	 Flash	 technology	 is	 semiconductor-based	 memory	 that
preserves	 its	 information	 when	 powered	 off.	 SSDs	 are	 connected	 using	 a
standard	SAS	disk	interface.
SSD’s	main	advantage	is	performance.	SSDs	have	no	moving	parts,	so	data	can
be	 accessed	 much	 faster	 than	 using	 mechanical	 disks	 (microseconds	 vs.
milliseconds).	Most	storage	vendors	now	offer	all-flash	arrays	–	storage	systems
using	 only	 SSD	 disks.	 For	 high-demanding	 Online	 Transaction	 Processing
(OLTP)	systems,	these	all-flash	arrays	are	the	preferred	choice	today,	because	of
their	high	performance.
	

Picture	22:	SSD	disk
[43]

SSDs	 consume	 less	 power,	 and	 therefore	 generate	 less	 heat,	 than	 mechanical
disks.	 And	 since	 they	 have	 no	moving	 parts,	 they	 generate	 no	 vibrations	 that
could	influence	or	harm	other	components,	or	shorten	their	lifetime.
The	 main	 disadvantage	 of	 SSDs	 is	 their	 price	 per	 gigabyte,	 which	 is
considerably	 higher	 than	 mechanical	 disks,	 although	 their	 price	 per	 GB	 is
dropping	fast.
Another	 disadvantage	 of	 SSD	 is	 that	 the	 used	 flash	 memory	 can	 only	 be
rewritten	 a	 limited	 number	 of	 times	 –	 the	 disks	 “wear	 out”	more	 rapidly	 than
mechanical	 disks.	 To	 overcome	 this	 disadvantage,	 SSDs	 keep	 track	 of	 the
number	 of	 times	 a	 sector	 is	 rewritten,	 and	 map	 much	 used	 sectors	 to	 spare
sectors	if	they	are	about	to	wear	out.	It	is	important	to	monitor	the	wear	level	of
heavily	used	SSDs,	so	they	can	be	replaced	before	they	break.
SSDs	are	constructed	of	flash	technology	using	either	Single	Level	Cell	(SLC)
or	Multi-Level	Cell	 (MLC)	architectures.	SLC	stores	one	bit	per	memory	cell,
while	MLC	has	four	states	per	cell	that	enables	them	to	store	2	bits.	MLC	based
SSDs	 therefore	 typically	have	double	 the	 storage	 capacity,	 but	 also	double	 the
access	time	of	their	SLC	counterparts.	Technology	is	moving	fast	in	this	area,	so
more	advanced	flash	storage	technologies	are	expected	in	the	forthcoming	years.
Some	SSDs	 utilize	RAID	 technology	 internally	 (RAID	 is	 discussed	 in	 section
9.2.3.1),	 to	distribute	data	over	 the	available	 flash	chips	on	 the	SSD	disk.	The
more	RAID	channels	are	available,	and	the	bigger	the	number	of	flash	chips,	the
faster	the	SSD	disk	can	deliver	data	and	the	more	reliable	the	SSD	becomes.

9.2.1.4						Disk	capacity	-	Kryder's	law
Since	the	introduction	of	the	first	disk	drives,	physical	disk	sizes	shrunk	and	disk

capacity	increased	every	year.
Figure	 60	 shows	 that	 the	 average	 disk	 capacity	 has	 followed	 a	 logarithmic
increase	in	size	for	the	last	30	years	(note	that	the	Y-axis	is	logarithmic	instead
of	linear).
	

Figure	60:	Kryder’s	law

Kryder's	law
[44]

	 states	 that	"the	density	of	 information	on	hard	drives	has	been
growing	at	a	rate,	 increasing	by	a	 factor	of	1000	in	10.5	years,	which	roughly
corresponds	to	a	doubling	every	13	months".	When	Kryder’s	law	holds	true,	an
average	 single	 disk	 drive	 in	 2025	will	 hold	more	 than	 20,000	 TB	 (20	 PB)	 of
data!

Picture	23:	8	bytes	versus	8	GB
[45]

Picture	23	illustrates	Kryder’s	law	–	it	shows	the	physical	size	of	8	bytes	of	core
memory	from	the	1960s,	and	a	micro	SD	flash	card	containing	8	GB	of	memory
from	the	2010’s	–	1,000,000,000	times	as	much	storage	in	50	years.
When	designing	an	infrastructure,	it	is	good	to	be	aware	of	Kryder's	law	(as	well
as	Nielsen’s	 law	 and	Moore’s	 law).	 It	makes	 sense	 to	 not	 purchase	 too	much
spare	capacity	in	advance,	but	instead	to	purchase	and	implement	new	disks	"just
in	time".	To	have	full	benefits	of	Kryder's	law,	the	storage	infrastructure	should
be	 designed	 to	 handle	 just	 in	 time	 expansion	 using	 technologies	 like	 thin
provisioning	(more	on	that	in	section	9.2.3.4).

9.2.2								Tapes
When	storing	 large	amounts	of	data,	 tape	 is	 the	most	 inexpensive	option.	And
since	 tapes	 can	 store	much	 data	 in	 a	 relatively	 small	 form	 factor,	 they	 can	 be
used	 as	 a	 cheap	 archive	medium.	 Tapes	 are	 suitable	 for	 archiving,	 since	 tape
manufacturers	guarantee	a	 long	 life	 expectancy.	For	 instance,	DLT,	SDLT,	and
LTO	 Ultrium	 cartridges	 are	 guaranteed	 to	 be	 readable	 after	 30	 years	 on	 the

shelf
[46]

.
Tapes	 can	 be	 stored	 offsite	 to	 protect	 data	 in	 case	 of	 disasters	 like	 fires.	And,
unlike	online	backups	and	archives,	 if	 the	 tapes	are	 stored	offsite,	 they	are	not
corruptible	by	viruses	and	worms	and	they	use	no	power.
Tapes	have	some	disadvantages	as	well.	Tapes	are	fragile.	Manual	handling	can
lead	to	mechanical	defects	due	to	tapes	dropping	on	the	floor,	bumping,	or	bad
insertions	of	tapes	in	tape	drives.	Since	tapes	contain	mechanical	parts,	manually
changed	tapes	get	damaged	easily.	Frequent	rewinding	of	the	tape	causes	stress
to	the	tape	substrate,	leading	to	lower	reliability	of	data	reads.
Compared	 to	 disks,	 tapes	 are	 extremely	 slow.	 They	 only	 write	 and	 read	 data
sequentially.	When	a	particular	piece	of	data	is	required,	it	must	be	searched	by
reading	all	data	on	tape	until	the	required	data	is	found.	Together	with	rewinding
of	the	tape	(needed	for	ejecting	the	tapes)	handling	tapes	is	expressed	in	minutes
instead	of	in	milliseconds	or	microseconds.
(S)DLT	and	LTO	are	the	most	popular	tape	cartridge	formats	in	use	today,	where

LTO	has	a	market	share	of	more	than	80%.	The	latest	LTO-7	tape	cartridges	can

store	6	TB	of	uncompressed	data
[47]

.
Typical	 tape	 throughput	 now	 is	 in	 the	 100	 to	 150	MB/s	 range.	The	 tape	 drive
interface	 is	capable	of	even	higher	 speeds.	Existing	 tape	drives	 typically	use	4
Gbit/s	 Fibre	Channel	 interfaces,	 supporting	 a	 sustained	 throughput	 of	 between
350	 and	 400	MB/s.	 To	 use	 LTO-5	 drives,	 the	 interface	 needs	 8	Gbit/s	 FC,	 to
support	up	to	800	MB/s.

9.2.2.1						Tape	library
A	 tape	 drive	 can	 handle	 one	 tape	 at	 a	 time,	 and	 tapes	must	 be	 changed	when
more,	or	other	data	 is	needed.	Tape	 libraries	can	be	used	 to	automate	 this	 tape
handling.
A	tape	library,	also	known	as	a	tape	silo,	tape	robot,	or	tape	jukebox,	is	a	storage
device	 that	 contains	 one	 or	 more	 tape	 drives,	 a	 number	 of	 slots	 to	 hold	 tape
cartridges,	 a	 barcode	 or	 RFID	 tag	 reader	 to	 identify	 tape	 cartridges,	 and	 an
automated	method	for	loading	tapes.	Picture	24	shows	a	tape	robot	with	two	tape
drives	installed	in	the	back	(and	room	for	four	extra	tape	drives	when	needed).
On	the	left,	the	tapes	cartridges	are	stored.
	

Picture	24:	Tape	library
[48]

As	an	example,	the	tape	library	in	Picture	24	stores	150	LTO	tapes,	each	with	a
capacity	of	5	TB,	leading	to	a	total	storage	capacity	of	750	TB.

9.2.2.2						Virtual	tape	library
A	Virtual	Tape	Library	(VTL)	uses	disks	for	storing	backups.	A	VTL	consists	of
an	appliance	or	 server,	 and	 software	 that	 emulates	 traditional	 tape	devices	 and
formats.	The	benefit	 of	using	VTLs	 is	 that	 it	 combines	high	performance	disk
based	 backup	 and	 restore	 with	 well-known	 backup	 applications,	 standards,
processes,	and	policies.
Most	of	the	current	VTL	solutions	use	NL-SAS	or	SATA	disk	arrays	because	of
their	 relatively	 low	 cost,	 and	 provide	multiple	 virtual	 tape	 drives	 for	 handling
multiple	tapes	in	parallel.
In	some	cases,	data	stored	on	 the	VTL's	disk	array	 is	exported	 to	other	media,
such	as	physical	tapes,	for	disaster	recovery	purposes.
VTLs	 can	 be	 synchronized	 over	 multiple	 locations,	 creating	 multiple,	 offsite

backups.

9.2.3								Controllers
Controllers	 connect	 disks	 and/or	 tapes	 to	 a	 server,	 typically	 implemented	 as	 a
PCI	 expansion	 boards	 in	 the	 server.	 Controllers	 can	 also	 be	 used	 as	 part	 of	 a
NAS	or	SAN	deployment,	where	 they	 connect	 all	 available	disks	 and	 tapes	 to
redundant	 Fibre	Channel,	 iSCSI,	 or	 FCoE	 connections	 (see	 section	 9.2.5.1	 for
more	information	on	these	technologies).
A	 controller	 typically	 implements	 high	 performance,	 high	 availability,	 and
virtualized	 storage	 using	 RAID	 (Redundant	 Arrays	 of	 Independent	 Disks)
technology.	 They	 can	 also	 implement	 cloning,	 data	 deduplication	 and	 thin
provisioning,	each	explained	in	the	next	sections.
A	controller	virtualizes	all	physical	disks	connected	to	it,	presenting	one	or	more
virtual	disks,	called	Logical	Unit	Numbers	(LUNs).	This	is	usually	not	one-on-
one.	 Instead,	 the	 controller	 splits	 up	 all	 disks	 in	 small	 pieces	 called	 physical
extents.	 From	 these	 physical	 extents,	 new	 virtual	 disks	 (LUNs)	 are	 composed
and	presented	to	the	operating	system.	The	operating	system	doesn't	know	about
the	physical	disks;	it	just	works	with	the	LUNs	as	if	they	were	real	disks.
	

Figure	61:	Logical	disk	(LUN)	comprised	of	physical	extents

The	 controller	 can	 make	 physical	 disks	 part	 of	 a	 RAID	 array	 for	 increased
availability	 and/or	 performance.	 For	 instance,	 six	 500	 GB	 physical	 disks	 in	 a
RAID	5	configuration	can	be	presented	as	1	virtual	disk	(LUN)	of	3	TB	to	the
operating	 system.	 The	 operating	 system	 only	 sees	 one	 disk,	 and	 has	 no
knowledge	that	the	disk	in	reality	consists	of	more	physical	disks.	The	other	way
around	 is	 also	possible;	 the	disk	 controller	 can	provide	 the	operating	 system	a
large	number	of	small	sized	LUNs,	based	on	a	few	large	physical	disks.

9.2.3.1						RAID	(Redundant	Array	of	Independent	Disks)
Redundant	 Array	 of	 Independent	 Disks	 (RAID)	 solutions	 can	 provide	 high
availability	 of	 data	 and/or	 improvements	 of	 performance	 through	 the	 use	 of
redundant	disks.
RAID	can	be	 implemented	 in	 several	configurations,	called	RAID	 levels,	 each
with	 their	 own	 pros	 and	 cons.	 In	 practice,	 five	 RAID	 levels	 are	 implemented
most	often:

·									RAID	0	-	Striping
·									RAID	1	-	Mirroring
·									RAID	10	-	Striping	and	Mirroring
·									RAID	5	-	Striping	with	distributed	parity
·									RAID	6	-	Striping	with	distributed	double	parity

RAID	 can	 be	 implemented	 in	 the	 disk	 controller’s	 hardware,	 or	 as	 software
running	in	a	server’s	operating	system.

9.2.3.1.1			RAID	0	-	Striping
RAID	0	 (also	 known	 as	 striping)	 provides	 an	 easy	 and	 cheap	way	 to	 increase
performance	over	the	use	of	single	disks.	RAID	0	uses	multiple	disks,	each	with
a	part	of	the	data	on	it.	When	data	is	read,	part	of	the	data	comes	from	one	disk,
another	part	 from	another	disk,	effectively	doubling	 the	read	performance.	The
write	 performance	 is	 faster	 than	 using	 a	 single	 disk	 as	 well,	 as	 different	 data
blocks	are	written	to	the	disks	in	parallel.
RAID	0	actually	lowers	availability	–	if	one	of	the	disks	in	a	RAID	0	set	fails,	all
data	 is	 lost.	 RAID	 0	 is	 hardly	 used	 in	 production	 systems	 and	 its	 use	 is	 only

acceptable	 if	 losing	 all	 data	 on	 the	 RAID	 set	 is	 no	 problem	 (for	 instance	 for
temporary	data).	RAID	0	is	often	combined	with	RAID	1	to	create	a	RAID	10
set.
	

Figure	62:	RAID	0

In	 Figure	 62,	 each	 D	 number	 represents	 a	 disk	 block	 on	 one	 of	 the	 physical
disks.	 These	 disk	 blocks	 are	 combined	 by	 the	 disk	 controller	 to	 represent	 a
virtual	disk	that	is	presented	to	the	operating	system	of	a	server.

9.2.3.1.2			RAID	1	-	Mirroring
RAID	1	(also	known	as	mirroring)	 is	a	high	availability	solution	 that	uses	 two
disks	 that	 contain	 the	 same	data.	 If	 one	 disk	 fails,	 data	 is	 not	 lost	 as	 it	 is	 still
available	 on	 the	mirror	 disk.	 In	 RAID	 1,	 the	 disk	 controller	 (or	 the	 operating
system	driver)	writes	all	data	to	both	disks,	and	reads	data	from	the	first	disk	that
can	deliver	the	data.	This	is	dependent	on	where	the	disk's	read	head	is	located	at
that	 time.	 Therefore,	 RAID	 1	 has	 a	 slightly	 increased	 read	 performance	 over
using	single	disks.	The	write	performance	is	a	bit	slower,	since	writes	are	only
finished	after	the	data	is	written	on	both	disks.
RAID	1	is	thought	to	be	the	most	reliable	RAID	level,	but	its	price	is	relatively
high	–	50%	of	the	disks	are	used	for	redundancy	only.
A	spare	physical	disk	can	be	configured	 (see	Figure	63),	 to	automatically	 take
over	 the	 task	of	a	failed	disk.	This	enables	a	quick	automatic	rebuild	 to	a	high
available	situation	after	a	disk	failure.	And	because	most	disk	arrays	support	hot-
swappable	disks,	which	can	be	replaced	without	powering	down	the	disk	array,	a

defective	 disk	 can	 be	 replaced	 without	 causing	 downtime,	 restoring	 high
availability	of	the	RAID	configuration.
	

Figure	63:	RAID	1

To	optimize	high	availability,	 it	 is	considered	good	practice	 to	place	the	mirror
disks	 in	 a	 separate	 enclosure	 (and	 preferably	 in	 a	 separate	 rack),	 and	 to	 use
redundant	disk	controllers.

9.2.3.1.3			RAID	10	-	Striping	and	mirroring
RAID	 10	 uses	 a	 combination	 of	 striping	 and	 mirroring,	 and	 provides	 high
performance	and	availability,	but	at	a	relatively	high	price.	A	RAID	10	set	uses
at	 least	 four	disks	and	only	50%	of	 the	disk	space	 is	used	(the	 rest	of	 the	disk
space	is	used	for	mirroring).
	

Figure	64:	RAID	10

Just	like	in	RAID	1,	it	is	a	good	practice	to	place	the	mirror	disks	in	a	separate
enclosure	(and	preferably	in	a	separate	rack),	and	to	use	redundant	disks	and	disk
controllers.
Read	 performance	 is	 high,	 just	 like	 RAID	 0,	 and	 write	 performance	 is	 a	 bit
slower,	just	like	RAID	1	(but	still	higher	than	RAID	5	or	6).

9.2.3.1.4			RAID	5	-	Striping	with	distributed	parity
RAID	5	uses	striping	with	distributed	parity.	Data	is	written	in	disk	blocks	on	all
disks	 in	 parallel	 (like	RAID	0	 striping),	 and	 a	 parity	 block	of	 the	written	disk
blocks	 is	 stored	 as	well.	This	parity	block	 is	 used	 to	 automatically	 reconstruct
data	in	a	RAID	5	set	(using	a	spare	disk)	in	case	of	a	disk	failure.
Because	RAID	5	uses	parity,	not	all	data	has	to	be	available	twice,	like	in	RAID
1	and	RAID	10.	Parity	blocks	use	 the	amount	of	disk	space	of	one	disk	 in	 the
RAID	5	disk	array.	So,	in	a	RAID	5	disk	array	comprising	four	disks	of	500	GB
(a	total	of	2000	GB	disk	space),	 the	amount	of	available	storage	for	the	virtual
disk	 is	 three	 disks	 (four	minus	 one),	 so	 1500	GB.	 In	 a	 set	 of	 eight	 disks	 in	 a
RAID	5	 configuration,	 the	 amount	of	 data	on	 seven	disks	 is	 available	 to	 store
data.
RAID	5	spreads	the	parity	blocks	over	the	available	disks.	This	leads	to	a	good
spread	of	disk	usage,	lowering	the	risk	of	a	specific	disk	failing	first.
One	 disadvantage	 of	 using	 RAID	 5	 is	 that	 the	 parity	 calculations	 can
dramatically	 slow	 down	write	 performance.	Because	 of	 these	 calculations,	 the
rebuild	time	of	the	spare	disk	after	a	disk	failure	can	be	substantial.

	

Figure	65:	RAID	5

9.2.3.1.5			RAID	6	-	Striping	with	distributed	double	parity
When	a	disk	fails	in	a	RAID	5	set,	the	RAID	set	is	reconstructed	automatically
using	 the	 available	 spare	 disk.	During	 the	 reconstruction	 period,	 no	 protection
against	a	disk	failure	exists.	To	make	things	worse,	the	chance	of	a	second	disk
failure	rises	as	reconstructing	a	RAID	5	set	requires	a	lot	of	disk	reads	on	all	still
working	disks	in	the	RAID	set.	The	larger	the	disks,	the	more	time	is	needed	for
the	 reconstruction,	 and	 the	 larger	 the	 risk	 of	 a	 second	 disk	 failing.	 RAID	 6
protects	 against	 double	 disk	 failures	 by	 using	 two	 distributed	 parity	 blocks
instead	of	one.
	

Figure	66:	RAID	6

The	drawback	of	RAID	6	is	some	loss	of	write	performance	and	increased	cost
for	the	storage	of	extra	parity	blocks.

9.2.3.2						Data	deduplication
Data	deduplication	searches	the	storage	system	for	duplicate	data	segments	(disk
blocks	or	files)	and	removes	these	duplicates.
Data	 deduplication	 typically	 leads	 to	 a	 20	 to	 30%	 reduction	 of	 occupied	 disk
space,	but	in	real-world	situations	and	using	highly	optimized	algorithms,	much
higher	 reductions	 are	 possible	 with	 some	 types	 of	 data.	 Data	 deduplication	 is
used	in	archived	as	well	as	in	production	data.
The	 deduplication	 system	 keeps	 a	 table	 of	 hash	 tags	 (unique	 calculated	 data
identifiers)	to	quickly	identify	duplicate	disk	blocks.	The	incoming	data	stream
is	segmented	(mostly	 in	disk	block	sizes)	and	hash	tags	are	calculated	of	 those
segments.	The	hashes	are	compared	to	hash	tags	of	segments	already	on	disk.	If
an	incoming	data	segment	is	identified	as	a	duplicate,	the	segment	is	not	stored
again,	but	a	pointer	to	the	matching	segment	is	created	for	it	instead.
	

Figure	67:	Deduplication

Deduplication	 can	 be	 done	 inline	 or	 periodically.	 As	 described	 above,	 inline
deduplication	checks	for	duplicate	data	segments	before	data	is	written	to	disk.
While	 this	avoids	duplicate	data	on	disks	at	any	time,	 it	 introduces	a	relatively
large	performance	penalty.

Another	 possibility	 is	 to	 write	 data	 to	 disk	 first,	 and	 periodically	 check	 if
duplicate	 data	 exists.	 Duplicate	 data	 is	 then	 deduplicated	 by	 changing	 the
duplicate	data	to	a	pointer	to	existing	data	on	disk,	and	freeing	disk	space	of	the
original	block.	This	process	can	be	done	at	 times	when	performance	needs	are
low,	lowering	the	performance	penalty,	but	a	drawback	is	that	duplicate	data	will
be	stored	on	the	disks	for	some	time.
Today’s	 all-flash	 storage	 systems’	 extremely	 fast	 read	 and	 write	 speeds	 make
them	an	ideal	candidate	for	efficient	deduplication	of	data.	This	enables	the	all-
flash	 systems	 to	 host	 fewer	 disks	 compared	 to	 traditional	 storage	 system,
somewhat	compensating	the	higher	price	point	for	the	used	SSD	disks.

9.2.3.3						Cloning	and	snapshots
All	enterprise	storage	systems	provide	services	called	cloning	and	snapshotting.
With	cloning	and	snapshotting,	a	copy	of	data	is	made	at	a	specific	point	in	time
that	can	be	used	independently	from	the	source	data.	This	is	especially	useful	for
creating	backups.	If	a	backup	is	created	of	one	or	more	disks	while	those	disks
are	 constantly	 being	 updated,	 restoring	 such	 a	 backup	 could	 cause	 problems.
Using	 snapshotting	 and	 cloning	 it	 is	 possible	 to	 create	 a	 backup	 at	 a	 specific
point	 in	 time,	when	 the	data	 is	 in	a	 stable,	 consistent	 state.	Other	use	cases	of
cloning	and	snapshotting	are	creating	test	sets	of	data	and	an	easy	way	to	revert
to	older	data	without	restoring	data	from	a	backup.
With	cloning	the	storage	system	creates	a	full	copy	of	a	disk,	much	like	a	RAID
1	mirror	disk.	This	 cloned	disk	 can	be	 split-off	 at	 a	 specific	point	 in	 time,	 for
instance	 to	make	a	backup	of	 the	data,	without	 touching	 the	original	disks	 that
are	still	on-line.
Snapshotting	 achieves	 the	 same	 effect	 as	 cloning,	 but	 is	 technically	 quite
different.	A	snapshot	 represents	 a	point	 in	 time	of	 the	data	on	 the	disks.	From
that	moment	on	no	writing	 to	 those	disks	 is	permitted	anymore,	as	 long	as	 the
snapshot	is	active.	All	writing	is	done	on	a	separate	disk	volume	in	the	storage
system.	 The	 original	 disks	 still	 provide	 read-access,	 but	 when	 an	 operating
system	reads	data	that	was	just	written	onto	the	separate	disk	volume,	the	data	is
retrieved	from	that	disk	volume	automatically	and	transparently.	Since	no	data	is
written	to	the	disks	during	the	snapshot	period,	a	backup	can	be	made	from	the
disks,	as	they	contain	a	consistent	state	of	data.	As	soon	as	the	snapshot	state	is
ended,	all	data	is	written	back	to	the	original	disks	and	everything	continues	as
normal.

A	big	advantage	of	snapshots	compared	to	cloning	is	that	a	clone	takes	relatively
much	 time	 to	 create,	 and	 needs	 a	 duplication	 of	 the	 disk	 space.	A	 snapshot	 is
available	 instantly,	 and	 the	 snapshot	 doesn’t	 take	much	 additional	 disk	 space.
This	 means	 that	 when	 a	 backup	 must	 be	 made,	 a	 snapshot	 is	 created	 (which
typically	 takes	 less	 than	 a	 second),	 after	 which	 copying	 the	 data	 to	 a	 backup
system	can	take	as	long	as	needed.	No	downtime	occurs	due	to	the	making	of	a
backup,	even	if	making	the	backup	takes	several	hours.

9.2.3.4						Thin	provisioning
Thin	provisioning	enables	the	allocation	of	more	storage	capacity	to	users	than	is
physically	installed;	much	like	overcommitting	memory	in	virtual	machines.
Traditionally,	applications	are	provided	with	a	predetermined	amount	of	physical
storage	space.	The	amount	needed	was	defined	by	the	application	vendor,	or	was
calculated,	estimated,	or	guessed	–	often	using	a	worst-case	scenario.	In	practice,
experience	shows	that	about	50%	of	that	storage	is	never	used.	And	in	the	first
years	of	deployment,	the	storage	is	used	even	less,	since	the	application	has	only
a	small	set	of	historic	data.
Thin	 provisioning	 still	 provides	 the	 applications	 with	 the	 storage	 needed,
calculated,	 estimated,	 or	 guessed.	 Only	 the	 storage	 is	 not	 really	 available	 on
physical	disks.	Instead,	using	automated	capacity	management	the	application's
real	 storage	 need	 is	monitored	 closely,	 and	 physical	 disk	 space	 is	 added	when
needed.	This	means	that	disk	purchases	can	be	deferred	until	really	needed.	This
way	 disks	 are	 only	 purchased	 if	 really	 needed	 and	 for	 the	 latest	 price,	 thus
providing	more	storage	capacity	compared	to	buying	all	disks	up	front.
Typical	 use	 of	 thin	 provisioning	 is	 providing	 users	 with	 large	 sized	 home
directories.	 For	 instance,	 with	 thin	 provisioning,	 each	 user	 can	 get	 a	 home
directory	 of	 10	 GB	 or	 more.	 Since	 most	 users	 will	 not	 fill	 up	 their	 home
directories,	the	combined	amount	of	physical	disk	space	can	be	much	lower	than
10	 GB	 for	 each	 user.	 The	 same	 principle	 can	 be	 used	 for	 email	 boxes.	 This
provisioning	is	the	reason	Dropbox,	Hotmail	or	Google	can	provide	many	GB	of
free	disk	space	to	all	 their	users	–	only	a	few	of	them	really	use	all	 that	space,
most	use	much	less.

9.2.4								Direct	Attached	Storage	(DAS)
Most	PCs	use	Direct	Attached	Storage	(DAS).	DAS	–	also	known	as	local	disks

–	is	a	storage	system	where	one	or	more	dedicated	disks	connect	via	the	SAS	or
SATA	 protocol	 to	 a	 built-in	 controller,	 connected	 to	 the	 rest	 of	 the	 computer
using	the	PCI	bus.	The	controller	provides	a	set	of	disk	blocks	to	the	computer,
organized	in	LUNs	(or	partitions).	The	computer’s	operating	system	uses	 these
disk	blocks	to	create	a	file	system	to	store	files.
In	 servers,	 DAS	 is	 mostly	 used	 as	 a	 boot	 device	 and	 for	 caching	 (to	 provide
quick	 access	 to	 for	 instance	 page	 files).	 DAS	 storage	 is	 only	 available	 to	 the
server	that	has	the	DAS	storage	attached.

9.2.5								Storage	Area	Network	(SAN)
A	Storage	Area	Network	(SAN)	is	a	specialized	storage	network	that	consists	of
SAN	switches,	controllers	and	storage	devices.	It	connects	a	large	pool	of	central
storage	to	multiple	servers.
A	 SAN	 physically	 connects	 servers	 to	 disk	 controllers	 using	 specialized
networking	 technologies	 like	 Fibre	 Channel	 or	 iSCSI.	 Via	 the	 SAN,	 disk
controllers	 offer	 virtual	 disks	 to	 servers,	 also	 known	 as	 LUNs	 (Logical	 Unit
Numbers).	 LUNs	 are	 only	 available	 to	 the	 server	 that	 has	 that	 specific	 LUN
mounted.
	

Figure	68:	SAN

The	core	of	the	SAN	is	a	set	of	SAN	switches,	called	the	Fabric.	It	is	comparable

with	a	LAN’s	switched	network	segment.
Host	bus	adapters	(HBAs)	are	interface	cards	implemented	in	servers.	They	can
be	compared	 to	network	 interface	controllers	 (NICs)	used	 in	networking.	They
are	connected	to	SAN	switches,	usually	in	a	redundant	way.
	

Picture	25:	Disks	in	storage	system
[49]

Typically,	 in	 SANs,	 a	 large	 number	 of	 disks	 are	 installed	 in	 one	 or	more	 disk
arrays.	 The	 number	 of	 disks	 varies	 between	 dozens	 of	 disks	 and	 hundreds	 of
disks.	 With	 today's	 disk	 sizes	 a	 SAN	 can	 easily	 contain	 many	 hundreds	 of
terabytes	(TB)	of	data	or	more.

9.2.5.1						SAN	connectivity	protocols
To	connect	servers	to	storage	devices	using	a	SAN,	connectivity	is	needed.	The
most	used	SAN	connectivity	protocols	are	Fibre	Channel,	FCoE	and	iSCSI.

9.2.5.1.1			Fibre	Channel
Fibre	Channel	(FC)	 is	a	dedicated	 level	2	network	protocol,	specially	designed
for	 transportation	 of	 storage	 data	 blocks.	 It	 operates	 at	 speeds	 of	 2	 Gbit/s,	 4

Gbit/s,	8	Gbit/s,	or	16	Gbit/s.	Despite	its	name,	Fibre	Channel	can	run	on	both
twisted	pair	copper	wire	(i.e.	UTP	and	STP)	and	fiber	optic	cables.
	

Picture	26:	SAN	switches
[50]

The	 Fibre	 Channel	 protocol	 was	 specially	 developed	 for	 the	 transport	 of	 disk
blocks.	The	protocol	is	very	reliable,	with	guaranteed	zero	data	loss.	Each	Fibre
Channel	device	has	a	unique	World	Wide	Name	(WWN),	which	is	similar	to	an
Ethernet	MAC	address.
Fibre	Channel	can	be	implemented	within	three	network	topologies:

·									Point-to-Point	-	Two	devices	are	connected	directly	to	each	other.
·									Arbitrated	loop	(also	known	as	FC-AL)	-	In	this	topology,	all	devices
are	in	a	loop.	Most	early	Fibre	Channel	systems	worked	this	way.
·									Switched	fabric	-	All	devices	are	connected	to	Fibre	Channel
switches,	a	similar	concept	as	in	Ethernet	implementations.	Most
implementations	today	use	a	switched	fabric.

9.2.5.1.2			FCoE
Most	datacenters	use	two	separate	networks	–	one	for	Ethernet	and	one	for	Fibre
Channel.	Fibre	Channel	over	Ethernet	(FCoE)	is	a	technology	that	encapsulates
Fibre	 Channel	 data	 in	 Ethernet	 packets,	 allowing	 Fibre	 Channel	 traffic	 to	 be
transported	over	10	Gbit	or	higher	Ethernet	networks.
FCoE	eliminates	 the	need	for	separate	Ethernet	and	Fibre	Channel	cabling	and

switching	technology,	because	it	transports	regular	Ethernet	payloads	as	well	as
Fibre	 Channel	 payloads.	While	 this	 seems	 like	 a	 good	 idea,	 saving	 costs	 and
reducing	complexity,	it	must	be	made	clear	who	is	responsible	for	managing	the
converged	network.	Storage	 systems	managers,	who	were	once	 responsible	 for
the	 complete	 storage	 chain,	 will	 have	 to	 use	 the	 available	 network	 instead	 of
their	own	Fibre	Channel	fabrics.
FCoE	 is	 not	 regular	 Ethernet.	 It	 needs	 at	 least	 10	 Gbit	 Ethernet	 with	 special
extensions,	 known	 as	 Data	 Center	 Bridging	 (DCB)	 or	 Converged	 Enhanced
Ethernet	(CEE).	These	extensions	facilitate:

·									Lossless	Ethernet	connections	-	While	in	Ethernet	networking	the
risk	of	losing	an	Ethernet	packet	as	a	result	of	for	example	congestion	is
solved	by	higher	level	protocols	like	TCP/IP,	Fibre	Channel	needs	end-to-
end	lossless	connections	to	function	properly	on	top	of	Ethernet.	This
means	that	a	FCoE	implementation	must	guarantee	that	no	Ethernet
packets	are	lost.
·									Quality	of	Service	(QoS)	-	QoS	allows	FCoE	packets	to	have	priority
over	other	Ethernet	packets	to	avoid	storage	performance	issues.
·									Large	Maximum	Transfer	Unit	(MTU)	support	-	To	be	able	to	fit
Fibre	Channel	frames	in	one	Ethernet	packet,	large	MTU	support	is
required.	It	allows	Ethernet	packets	of	2500	bytes	in	size,	instead	of	the
standard	1500	bytes.	These	special	Ethernet	packets	are	also	known	as
Jumbo	frames.

To	 use	 FCoE,	 specialized	 Converged	 Network	 Adapters	 (CNAs)	 are	 needed.
CNAs	support	 the	Ethernet	extensions	described	above	and	present	 themselves
to	 the	 operating	 system	 as	 two	 adapters:	 an	 Ethernet	 Network	 Interface
Controller	 (NIC)	 and	 a	 Fibre	 Channel	 Host	 Bus	 Adapter	 (HBA).	 To
communicate	with	a	CNA,	the	operating	system	needs	two	drivers:	one	for	 the
NIC	part	of	the	adapter,	and	another	for	the	HBA	part	(see	Figure	69).
	

Figure	69:	FCoE

FCoE	 is	 a	 switching	 technology,	 which	 means	 that	 routing	 is	 not	 part	 of	 the
protocol	 (as	 opposed	 to	 IP	 based	 networks).	 Because	 of	 the	 need	 for	DCB	 or
CEE	 Ethernet,	 only	 specialized	 FCoE	 enabled	 switches	 can	 be	 used.	 And
because	 in	 many	 infrastructures	 networks	 Fibre	 Channel	 switches	 are	 already
present,	 FCoE	 is	 typically	 implemented	 gradually,	 starting	 with	 the	 host	 and
switch	 layers.	 The	 back-end	 storage	 arrays	 will	 continue	 to	 run	 native	 Fibre
Channel,	and	the	core	network	continues	to	run	native	Ethernet.

9.2.5.1.3			iSCSI
iSCSI	allows	the	SCSI	protocol	to	run	over	Ethernet	LANs	using	TCP/IP.	iSCSI,
also	known	as	IP-SAN,	is	a	protocol	to	transport	data	blocks	over	IP	networks,
without	the	need	for	a	specialized	network	infrastructure,	such	as	Fibre	Channel,
or	 the	need	 for	more	expensive	equipment	 like	with	an	FCoE	 implementation.
The	main	advantage	of	using	iSCSI	is	that	it	uses	the	familiar	TCP/IP	protocols
and	well	known	SCSI	commands.
iSCSI’s	 performance	 is	 typically	 lower	 than	 that	 of	 Fibre	Channel,	 due	 to	 the
TCP/IP	overhead.	But	with	10	or	40	Gbit/s	Ethernet	and	jumbo	frames,	iSCSI	is
now	rapidly	conquering	a	big	part	of	the	SAN	market.

9.2.6								Network	Attached	Storage	(NAS)
A	 NAS,	 also	 known	 as	 a	 File	 Server,	 is	 a	 network	 device	 that	 provides	 a
NFS	 (UNIX	 and	 Linux)	 and/or	 SMB/CIFS	 (Windows)	 shared	 file	 system	 to

operating	systems	over	a	standard	TCP/IP	network.	A	NAS	is	often	an	appliance
that	implements	the	file	services	and	holds	the	disks	on	which	data	is	stored.	A
NAS	appliance	could	also	use	external	disk	storage	provided	by	a	SAN.
The	difference	between	a	SAN	and	NAS	 is	 the	 level	at	which	 they	operate.	A
SAN	 offers	 disk	 blocks	 (unformatted	 disks	 called	 LUNs)	 that	 can	 be	 used	 by
only	one	server,	while	a	NAS	offers	a	shared	filesystem	to	store	files	that	can	be
used	by	multiple	servers.	There	is	a	difference	with	respect	 to	security	as	well.
NAS	connects	to	for	instance	to	an	LDAP	or	Active	Directory	service	in	order	to
set	file	and/or	folder	permissions,	and	a	SAN	doesn’t.	Where	a	SAN	uses	iSCSI,
Fibre	Channel	or	FCoE	as	the	communication	layer,	a	NAS	uses	SMB/CIFS	or
NFS	over	TCP/IP.
	

Picture	27:	NetApp	NAS
[51]

A	NAS	 typically	provides	 redundancy,	 load	balancing,	 replication	of	data,	 and
other	services,	freeing	operating	systems	from	these	tasks.	And	since	a	NAS	has
knowledge	 about	 the	 files	 it	 stores	 (as	 opposed	 to	 SANs,	 which	 only	 have
knowledge	of	disk	blocks),	it	can	optimize	file	handling	in	an	efficient	way	and
provide	file	level	services.	For	instance,	a	NAS	can	provide	snapshot	and	clone
technology	at	a	file	level,	enabling	features	like	“un-erasing”	deleted	files	by	end

users.
A	 clustered	 NAS	 is	 a	 NAS	 that	 uses	 a	 distributed	 file	 system	 running
simultaneously	on	multiple	servers.	The	key	difference	between	a	clustered	and
a	 traditional	NAS	 is	 the	 ability	 to	 distribute	 data	 and	metadata	 across	 storage
devices.	A	clustered	NAS,	like	a	traditional	one,	still	provides	unified	access	to
the	 files	 from	 any	 of	 the	 cluster	 nodes,	 unrelated	 to	 the	 actual	 location	 of	 the
data.

9.2.7								Object	Storage
Object	storage	 is	a	storage	architecture	 that	manages	data	as	objects,	where	an
object	 is	 defined	 as	 a	 file	 with	 its	 metadata,	 and	 a	 globally	 unique	 identifier
called	the	object	ID.
Examples	 of	 metadata	 are	 filename,	 date	 and	 time	 stamps,	 owner,	 access
permissions,	the	level	of	data	protection,	and	replication	settings	to	for	instance	a
different	geography.
Object	storage	stores	and	retrieves	data	using	a	REST	API	over	HTTP,	served	by
a	webserver,	and	is	designed	to	be	highly	scalable.
Where	a	traditional	file	system	provides	a	structure	that	simplifies	locating	files
(for	example,	a	log	file	is	stored	in	/var/log/proxy/proxy.log),	in	object	storage,	a
file’s	object	ID	must	be	administered	by	the	application	using	it.	Using	the	object
ID,	 the	object	can	be	found	without	knowing	 the	physical	 location	of	 the	data.
For	example,	an	application	has	administered	that	its	log	file	is	stored	in	object
ID	8932189023.
Using	 object	 IDs	 enables	 simplicity	 and	 massive	 scalability	 of	 the	 storage
system,	as	the	object	ID	is	a	link	to	an	object	that	can	be	stored	anywhere.
Data	 in	 object	 storage	 can’t	 be	 modified.	 Instead,	 if	 a	 file	 is	 modified,	 the
original	 file	must	be	deleted,	and	a	new	file	must	be	created,	 leading	 to	a	new
object	 ID.	 This	makes	 object	 storage	 unsuitable	 for	 frequently	 changing	 data.
But	 it	 is	 a	 good	 fit	 for	 data	 that	 doesn't	 change	much,	 like	 backups,	 archives,
video	and	audio	files,	and	virtual	machine	images.
Object	storage	allows	for	high	availability	using	commodity	servers	with	direct
attached	disk	drives.	It	can	be	setup	to	replicate	objects	across	multiple	servers
and	locations	(typically,	at	least	three	copies	of	every	file	are	stored	in	multiple
geographical	zones).	If	one	or	more	servers	or	disks	fail,	data	can	still	be	made

available,	without	impact	to	the	application	or	the	end	user.
While	object	storage	was	not	designed	to	be	used	as	a	file	system,	some	systems
emulate	a	file	system	using	object	storage.	For	instance,	Amazon’s	S3FS	creates
a	 virtual	 filesystem,	 based	 on	 S3	 object	 storage,	 that	 can	 be	 mounted	 to	 an
operating	system	 in	 the	 traditional	way,	however,	with	 significant	performance
degradation.	A	much	 better	 solution	 is	 to	 use	 object	 storage	with	 applications
designed	for	it.

9.2.8								Software	Defined	Storage
Software	 Defined	 Storage	 (SDS)	 abstracts	 data	 and	 storage	 capabilities	 (also
known	as	 the	control	plane)	 from	 the	underlying	physical	 storage	systems	 (the
data	plane).	This	allows	data	to	be	stored	in	a	variety	of	storage	systems	while
being	presented	and	managed	as	one	storage	pool	to	the	servers	consuming	the
storage.	Figure	70	shows	the	SDS	model.
	

Figure	70:	Software	Defined	Storage	model

Heterogeneous	 physical	 storage	 devices	 can	 be	made	 part	 of	 the	 SDS	 system.
For	 instance,	 SDS	 enables	 the	 use	 of	 standard	 commodity	 hardware,	 where
storage	 is	 implemented	 as	 software	 running	 on	 commodity	 x86-based	 servers
with	direct	attached	disks.	But	 the	physical	storage	can	also	be	a	Storage	Area
Network,	a	Network	Attached	Storage	system,	or	an	Object	storage	system.	SDS

virtualizes	 all	 physical	 storage	 into	 one	 large	 shared	 storage	 pool.	 From	 this
storage	pool,	software	provides	data	services	like:

·									Deduplication
·									Compression
·									Caching
·									Snapshotting
·									Cloning
·									Replication
·									Tiering

SDS	 provides	 servers	 with	 virtualized	 data	 storage	 pools	 with	 the	 required
performance,	availability	and	security,	delivered	as	block,	file,	or	object	storage,
based	on	policies.	As	an	example,	a	newly	deployed	database	server	can	invoke
an	SDS	policy	 that	mounts	storage	configured	 to	have	 its	data	striped	across	a
number	of	disks,	creates	a	daily	snapshot,	and	has	data	stored	on	tier	1	disks.
APIs	can	be	used	to	provision	storage	pools	and	set	the	availability,	security	and
performance	 levels	 of	 the	 virtualized	 storage.	 In	 addition,	 using	APIs,	 storage
consumers	can	monitor	and	manage	their	own	storage	consumption.

9.3													Storage	availability

To	 increase	 the	 availability	 of	 storage	 systems,	 apart	 from	 using	 RAID
technologies,	 other	 forms	 of	 redundancy	 and	 data	 replication	 can	 be	 used.	 To
save	data	in	case	of	disaster,	 it	must	be	backed-up.	And	for	archiving	purposes
long	term	storage	of	data	is	needed.

9.3.1								Redundancy	and	data	replication
To	increase	availability	 in	a	SAN,	components	 like	HBAs	and	switches	can	be
installed	 redundantly.	Using	multiple	paths	between	HBAs	and	SAN	switches,
also	 known	 as	multipathing,	 failover	 can	 be	 instantiated	 automatically	when	 a
failure	occurs,	much	like	in	an	Ethernet	network	setup.
To	increase	redundancy	further,	multiple	storage	systems	can	be	used,	sometimes
installed	 in	multiple	 locations.	Using	replication,	changed	disk	blocks	from	the
primary	 storage	 system	are	 continuously	 sent	 to	 the	 secondary	 storage	 system,
where	they	are	stored	as	well.
	

Figure	71:	Storage	replication

Two	 types	 of	 storage	 replication	 are	 used:	 synchronous	 and	 asynchronous
replication.
In	 synchronous	 replication,	 each	 write	 to	 the	 active	 storage	 system	 and	 the
replication	to	the	passive	storage	system	must	be	completed	before	the	write	is
confirmed	 to	 the	 operating	 system.	 It	 ensures	 data	 on	 both	 storage	 systems	 is
synchronized	at	all	times	and	data	is	never	lost.	And	using	the	write	cache	of	the
secondary	 storage	 system,	writes	 can	be	 committed	when	 the	data	 is	 stored	 in
cache,	 instead	 of	 stored	 on	 disk	 (especially	when	 the	write	 cache	 is	 protected
with	a	battery	backup).	This	speeds	up	the	write	process.	But	when	the	physical

cable	length	between	the	two	storage	systems	is	more	than	100	km,	latency	times
get	 too	 long,	slowing	down	applications,	 that	have	 to	wait	 for	 the	write	on	 the
secondary	storage	system	to	finish.	Another	 issue	with	synchronous	replication
is	the	risk	of	a	failing	connection	between	both	storage	systems.	In	this	situation,
when	data	is	written	to	the	primary	storage	system,	the	write	is	never	finished,	as
the	data	cannot	be	replicated.	This	effectively	leads	to	downtime	of	the	primary
storage	system.
In	asynchronous	 replication,	 after	data	has	been	written	 to	 the	primary	 storage
system,	 the	 write	 is	 immediately	 committed	 to	 the	 operating	 system,	 without
having	 to	 wait	 for	 the	 secondary	 storage	 array	 to	 finish	 its	 writes	 as	 well.
Asynchronous	 replication	 does	 not	 have	 the	 latency	 impact	 that	 synchronous
replication	has,	but	has	the	disadvantage	of	potential	data	loss	when	the	primary
storage	 system	 fails	 before	 the	 data	 has	 been	written	 to	 the	 secondary	 storage
system.

9.3.2								Backup	and	recovery
Backups	are	copies	of	data,	used	to	restore	data	to	a	previous	state	in	case	of	data
loss,	data	corruption	or	a	disaster	recovery	situation.
Backups	are	always	a	last	resort,	only	used	if	everything	else	fails,	to	save	your
organization	in	case	of	a	disaster.	A	well-designed	system	should	have	options	to
repair	 incorrect	 data	 from	within	 the	 system	or	 by	using	 systems	management
tools	(like	database	tools).
A	 common	 mistake	 is	 to	 mix	 up	 backup	 with	 archiving.	 Backup	 is	 about
protection	against	data	loss,	whereas	archiving	deals	with	long	term	data	storage,
in	order	 to	comply	with	 law	and	regulations	(see	9.3.3).	Backups	are	not	 to	be
used	 to	view	 the	 status	of	 information	 from	 the	past	–	 it	 should	be	possible	 to
retrieve	these	statuses	from	the	system	itself,	as	no	data	should	ever	be	deleted	in
a	 typical	production	system	(but	 it	could	be	archived	 to	a	secondary	system	or
database).
In	general,	backups	should	not	be	kept	for	a	long	time.	Because	the	data	copies
are	only	relevant	in	the	event	of	a	disaster,	organizations	will	typically	have	little
use	to	restore	a	data	backup	that	is	more	than	a	few	weeks	old.
	

Restoring	 a	 backup	 takes	 you	 back	 in	 time.	 It	 is	 like	 a	 time	 machine,	 but

without	 the	 rest	 of	 the	 world	 –	 like	 your	 business	 partners	 and	 customers	 –
going	back	in	time	as	well.
I	see	no	reason	why	anyone	would	want	 to	go	back	 in	 time	 for	more	 than	30
days,	 as	 the	 information	 would	 be	 outdated,	 and	 of	 very	 little	 use	 for	 the
survival	of	the	organization.
As	an	example,	I	know	a	large	insurance	company	that	keeps	no	backups	older
than	eight	days.

	
So,	 saving	monthly,	or	even	yearly	backups,	 is	 really	of	no	use	at	all.	When	a
disaster	 strikes,	 and	 the	 organization	 is	 restored	 with	 last	 years’	 databases,	 it
might	as	well	not	restore	anything	at	all.
In	general,	there	are	two	reasons	for	making	backups:

·									Because	of	a	technical	failure	or	a	user-error	files	are	accidentally
deleted	or	corrupted	and	must	be	restored.
·									After	a	physical	disaster,	data	must	be	recovered	(typically	on	a
disaster	recovery	site).

Backups	need	to	be	made	at	a	regular	basis:	usually	daily,	but	sometimes	more
often	–	every	hour,	or	even	continuously	in	highly	critical	environments.
Please	note	 that	 storing	data	 on	 synchronized	disks	 on	 a	 disaster	 recovery	 site
will	not	necessarily	provide	enough	protection.	An	example	is	the	case	of	a	virus
outbreak.	In	such	a	situation,	files	on	the	disaster	recovery	disks	are	corrupted	as
well,	 as	 they	 are	 synchronized	 immediately	 as	 they	 are	 changed	 by	 the	 virus.
Therefore,	 it	 is	 good	practice	 to	have	multiple	backup	copies,	 and	at	 least	 one
offline.
	

A	 good	 practice	 is	 to	 keep	 three	 copies	 of	 your	 data	 on	 two	 different	media
types,	with	one	copy	stored	at	a	separate	location.	This	is	known	as	the	3-2-1
rule.

	
In	 case	 of	 a	 disaster,	 physical	media	might	 no	 longer	 be	 available.	 Therefore,
backups	must	be	available	at	a	secondary	site	for	restore.	Having	a	backup	copy
in	 the	 same	 building	 as	 the	 original	 (or	 close	 to	 it)	 is	 usually	 a	 bad	 idea.

Experience	with	real	world	disasters	(like	the	9/11	attacks	and	bombings)	shows
it	is	good	practice	to	have	a	distance	of	at	least	5	km	between	the	main	site	and
the	backup	data.
It	is	important	to	have	backup	copies	of	not	only	the	data,	but	also	copies	of	the
operating	system	installation	disks,	and	printed	procedures	on	how	to	build	up	a
new	 system	 using	 the	 backups.	 Also,	 don’t	 forget	 the	 license	 keys	 of	 the
software	(including	the	restore	software)!
It	 is	 crucial	 to	 test	 the	 restore	 procedure	 at	 least	 once	 a	 year,	 including
building	up	new	hardware,	to	ensure	restores	work	as	planned.	It	would	be	best
to	have	the	restore	procedures	tested	by	a	third	party,	or	at	 least	by	people	that
have	not	performed	a	 restore	before.	Not	only	does	 this	ensure	 that	 the	 restore
procedure	 is	 complete	 and	 correct,	 it	 also	 ensures	 no	 specific	 knowledge	 is
needed	to	restore	the	systems.	In	case	of	a	real	disaster	(like	a	fire	or	a	building
collapse),	where	people	are	hurt	or	even	killed,	we	cannot	assume	that	systems
managers	 are	 able	 to	 restore	 data	 again.	Not	 only	 because	 they	might	 be	 hurt
themselves	(and	in	the	hospital),	but	also	because	of	the	stress	involved	in	seeing
their	colleagues	get	hurt	or	killed.
Restore	tests	where	only	some	files	are	restored	should	be	performed	each	month
to	ensure	backup	media	still	work	as	expected.	Do	 the	 tapes	 really	contain	 the
expected	data?

9.3.2.1						Consistent	backups
To	 create	 a	 consistent	 backup,	 backup	 tools	 and	 backup	 agents	 should	 be
configured	 to	 backup	 open	 files,	 and	 to	 ensure	 databases	 are	 flushed	 to	 disk
before	 making	 backup	 copies.	 For	 instance,	 databases	 back-upped	 in	 an
inconsistent	state	can	lead	to	failure	to	start	the	database	after	a	restore.
All	 database	 transactions	 in	 an	 application	must	be	 finished	completely	before
making	a	backup	to	prevent	a	failing	application	after	a	restore.	An	example	of
something	going	wrong	is	a	purchase	order	that	states	a	product	came	in,	where
a	change	in	the	financial	administration	for	the	invoice	is	missing.
Most	 systems	 today	 hardly	 ever	 work	 in	 isolation.	 Usually	 they	 are	 part	 of	 a
chain	of	internal	and	external	systems.	Purchase	orders	come	in	via	order	intake
in	an	internal	SAP	system,	but	can	also	come	in	through	resellers’	web	services
or	via	an	internet	site.	These	systems	are	connected,	and	it	seems	to	make	sense
to	backup	them	in	an	integral	way.

The	 question	 is	 whether	 it	 is	 useful	 to	 force	 consistencies	 in	 backups	 over
multiple	applications.	In	general,	this	is	a	very	expensive	exercise	(if	possible	at
all)	 with	 little	 benefit.	 To	 create	 an	 integral	 backup,	 all	 systems	must	 be	 in	 a
consistent	state.	Not	only	within	the	application,	but	the	consistency	must	also	be
guaranteed	 between	 applications.	 This	 is	 only	 possible	 when	 all	 connected
systems	are	temporarily	stopped	to	create	a	consistent	backup	copy.	Not	only	is
this	most	 of	 the	 time	 not	 feasible	 (an	 internet	 site	 cannot	 be	 taken	 off-line	 to
create	 a	 backup),	 it	 is	 also	 very	 time	 consuming.	 If,	 for	 instance,	 one	 of	 the
systems	 in	 the	 chain	 cannot	 be	 stopped	 due	 to	 a	 long	 running	 transaction,	 all
other	 systems	 must	 to	 wait	 for	 it	 in	 order	 to	 get	 back-upped.	 And	 when
transactions	 run	between	organizations,	 all	 organizations	must	 stop	working	 to
create	chain-consistent	backups.
It	 is	 important	 to	 have	 backups	 that	 are	 consistent	 within	 one	 application	 to
prevent	the	problems	discussed	earlier,	but	forget	consistent	backups	when	more
applications	are	involved.
Remember:	 a	 backup	 should	 only	 be	 used	 to	 restore	 systems	 that	 cannot	 be
repaired	any	other	way.	Restoring	a	backup	is	always	a	last	resort.	The	decision
to	perform	a	restore	has	great	business	impact.	Restoring	a	system	from	backup
is	 always	 a	 delicate	 process	 that	 must	 be	 taken	 care	 of	 with	 great	 caution,
especially	in	a	chain	of	multiple	applications	or	even	organizations,	even	if	 the
backup	itself	is	consistent.

9.3.2.2						Backup	schemes
Backups	 can	 be	 made	 using	 various	 backup	 schemes.	 A	 backup	 scheme
describes	what	data	is	backed-up,	when,	and	how.	Backup	schemes	can	become
very	complex	in	large	environments	with	many	applications.
In	 general,	 four	 basic	 backup	 schemes	 are	 possible:	 full	 backup,	 incremental
backup,	differential	backup,	and	Continuous	Data	Protection	(CDP).

·									Full	backup	is	a	complete	copy	of	all	data.	In	large	environments,	full
backups	are	only	created	at	relatively	large	intervals	(like	a	week	or	a
month),	since	creating	them	takes	much	time,	disk	or	tape	space,	and
bandwidth.	Restoring	a	full	backup,	however,	takes	the	least	amount	of
time.
·									Incremental	backups	save	only	newly	created	or	changed	data	since
the	last	backup,	regardless	of	whether	it	is	a	previous	incremental	backup

or	a	full	backup.	Restoring	an	incremental	backup	can	take	a	long	time,
especially	when	the	last	full	backup	is	many	incremental	backups	ago.
This	is	because	the	full	backup	and	all	incremental	backups	since	the	full
backup	must	be	restored	(for	instance,	to	perform	a	restore	when	the	last
full	backup	was	made	two	weeks	ago,	one	full	backup	and	thirteen
individual	incremental	daily	backups	must	be	restored).
·									Differential	backups	save	only	newly	created	or	changed	data	since
the	last	full	backup.	A	differential	backup	needs	more	storage	space	than
an	incremental	backup,	since	each	differential	backup	stores	all	changed
data	since	the	last	full	back	up.	Restoring	a	differential	backup	is	quite
efficient,	as	it	implies	restoring	a	full	backup	and	only	the	most	recent
differential	backup.
·									Continuous	Data	Protection	(CDP)	guarantees	that	every	change	in
the	data	is	also	simultaneously	made	in	the	backup	system.	In	CDP,	the
RPO	(Recovery	Point	Objective)	is	set	to	zero,	because	each	change
immediately	triggers	a	backup	process.	In	this	regard,	CDP	is	the
realization	of	the	backup	ideal:	Everything	is	saved	–	immediately	and	in
its	entirety.	It	is	also	an	expensive	technology,	and	therefore	only	used	in
specific	situations.

9.3.2.3						Backup	data	retention	time
Backup	data	 retention	 time	 is	 the	amount	of	 time	 in	which	a	given	 set	of	data
will	 remain	 available	 for	 restore.	 It	 defines	 how	 long	 backups	 are	 kept	 and	 at
which	 interval.	Typically,	not	all	daily	backups	are	kept,	as	 this	would	use	 too
much	storage	space.
In	practice,	a	Grandfather-Father-Son	(GFS)	based	schedule	is	often	used:

·									Each	day	a	backup	is	made
·									After	a	week,	there	are	seven	backups,	of	which	the	oldest	backup	is
renamed	to	a	weekly	backup.
·									After	the	second	week,	the	same	is	done	and	the	daily	backups	of	the
week	before	are	deleted.
·									Now	there	are	eight	backups:	seven	daily,	two	weekly.
·									Every	four	weeks,	the	weekly	backup	is	renamed	as	a	monthly	backup
and	the	weekly	backups	are	reused.

The	 daily	 backups	 are	 the	 son,	 the	 weekly	 backups	 are	 the	 father,	 and	 the
monthly	backups	are	the	grandfather.

9.3.3								Archiving
Archiving	is	mostly	done	for	compliancy	and	regulation	reasons.
	

Noncompliance	to	law	and	regulation	can	lead	to	serious	business	disruption,
fines,	and	even	jail	time.
For	 example,	 in	 the	 USA,	 failure	 to	 keep	 personal	 information	 secure	 may
result	in	jail	time,	and	fines	up	to	$500,000.	SoX	legislation	can	bring	penalties
up	to	20	years	in	prison,	and	fines	up	to	$5,000,000.
In	 Europe,	 the	 EU	 Data	 Retention	 Directive	 forces	 all	 industries	 with
communication	services	to	keep	data	retention	periods.

	
Regulations	can	have	a	great	effect	on	 the	archiving	of	data.	For	example,	US
regulations	require	all	medical	records	to	be	retained	for	30	years	after	a	person's
death.	This	means	that	X-rays	taken	when	a	child	was	born	must	be	kept	for	as
much	as	130	years!
Some	other	examples	of	data	archives	are:

·									Pension	and	insurance	companies	must	keep	records	of	their	history	of
people	and	claims	for	decades.
·									Hospitals	store	medical	information	during	the	lifetime	of	a	patient.
·									The	Justice	department	keeps	records	of	crimes	(especially	if	they	are
not	solved)	for	a	long	time	(“cold	cases”).
·									Newspaper	archives,	archives	of	television	networks,	and	government
archives	are	kept	for	decades.

The	 ability	 to	make	 archived	data	 read-only	 to	protect	 it	 from	being	 altered	 is
very	 important	 for	 regulatory	compliance	and	non-repudiation.	Some	archiving
systems	store	data	in	an	encrypted	form	and	use	digital	signatures	to	ensure	data
is	not	tampered	with.
Some	systems	allow	data	to	be	written	to	it	for	archiving,	but	disallow	changing
or	deleting	data.	A	well-known	example	is	the	use	of	write-only	optical	(Blu-ray)

disks.	Data	can	be	written	to	it,	but	not	changed	or	deleted	(except	by	physical
destruction	of	the	medium).	For	large	companies	the	WORM	tape	(Written	Once
Read	 Many)	 is	 a	 less	 expensive	 alternative	 compared	 to	 optical	 storage,
especially	in	cases	where	the	data	needs	to	be	accessed	infrequently.
Data	must	be	kept	in	such	a	way	that	it	is	guaranteed	the	data	can	be	read	after	a
long	 time.	This	means	 the	digital	 format	 (like	 a	Microsoft	Word	 file	 or	 a	 JPG
file),	 the	 physical	 format	 (like	 a	 DVD	 or	 a	 magnetic	 tape),	 and	 the	 storage
environment	 (temperature,	 humidity)	 must	 be	 such,	 that	 data	 can	 still	 be
retrieved	and	read	after	several	decades.
A	few	decades	ago,	on	mainframes	data	was	stored	on	2	MB	reel	tapes.	Data	was
kept	 in	 propriety	 formats,	 like	mainframe	 database	 tables	 specific	 to	 a	 certain
application.	 After	 mainframes,	 PCs	 became	 the	 norm,	 using	 applications	 like
WordStar,	 Lotus	 1-2-3,	WordPerfect,	MS-Word,	 Lotus	Notes,	 Adobe	Acrobat,
etc.	Today	we	also	use	a	plethora	of	audio	and	video	formats:	BMP,	GIF,	TIFF,
MP3,	WAV,	MPEG,	AVI,	etc.	The	list	is	very	long,	and	all	of	this	was	developed
in	the	last	30	years.	It	 is	hard	to	guarantee	that	all	of	 this	data	can	be	read	and
interpreted	in	50	years’	time.
It	 is	 therefore	 good	 practice	 to	 use	 open	 standards	 for	 storing	 archived	 data.
Open	 standards	 are	 well	 documented,	 implying	 reading	 data	 will	 always	 be
feasible,	using	emulation	software	if	needed.	Storing	all	documents	in	structured
human-readable	XML	text	files	is	one	way	to	ensure	data	can	be	read	for	many
decades.
Many	 archiving	 technologies	 are	 storing	 data	 in	 optical	 formats.	While	 this	 is
much	 better	 than	magnetic	 storage	 on	 disk	 or	 tape,	 is	 it	 not	 known	 if	 optical
media	like	CDs	or	DVDs	are	still	readable	in	many	years’	time	(even	if	properly

stored	CDs	can	last	at	least	20	years
[52]

).	Therefore,	it	is	good	practice	to	transfer
data	that	is	to	be	kept	for	a	long	time	to	the	latest	storage	media	standard	every
10	years	(from	Floppy	to	CDs	to	Blu-ray,	etc.),	or	at	least	to	move	the	data	to	a
new	copy	(burn	a	five-year-old	CD	on	a	new	CD).

9.4													Storage	performance

Storage	 performance	 is	 often	 overlooked.	 But	 the	 effect	 of	 storage	 on	 the
performance	of	a	complete	IT	system	or	infrastructure	can	be	very	significant!

9.4.1								Disk	performance
Disk	performance	of	high-end	and	 low-end	disks	are	quite	different.	The	main
differences	are	disk	rotation	speed,	seek	times,	and	their	interface	protocol.
	

Figure	72:	Disk	mechanics

When	data	is	to	be	read,	and	R/W	the	head	needs	to	move	to	the	correct	location
(which	takes	seek	time),	and	the	R/W	head	needs	to	wait	for	the	desired	data	to
pass	 beneath	 it	 (rotational	 delay).	 Since	 a	 high-end	 disk	 has	 a	 faster	 rotation
speed	 and	 somewhat	 faster	 head	 movement	 mechanics,	 it	 can	 produce	 more
operations	per	second	than	a	low-end	disk.

	
Rotational	delay	is	proportional	to	the	rotational	speed.	Some	common	examples
of	rotation	delay	are:
	
Disk	RPM Average	rotational	delay	(ms)

5,400 5.6

7,200 4.2

10,000 3

15,000 2

Table	20:	Disk	rotational	delay
[53]

Disks	cannot	spin	much	faster	than	15,000	RPM,	as	at	this	speed	the	velocity	at
the	 edge	 of	 a	 3.5”	 disk	 is	 250	 km/h	 already!	 Increasing	 this	 velocity	 would
physically	destroy	the	disk.
Seek	time	is	the	time	it	takes	for	the	head	to	get	to	the	right	track.	Average	seek
times	are	about	3	ms	for	high-end	disks	and	9	ms	for	low-end	disks.
In	general,	disk	performance	is	measured	in	IOPS	and	interface	throughput.

9.4.1.1						IOPS
Input/output	Operations	Per	Second	(IOPS)	is	a	measure	of	how	many	read	and
write	operations	a	disk	can	complete	in	one	second.
To	calculate	the	IOPS	of	a	disk,	the	following	formula	can	be	used:

For	 example,	 a	 particular	 disk	 has	 the	 following	 average
performance	characteristics:

·									Rotational	delay:	3	ms
·									Read	seek	time:	3.5	ms
·									Write	seek	time:	3.8	ms

The	maximum	number	of	read	IOPS	are	 .
The	maximum	write	 IOPS	will	be	a	bit	 less	 (147	 IOPS)	because	of	 the	higher
write	 seek	 time.	 Writing	 is	 typically	 a	 bit	 slower	 than	 reading.	 As	 a	 rule	 of
thumb,	typical	rotational	speeds	and	their	equivalent	read	IOPS	are	stated	in	the

table	below.
	
Disk	RPM IOPS

7,200 50

10,000 120

15,000 160

SSD 2,500	to	10,000

Table	21:	Disk	IOPS

Observe	 the	 enormous	 speed	 increase	 of	 SSD	disks	 as	 opposed	 to	mechanical
disks.	This	is	the	effect	of	not	having	mechanical	moving	parts.
Of	 course,	 real	measurements	will	 vary,	depending	on	 the	physical	 location	of
the	needed	data	block,	the	type	of	disk	controller,	the	onboard	cache	algorithm,
cache	size,	and	the	operating	system	driver	software.

9.4.1.2						RAID	penalty
In	RAID	sets	things	are	a	bit	different,	since	multiple	disks	are	used	to	form	one
virtual	 disk	 (LUN).	Because	 of	 the	multiple	 disks	 in	 the	LUN,	 the	 number	 of
IOPS	 of	 the	 LUN	 can	 be	 higher	 than	 that	 of	 the	 individual	 disks.	How	much
higher	depends	on	the	RAID	configuration.
Writing	 data	 on	 multiple	 disks,	 however,	 also	 introduces	 some	 delay.	 This	 is
known	as	the	RAID	penalty.	Penalties	for	various	RAID	configurations	are.

·									RAID	0:	no	penalty
·									RAID	1:	penalty	of	2
·									RAID	10:	penalty	of	2
·									RAID	5:	penalty	of	4

RAID	 0	 (striping)	multiplies	 the	 total	 number	 of	 read	 and	write	 IOPS	 by	 the
number	of	disks	 that	are	striped.	So,	 if	 two	disks	are	used,	 the	number	of	 read
and	write	 IOPS	delivered	 to	 the	LUN	are	 doubled.	There	 is	 no	RAID	penalty
with	RAID	0.
With	RAID	1	(mirroring)	and	RAID	10	(striping	with	mirroring),	the	data	is	read
from	one	of	the	two	disks	in	a	set	and	written	to	both.	Hence	the	RAID	penalty
on	write	operations	on	RAID	1	would	be	2.
So,	for	15,000	RPM	disks,	the	IOPS	for	a	RAID	1	LUN	are	still	around	150-160

for	 reads,	 but	 only	 70-80	 for	writes,	 because	 the	write	 to	 the	LUN	 is	 finished
only	when	data	is	written	to	both	disks.
In	a	RAID	5	scenario,	when	a	write	has	to	be	performed	to	disks,	RAID	penalty
for	write	operation	would	be	4	(read	existing	data,	 read	parity,	write	new	data,
write	 new	 parity).	As	 a	 rule	 of	 thumb,	 in	RAID	 5	 systems	with	 15,000	RPM
disks,	the	number	of	read	IOPS	are	somewhere	in	the	150-160	range,	while	write
IOPS	are	closer	to	the	35-45	range.
	

Figure	73:	IOPS	in	RAID

To	keep	sufficient	IOPS	in	a	RAID	system,	disks	can	be	added	to	the	RAID	set.
For	example,	when	a	RAID	5	set	consists	of	four	15,000	RPM	disks	(with	160

write	IOPS	each),	the	total	write	IOPS	for	the	LUN	is	 	write	IOPS.
But	when	using	six	disks	in	the	RAID	5	array,	the	total	write	IOPS	for	the	LUN

is	 	IOPS.

9.4.2								Interface	throughput
Storage	 performance	 is	 not	 only	 measured	 by	 how	 fast	 physical	 disks	 can
provide	data,	but	also	by	how	fast	the	interface	can	move	data	from	the	disks	to
the	 systems	 consuming	 the	 data	 and	 vice	 versa.	 Below	 is	 an	 overview	 of	 the
various	interface	speeds.
	
Interface Speed

IDE	(Parallel	ATA) 100	MB/s
133	MB/s

SATA 1.5	Gbit/s	(192	MB/s)
3	Gbit/s	(384	MB/s)
6	Gbit/s	(768	MB/s)

SCSI 160	MB/s	(Ultra-160)

320	MB/s	(Ultra-320)
SAS 1.5	Gbit/s	(192	MB/s)

3	Gbit/s	(384MB/s)
6	Gbit/s	(768	MB/s)

FC 1	Gbit/s	(128	MB/s)
2	Gbit/s	(256	MB/s)
4	Gbit/s	(512	MB/s)
8	Gbit/s	(1024	MB/s)
16	Gbit/s	(2048	MB/s)

Table	22:	Disk	interface	speeds

As	 long	as	 the	 interface	 speed	 is	higher	 than	 the	 speed	at	which	 the	disks	 can
read	or	write	data,	and	as	 long	as	 the	 interface	bus	 is	not	shared,	everything	 is
fine.	 For	 instance,	 in	 case	 of	 Fibre	 Channel,	 using	 a	 switched	 topology	 (each
disk	 has	 its	 own	 connection	 to	 the	 controller)	 instead	 of	 using	 an	 Arbitrated
Loop	 topology	 (multiple	disks	 sharing	 the	 loop's	 interface,	and	each	disk	must
wait	 for	 a	 transmission	 time	slot	on	 the	 loop)	can	 lead	 to	quite	a	difference	 in
performance.

9.4.3								Caching
To	increase	performance,	most	storage	vendors	 implement	a	caching	system	in
their	 disk	 controllers.	 Cache	 can	 improve	 performance	 by	 several	 orders	 of
magnitude.	It	can	operate	on	both	reads	and	writes	to	disk.
Read-cache	acts	as	a	buffer	for	reads.	When	the	same	data	is	read	multiple	times,
it	 is	 served	 from	 cache.	When	 data	 is	 read,	 the	 cache	 system	 also	 attempts	 to
read-ahead,	anticipating	on	future	read	requests	from	the	operating	system,	and
buffering	what	it	expects	to	be	the	next	blocks	of	required	data.	Optimizing	read-
cache	strategies	in	the	disk	controller	is	quite	hard,	since	the	disk	controller	has
limited	ways	of	determining	what	data	is	needed	next.
With	writes,	 the	 disk	 controller’s	 cache	 is	 typically	 used	 in	 one	 of	 two	ways:
write-through	or	write-back.	In	write-through	mode,	data	is	written	to	cache	and
then	 to	 disk,	 and	 only	 acknowledged	 as	 written	 when	 the	 data	 is	 physically
written	 on	 the	 disk.	 In	 contrast,	write-back	mode	 allows	 the	 disk	 controller	 to
acknowledge	 the	data	as	written	as	soon	as	 it	 is	held	 in	cache.	This	allows	 the
cache	to	buffer	writes	quickly	and	then	write	the	data	to	the	slower	disk	when	the
disk	is	ready	to	accept	new	I/O	operations.
Write	 cache	 usually	 contains	 batteries	 to	 keep	 data	 not	 yet	written	 to	 physical
disks	 in	 RAM	 cache,	 in	 case	 of	 a	 power	 failure.	 Some	 controllers	 use	 flash
memory	as	cache	 to	eliminate	 the	use	of	batteries,	but	 flash	memory	 is	 slower

than	RAM.	Most	disk	systems	have	a	local	UPS	to	provide	the	disk	system	with
enough	power	to	flush	the	cache	to	disks	immediately	after	a	power	failure.
The	type	and	amount	of	cache	needed	depends	on	what	applications	need.	A	web
server,	 for	 instance,	 will	 mostly	 benefit	 from	 read-cache,	 whereas	 most
databases	are	better	off	with	write	cache.

9.4.4								Storage	tiering
Tiered	storage	creates	a	hierarchy	of	storage	media,	based	on	cost,	performance
requirements,	and	availability	requirements.
In	 1975,	 mainframes	 already	 had	 Hierarchical	 Storage	 Management	 (HSM),
where	 data	 was	 stored	 on	 specific	 storage	 devices,	 based	 on	 performance
requirements.	When	 data	was	 not	 used	 for	 some	 time,	 it	was	 compressed	 and
stored	 on	 slower	 disks.	When	 not	 used	 for	 even	 longer,	 it	 was	 automatically
moved	to	tape.
Information	Lifecycle	Management	(ILM)	can	be	seen	as	HSM	on	midrange	and
x86	platforms.	It	manages	data	from	its	creation	to	its	archiving	or	deletion	and
stores	the	data	on	various	types	of	media	depending	on	its	value	and	organization
policies.	Tiered	 storage	 is	 basically	 the	 same	 as	 ILM	 (and	HSM),	 but	 it	 looks
more	at	the	combination	of	the	available	hardware	and	the	data	usage.
Typically,	 four	 to	 five	 tiers	 are	 defined	 in	 a	 tiered	 storage	 environment,	 for
example:

·									Tier	1:	Production	data	(SSD	and	SAS	disks)
·									Tier	2:	Seldom	used	data,	like	email	archives	(NL-SAS	disks)
·									Tier	3:	Backups	(Virtual	Tape	Libraries	on	NL-SAS	disks)
·									Tier	4:	Archived	data	(Tape	or	NL-SAS	disks)

The	more	tiers	are	used,	the	more	effort	it	takes	to	manage	the	tiers,	which	can
eliminate	the	cost	benefits	of	using	a	tiered	storage	in	the	first	place.
A	well-known	limitation	of	tiered	storage	is	the	difficulty	of	categorizing	data	to
determine	which	tier	it	belongs	in.	There	is	no	default	way	to	do	this;	it	depends
on	the	organization’s	data	requirements.
Automated	tiering	usually	checks	for	file	access	times,	file	creation	date,	and	file
ownership,	 and	 automatically	moves	data	 to	 the	 storage	medium	 that	 fits	 best.
Storage	 vendors	 each	 provide	 their	 own	 algorithms	 to	 optimize	 the	 tiering

process.
	

In	practice,	automated	tiering	is	often	not	working	as	expected.	For	instance,
when	a	performance	test	 is	executed	for	a	few	days,	 test	data	is	moved	to	the
fasted	tier	at	the	end	of	the	test,	leading	to	uncertain	test	results,	that	cannot	be
reproduced.
The	test	data	will	then	be	available	in	the	fastest	(and	most	expensive)	tier	for	a
number	of	days,	while	it	will	not	be	used,	since	the	performance	test	is	finished.
Automated	tiering	always	represents	the	optimal	tiering	situation	from	the	past;
not	necessarily	the	optimal	situation	at	present.

	

9.4.5								Load	optimization
Storage	 performance	 is	 highly	 dependent	 on	 the	 type	 of	 load.	 For	 instance,
databases	perform	two	types	of	operations:	they	randomly	write	or	read	data	to
and	 from	 a	 transactional	 database	 file,	 and	 they	 sequentially	 write	 data	 to	 an
archive	log	file.	Because	of	the	different	characteristics	of	these	operations,	it	is
good	 practice	 to	 split	 these	 operations	 across	 separate	 and	 different	 types	 of
RAID	sets.
Most	vendors	 recommend	a	 specific	 storage	 configuration	 for	 their	 systems	or
applications.	For	example,	Oracle	recommends	a	combination	of	RAID	1	and	5
for	its	database	in	order	to	optimize	performance.

9.5													Storage	security

9.5.1								Protecting	data	at	rest
Data	 can	 either	 be	 in	 transit	 (transported	 over	 a	 network),	 in	 use	 (by	 an
application	or	a	cache),	or	at	rest	(on	a	disk	or	a	tape).	Data	at	rest	can	be	secured
using	 encryption	 techniques,	which	 prevent	 reading	 or	writing	 data	 to	 disk	 or
tape	without	the	correct	encryption/decryption	key.

9.5.1.1						Disk	encryption
Encrypting	 disks	 located	 in	 the	 datacenter	 has	 limited	 advantages.	 Since
databases	and	applications	need	to	work	with	unencrypted	data	to	perform	useful
work,	disk	encryption	is	only	useful	when	the	disks	are	physically	lost	or	stolen;
a	situation	that	occurs	typically	with	laptops,	desktops,	or	removable	media,	but
not	with	disks	in	the	datacenter.
But	even	when	physical	security	in	the	datacenter	is	in	place,	a	disk	drive	might
get	 in	 the	 wrong	 hands	 –	 for	 instance	 because	 it	 was	 removed	 after	 it	 was
marked	"faulty"	and	was	never	destroyed.	And	in	case	of	disk	failure,	having	the
data	encrypted	solves	the	issue	of	having	potentially	sensitive	data	on	a	disk	that
can't	be	accessed	anymore,	as	it	is	defective.
Maintenance	contracts	often	require	 that	a	 failed	disk	must	be	sent	back	 to	 the
vendor	 after	 replacing	 it	 with	 a	 new	 one.	 Without	 disk	 encryption,	 returning
disks	may	not	be	possible	since	a	failed	disk	cannot	be	erased	anymore.
Full	disk	encryption	also	makes	it	harder	for	an	attacker	to	retrieve	data	from	the
"empty"	 space	 on	 the	 disks,	 which	 often	 contains	 traces	 of	 previously	 stored
data.
Many	disk	manufacturers	offer	Self-Encrypting	Drives	(SEDs)	for	use	in	laptops
and	desktops.	In	SEDs	encryption	is	built	into	the	disk	drive’s	hardware.	When
data	is	written	to	the	disk,	it	is	automatically	encrypted	before	it	is	stored	on	the
physical	disk.	Encryption	keys	are	stored	on	the	disk.	When	an	SED	is	powered
up,	authentication	is	required	to	access	data	–	the	user	must	type	in	a	password	to
start	the	boot	sequence	of	the	computer.
Some	disks	provide	a	feature	called	Cryptographic	Disk	Erasure	(CDE),	which
deletes	 the	 encryption	key	on	 the	disk.	This	 has	 the	 same	 effect	 as	 erasing	 all

disk	contents,	as	without	the	key,	unencrypted	data	can	no	longer	be	read	from
the	disk.

9.5.1.2						Tape	encryption
Because	tapes	are	moved	around	more	easily	than	disks	(and	they	should),	self-
encrypting	 tape	 drives	 can	 be	 used	 to	 encrypt	 data	 on	 the	 tapes.	 For	 instance,
today’s	LTO	tape	drives	come	with	AES-256	encryption	in	their	hardware.
To	access	a	tape,	the	original	keys	must	be	used	to	decrypt	the	data,	as	without
keys,	 encrypted	 data	 becomes	 inaccessible	 and	 is	 effectively	 destroyed.	 It	 is
therefore	important	 to	carefully	manage	keys	when	tapes	are	used	for	backups.
When	the	tape	drive	or	tape	robot	is	destroyed,	the	key	might	also	get	lost.	An
offsite	copy	of	the	decryption	key	is	therefore	very	important.

9.5.2								SAN	zoning
SAN	zoning	is	a	method	of	arranging	Fibre	Channel	devices	into	logical	groups
on	 a	SAN	 fabric	 for	 security	 purposes.	Zones	 are	 comparable	with	VLANs	 in
Ethernet	networks.
With	 zoning,	 Fibre	Channel	 devices	 can	 only	 communicate	with	 each	 other	 if
they	are	members	of	the	same	zone.	Zoning	can	make	it	difficult	for	hackers	and
viruses	to	get	to	all	disks	in	a	SAN.
Servers	can	be	part	of	multiple	zones.	The	SAN	switch	checks	all	packets	on	the
fabric	and	forwards	them	only	to	the	ports	that	are	allowed	to	receive	them.
Zoning	can	ensure	operating	systems	only	see	"their"	LUNs,	instead	of	all	LUNs
in	 the	 SAN.	 This	 prevents	 operating	 systems	 from	 altering	 data	 on	 disks	 that
don’t	belong	to	them.
	

Windows	is	well	known	for	this	–	when	Windows	sees	a	disk,	 it	automatically
claims	 the	 disk,	 and	 puts	 a	 Windows	 volume	 label	 on	 it.	 If	 the	 disk	 was
assigned	to	another	server,	the	disk's	content	is	probably	ruined.
Zoning	 can	 prevent	 this	 unwanted	 behavior	 by	 making	 non-Windows	 disks
invisible	to	the	operating	system.

	

9.5.3								SAN	LUN	masking
In	addition	to	zoning,	LUN	masking	makes	a	LUN	available	to	some	hosts	and
unavailable	to	other	hosts.	LUN	masking	is	implemented	primarily	at	the	HBA
level,	not	in	the	SAN	switch.
It	 is	 good	 practice	 to	 use	 a	 combination	 of	 SAN	 zoning	 and	 LUN	 masking.
Using	both	zoning	and	LUN	masking,	 two	 layers	of	security	are	 implemented.
This	 increases	 security,	 but	 unfortunately	 also	 increases	 systems	 management
effort.
	

10					

COMPUTE

10.1									Introduction

Compute	 is	 an	 umbrella	 term	 for	 computers	 located	 in	 the	 datacenter	 that	 are
either	physical	machines	or	virtual	machines.	Physical	computers	contain	power
supplies,	Central	Processing	Units	(CPUs),	a	Basic	Input/Output	System	(BIOS),
memory,	expansion	ports,	network	connectivity,	and	–	 if	needed	–	a	keyboard,
mouse,	and	monitor.
	

Figure	74:	Compute	in	the	infrastructure	model

In	 general,	 compute	 systems	 can	 be	 divided	 into	 three	 groups:	 mainframes,
midrange	 systems,	 and	x86	 servers,	 each	with	 different	 use	 cases,	 history,	 and
future.
Originally	 the	 word	 computer	 was	 used	 for	 a	 person	 who	 did	 manual
calculations	(or	computations).	Starting	from	the	early	1900s	the	word	computer
started	 to	 be	 used	 for	 calculating	 machines	 as	 well.	 The	 first	 computing
machines	were	mechanical	calculators.	Computers	as	we	know	them	now	have
two	 specific	 properties:	 they	 calculate,	 and	 they	 are	 programmable.
Programmable	 computers	 only	 became	 feasible	 after	 the	 invention	 of	 punched
cards,	which	allowed	computers	to	process	batches	of	data.

The	British	Colossus	computer
[54]

,	created	during	World	War	II,	was	the	world's
first	programmable	computer.	Its	status	was	never	recognized	publicly,	however,
because	information	about	it	was	classified	under	British	secrecy	laws.

The	 first	 publicly	 recognized	 general	 purpose	 computer	 was	 the
ENIAC	 (Electronic	 Numerical	 Integrator	 And	 Computer).	 The	 ENIAC	 was
designed	 in	1943	and	was	 financed	by	 the	United	States	Army	 in	 the	midst	of
World	War	II.	The	machine	was	finished	and	in	full	operation	in	1946	(after	the
war)	and	was	in	continuous	operation	until	1955.	While	the	original	purpose	of
ENIAC	 was	 to	 calculate	 artillery	 firing	 tables	 for	 the	 United	 States	 Army's
Ballistic	Research	Laboratory,	it	was	actually	used	first	 to	perform	calculations
for	the	design	of	the	hydrogen	bomb.
	

Picture	28:	ENIAC
[55]

The	ENIAC	could	perform	5,000	operations	per	second,	which	was	spectacular
at	 the	 time.	 However,	 it	 used	 more	 than	 17,000	 vacuum	 tubes,	 each	 with	 a
limited	life	span,	which	made	the	computer	highly	unreliable.	The	ENIAC	got	its
input	 using	 an	 IBM	 punched	 card	 reader,	 and	 punched	 cards	 were	 used	 for
output	as	well.
As	 a	 result	 of	 the	 invention	 of	 the	 transistor	 in	 1956,	 in	 the	 1960s	 computers
started	 to	 be	 built	 using	 transistors	 instead	 of	 vacuum	 tubes.	 Transistor-based
machines	were	smaller,	faster,	cheaper	to	produce,	required	less	power,	and	were
much	more	reliable.
The	transistor	based	computers	were	followed	in	the	1970s	by	computers	based
on	 integrated	 circuit	 (IC)	 technology.	 ICs	 are	 small	 chips	 that	 contain	 a	 set	 of
transistors	 providing	 standardized	 building	 blocks	 like	 AND	 gates,	 OR	 gates,
counters,	 adders,	 and	 flip-flops.	 By	 combining	 building	 blocks,	 CPUs	 and
memory	circuits	could	be	created.

The	 subsequent	 creation	 of	 microprocessors	 decreased	 size	 and	 cost	 of
computers	 even	 further,	 and	 increased	 their	 speed	 and	 reliability.	 In	 the	 1980s
microprocessors	were	cheap	enough	to	be	used	in	personal	computers.
Today’s	 compute	 systems	 include	 mainframes,	 midrange	 systems,	 and	 x86
servers.	 They	 comprise	 processors,	 memory,	 and	 interfaces,	 and	 they	 can	 be
implemented	as	physical	or	virtual	machines.

10.2									Compute	building	blocks

10.2.1				Computer	housing
Originally,	 computers	 were	 stand-alone	 complete	 systems,	 called	 pedestal	 or
tower	 computers,	 which	 were	 placed	 on	 the	 datacenter	 floor.	 Except	 for
mainframes,	most	x86	servers	and	midrange	systems	are	now	rack	mounted	or
placed	in	enclosures	as	blade	servers.
Rack	mounted	x86	servers	are	complete	machines,	 typically	1	 to	4	Rack	Units
high	 (for	 more	 information	 on	 Rack	 Units,	 see	 section	 7.2.7).	 Since	 they	 are
complete	machines,	they	need	their	own	power	cables,	network	cables	and	SAN
cables.
	

Picture	29:	A	stack	of	rack	mounted	servers
[56]

Blade	servers,	on	the	other	hand,	are	servers	without	their	own	power	supply	or
expansion	 slots.	 They	 are	 placed	 in	 blade	 enclosures,	 enabling	 a	 high	 server
density	 in	 a	 small	 form	 factor.	 Blade	 servers	 are	 connected	 to	 shared	 power
supplies,	by	a	wiring	system	called	a	backplane.
In	general,	systems	based	on	blade	servers	are	less	expensive	than	rack	mounted
servers	or	pedestal	servers	because	they	use	the	enclosure’s	shared	components
like	power	supplies	and	fans.
	

Picture	30:	Blade	enclosure	with	one	blade	partially	removed
[57]

A	blade	enclosure	typically	hosts	from	8	to	16	blade	servers	and	provides:
·									Shared	redundant	power	supplies	for	all	blades.
·									A	shared	backplane	to	connect	all	blades.
·									Redundant	network	switches	to	connect	the	blades’	Ethernet
interfaces	providing	redundant	Ethernet	connections	to	other	systems.
·									Redundant	SAN	switches	to	connect	the	HBA	interfaces	on	the	blade
servers	providing	dual	redundant	Fibre	channel	connections	to	other
systems.
·									A	management	module	to	manage	the	enclosure	and	the	blades	in	it.

The	 amount	 of	 wiring	 in	 a	 blade	 server	 setup	 is	 substantially	 reduced	 when
compared	to	traditional	server	racks,	leading	to	less	possible	points	of	failure	and
lower	initial	deployment	costs.
A	set	of	blade	 servers	 in	an	enclosure	 typically	uses	 less	electrical	power	 than
individual	 rack	 mounted	 servers	 due	 to	 the	 lower	 overhead	 of	 the	 shared
components	in	the	enclosure.	From	a	deployment	perspective,	blade	servers	are
also	 less	 expensive	 to	 install,	 primarily	 because	 the	 enclosure	 is	 a	 wire-once
component	and	additional	blades	can	be	added	with	a	minimum	of	time	and	cost.
	

One	often	mentioned	benefit	of	using	blade	servers	is	that	after	some	years	of
operation,	the	blades	can	be	replaced	by	newer	and	faster	blades.	In	practice,
this	is	not	always	the	case.
Typically,	a	blade	enclosure	is	only	guaranteed	to	run	one	or	two	generations

of	server	blades.	Newer	server	blades	often	don’t	fit,	or	have	additional	power,
cooling	 or	 bandwidth	 requirements	 that	 do	 not	 allow	 them	 to	 be	 used	 in	 an
existing	enclosure.
For	example,	a	blade	enclosure’s	power	supply	and	backplane	are	designed	to
provide	 a	maximum	 number	 of	 watts	 to	 a	 blade.	 If	 newer	 blades	 need	more
power,	 then	 they	 cannot	 be	 used	 in	 that	 blade	 enclosure,	 unless	 the	 power
supplies	are	replaced	as	well	(if	possible).
Newer	blades	typically	also	allow	for	higher	network	and	SAN	throughput.	The
blade	enclosure	might	not	allow	this,	or	lowers	the	network	bandwidth	to	allow
running	newer	and	older	blade	servers	together	in	one	blade	enclosure.

	
Enclosures	 are	 often	 not	 only	 used	 for	 blade	 servers,	 but	 also	 for	 storage
components	like	disks,	controllers,	and	SAN	switches.

10.2.2				Processors
In	a	computer,	the	Central	Processing	Unit	(CPU)	–	or	processor	–	executes	a	set
of	instructions.	A	CPU	is	the	electronic	circuitry	that	carries	out	the	instructions
of	a	computer	program	by	performing	the	basic	arithmetic,	 logical,	control	and

input/output	(I/O)	operations	specified	by	the	instructions
[58]

.	Today’s	processors
contain	billions	of	transistors	and	are	extremely	powerful.
	

Picture	31:	Intel	Xeon	Processor
[59]

A	typical	CPU	instruction	set	consists	of	a	fixed	number	of	instructions	such	as

ADD,	SHIFT	BITS,	MOVE	DATA,	and	JUMP	TO	CODE	LOCATION,	called
the	instruction	set.
Each	 instruction	 is	 represented	as	a	binary	code	 that	 the	 instruction	decoder	of
the	CPU	 is	 designed	 to	 recognize	 and	 execute.	A	 program	 created	 using	CPU
instructions	is	referred	to	as	machine	code.	Each	instruction	is	associated	with	an
English	like	mnemonic	to	make	it	easier	for	people	to	remember	them.	This	set
of	mnemonics	is	called	the	assembly	language,	which	is	specific	for	a	particular
CPU	architecture.
There	 is	 a	 one-to-one	 correspondence	 of	 assembly	 language	 instructions	 to
machine	 code	 instructions.	 For	 example,	 the	 binary	 code	 for	 the	ADD	WITH
CARRY	 machine	 code	 instruction	 may	 be	 10011101	 and	 the	 corresponding
mnemonic	could	be	ADC.
A	programmer	writing	machine	code	would	write	the	code	using	mnemonics	for
each	 instruction.	Then,	 the	mnemonics	are	passed	 through	a	program	called	an
assembler	 that	 performs	 the	 one-to-one	 translation	 of	 the	 mnemonics	 to	 the
machine	 instruction	 codes.	 The	 machine	 instruction	 codes	 generated	 by	 the
assembler	can	run	directly	on	the	CPU.
The	assembler	programming	language	is	the	lowest	level	programming	language
for	 computers	 and	 very	 hard	 for	 humans	 to	 create,	 understand,	 and	 maintain.
Higher	 level	 programming	 languages,	 such	 as	 C#,	 Java,	 or	 Python	 are	 much
more	 human	 friendly.	 Programs	 written	 in	 these	 languages	 are	 translated	 to
assembly	 code	 before	 they	 can	 run	 on	 a	 specific	 CPU.	 This	 process	 is	 called
compiling	and	is	done	by	a	high-level	language	compiler.	It	allows	higher	level
languages	to	be	CPU	architecture	independent.
A	CPU	needs	a	high	frequency	clock	to	operate,	generating	so-called	clock	ticks
or	clock	cycles.	Each	machine	code	instruction	takes	one	or	more	clock	ticks	to
execute.	 The	 speed	 at	which	 the	CPU	 operates	 is	 defined	 in	GHz	 (billions	 of
clock	 ticks	 per	 second).	Because	 of	 these	 high	 clock	 speeds	CPUs	 are	 able	 to
execute	instructions	very	fast.	An	ADD	(mnemonic	for	addition)	instruction,	for
example,	 typically	 costs	 1	 tick	 to	 compute.	 This	means	 a	 single	 core	 of	 a	 2.4
GHz	CPU	can	perform	2.4	billion	additions	in	1	second!
Each	CPU	 is	 designed	 to	 handle	 data	 in	 chunks,	 called	words,	with	 a	 specific
size.	 The	 word	 size	 is	 reflected	 in	 many	 aspects	 of	 a	 CPU's	 structure	 and
operation;	the	majority	of	the	internal	memory	registers	in	the	processor	are	the
size	of	one	word	and	the	largest	piece	of	data	that	can	be	transferred	to	and	from

the	working	memory	in	a	single	operation	is	also	a	word.	By	using	large	word
sizes	larger	chunks	of	data	can	be	read	and	written	to	memory	in	one	clock	tick.
While	the	first	CPUs	had	a	word	size	of	4	bits,	8-bit	CPUs	quickly	became	much
more	popular,	where	numerical	values	between	0	and	255	could	be	stored	 in	a
single	internal	memory	register.
The	 first	 single	 chip	 16-bit	 microprocessor	 was	 the	 Texas	 Instruments	 TMS
9900,	 but	 the	 16-bit	 Intel	 8086	 quickly	 became	more	 popular.	 It	was	 the	 first
member	of	the	large	x86	microprocessor	family,	which	powers	most	computers
today.
Today’s	64-bit	CPUs	have	registers	that	can	hold	a	single	value	which	can	have
264	different	permutations.	For	example,	an	integer	number	between	0	and	264
represents	 a	 virtual	 memory	 address.	 Therefore,	 a	 64-bit	 CPU	 can	 address
17,179,869,184	TB	of	memory,	as	opposed	to	32-bit	CPUs,	which	can	address	4
GB	memory.

10.2.2.1			Intel	x86	processors	
Following	the	huge	success	of	the	IBM	PC	architecture,	Intel	CPUs	became	the
de-facto	standard	for	many	computer	architectures.	The	original	PC	used	a	4.77
MHz	 16-bit	 8088	 CPU.	 The	 follow-up	 model	 IBM	 PC/AT	 used	 the	 more
advanced	16-bit	80286.
A	 few	 years	 later,	 Intel	 produced	 the	 32-bit	 80386	 and	 the	 80486	 processors.
Since	 these	 names	 all	 ended	with	 the	 number	 86,	 the	 generic	 architecture	was
referred	to	as	x86.	Later,	Intel	processors	got	more	marketed	names	like	Pentium
(mainly	 because	 Intel	 could	 not	 get	 the	 numbers	 patented	 as	 a	 name),	 but	 the
architecture	 was	 still	 based	 on	 the	 original	 x86	 design.	 This	 allowed	 for
backwards	 compatibility	 of	 software;	 software	written	 for	 the	 8088	 could	 still
run	on	later	CPU	models	without	a	change.
In	 2017,	 the	 latest	 Intel	 x86	model	 is	 the	 22-core	 E5-2699A	Xeon	 Processor,

running	on	2.4	GHz
[60]

.

10.2.2.2			AMD	x86	processors
Advanced	 Micro	 Devices,	 Inc.	 (AMD)	 has	 been,	 and	 still	 is,	 the	 largest
competitor	 for	 Intel.	 AMD	 is	 the	 second-largest	 global	 supplier	 of

microprocessors	based	on	the	x86	architecture.
In	1982,	AMD	signed	a	contract	with	Intel,	becoming	a	licensed	second-source
manufacturer	of	8086	and	8088	processors	for	IBM.	IBM	wanted	to	use	the	Intel
8088	 in	her	 IBM	PC,	but	 IBM's	policy	 at	 the	 time	was	 to	 require	 at	 least	 two
sources	for	their	chips.
Intel	canceled	the	licensing	contract	in	1986	to	prevent	AMD	from	producing	a
clone	 of	 its	 highly	 successful	 80386	 processor.	 AMD	 was	 forced	 to	 reverse
engineer	the	80386	and	to	create	a	new	80386	compatible	chip	from	scratch.	In
1991,	AMD	released	 the	AM386,	 its	clone	of	 the	 Intel	80386	processor.	Since
this	 processor	 was	 highly	 successful,	 AMD	 performed	 the	 same	 trick	 for	 the
80486	and	the	Pentium	processors.	Reverse	engineering,	however,	is	a	very	time
consuming	 and	 costly	 operation.	 Today,	 AMD	 still	 produces	 x86	 compatible
CPUs,	forcing	Intel	to	keep	innovating	and	to	keep	CPU	prices	relatively	low.	In
2017,	the	latest	model	is	 the	16-core	AMD	Opteron	6386	SE	CPU,	running	on

2.8	GHz
[61]

.

10.2.2.3			Itanium	and	x86-64	processors
The	 Itanium	 processor	 line	 was	 a	 family	 of	 64-bit	 high-end	 CPUs	 meant	 for
high-end	 servers	 and	workstations.	The	 Itanium	architecture	was	 not	 based	 on
the	x86	 architecture;	 to	 be	 able	 to	 run	x86	based	 software	 (like	Windows)	 the
Itanium	 contained	 an	 x86	 emulator.	 The	 architecture	 jointly	 developed	 by	HP
and	Intel.	Intel	had	originally	hoped	to	make	Itanium’s	architecture	(IA-64)	the
replacement	for	the	x86	architecture,	but	HP	was	the	only	company	to	actively
produce	 Itanium	 based	 systems,	 running	 mostly	 HP-UX,	 and	 some	 running
OpenVMS.	 Although	 initially	 Windows	 could	 also	 run	 on	 Itanium	 based
systems,	Microsoft	discontinued	Windows	support	in	2010,	due	to	lack	of	sales.
In	 2005,	 AMD	 released	 the	 K8	 core	 processor	 architecture	 as	 an	 answer	 to
Intel’s	 Itanium	 architecture.	 The	 K8	 included	 a	 64-bit	 extension	 to	 the	 x86
instruction	 set.	 Later,	 Intel	 adopted	 AMS’s	 processor’s	 instruction	 set	 as	 an
extension	to	 its	x86	processor	 line.	The	first	Intel	processor	 to	fully	 implement
x86-64	was	the	Xeon	processor.
Because	 the	 full	 x86	 16-bit	 and	 32-bit	 instruction	 sets	 remain	 implemented	 in
hardware,	 existing	 x86	 applications	 still	 run	 with	 no	 compatibility	 or
performance	 penalty.	 Today,	 the	 x86-64	 architecture	 is	 used	 in	 all	 Intel	 and
AMD	processors.

10.2.2.4			ARM	processors
The	ARM	(Advanced	RISC	Machine)	is	the	most	used	CPU	in	the	world,	as	it	is
used	in	billions	of	mobile	phones	(like	the	Apple	iPhone,	Samsung	smartphones,
HTC	smartphones,	 and	 all	Nokia	phones)	 and	 in	 tablets	 (like	 the	Apple	 iPad).
The	 CPU	 is	 produced	 by	 a	 large	 number	 of	 manufacturers	 under	 license	 of
ARM.
The	 ARM	 architecture	 was	 originally	 developed	 by	 Acorn	 Computers	 in	 the
1980s,	when	they	needed	a	more	powerful	CPU	for	their	BBC	home	computers.
The	CPUs	 available	 at	 that	 time,	 like	 the	Motorola	 68000,	were	 not	 powerful
enough	to	handle	 the	graphics	and	GUIs	Acorn	had	in	mind.	Therefore,	Acorn
decided	to	design	its	own	processor.	Acorn	did	not	make	the	chips	themselves;
VLSI	Technology	was	chosen	as	the	manufacturer.	The	first	processor	produced
in	 large	 series	 was	 the	 ARM2,	 which	 shipped	 in	 1986.	 To	 develop	 the	 third
version	of	the	ARM	architecture,	Acorn	went	into	a	partnership	with	Apple.	In
1990,	 the	 design	 was	 incorporated	 into	 the	 new	 company	 Advanced	 RISC
Machines	Ltd.
The	ARM	processor	architecture	needs	a	relatively	small	number	of	transistors:
approximately	34,000	 instead	of	 the	millions	of	 transistors	used	 in	comparable
Intel	 Atom	 processors.	 This	 leads	 to	 very	 low	 power	 consumption,	 which	 is
excellent	for	use	in	mobile	devices.

In	 2013,	 ARM's	 customers	 reported	 10	 billion	 ARM	 processors	 shipped
[62]

,
representing	 95%	 of	 smartphones,	 90%	 of	 hard	 disk	 drives,	 40%	 of	 digital
televisions	 and	 set-top	 boxes,	 15%	 of	 microcontrollers	 and	 20%	 of	 mobile
computers.	 The	 processor	 is	 also	 used	 in	 Nintendo	 products	 and	 in	 digital
cameras.
Since	2016,	ARM	is	owned	by	Japanese	telecommunications	company	SoftBank

Group
[63]

.

10.2.2.5			Oracle	SPARC	processors	
In	1986,	Sun	Microsystems	started	 to	produce	 the	SPARC	processor	 series	 for
their	 Solaris	 UNIX	 based	 systems.	 SPARC	 is	 an	 abbreviation	 for	 Scalable
Processor	ARChitecture.	SPARC	CPUs	were	used	for	the	first	time	in	the	Sun-4
workstation	and	server	systems.

The	SPARC	architecture	 is	 fully	open	and	non-proprietary	 (a	 true	open	 source
hardware	design).	This	means	that	any	manufacturer	can	get	a	license	to	produce
a	 SPARC	 CPU.	 With	 the	 acquisition	 of	 Sun	 by	 Oracle	 in	 2010,	 SPARC
processors	are	still	used	by	Oracle	in	their	Exadata	and	Exalogic	products.
In	 2017,	 the	 latest	 model	 is	 the	 32-core	 SPARC	 M7	 CPU,	 running	 on	 4.1

GHz
[64]

.

10.2.2.6			IBM	POWER	processors
POWER	 (also	 known	 as	 PowerPC)	 was	 a	 series	 of	 CPUs,	 created	 by	 IBM,
introduced	in	1990.	The	name	is	an	acronym	for	Performance	Optimization	With
Enhanced	 RISC.	 POWER	 CPUs	 are	 used	 in	 many	 of	 IBM's	 servers,
minicomputers,	workstations,	and	supercomputers.
IBM	uses	POWER	CPUs	 in	many	of	 their	high-end	server	products,	 including
Watson,	the	supercomputer	that	won	Jeopardy	in	2011,	which	was	equipped	with
3,000	POWER7	CPU	cores.

In	2017,	the	latest	model	is	the	24-core	POWER9	CPU,	running	on	4	GHz
[65]

.

10.2.3				Memory
Early	 computers	 used	 vacuum	 tubes,	 relays,	Williams	 tubes,	 or	magnetic	 core
memory	to	store	data.
The	first	computers	used	vacuum	tubes.	Since	a	vacuum	tube	could	only	store	a
few	bits	of	data	each,	this	type	of	memory	was	extremely	expensive,	used	much
power,	was	very	fragile,	and	generated	much	heat.
An	alternative	to	vacuum	tubes	were	relays.	Relays	are	mechanical	parts	that	use
magnetism	to	move	a	physical	switch.	Two	relays	can	be	combined	to	create	a
single	bit	of	memory	 storage.	But	 relays	are	 slow,	use	much	power,	 are	noisy,
heavy,	and	expensive.
Based	 on	 cathode	 ray	 tubes,	 the	 Williams	 tube	 was	 the	 first	 random	 access
computer	 memory,	 capable	 of	 storing	 several	 thousands	 of	 bits,	 but	 only	 for
some	seconds.
The	 first	 truly	 useable	 type	 of	 main	 memory	 was	 magnetic	 core	 memory,
introduced	in	1951.	Magnetic	core	memory	would	become	the	dominant	type	of

memory	until	the	development	of	transistor	based	memory	in	the	late	1960s.

Picture	32:	Magnified	picture	of	2	bytes	of	core	memory
[66]

Magnetic	 core	 memory	 uses	 very	 small	 (approximately	 0.1	 mm	 across
[67]

)
magnetic	rings,	called	cores,	with	wires	running	through	them.	These	wires	can
polarize	 the	 magnetic	 field	 one	 direction	 or	 the	 other	 (clockwise	 or
counterclockwise)	 in	 each	 individual	 core.	 One	 direction	 means	 1,	 while	 the
other	means	0.	Because	reading	the	polarity	of	the	core	destroys	the	information,
each	read	must	be	followed	immediately	by	a	write,	to	restore	the	value.
Core	 memory	 was	 non-volatile:	 the	 contents	 of	 memory	 were	 not	 lost	 if	 the
power	was	switched	off.	Core	memory	was	replaced	by	RAM	chips	in	the	1970s.

10.2.3.1			RAM
RAM	stands	 for	Random	Access	Memory.	 "Random"	means	 that	 any	piece	of
data	 stored	 in	RAM	can	be	 read	 in	 the	 same	amount	of	 time,	 regardless	of	 its
physical	location.	RAM	is	based	on	transistor	technology,	typically	implemented
in	 large	 amounts	 in	 Integrated	 Circuits	 (ICs).	 Data	 stored	 in	 RAM	 remains
available	as	long	as	the	RAM	is	powered.
RAM	 either	 stores	 a	 bit	 of	 data	 in	 a	 flip-flop	 circuit,	 as	 implemented	 in
SRAM	(static	RAM),	or	as	a	charge	 in	a	capacitor,	as	 implemented	 in	DRAM
(dynamic	RAM).
SRAM	uses	flip-flop	circuitry	to	store	bits,	using	six	transistors	per	bit.	SRAM
has	 faster	 access	 times	 than	 DRAM	 and	 is	 therefore	 used	 mostly	 in	 cache
memory	and	video	RAM.
The	advantage	of	DRAM	over	SRAM	is	that	DRAMs	only	need	one	transistor

and	one	capacitor	to	store	a	bit.	The	capacitor	is	either	charged	(representing	a	1)
or	 discharged	 (representing	 a	 0).	 The	 transistor	 acts	 as	 a	 switch	 that	 lets	 the
control	 circuitry	 on	 the	 memory	 chip	 read	 the	 capacitor	 or	 change	 its	 state.
DRAM	loses	its	data	after	a	short	time	due	to	the	leakage	of	the	capacitors.	To
keep	data	available	in	DRAM	it	must	be	refreshed	regularly	(typically	around	16
times	per	second).	DRAM	uses	special	hardware	circuits	to	automatically	refresh
its	contents.

10.2.3.2			BIOS
The	 Basic	 Input/Output	 System	 (BIOS)	 is	 a	 set	 of	 instructions	 stored	 on	 a
memory	chip	located	on	the	computer’s	motherboard.	The	BIOS	is	software	that
controls	a	computer	 from	the	moment	 it	 is	powered	on,	 to	 the	point	where	 the
operating	 system	 is	 started	 (see	 chapter	 11	 for	more	 information	 on	 operating
systems).	The	BIOS	provides	the	instructions	necessary	to	access	the	hard	disk,
memory,	keyboard,	monitor,	and	other	hardware.
Today,	BIOS	memory	is	mostly	implemented	in	a	Flash	memory	chip	installed
on	 the	 computer’s	main	 system	 board.	 It	 is	 good	 practice	 to	 update	 the	BIOS
software	 regularly.	 Newer	 BIOS	 revisions	 can	 increase	 the	 stability	 and
performance	of	the	system	board	and	provide	new	options.	Upgrading	computers
to	the	latest	version	of	the	BIOS	is	called	BIOS	flashing.

10.2.4				Interfaces
Connecting	computers	to	external	peripherals	is	done	using	interfaces.	External
interfaces	 like	 RS-232,	 USB,	 and	 Thunderbolt	 use	 connectors	 located	 at	 the
outside	of	the	computer	case,	connecting	external	hardware	devices	like	printers
and	hardware	tokens.
Internal	interfaces,	typically	some	form	of	PCI,	are	located	on	the	system	board
of	 the	 computer,	 inside	 the	 case,	 and	 connect	 expansion	 boards	 like	 network
adapters	and	disk	controllers.

10.2.4.1			RS-232
One	of	the	first	standardized	external	interfaces	was	the	serial	bus	based	on	RS-
232.	 RS-232	 (Recommended	 Standard	 232)	 was	 introduced	 in	 1962	 for
communication	 between	 electromechanical	 teletypewriters	 and	 modems,	 and
later	 also	 for	 connecting	 electronic	 terminals.	 For	 many	 years,	 an	 RS-232

compatible	 port	 was	 a	 standard	 feature	 for	 serial	 communications,	 such	 as
modem	connections,	on	almost	all	computers.	It	remained	in	widespread	use	into
the	 late	 1990s.	 Sometimes	 RS-232	 was	 preferred	 because	 of	 the	 long	 cable
length	that	can	be	used	with	these	devices,	and	when	a	high	transfer	speed	is	not
necessarily	required.	Cables	up	to	15	meters	could	be	used	with	RS-232,	making
it	 a	 good	 choice	 for	 connecting	 for	 instance	 printers	 that	 were	 placed	 in	 a
different	room	than	the	computers.
RS-232	is	still	used	today	in	some	systems	to	connect	older	type	of	peripherals,
industrial	equipment,	console	ports,	and	special	purpose	equipment.
Bit	rates	used	with	RS-232	are	from	75	bit/s	to	115,200	bit/s.	RS-232	originally
used	a	D-subminiature	25-pin	connector	for	connectivity,	but	 the	much	smaller
9-pin	version	was	preferred	in	later	designs.

10.2.4.2			USB
The	Universal	 Serial	Bus	 (USB)	was	 introduced	 in	 1996	 as	 a	 replacement	 for
most	of	the	external	interfaces	on	servers	and	PCs.	Compared	with	RS-232	and
older	 parallel	 ports,	 USB	 is	 much	 faster,	 uses	 lower	 voltages,	 doesn’t	 need
manual	configuration,	and	has	connectors	that	are	simpler	to	connect	and	use.
The	USB	 interface	 can	 provide	 operating	 power	 to	 attached	 devices,	 a	 feature
not	 found	 on	 earlier	 external	 interfaces.	 This	 enables	 for	 instance	 USB	 flash
disks	(also	known	as	memory	sticks)	to	work	without	an	external	power	source.
Up	 to	 seven	devices	 can	be	 daisy-chained,	 but	 often	 hubs	 are	 used	 to	 connect
multiple	devices	to	one	USB	computer	port.
The	 first	widely	used	version	of	USB	was	1.1,	which	was	 released	 in	1998.	 It
allowed	for	a	12	Mbit/s	data	 rate	 for	higher	speed	devices	such	as	disk	drives,
and	a	lower	1.5	Mbit/s	rate	for	low	bandwidth	devices	such	as	keyboards.
The	USB	2.0	 specification	was	 released	 in	2000.	 It	 provided	 a	maximum	data
transfer	 rate	 of	 480	 Mbit/s.	 In	 2008,	 USB	 3	 was	 introduced,	 providing	 a
throughput	 of	 almost	 5	 Gbit/s.	 USB	 3.1,	 released	 in	 2013,	 doubled	 the
throughput	 to	10	Gbit/s.	The	USB	3.0	and	3.1	implementations	and	connectors
are	backward	compatible	with	USB	2.0.
In	 2014,	 USB	 Type-C	 (also	 known	 as	 USB-C)	 was	 introduced.	 Its	 most
important	feature	was	a	new,	smaller	connector	and	the	ability	to	provide	more
power	 to	 connected	devices.	The	connector	 can	 for	 instance	be	used	 to	 charge

laptops,	like	in	the	latest	Apple	MacBook,	as	it	 is	capable	of	transferring	up	to
100	W	of	 electricity.	USB	Type-C	 is	 actually	 only	 a	 new	connector	 and	 cable
type,	 which	 can	 be	 used	 to	 run	 the	 USB	 3.1	 protocol.	 The	 new	 connector,
however,	can	also	be	used	for	other	protocols,	like	Thunderbolt	3.

10.2.4.3			Thunderbolt
Thunderbolt,	 also	 known	 as	 Light	 Peak,	 was	 introduced	 in	 2011.	 It	 was
developed	by	Intel	with	technical	collaboration	from	Apple	and	appeared	first	on
Apple	laptops.
Thunderbolt	 version	 1	 provides	 10	 Gbit/s	 bi-directional	 data	 transfers.	 Up	 to
seven	 devices	 can	 be	 daisy-chained	 using	 optical	 or	 copper	 based	 cables,	 but
also	hubs	can	be	used,	 like	with	USB.	Also	like	USB,	 the	copper	based	cables
can	provide	power	to	attached	devices.
Thunderbolt	 version	 1	 and	 2	 connectors	 were	 based	 on	 the	Mini	 DisplayPort
connector	 developed	 by	Apple.	 Thunderbolt	 2,	 released	 in	 2013,	 allows	 for	 a
throughput	of	20	Gbit/s.
Thunderbolt	 3,	 released	 in	 2015,	 can	 provide	 a	 maximum	 throughput	 of	 40
Gbit/s.	Thunderbolt	3	can	also	provide	100	W	power	to	devices.	It	uses	the	USB
Type-C	connector	and	is	backward	compatible	with	USB	3.1.

10.2.4.4			PCI	and	PCIe
Most	 x86	 servers	 and	 midrange	 systems	 use	 PCI	 for	 their	 primary	 internal
expansion	 slots.	 PCI	 stands	 for	 Peripheral	 Component	 Interconnect.	 It	 can	 be
implemented	as	connectors	on	the	system	board	for	attaching	external	hardware,
or	as	on-board	circuitry	to	connect	expansions	like	Ethernet	or	video	circuitry	on
the	system	board	itself.
PCI	 uses	 a	 shared	 parallel	 bus	 architecture,	 in	 which	 only	 one	 shared
communication	path	between	two	PCI	devices	can	be	active	at	any	given	time.
Usually	 the	system	board	itself	 is	 the	bus	master,	exchanging	data	between	the
system	board	 and	 the	PCI	 adapter,	 but	PCI	 adapters	 can	 act	 as	 bus	masters	 as
well.	This	enables	data	exchange	between	two	PCI	adapters	directly.
Initially,	PCI	buses	were	32	bits	wide.	The	PCI	specification	 included	optional
64-bit	support,	provided	via	an	extended	connector	with	64-bit	extensions.
Apart	from	the	conventional	PCI	bus,	the	much	faster	PCI	Express	is	often	used

in	today’s	systems.
PCI	Express	 (PCIe)	uses	a	 topology	based	on	point-to-point	serial	 links,	 rather
than	 a	 shared	 parallel	 bus	 architecture.	 A	 connection	 between	 any	 two	 PCIe
devices	is	known	as	a	link,	and	is	built	up	from	a	collection	of	1	or	more	links,
called	lanes.
All	 devices	 must	 minimally	 support	 a	 single-lane	 (x1)	 link.	 Devices	 may
optionally	support	wider	links,	composed	of	2,	4,	8,	12,	16,	or	32	lanes.
PCIe	connections	are	routed	by	a	hub	on	the	system	board	acting	as	a	crossbar
switch.	The	hub	allows	multiple	pairs	of	devices	to	communicate	with	each	other
at	 the	 same	 time.	 Picture	 33	 shows	 various	 physical	 PCI	 and	 PCIe	 slots	 on	 a
system	board.
	

Picture	33:	PCI	versus	PCIe	buses
[68]

Despite	 the	 availability	 of	 the	 much	 faster	 PCIe,	 conventional	 PCI	 remains	 a
very	common	interface	in	computers.	The	following	table	shows	the	raw	speed
of	the	various	PCI	bus	architectures.	Since	PCIe	can	handle	multiple	serial	links
to	exchange	data	on	 the	same	connector,	 the	speed	of	 the	combinations	 is	also
stated	(in	Gbit/s).

	
	
	 Lanes

1 2 4 8 16 32

PCI	32-bit/33	MHz 1

PCI	32-bit/66	MHz 2

PCI	64-bit/33	MHz 2

PCI	64-bit/66	MHz 4

PCI	64-bit/100	MHz 6

PCIe	1.0 2 4 8 16 32 64

PCIe	2.0 4 8 16 32 64 128

PCIe	3.0 8 16 32 64 128 256

PCIe	4.0 16 32 64 128 256 512

Table	23:	PCI	speeds	in	Gbit/s

10.2.5				Compute	virtualization
In	traditional	computer	architectures,	the	operating	system	directly	interacts	with
the	physical	machine,	as	shown	in	Figure	75.
	

Figure	75:	Traditional	compute	architecture

Compute	virtualization,	also	known	as	server	virtualization	or	Software	Defined
Compute,	 introduces	an	abstraction	 layer	between	physical	 computer	hardware
and	 the	 operating	 system	 using	 that	 hardware.	 Virtualization	 allows	 multiple
operating	systems	to	run	on	a	single	physical	machine	(see	Figure	76).
	

Figure	76:	Virtualization	architecture

Virtualization	decouples	and	isolates	virtual	machines	from	the	physical	machine
and	 from	 other	 virtual	 machines	 by	 means	 of	 a	 virtualization	 layer.	 A	 virtual
machine	is	a	logical	representation	of	a	physical	computer	in	software.
Virtual	machines	can	be	started	and	stopped	independently	from	each	other.	And
if	one	virtual	machine	 crashes,	 the	others	 are	 isolated	 from	 the	 failure	 and	are
unaffected.
Virtualization	 allows	 for	 new	 virtual	 machines	 to	 be	 provisioned	 as	 needed,
without	the	need	for	an	upfront	hardware	purchase.	This	saves	a	lot	of	time	and
money	–	with	a	few	mouse	clicks	or	using	an	API,	new	virtual	machines	for	test
or	 development	 can	 be	 installed	 in	minutes.	 No	 purchase	 order	 is	 needed,	 no
waiting	 time	 for	 delivery,	 no	 physical	 hardware	 needs	 to	 be	 delivered,	 and	 no
hardware	needs	to	be	installed	in	the	datacenter.
In	 the	 1960s,	 virtual	 machines	 were	 introduced	 in	 the	 experimental	 IBM
M44/44X	 system.	 IBM	developed	 the	 concept	 and	 introduced	virtualization	 in
the	IBM	mainframe	System/370	in	1972,	which	was	managed	by	the	VM/370,
the	 first	 virtual	 machine	 operating	 system.	 All	 mainframes	 have	 been	 using
virtualization	since.
In	the	late	1990s,	midrange	systems	vendors	started	to	implement	virtualization,
based	 on	 Logical	 Partition	 (LPAR)	 technology,	 which	 was	 similar	 to	 the
technology	used	in	mainframes.
The	 widespread	 use	 of	 x86	 based	 servers,	 that	 gained	 much	 more	 processing
power	and	memory	capacity	around	2000,	started	to	make	virtualization	on	the
x86	platform	a	viable	 option.	The	primary	driver	was	 computer	 consolidation:
virtualization	 allowed	 a	 single	 physical	 computer	 to	 replace	 multiple
underutilized	dedicated	computers.

VMware	 became	 the	 market	 leader	 in	 x86	 virtualization.	 Their	 first	 product,
VMware	Workstation,	 was	 introduced	 in	 1999	 and	 the	 server	 product,	 named
VMware	GSX,	was	 launched	 in	2001.	Today	x86	virtualization	 is	offered	by	a
number	of	vendors,	including	VMware,	Citrix,	Red	Hat,	and	Microsoft.
By	consolidating	many	physical	computers	as	virtual	machines	on	fewer	(bigger)
physical	machines,	costs	can	be	saved	on	hardware,	power,	and	cooling.	Because
fewer	 physical	machines	 are	 needed,	 the	 cost	 of	maintenance	 contracts	 can	be
reduced	and	the	risk	of	hardware	failure	is	reduced.

10.2.5.1			Software	Defined	Compute	(SDC)
Virtual	machines	are	typically	managed	using	one	redundant	centralized	virtual
machine	management	 system.	This	enables	 systems	managers	 to	manage	more
machines	 with	 the	 same	 number	 of	 staff	 and	 allows	 managing	 the	 virtual
machines	using	APIs.
	

Figure	77:	Software	Defined	Compute	(SDC)

Centralized	management	of	resources	and	(automatic)	optimization	of	resources
also	 eases	 management	 efforts.	 Server	 virtualization	 can	 therefore	 be	 seen	 as
Software	Defined	Compute,	as	shown	in	Figure	77.

In	an	SDC	architecture,	all	physical	machines	are	 running	a	hypervisor	and	all
hypervisors	 are	 managed	 as	 one	 layer	 using	 management	 software.	 Via	 the
hypervisor,	CPU,	memory,	disk,	 and	networking	 resources	 can	be	dynamically
allocated	 to	 virtual	 machines,	 where	 each	 virtual	 machine	 consumes	 a
percentage	 of	 the	 CPU	 power,	 memory,	 network	 bandwidth,	 and	 storage
resources	of	the	underlying	physical	machine.
Some	virtualization	platforms,	like	VMware	ESX	VMotion,	Microsoft	Hyper-V
Live	 Migration	 and	 Citrix	 XenServer’s	 XenMotion,	 allow	 running	 virtual
machines	 to	 be	moved	 automatically	 between	 physical	 machines.	 This	 allows
virtual	machines	to	be	automatically	moved	to	the	least	busy	physical	machines,
or	some	physical	machines	can	get	 fully	 loaded	while	other	physical	machines
can	be	automatically	switched	off,	saving	power	and	cooling	cost.	It	also	allows
for	 hardware	maintenance	without	 downtime.	 By	moving	 all	 virtual	machines
from	one	physical	machine	to	other	physical	machines,	the	physical	machine	can
be	 switched	 off	 for	 maintenance	 without	 interruption	 of	 running	 virtual
machines.
An	SDC	architecture	 also	provides	high	 availability	 features.	When	a	physical
machine	fails,	all	virtual	machines	that	ran	on	the	failed	physical	machine	can	be
restarted	automatically	on	other	physical	machines.	Some	vendors	even	provide
lockstepping	virtual	machines,	like	XenServer	Marathon	everRun	and	VMware’s
Fault	Tolerance.	Lockstepping	keeps	 the	state	of	 two	virtual	machines	 in	sync,
even	 on	 memory	 level.	 When	 a	 server	 fails,	 the	 other	 takes	 over	 without
interruption.
When	switched	off,	a	virtual	machine	is	nothing	more	than	a	file	on	a	disk	–	the
virtual	machine	 image.	 It	 is	 therefore	 quite	 easy	 to	 create	 a	 copy	 of	 a	 virtual
machine	 just	 before	 a	 change,	 like	 a	 patch	 or	 a	 software	 installation,	 is
performed	 on	 the	 machine.	 Virtual	 machine	 images	 can	 be	 kept	 for	 special
occasions,	for	instance,	an	old	version	of	a	virtual	machine	can	be	kept	to	work
with	old	archived	data.

10.2.5.2			Disadvantages	of	computer	virtualization
Of	 course,	 there	 are	 a	 number	 of	 disadvantages	 to	 computer	 virtualization	 as
well.
One	pitfall	of	using	virtualization	is	that	it	is	sometimes	too	easy	to	create	new
virtual	 machines.	 Because	 creating	 a	 new	 virtual	 machine	 is	 so	 easy,	 virtual

machines	 tend	 to	 get	 created	 for	 all	 kinds	 of	 reasons	 (usually	 for	 testing
purposes).	 This	 effect	 is	 known	 as	 "virtual	 machine	 sprawl".	 But	 all	 of	 these
virtual	machines	must	be	managed;	they	use	resources	of	the	physical	machine,
and	they	use	power	and	cooling	(ad-hoc	created	virtual	machines	tend	not	to	be
switched	off	again).	They	must	be	back-upped	and	kept	up	to	date	by	installing
patches.
Another	drawback	of	using	virtualization	 is	 that	 it	 introduces	 an	extra	 layer	 in
the	infrastructure,	which	needs	to	be	managed.	This	layer	requires	license	fees,
systems	managers	 training,	 and	 the	 installation	 and	maintenance	 of	 additional
tools.
Virtualization	 cannot	 be	 used	 on	 all	 servers.	 Some	 servers	 require	 additional
specialized	 hardware,	 like	 modem	 cards,	 USB	 tokens	 or	 some	 form	 of	 high
speed	I/O	like	in	real-time	SCADA	systems.
While	 the	use	of	virtualization	for	database	servers	 is	criticized,	over	 the	years
the	performance	overhead	of	the	virtualization	layer	has	become	low	enough	to
run	even	high	performance	databases.	But	because	database	servers	typically	use
all	 resources	 of	 a	 physical	 machine,	 running	 extra	 virtual	 machines	 next	 to	 a
database	 virtual	machine	 is	 impractical.	This	 is	 the	main	 reason	 to	 keep	 using
physical	machines	for	database	servers.
Virtualization	is	not	supported	by	all	application	vendors.	This	means	that	while
an	 application	 may	 run	 fine	 on	 a	 virtual	 machine;	 the	 configuration	 is	 not
supported	 by	 the	 supplier.	 When	 the	 application	 experiences	 some	 problem,
systems	managers	must	 reinstall	 the	 application	 on	 a	 physical	machine	 before
they	get	support.	The	main	reason	for	the	lack	of	support	is	that	the	application
vendor	claims	 to	have	no	control	over	 the	 total	 stack	–	 the	virtualization	 layer
cannot	 be	 influenced	 (which	 is	 not	 a	 very	 good	 reason	 of	 course,	 since	 the
vendor	has	no	control	over	the	operating	system,	the	hardware	or	the	storage	as
well).	 To	 solve	 this	 problem,	 some	 application	 vendors	 work	 together	 with
virtualization	 vendors	 to	 provide	 support.	 An	 example	 is	 Microsoft,	 that
introduced	 the	 Microsoft	 Server	 Virtualization	 Validation	 Program	 (SVVP),
supporting	 Microsoft	 operating	 systems	 and	 applications	 that	 run	 on	 either
VMware	or	XenServer	(and	Microsoft’s	own	Hyper-V	of	course).

10.2.5.3			Virtualization	technologies
Many	virtualization	 technologies	are	 in	use,	each	with	 their	own	properties.	 In

this	 section	 emulation,	 logical	 partitions,	 and	 various	 types	 of	 hypervisors	 are
described.

10.2.5.3.1			Emulation
An	emulator	 is	a	piece	of	 software	 that	allows	programs	 to	 run	on	a	computer
system	other	 than	 the	one	 they	were	originally	 intended	 for.	An	emulator	does
this	 by	 reproducing	 the	 original	 computer’s	 behavior	 through	 a	 process	 of
translation,	 called	 emulation.	 This	 allows	 for	 instance	 a	 mainframe	 operating
systems	or	OpenVMS	to	run	on	an	x86	platform.
	

Figure	78:	Emulation

Emulators	are	designed	for	portability,	not	necessarily	for	speed.	Emulation	is	a
slow	process	by	nature.	The	emulator	must	not	only	translate	CPU	instructions
from	one	 architecture	 to	 another,	 but	must	 also	 emulate	 the	 behavior	 of	 video
cards,	keyboards,	network	adapters,	disk	access,	and	other	devices.
Examples	of	emulators	are	Hercules	(a	mainframe	emulator	on	x86),	Charon	(a
VAX/Alpha	emulator	on	x86),	and	Bochs	(an	x86	emulator	allowing	for	instance
to	run	Windows	on	UNIX	systems).

10.2.5.3.2			Logical	Partitions	(LPARs)
A	Logical	Partition	(LPAR),	typically	implemented	in	mainframe	and	midrange
systems,	is	a	subset	of	a	computer's	hardware	resources,	virtualized	as	a	separate
computer.	 Using	 LPARs,	 a	 physical	 machine	 can	 be	 partitioned	 into	 multiple
logical	partitions,	each	hosting	a	separate	operating	system.
	

Figure	79:	LPARs

Each	 LPAR	 is	 bound	 to	 one	 or	 more	 resources,	 like	 physical	 CPUs,	 network
interface	controllers	(NICs),	storage,	and	memory	segments.	This	means	that	the
number	 of	 virtual	 machines	 in	 a	 LPAR	 system	 is	 limited	 to	 the	 number	 of
physical	 CPU	 cores,	 network	 cards,	 and	 storage	 connections.	 A	 resource
allocated	to	a	certain	LPAR	cannot	be	used	by	another	LPAR.

10.2.5.3.3			Hypervisors
Hypervisors,	also	called	a	virtual	machine	monitors	(VMM),	are	mostly	used	in
x86	systems	and	are	directly	installed	on	the	computer’s	hardware.	Their	task	is
to	run	and	monitor	virtual	machines.	Hypervisors	control	the	physical	computer's
hardware	and	provide	virtual	machines	with	all	the	services	of	a	physical	system,
including	a	virtual	BIOS,	virtual	devices,	and	virtualized	memory	management.
Products	like	VMware	ESX,	Citrix	XenServer,	Red	Hat	Enterprise	Virtualization
(RHEV),	 and	Microsoft	 Hyper-V	 are	 examples	 of	 hypervisors.	 They	 typically
run	Windows	and	Linux	operating	systems	in	their	virtual	machines.
While	 most	 midrange	 systems	 use	 LPAR	 technology,	 HP	 Integrity	 Virtual
Machines	 are	 also	 hypervisors	 providing	 virtualized	 shared	 resources.	 In	 an
Integrity	virtual	machine,	different	midrange	operating	systems	can	be	run,	like
HP-UX	and	Linux.
In	general,	hypervisors	can	be	implemented	using	the	following	technologies:

·									Binary	translation	–	When	a	hypervisor	is	used	as	a	layer	between
the	CPU	and	the	virtual	machine,	not	all	CPU	instructions	can	be
transferred	unmodified	to	the	CPU.	For	example:	a	HALT	instruction

normally	halts	the	complete	CPU.	If	a	virtual	machine	would	perform	a
HALT,	and	that	instruction	is	sent	to	the	CPU	unmodified,	the	physical
machine	would	halt,	leading	to	a	halt	of	all	virtual	machines	on	that
physical	machine.	To	prevent	this	from	happening,	a	binary	translation
hypervisor	translates	a	number	of	instructions	to	new	sequences	of
instructions	that	have	the	intended	effect	on	the	virtual	hardware:	a	HALT
only	halts	the	virtual	CPU.	The	remaining	instructions	run	unmodified	on
the	CPU	and	therefore	at	native	speed.	Because	binary	translation	is
performed	on	the	binary	code	that	gets	executed	on	the	processor,	it	does
not	require	changes	to	the	operating	system	running	in	the	virtual	machine.
·									Paravirtualization	–	Paravirtualization	(also	known	as	operating
system	assisted	virtualization)	is	a	virtualization	technique	where	a
modified	operating	system	communicates	to	the	hypervisor	its	intent	to
perform	privileged	CPU	and	memory	operations.	This	in	contrast	to	binary
translation,	where	the	operating	system	does	not	know	it	runs	on	a	virtual
machine.	Paravirtualization	reduces	the	number	of	tasks	to	be	performed
by	the	hypervisor	(since	the	operating	system	and	the	hypervisor	work
together),	making	the	implementation	simpler	and	more	efficient	than	a
binary	translation	hypervisor.	Although	paravirtualization	does	not
eliminate	virtualization	overhead,	it	can	greatly	improve	virtual	machine
performance.
·									Hardware	assisted	virtualization	–	In	hardware	assisted
virtualization,	hardware	instructions	are	implemented	in	the	CPU	to	assist
the	hypervisor,	allowing	virtual	machines	to	run	in	isolation	on	the
hardware	level.	Processors	with	Virtualization	Technology	have	an	extra
instruction	set	called	Virtual	Machine	Extensions	or	VMX.	All	of	today’s
Intel	(VT-x)	and	AMD	(AMD-V)	processors	provide	this	hardware
support.	VMX	enabled	processors	allow	trapping	of	sensitive	instructions
from	virtual	machines	and	handling	them	safely.	This	eliminates	the	need
for	binary	translation	or	paravirtualization.	Like	binary	translation,
hardware	assisted	virtualization	does	not	require	changes	to	the	operating
system	in	the	virtual	machine.	Hardware	assisted	virtualization	is
supported	by	VMware	ESX,	Citrix	XenServer,	Red	Hat	RHEV,	and
Microsoft	Hyper-V	and	is	their	default	mode	of	operation.

10.2.5.4			Virtual	memory	management

Hypervisors	 manage	 the	 memory	 of	 the	 physical	 computer	 by	 dividing	 the
available	 memory	 over	 the	 virtual	 machines.	 The	 hypervisor	 uses	 memory
overcommit	and	memory	sharing	to	make	the	best	use	of	the	available	physical
memory.

10.2.5.4.1			Memory	overcommit
Most	 operating	 systems	 claim	 more	 memory	 than	 they	 actually	 use.	 With
memory	 overcommit	 the	 hypervisor	 assigns	 more	 memory	 to	 the	 combined
virtual	machines	than	is	physically	available	in	the	computer.	The	assumption	is
that	not	all	assigned	memory	will	actually	be	used	by	all	virtual	machines	at	the
same	 time.	Some	virtual	machines	may	need	all	of	 the	memory	 that	 they	have
been	allocated,	while	other	virtual	machines	may	need	considerably	 less.	Most
hypervisors	 can	 identify	 idle	 memory	 and	 dynamically	 reallocate	 unused
memory	from	some	virtual	machines	to	others	that	need	more	memory.
The	 use	 of	 memory	 overcommit	 is	 controversial.	 Some	 say	 memory
overcommits	 needs	 to	 be	 avoided	 as	 it	 could	 lead	 to	 problems	 with	 virtual
machines	 running	out	 of	memory.	This	 can	be	 a	 problem	 for	 example	when	 a
physical	machine	boots	up	and	consequently	boots	up	all	virtual	machines	at	the
same	 time.	 Because	 all	 virtual	 machines	 claim	 their	 allocated	 memory,	 they
either	 force	 the	hypervisor	 to	start	swapping	memory	 to	disk	(which	makes	all
starting	virtual	machines	extremely	slow,	 see	section	11.4.1)	or	 they	might	not
start	at	all	due	to	a	shortage	of	memory.

10.2.5.4.2			Memory	sharing
Memory	sharing	maps	identical	memory	pages	in	one	or	more	virtual	machines
to	a	single	page	of	physical	memory.	With	memory	sharing	the	hypervisor	scans
memory	 looking	 for	memory	pages	with	 identical	content	and	 then	 remaps	 the
virtual	machines'	pages	to	a	single	read-only	shared	copy	of	the	page.	If	a	virtual
machine	 attempts	 to	 write	 to	 the	 shared	 page,	 the	 hypervisor	 allocates	 a	 new
copy	of	the	page	with	read-write	permissions	for	that	virtual	machine.
Memory	 sharing	 can	 significantly	 reduce	 overall	 memory	 requirements.	 For
example,	if	multiple	virtual	machines	are	running	the	same	Windows	operating
system,	most	their	memory	pages	can	typically	be	shared.	This	technology	is	not
specific	 to	hypervisors	by	 the	way;	 it	 is	used	by	 the	UNIX	operating	 system’s
fork	system	call	for	decades.

10.2.6				Container	technology
Originally,	 operating	 systems	 were	 designed	 to	 run	 a	 large	 number	 of
independent	processes.	 In	practice,	however,	dependencies	on	specific	versions
of	libraries	and	specific	resource	requirements	for	each	application	process	led	to
using	 one	 operating	 system	 –	 and	 hence	 one	 server	 –	 per	 application.	 For
instance,	a	database	server	typically	only	runs	a	database,	while	the	application
server	using	the	database	is	hosted	on	another	machine.
Compute	virtualization,	as	discussed	in	section	10.2.5,	solves	this	problem,	but
at	 considerable	 overhead	 –	 each	 application	 needs	 a	 full	 operating	 system,
leading	 to	 high	 license	 and	 systems	 management	 cost.	 And	 because	 even	 the
smallest	 application	 needs	 a	 full	 operating	 system,	 much	 memory	 and	 many
CPU	 cycles	 are	 wasted	 just	 to	 get	 isolation	 between	 applications.	 Container
technology	is	a	way	to	solve	this	issue.
	

Figure	80:	Isolation	versus	overhead

Figure	 80	 shows	 the	 relation	 between	 isolation	 between	 applications	 and	 the
overhead	 of	 running	 the	 application.	 While	 running	 each	 application	 on	 a
dedicated	physical	machine	provides	the	highest	isolation,	the	overhead	is	very
high,	as	many	physical	machines	are	needed.	An	operating	system,	on	the	other
hand,	provides	much	less	isolation,	but	at	a	very	low	overhead	per	application.
Container	technology	is	a	server	virtualization	method	in	which	the	kernel	of	an

operating	system	provides	multiple	isolated	user-space	instances,	instead	of	just
one.	 Containers	 look	 and	 feel	 like	 a	 real	 server	 from	 the	 point	 of	 view	 of	 its
owners	 and	 users,	 but	 they	 share	 the	 same	 operating	 system	 kernel.	 This
isolation	 enables	 the	 operating	 system	 to	 run	 multiple	 processes,	 where	 each
process	shares	nothing	but	the	kernel.
	

Figure	81:	Container	technology

Containers	are	not	new	–	 the	first	UNIX	based	containers,	 introduced	 in	1979,
provided	 isolation	 of	 the	 root	 file	 system	 via	 the	 chroot	 operation.	 Solaris
subsequently	 added	 many	 enhancements,	 and	 Linux	 control	 groups	 (cgroups)
adopted	many	of	these	ideas.
Containers	are	part	of	the	Linux	kernel	since	2008.	But	the	use	of	containers	to
encapsulate	 all	 application	 components,	 such	 as	 dependencies	 and	 services	 is
new.	 And	 when	 all	 dependencies	 are	 encapsulated,	 applications	 can	 run	 in
parallel	on	the	same	kernel,	using	their	own	libraries	and	dependencies	without
interfering	with	each	other.
Containers	have	a	number	of	benefits:

·									Isolation	–	applications	or	application	components	can	be
encapsulated	in	containers,	each	operating	independently	and	isolated	from
each	other.
·									Portability	–	since	containers	typically	contain	all	components	the
application	needs	to	function,	including	libraries	and	patches,	containers
can	be	run	on	any	infrastructure	that	is	capable	of	running	containers	using
the	same	kernel	version.
·									Easy	deployment	–	containers	allow	developers	to	quickly	deploy
new	software	versions,	as	their	containers	can	be	moved	from	the

development	environment	to	the	production	environment	unaltered.

10.2.6.1			Container	implementation
Containers	are	based	on	3	technologies	that	are	all	part	of	the	Linux	kernel:

·									Chroot	(also	known	as	a	jail)	–	changes	the	apparent	root	directory	for
the	current	running	process	and	its	children	and	ensures	that	these
processes	cannot	access	files	outside	the	designated	directory	tree.	Chroot
was	available	in	UNIX	as	early	as	1979.
·									Namespaces	-	allows	complete	isolation	of	an	applications'	view	of
the	operating	environment,	including	process	trees,	networking,	user	IDs
and	mounted	file	systems.	It	is	part	of	the	Linux	kernel	since	2002.
·									Cgroups	-	limits	and	isolates	the	resource	usage	(CPU,	memory,	disk
I/O,	network,	etc.)	of	a	collection	of	processes.	Cgroups	is	part	of	the
Linux	kernel	since	2008.

Linux	 Containers	 (LXC),	 introduced	 in	 2008,	 is	 a	 combination	 of	 chroot,
cgroups,	and	namespaces,	providing	isolated	environments.
Docker	is	a	popular	implementation	of	a	container	ecosystem.	It	adds	Union	File
System	(UFS)	to	containers	–	a	way	of	combining	multiple	directories	into	one
that	appears	 to	contain	 their	combined	contents.	This	allows	multiple	 layers	of
software	 to	 be	 "stacked".	 Docker	 also	 automates	 deployment	 of	 applications
inside	containers.

10.2.6.2			Containers	and	security
While	 containers	 provide	 some	 isolation,	 they	 still	 use	 the	 same	 underlying
kernel	and	libraries.	Isolation	between	containers	on	the	same	machine	is	much
lower	than	virtual	machine	isolation.
Virtual	 machines	 get	 isolation	 from	 hardware	 -	 using	 specialized	 CPU
instructions.	 Containers	 don't	 have	 this	 level	 of	 isolation.	 However,	 there	 are
some	 operating	 systems,	 like	 Joyent’s	 SmartOS	 offering,	 that	 run	 on	 physical
machines,	 and	 that	 provide	 containers	with	hardware	based	 isolation	using	 the
same	specialized	CPU	instructions.
Since	developers	define	the	contents	of	containers,	security	officers	lose	control
over	 the	 containers,	 which	 could	 lead	 to	 unnoticed	 vulnerabilities.	 This	 could
lead	to	using	multiple	versions	of	tools,	unpatched	software,	outdated	software,

or	 unlicensed	 software.	 To	 solve	 this	 issue,	 a	 repository	 with	 predefined	 and
approved	container	components	and	container	hierarchy	should	be	implemented.

10.2.6.3			Container	orchestration
A	 classical	 operating	 system	 abstracts	 resources	 such	 as	 CPU,	 RAM,	 and
network	connectivity	and	provides	services	to	applications.	In	contrast,	container
orchestration,	 also	 known	 as	 a	 datacenter	 operating	 system,	 abstracts	 the
resources	of	a	cluster	of	machines	and	provides	services	to	containers.
A	container	orchestrator	enables	containers	 to	be	 run	anywhere	on	a	cluster	of
machines.	It	schedules	 the	containers	 to	run	on	any	machine	that	has	resources
available	 and	 it	 acts	 like	 a	 kernel	 for	 the	 combined	 resources	 of	 an	 entire
datacenter	instead	of	the	resources	of	just	a	single	computer.
	

Figure	82:	Container	orchestration

There	 are	many	 frameworks	 for	managing	 container	 images	 and	 orchestrating
the	container	lifecycle.	Some	examples	are:

·									Docker	Swarm
·									Apache	Mesos
·									Google's	Kubernetes
·									Rancher
·									Pivotal	CloudFoundry
·									Mesosphere	DC/OS

10.2.7				Mainframes

10.2.7.1			History

A	 mainframe	 is	 a	 high-performance	 computer	 made	 for	 high-volume,	 I/O-
intensive	 computing.	 Mainframes	 were	 the	 first	 commercially	 available
computers.	 They	 were	 produced	 by	 vendors	 like	 IBM,	 Unisys,	 Hitachi,	 Bull,
Fujitsu,	 and	NEC.	 But	 IBM	 always	 was	 the	 largest	 vendor	 –	 it	 still	 has	 90%
market	share	in	the	mainframe	market.
Mainframes	 used	 to	 have	 no	 interactive	 user	 interface.	 Instead,	 they	 ran	 batch
processes,	 using	 punched	 cards,	 paper	 tape,	 and	 magnetic	 tape	 as	 input,	 and
produced	 printed	 paper	 as	 output.	 In	 the	 early	 1970s,	 most	 mainframes	 got
interactive	user	interfaces,	based	on	terminals,	simultaneously	serving	hundreds
of	users.
While	 the	 end	of	 the	mainframe	 is	predicted	 for	decades	now,	mainframes	 are
still	widely	used.	Today’s	mainframes	are	still	relatively	large	(the	size	of	a	few
19"	 racks),	 but	 they	 don’t	 fill-up	 a	 room	 anymore.	 They	 are	 expensive
computers,	 mostly	 used	 for	 administrative	 processes,	 optimized	 for	 handling
high	volumes	of	data.
The	 latest	 IBM	 z13	 mainframe,	 introduced	 in	 2015,	 can	 host	 up	 to	 10TB	 of
memory	 and	 141	 processors,	 running	 at	 a	 5GHz	 clock	 speed.	 It	 has	 enough

resources	to	run	up	to	8000	virtual	machines	simultaneously
[69]

.
Mainframes	 are	 highly	 reliable,	 typically	 running	 for	 years	without	 downtime.
Much	redundancy	is	built	in,	enabling	hardware	upgrades	and	repairs	while	the
mainframe	is	operating	without	downtime.
All	 IBM	 mainframes	 are	 backwards	 compatible	 with	 older	 mainframes.	 For
instance,	the	64-bit	mainframes	of	today	can	still	run	the	24-bit	System/360	code
from	the	early	days	of	mainframe	computing.	Much	effort	is	spent	in	ensuring	all
software	continues	to	work	without	modification.
	

Picture	34:	IBM	z	series	mainframe

10.2.7.2			Mainframe	architecture
A	mainframe	consists	of	processing	units	(PUs),	memory,	I/O	channels,	control
units,	and	devices,	all	placed	in	racks	(frames).	The	architecture	of	a	mainframe
is	shown	in	Figure	83.
	

Figure	83:	Mainframe	architecture

The	various	parts	of	the	architecture	are	described	below.

10.2.7.2.1			Processing	Units
In	 the	mainframe	world,	 the	 term	PU	 (Processing	Unit)	 is	 used	 instead	 of	 the
more	 ambiguous	 term	 CPU.	 A	 mainframe	 has	 multiple	 PUs,	 so	 there	 is	 no
central	processing	unit.	The	total	of	all	PUs	in	a	mainframe	is	called	a	Central
Processor	Complex	(CPC).
The	CPC	 resides	 in	 its	own	cage	 inside	 the	mainframe,	 and	consists	of	one	 to
four	 so-called	 book	 packages.	 Each	 book	 package	 consists	 of	 processors,
memory,	and	I/O	connections,	much	like	x86	system	boards.
Mainframes	use	specialized	PUs	(like	 the	quad	core	z10	mainframe	processor)
instead	of	off-the-shelf	Intel	or	AMD	supplied	CPUs.
All	 processors	 in	 the	 CPC	 start	 as	 equivalent	 processor	 units	 (PUs).	 Each
processor	 is	 characterized	 during	 installation	 or	 at	 a	 later	 time,	 sometimes
because	of	a	specific	task	the	processor	is	configured	to	do.	Some	examples	of
characterizations	are:

	
Processor	unit	(PU) Task

Central	processors	(CP) Central	processors	are	the	main	processors	of	the	system	that	can	be	used	to	run	applications	running
on	VM,	z/OS,	and	ESA/390	operating	systems.

CP	Assist	for	Cryptographic
Function	(CPACF)

CPACF	assists	the	CPs	by	handling	workload	associated	with	encryption/decryption.

Integrated	Facility	for	Linux	(IFL) IFL	assists	with	Linux	workloads:	they	are	regular	PUs	with	a	few	specific	instructions	that	are	needed
by	Linux.

Integrated	Coupling	Facility	(ICF) This	facility	executes	licensed	internal	code	to	coordinate	system	tasks.

System	Assisted	Processor	(SAP) A	SAP	assists	the	CP	with	workload	for	the	I/O	subsystem,	for	instance	by	translating	logical	channel
paths	to	physical	paths.

Spares Used	to	replace	any	CP	or	SAP	failure

IBM	System	z	Application	Assist
Processors	(zAAP)

Used	for	Java	code	execution

zIIP Processing	certain	database	workloads

Table	24:	Mainframe	processing	units

10.2.7.2.2			Main	Storage
Each	book	package	in	the	CPC	cage	contains	from	four	to	eight	memory	cards.
For	 example,	 a	 fully	 loaded	 z9	 mainframe	 has	 four	 book	 packages	 that	 can
provide	up	to	a	total	of	512	GB	of	memory.
The	memory	cards	are	hot	swappable,	which	means	that	you	can	add	or	remove
a	memory	card	without	powering	down	the	mainframe.

10.2.7.2.3			Channels,	ESCON	and	FICON
A	channel	provides	a	data	and	control	path	between	I/O	devices	and	memory.
Today’s	 largest	 mainframes	 have	 1024	 channels.	 Channels	 connect	 to	 control
units,	either	directly	or	via	switches.	Specific	slots	in	the	I/O	cages	are	reserved
for	specific	types	of	channels,	which	include	the	following:

·									Open	Systems	Adapter	(OSA)	–	this	adapter	provides	connectivity	to
various	industry	standard	networking	technologies,	including	Ethernet.
·									Fiber	Connection	(FICON)	-	this	is	the	most	flexible	channel
technology,	based	on	fiber-optic	technology.	With	FICON,	input/output
devices	can	be	located	many	kilometers	from	the	mainframe	to	which	they
are	attached.
·									Enterprise	Systems	Connection	(ESCON)	-	this	is	an	earlier	type	of
fiber-optic	technology.	ESCON	channels	can	provide	performance	almost
as	fast	as	FICON	channels,	but	at	a	shorter	distance.

The	 FICON	 or	 ESCON	 switches	 may	 be	 connected	 to	 several	 mainframes,

sharing	the	control	units	and	I/O	devices.
The	channels	are	high	speed	–	today’s	FICON	Express16S	channels	provide	up

to	320	links	of	16	Gbit/s	each
[70]

.

10.2.7.2.4			Control	units
A	control	unit	is	similar	to	an	expansion	card	in	an	x86	or	midrange	system.	It
contains	 logic	 to	work	with	 a	 particular	 type	 of	 I/O	device,	 like	 a	 printer	 or	 a
tape	drive.
Some	 control	 units	 can	 have	multiple	 channel	 connections	 providing	multiple
paths	to	the	control	unit	and	its	devices,	increasing	performance	and	availability.
Control	 units	 can	 be	 connected	 to	 multiple	 mainframes,	 creating	 shared	 I/O
systems.	 Sharing	 devices,	 especially	 disk	 drives,	 is	 complicated	 and	 there	 are
specialized	hardware	 and	 software	 techniques	used	by	 the	operating	 system	 to
control	 updating	 the	 same	 disk	 data	 at	 the	 same	 time	 from	 two	 independent
systems.
Control	 units	 connect	 to	 devices,	 like	 disk	 drives,	 tape	 drives,	 and
communication	 interfaces.	 Disks	 in	 mainframes	 are	 called	 DASD	 (Direct
Attached	 Storage	 Device),	 which	 is	 comparable	 to	 a	 SAN	 (Storage	 Area
Network)	in	a	midrange	or	x86	environment.

10.2.7.3			Mainframe	virtualization
Mainframes	were	designed	for	virtualization	from	the	start	–	they	typically	run
multiple	virtual	machines	with	multiple	operating	systems;	 it	 is	not	uncommon
for	a	mainframe	to	run	dozens	of	virtual	machines	–	each	acting	as	a	mainframe
in	 its	 own	 right.	 Mainframes	 pioneered	 computer	 virtualization	 and	 their
virtualization	technology	is	still	very	sophisticated	today.
Today’s	 mainframes	 offer	 logical	 partitions	 (LPARs)	 as	 the	 default
virtualization	 solution.	 LPARs	 are,	 in	 practice,	 equivalent	 to	 separate
mainframes.	Each	LPAR	runs	its	own	mainframe	operating	system.	A	maximum
number	of	 concurrent	 processors	 executing	 in	 each	LPAR	can	be	 specified,	 as
well	as	weightings	for	different	LPARs	(e.g.	LPAR	1	can	use	twice	the	number
of	PUs	as	LPAR	2).
The	 largest	 IBM	mainframe	 today	 has	 an	 upper	 limit	 of	 54	 LPARs.	 Practical
limitations	on	the	number	of	available	PUs	and	cores	per	PU,	memory	size,	I/O

availability,	and	available	processing	power	usually	limits	the	number	of	LPARs
to	 less	 than	 this	 maximum.	 A	 more	 common	 number	 of	 LPARs	 in	 use	 on	 a
mainframe	is	less	than	ten.
Please	 note	 that	 the	 mainframe	 operating	 system	 running	 on	 each	 LPAR	 is
designed	 to	 concurrently	 run	 a	 large	 number	 of	 applications	 and	 services,	 and
can	 be	 connected	 to	 thousands	 of	 users	 at	 the	 same	 time	 –	 in	 an	 x86
configuration	 this	 would	 typically	 be	 split	 up	 over	many	 individual	 operating
system	and	physical	and	virtual	machines.	Often	one	LPAR	runs	all	production
tasks	while	another	runs	the	consolidated	test	environment.

10.2.8				Midrange	systems
The	midrange	 platform	 is	 positioned	 between	 the	mainframe	 platform	 and	 the
x86	platform.	The	 size	 and	 cost	 of	 the	 systems,	 the	workload,	 the	 availability,
their	performance,	and	the	maturity	of	the	platform	is	higher	than	that	of	the	x86
platforms,	but	lower	than	that	of	a	mainframe.
Today	midrange	systems	are	produced	by	three	vendors:

·									IBM	produces	the	Power	Systems	series	of	midrange	systems	(the
former	RS/6000,	System	p,	AS/400,	and	System	i	series).
·									Hewlett-Packard	produces	the	HP	Integrity	systems.
·									Oracle	produces	the	original	Sun	Microsystems’s	based	SPARC
servers.

Midrange	systems	are	typically	built	using	parts	from	only	one	vendor,	and	run
an	 operating	 system	 provided	 by	 that	 same	 vendor.	 This	 makes	 the	 platform
relatively	stable,	leading	to	high	availability	and	security.

10.2.8.1			History
The	 term	minicomputer	 evolved	 in	 the	 1960s	 to	 describe	 the	 small	 computers
that	became	possible	with	 the	use	of	 IC	and	core	memory	 technologies.	Small
was	 relative,	 however;	 a	 single	 minicomputer	 typically	 was	 housed	 in	 a	 few
cabinets	the	size	of	a	19”	rack.
The	 first	 commercially	 successful	minicomputer	was	DEC	PDP-8,	 launched	 in
1964.	 The	 PDP-8	 sold	 for	 one-fifth	 the	 price	 of	 the	 smallest	 IBM	 360
mainframe.	This	enabled	manufacturing	plants,	small	businesses,	and	scientific
laboratories	to	have	a	computer	of	their	own.

	

Picture	35:	DEC	PDP-8
[71]

In	 the	 late	 1970s,	DEC	produced	 another	 very	 successful	minicomputer	 series
called	the	VAX.	VAX	systems	came	in	a	wide	range	of	different	models.	They
could	easily	be	setup	as	a	VAXcluster	for	high	availability	and	performance.

DEC	was	the	leading	minicomputer	manufacturer	and	the	2nd	largest	computer
company	 (after	 IBM).	 DEC	 was	 sold	 to	 Compaq	 in	 1998	 which	 in	 its	 turn
became	part	of	HP	some	years	later.
Minicomputers	 became	powerful	 systems	 that	 ran	 full	multi-user,	multitasking
operating	 systems	 like	 OpenVMS	 and	 UNIX.	 Halfway	 through	 the	 1980s
minicomputers	 became	 less	 popular	 as	 a	 result	 of	 the	 lower	 cost	 of
microprocessor	based	PCs,	 and	 the	 emergence	of	LANs.	 In	places	where	high
availability,	performance,	and	security	are	very	important,	minicomputers	(now
better	known	as	midrange	systems)	are	still	used.
Most	 midrange	 systems	 today	 run	 a	 flavor	 of	 the	 UNIX	 operating	 system,
OpenVMS	or	IBM	i:

·									HP	Integrity	servers	run	HP-UX	UNIX	and	OpenVMS.
·									Oracle/Sun’s	SPARC	servers	run	Solaris	UNIX.
·									IBM's	Power	systems	run	AIX	UNIX,	Linux	and	IBM	i.

10.2.8.2			Midrange	architecture
Midrange	 systems	 used	 to	 be	 based	 on	 specialized	 Reduced	 Instruction	 Set
Computer	(RISC)	CPUs.	These	CPUs	were	optimized	for	speed	and	simplicity,
but	much	 of	 the	 technologies	 originating	 from	RISC	 are	 now	 implemented	 in
general	purpose	CPUs.	Some	midrange	systems	therefore	are	moving	from	RISC
based	CPUs	to	general	purpose	CPUs	from	Intel,	AMD,	or	IBM.
The	architecture	of	most	midrange	systems	typically	uses	multiple	CPUs	and	is
based	 on	 a	 shared	 memory	 architecture.	 In	 a	 shared	 memory	 architecture,	 all
CPUs	 in	 the	 system	 can	 access	 all	 installed	memory	 blocks.	 This	 means	 that
changes	made	in	memory	by	one	CPU	are	immediately	seen	by	all	other	CPUs.
Each	CPU	operates	independently	from	the	others.	To	connect	all	CPUs	with	all
memory	blocks,	an	interconnection	network	is	used	based	on	a	shared	bus,	or	a
crossbar.
A	shared	bus	connects	all	CPUs	and	all	RAM,	much	 like	a	network	hub	does.
The	 available	 bandwidth	 is	 shared	 between	 all	 users	 of	 the	 shared	 bus.	 A
crossbar	is	much	like	a	network	switch,	in	which	every	communication	channel
between	one	CPU	and	one	memory	block	gets	full	bandwidth.
The	I/O	system	is	also	connected	to	the	interconnection	network,	connecting	I/O
devices	like	disks	or	PCI	based	expansion	cards.
Since	each	CPU	has	its	own	cache,	and	memory	can	be	changed	by	other	CPUs,
cache	coherence	is	needed	in	midrange	systems.	Cache	coherence	means	that	if
one	CPU	writes	to	a	location	in	shared	memory,	all	other	CPUs	must	update	their
caches	 to	 reflect	 the	 changed	 data.	Maintaining	 cache	 coherence	 introduces	 a
significant	overhead.	Special-purpose	hardware	is	used	to	communicate	between
cache	controllers	to	keep	a	consistent	memory	image.
Shared	 memory	 architectures	 come	 in	 two	 flavors:	 Uniform	 Memory	 Access
(UMA),	 and	 Non-Uniform	 Memory	 Access	 (NUMA).	 Their	 cache	 coherent
versions	are	known	as	ccUMA	and	ccNUMA.

10.2.8.2.1			UMA
The	UMA	architecture	 is	one	of	 the	 earliest	 styles	of	multi-CPU	architectures,
typically	 used	 in	 systems	with	no	more	 than	8	CPUs.	 In	 an	UMA	system,	 the
machine	 is	organized	 into	 a	 series	of	nodes	 containing	either	 a	processor,	 or	 a
memory	block.	These	nodes	are	interconnected,	usually	by	a	shared	bus.	Via	the
shared	 bus,	 each	 processor	 can	 access	 all	 memory	 blocks,	 creating	 a	 single

system	image.
	

Figure	84:	UMA	architecture

UMA	 systems	 are	 also	 known	 as	 Symmetric	Multi-Processor	 (SMP)	 systems.
SMP	is	used	in	x86	servers	as	well	as	early	midrange	systems.
SMP	technology	is	also	used	inside	multi-core	CPUs,	in	which	the	interconnect
is	 implemented	 on-chip	 and	 a	 single	 path	 to	 the	 main	 memory	 is	 provided
between	the	chip	and	the	memory	subsystem	elsewhere	in	the	system.
	

Figure	85:	SMP	on	multi	core	CPU

UMA	is	supported	by	all	major	operating	systems	and	can	be	implemented	using
most	of	today’s	CPUs.

10.2.8.2.2			NUMA
In	contrast	to	UMA,	NUMA	is	a	computer	architecture	in	which	the	machine	is
organized	into	a	series	of	nodes,	each	containing	processors	and	memory,	which
are	 interconnected,	 typically	 using	 a	 crossbar.	 NUMA	 is	 a	 newer	 architecture
style	than	UMA	and	is	better	suited	for	systems	with	many	processors.
	

Figure	86:	NUMA	architecture

A	node	can	use	memory	on	all	other	nodes,	creating	a	single	system	image.	But
when	 a	 processor	 accesses	 memory	 not	 within	 its	 own	 node,	 data	 must	 be
transferred	over	the	interconnect,	which	is	slower	than	accessing	local	memory.
Thus,	memory	access	 times	are	non-uniform,	depending	on	 the	 location	of	 the
memory,	as	the	architecture’s	name	implies.
Some	 of	 the	 current	 computers	 using	 NUMA	 architectures	 include	 systems
based	on	AMD	Opteron	processors,	Intel	Itanium	systems,	and	HP	Integrity	and
Superdome	systems.	Most	popular	operating	systems	such	as	OpenVMS,	AIX,
HP-UX,	Solaris,	and	Windows,	and	virtualization	hypervisors	like	VMware	fully
support	NUMA	systems.

10.2.8.3			Midrange	virtualization
Most	 midrange	 platform	 vendors	 provide	 virtualization	 using	 LPARs	 as
explained	 in	 section	 10.2.5.3.2.	 LPARs	 in	 the	Oracle	 Solaris	 operating	 system
are	referred	to	as	Logical	Domains	(LDOMs);	they	are	also	a	type	of	hardware
partitioning.
IBM	AIX	 offers	Workload/Working	 Partitions	 (WPARs)	 as	 subsystems	 inside
LPARs.	 IBM’s	 Live	 Application	 Mobility	 technology	 can	 transfer	 a	 running
WPAR	from	one	LPAR	to	another	on	the	same	physical	system	or	to	a	different
physical	 system	 without	 downtime,	 much	 like	 VMware’s	 VMotion	 of
Microsoft’s	Live	Migration’s	offerings.
HP	offers	nPARs	(comparable	with	IBM’s	LPARs)	and	vPARs	(comparable	with
IBM’s	WPARs)	as	virtualization	technology	in	the	HP-UX	operating	system.
Oracle	Solaris	virtualization	provides	zones	and	containers.	The	terms	zone	and
container	can	be	used	interchangeably,	although	some	differences	exist.	A	zone
or	container	is	a	virtual	operating	system	that	provides	a	protected	environment
for	applications.	All	zones	on	the	system	share	a	common	kernel,	but	each	zone
has	its	own	node	name,	virtual	network	interfaces,	and	storage	assigned	to	it.

10.2.9				x86	servers
The	x86	platform	is	the	most	dominant	server	architecture	today.	While	the	x86
platform	was	originally	designed	for	personal	computers,	it	is	now	implemented
in	all	types	of	systems,	from	netbooks	up	to	the	fastest	multi-CPU	servers.
x86	servers	are	produced	by	many	vendors.	Best	known	vendors	are	HP,	Dell,
HDS	(Hitachi	Data	Systems)	and	Lenovo	(the	former	IBM	x86	server	business

that	Lenovo	acquired	in	2014
[72]

).	These	vendors	typically	purchase	most	server
parts	 (like	 video	 graphics	 cards,	 power	 supplies,	 RAM,	 and	 disk	 drives)	 from
other	vendors.	This	makes	x86	 server	 implementations	very	diverse.	So,	while
the	x86	architecture	is	standardized,	the	implementation	of	it	is	highly	dependent
on	the	vendor	and	the	components	available	at	a	certain	moment.
x86	servers	 typically	run	operating	systems	not	provided	by	the	vendors	of	 the
hardware.	Most	often	Microsoft	Windows	and	Linux	are	used,	but	x86	systems
are	also	capable	of	running	special	purpose	operating	systems.

10.2.9.1			History
Most	 servers	 in	 datacenters	 today	 are	 based	 on	 the	 x86	 architecture.	 This	 x86
architecture	 (also	known	as	PC	architecture)	 is	based	on	 the	original	 IBM	PC.
The	IBM	PC’s	history	is	described	in	more	detail	in	chapter	12.
In	 the	1990s,	 x86	 servers	 first	 started	 to	 appear.	They	were	basically	PCs,	 but
were	housed	in	19”	racks	without	dedicated	keyboards	and	monitors.
Over	the	years,	x86	servers	became	the	de-facto	standard	for	servers.	Their	low
cost,	the	fact	that	there	are	many	manufacturers	and	their	ability	to	run	familiar
operating	 systems	 like	 Microsoft	 Windows	 and	 Linux,	 made	 them	 extremely
popular.

10.2.9.2			x86	architecture
The	heart	of	 an	x86	based	 system	 is	 a	CPU	from	 the	x86	 family	 (see	 sections
10.2.2.1,	 10.2.2.1,	 and	 10.2.2.2	 for	 descriptions	 of	 these	 CPUs).	 x86
architectures	 are	 defined	 by	 building	 blocks,	 integrated	 in	 a	 number	 of
specialized	chips,	known	as	an	x86	chipset.
	

Figure	87:	Northbridge/Southbridge	x86	architecture

Earlier	 x86	 systems	 utilized	 a	 Northbridge/Southbridge	 architecture.	 In	 this
architecture,	 the	 data	 path	 of	 the	 CPU,	 called	 the	 Front	 Side	 Bus	 (FSB),	 was
connected	 to	 a	 fast	 Northbridge	 chip,	 transporting	 data	 between	 the	 CPU	 and
both	the	RAM	memory	and	the	PCIe	bus.	The	Northbridge	was	also	connected

to	the	Southbridge	chip	by	a	bus	called	the	Direct	Media	Interface	(DMI).	The
relatively	slow	Southbridge	chip	connected	components	with	slower	data	paths,
like	the	BIOS,	the	SATA	adaptors,	USB	ports,	and	the	PCI	bus.
In	2008,	the	Northbridge/Southbridge	architecture	was	replaced	by	the	Platform
Controller	 Hub	 (PCH)	 architecture.	 In	 this	 architecture,	 the	 Southbridge
functionality	 is	managed	 by	 the	 PCH	 chip,	which	 is	 directly	 connected	 to	 the
CPU	via	the	DMI.
	

Figure	88:	PCH	based	x86	architecture

Most	of	the	Northbridge	functions	were	integrated	into	the	CPU	while	the	PCH
took	 over	 the	 remaining	 functions	 in	 addition	 to	 the	 traditional	 roles	 of	 the
Southbridge.	In	the	PCH	architecture,	the	RAM	and	PCIe	data	paths	are	directly
connected	to	the	CPU.	Examples	of	x86	architectures	that	have	the	Northbridge
integrated	in	the	CPU	are	Intel’s	Sandy	Bridge	and	AMD's	Fusion.
After	 the	 PCH	 architecture,	 Intel	 introduced	 a	 new	 architecture	 and	 chipsets
roughly	every	two	years.
In	 2017,	 the	Kaby	Lake	 architecture	was	 introduced.	This	 architecture	 has	 the
PCH	integrated	in	the	CPU,	which	makes	the	CPU	effectively	a	full	system	on	a
chip	(SOC).	Rather	than	DMI,	these	SOCs	directly	expose	PCIe	lanes,	as	well	as
SATA,	USB,	and	High	Definition	Audio	connections	from	integrated	controllers.
Multi-CPU	x86	 servers	use	architectures	based	on	UMA	or	SMP	 (for	 low	end
servers),	or	NUMA	(for	high	end	servers),	as	described	in	section	10.2.8.2.1.

10.2.9.3			x86	virtualization

Virtualization	on	the	x86	platform	can	run	any	operating	system	that	is	designed
for	the	x86	platform,	but	in	most	cases	Windows	or	Linux	are	used.
On	x86	platforms	it	is	not	uncommon	that	servers	only	run	one	application	each.
A	Windows	server	running	Exchange	will	probably	not	also	run	SharePoint,	and
a	Linux	server	running	Apache	will	probably	not	also	run	MySQL.	In	midrange
and	mainframe	platforms	this	is	highly	unusual.	The	operating	systems	used	on
these	 platforms	 are	 designed	 to	 run	 a	 large	 number	 of	 critical	 applications	 in
isolation	 without	 problems.	 This	 is	 the	 main	 reason	 x86	 systems	 use	 their
hardware	much	less	efficient	that	midrange	systems.
By	 running	multiple	 operating	 systems	 –	 each	 in	 one	 virtual	 machine	 –	 on	 a
large	 x86	 server,	 resource	 utilization	 can	 be	 improved.	 A	 strict	 separation	 of
applications	is	preserved	using	a	single	virtual	machine	and	operating	system	for
each	 application.	 The	 x86	 virtualization	 layer	 achieves	 the	 same	 isolation	 of
applications	 that	 operating	 systems	 in	 midrange	 and	 mainframe	 systems	 are
designed	to	achieve.
The	 most	 used	 products	 for	 virtualization	 on	 the	 x86	 platform	 are	 VMware
vSphere	 (consisting	 of	 ESX,	 ESXi,	 and	 vCenter),	Microsoft’s	 Hyper-V,	 Citrix
XenServer,	Oracle	VirtualBox,	and	Red	Hat	RHEV.

10.2.10						Supercomputers
A	 supercomputer	 is	 a	 computer	 architecture	 designed	 to	maximize	 calculation
speed.	 This	 in	 contrast	 with	 a	 mainframe,	 which	 is	 optimized	 for	 high	 I/O
throughput.	Supercomputers	are	the	fastest	machines	available	at	any	given	time.
Since	 computing	 speed	 increases	 continuously,	 supercomputers	 are	 superseded
by	new	supercomputers	all	the	time.
Supercomputers	are	used	for	many	tasks,	 from	weather	forecast	calculations	 to
oil	reservoir	simulations	and	the	rendering	of	animation	movies.
Originally,	supercomputers	were	produced	primarily	by	a	company	named	Cray
Research.	The	Cray-1	was	a	major	success	when	it	was	released	in	1976.	It	was
faster	than	all	other	computers	at	the	time	and	it	went	on	to	become	one	of	the
best	 known	 and	most	 successful	 supercomputers	 in	 history.	 The	machine	 cost
$8.9	million	when	introduced.
Cray	supercomputers	used	specially	designed	CPUs	for	performing	calculations
on	 large	 sets	 of	 data,	 together	with	dedicated	hardware	 for	 certain	 instructions

(like	multiply	 and	 divide).	The	 entire	 chassis	 of	 the	Cray	 supercomputers	was
bent	into	a	large	C-shape.	Speed-dependent	portions	of	the	system	were	placed
on	the	inner	circle	of	the	chassis	where	the	wire-lengths	were	shorter	to	decrease
delays.	 The	 system	 could	 peak	 at	 250	 MFLOPS	 (Million	 Floating	 Point
Operations	per	second).
	

Picture	36:	Cray-2	supercomputer

In	1985,	the	very	advanced	Cray-2	was	released,	capable	of	1.9	billion	floating
point	operations	per	second	(GFLOPS)	peak	performance,	almost	eight	times	as
much	as	the	Cray-1.	In	comparison,	in	2017,	the	Intel	Core	i7	5960X	CPU	has	a

peak	performance	of	354	GFLOPS
[73]

;	more	than	185	times	the	performance	of
the	Cray-2!
Supercomputers	as	single	machines	started	to	disappear	in	the	1990s.	Their	work
was	 taken	 over	 by	 clustered	 computers	 –	 a	 large	 number	 of	 off-the-shelf	 x86
based	 servers,	 connected	 by	 fast	 networks	 to	 form	 one	 large	 computer	 array.
Nowadays	high	performance	computing	is	done	mainly	with	large	arrays	of	x86
systems.	 In	 2017,	 the	 fastest	 computer	 array	 was	 a	 cluster	 with	 more	 than

10,000,000	CPU	cores,	calculating	at	125,435,000	GFLOPS,	running	Linux
[74]

.
In	 some	 cases,	 specialized	 hardware	 is	 used	 to	 reach	 high	 performance.	 For
example,	graphics	processing	units	 (GPUs)	can	be	used	 together	with	CPUs	 to
accelerate	specific	calculations.
Where	a	CPU	consists	of	a	few	cores	optimized	for	sequential	serial	processing,
a	GPU	has	a	massively	parallel	architecture	consisting	of	thousands	of	smaller,
more	efficient	cores	designed	for	handling	multiple	tasks	simultaneously.

Picture	37:	NVIDIA	Tesla	P100	GPU

For	 example,	 the	 NVIDIA	 Tesla	 GP100	 GPU,	 introduced	 in	 2016,	 has	 3840
cores,	 runs	at	1.3	GHz	and	–	 including	cache	memory	–	comprises	150	billion

transistors
[75]

.

10.3									Compute	availability

High	availability	in	servers	can	be	reached	by	using	hot	swappable	components,
parity	and	ECC	memory,	and	lockstepping.

10.3.1				Hot	swappable	components
Hot	swappable	components	are	server	components	like	memory,	CPUs,	interface
cards,	and	power	supplies	that	can	be	installed,	replaced,	or	upgraded	while	the
server	is	running.
The	server	must	have	specific	circuitry	to	power	down	the	connector	of	the	hot
swappable	component,	or	the	server	system	board	must	be	equipped	with	special
connectors	 that	physically	switch	off	power	to	the	components	while	removing
the	component.
The	 virtualization	 and	 operating	 systems	 using	 the	 server	 hardware	 must	 be
aware	 that	 components	 can	be	 swapped	on	 the	 fly.	For	 instance,	 the	operating
system	must	be	able	to	recognize	that	memory	is	added	while	the	server	operates
and	must	allow	the	use	of	this	extra	memory	without	the	need	for	a	reboot.

10.3.2				Parity	and	ECC	memory
To	detect	memory	failures,	parity	bits	can	be	used	as	the	simplest	form	of	error
detecting	 code.	A	 parity	 bit	 is	 a	 bit	 that	 is	 added	 to	 a	 byte	 to	 ensure	 that	 the
number	of	bits	with	the	value	‘1’	in	a	byte	is	even	or	odd.
For	instance,	with	even	parity,	when	a	byte	of	memory	contains	1011	0110,	the
number	of	ones	is	five.	In	this	case	the	parity	bit	stores	a	1,	making	the	number
of	bits	even	(six).	When	the	memory	contains	1001	0110	the	number	of	ones	is
four.	In	the	parity	bit	a	0	is	stored,	making	the	number	of	bits	even	again	(still
four).
	
DATA								PARITY
1001	0110			0
1011	0110			1
	

When	for	some	reason	one	of	the	data	bits	or	the	parity	bit	itself	is	"flipped",	it
can	be	detected:
DATA								PARITY
0001	0110			0	->	ERROR:	parity	bit	should	have	been	1!
Parity	bits	enable	the	detection	of	data	errors	but	cannot	correct	the	error,	as	it	is
unknown	which	bit	has	flipped.
In	contrast,	ECC	memory	not	only	detects	errors,	but	is	also	able	to	correct	them.
ECC	 stands	 for	 "Error	 Correction	 Codes".	 ECC	Memory	 chips	 use	 Hamming
Code	 or	 Triple	Modular	Redundancy	 (TMR)	 as	 the	method	 of	 error	 detection
and	 correction.	Hamming	 code	 can	 correct	 single	 bit	 errors	 occurring	 in	 data.
Multi-bit	errors	in	the	same	memory	location	are	extremely	rare	and	don’t	pose
much	of	a	threat	 to	memory	systems.	TMR	memory,	however,	 is	able	to	repair
two	failing	bits.
Some	systems	also	'scrub'	detected	errors,	by	writing	the	corrected	version	back
to	memory.
The	 BIOS	 in	 some	 computers,	 and	 operating	 systems	 such	 as	 Linux,	 count
detected	and	corrected	memory	errors,	to	identify	and	report	on	failing	memory
modules	before	the	problem	becomes	catastrophic.
Memory	errors	are	proportional	to	the	amount	of	RAM	in	a	computer	as	well	as
the	duration	of	operation.	Since	servers	typically	contain	many	GBs	of	RAM	and
are	 in	 operation	 24	 hours	 a	 day,	 the	 likelihood	 of	memory	 errors	 is	 relatively
high	and	hence	they	require	ECC	memory.

10.3.3				Lockstepping
Lockstepping	 is	 an	 error	 detection	 and	 correction	 technology	 for	 servers.	 In
lockstepping,	multiple	systems	perform	the	same	calculation,	and	the	results	of
the	 calculations	 are	 compared.	 If	 the	 results	 are	 equal,	 the	 calculations	 were
correctly	performed.	If	there	are	different	outcomes,	one	of	the	servers	made	an
error.
If	two	systems	are	used	in	a	lockstepping	configuration,	errors	can	be	detected,
but	not	corrected.	When	more	systems	are	used,	errors	can	be	corrected	as	well;
a	voting	system	can	be	used	to	determine	the	correct	calculation.
Lockstepping	 is	 usually	 done	 with	 systems	 running	 in	 sync	 per	 atomic

transaction	(a	step).	For	each	step	the	results	are	compared.	Lockstepping	is	very
expensive	technology,	so	it	 is	used	only	in	systems	that	require	extremely	high
reliability.
A	 practical	 and	 low-cost	 example	 of	 lockstepping	 usage	 is	 the	 SETI@home
project,	in	which	multiple	computers	are	performing	scientific	calculations.	Each
transaction	is	sent	to	at	least	two	nodes	by	the	main	computer,	thus	performing	a
distributed	form	of	lockstepping.	When	the	results	don’t	match,	the	calculation	is
simply	performed	again	by	two	other	nodes.

10.3.4				Virtualization	availability
All	virtualization	products	provide	failover	clustering.	When	a	physical	machine
fails,	the	virtual	machines	running	on	that	physical	machine	can	be	configured	to
restart	 automatically	 on	 other	 physical	machines.	And	when	 a	 virtual	machine
crashes,	it	can	be	restarted	automatically	on	the	same	physical	machine.
Some	virtualization	products	provide	monitoring	of	the	operating	systems	from
within	 the	virtual	machines’	 operating	 system.	For	 instance,	VMware	provides
the	VMware-tools	application	running	inside	the	operating	system	of	the	virtual
machine.	 It	 monitors,	 among	 other	 things,	 if	 the	 operating	 system	 is	 still
working.	 When	 the	 operating	 system	 crashes,	 the	 VMware	 tools	 are	 not
reachable	anymore	and	VMware	will	restart	the	virtual	machine	automatically.
Since	 the	virtualization	 layer	has	no	knowledge	of	 the	applications	 running	on
the	virtual	machine’s	operating	system,	failover	clustering	on	virtualization	level
can	only	protect	against	two	situations:

·									A	physical	hardware	failure.
·									An	operating	system	crash	in	a	virtual	machine.

Since	 failover	 clustering	 on	 the	 virtualization	 layer	 cannot	 protect	 against
application	failures	(like	a	crashed	application	process	or	service),	these	should
be	 handled	 by	 the	 operating	 system	 layer.	 See	 the	 chapter	 11	 on	 operating
systems	for	more	details.
Both	 VMware	 (vSphere	 with	 HA/FT)	 and	 Citrix	 (XenServer	 with	 Marathon
everRun)	also	provide	lockstep	technology	to	keep	two	virtual	machines	in	sync,
effectively	 providing	 redundant	 operating	 systems.	 This	 technology,	 however,
has	some	technical	limitations	and	uses	quite	a	bit	of	network	bandwidth.

10.3.4.1			Admission
To	 cope	 with	 the	 effects	 of	 a	 failure	 of	 a	 physical	 machine,	 a	 spare	 physical
machine	 is	 needed.	 For	 this	 setup	 to	 work,	 all	 hypervisors	 are	 placed	 in	 a
virtualization	 cluster,	 so	 they	 are	 aware	 of	 each	 other.	 The	 hypervisors	 on	 the
physical	machines	check	the	availability	of	the	other	hypervisors	in	the	cluster.
	

Figure	89:	Using	a	spare	physical	machine

In	Figure	89,	one	physical	machine	is	running	as	a	spare	to	take	over	the	load	of
any	 failing	 physical	machine.	Under	 normal	 conditions	 the	 spare	 server	 is	 not
doing	any	work.
	

Figure	90:	Failing	physical	machine

When	one	physical	machine	fails	(Figure	90),	the	virtual	machines	running	on	it
are	automatically	restarted	on	the	spare	physical	machine.
An	 alternative	 is	 to	 have	 all	 physical	machines	 running	 at	 lower	 capacity.	 For
instance,	when	5	machines	are	in	a	virtualization	cluster,	and	each	machine	could

host	 ten	virtual	machines,	 the	 total	 load	of	all	servers	should	be	 	virtual
machines.	Instead	of	having	one	spare	server	running,	the	workload	can	also	be

spread	over	all	machines,	each	hosting	 virtual	machines.
	

Figure	91:	All	machines	used

This	way	 all	 resources	 are	 used	 as	much	 as	 possible	 since	 the	 hypervisor	will
provide	 extra	 resources	 like	 RAM	 and	 CPU	 to	 the	 virtual	 machines
automatically,	 even	 though	 it	 is	 still	 possible	 to	 handle	 a	 failure	 of	 a	 physical
machine.	 In	 that	 case	 the	 four	 remaining	 physical	 machines	 still	 have	 the
capacity	to	run	8	extra	virtual	machines	and	the	virtual	machines	that	ran	on	the
failed	 physical	 machine	 can	 automatically	 be	 restarted	 on	 the	 other	 physical
machines	(Figure	92).
	

Figure	92:	Failing	machine	when	all	machines	were	used

10.4									Compute	performance

The	 performance	 of	 computers	 is	 dependent	 on	 the	 architecture	 of	 the	 server
(which	is	described	in	earlier	sections),	the	speed	of	the	memory	and	CPU,	and
the	bus	speed.

10.4.1				Moore's	law
Today,	 all	 computers	 use	 microprocessors	 as	 their	 Central	 Processing	 Unit
(CPU).	Before	 the	 invention	of	microprocessors,	a	 single	CPU	was	built	using
one	 or	 more	 circuit	 boards,	 containing	 large	 numbers	 of	 Integrated	 Circuits
(ICs).	Each	IC	contained	from	tens	to	a	few	hundred	transistors.
In	 1971,	 Intel	 released	 the	world's	 first	 universal	microprocessor,	 the	 4004.	A
microprocessor	 is	 nothing	 more	 than	 a	 very	 complex	 IC,	 combining	 the
functions	 of	 all	 the	 individual	 ICs	 and	 the	 circuitry	 needed	 to	 create	 a	 CPU,
effectively	creating	a	processor	on	a	chip.
	

Picture	38:	Intel	4004	microprocessor
[76]

The	 4004	 chip	 itself	 was	 3	 mm	 wide	 by	 4	 mm	 long	 and	 consisted	 of	 2,300
transistors.	The	chip	was	mounted	 in	 an	DIP	package	with	16	connection	pins
(the	DIP	package	was	much	larger	that	the	chip	itself	of	course).	Coupled	with
one	 of	 Intel's	 other	 products,	 the	 RAM	 chip,	 the	 microprocessor	 allowed
computers	 to	 be	 much	 smaller	 and	 faster	 than	 previous	 ones.	 The	 4004	 was
capable	of	performing	60,000	instructions	per	second,	which	was	about	as	much
as	the	ENIAC	computer	that	filled	a	complete	room	and	weighed	several	tons.
Since	the	introduction	of	the	first	CPU	in	1971,	the	power	of	CPUs	has	increased
exponentially.	This	makes	today’s	computers	much	more	powerful	than	we	could

possibly	have	imagined	forty	years	ago.
Moore's	 law	 states	 that	 the	 number	 of	 transistors	 that	 can	 be	 placed
inexpensively	 on	 an	 integrated	 circuit	 doubles	 approximately	 every	 two	 years.
This	 trend	has	 continued	 for	more	 than	half	 a	 century	now.	The	 law	 is	 named
after	Intel’s	co-founder	Gordon	E.	Moore,	who	described	 the	 trend	 in	his	1965

paper	 "Cramming	 more	 components	 onto	 integrated	 circuits”
[77]

,	 when	 he
worked	at	Fairchild.
Over	the	years,	the	number	of	transistors	on	a	CPU	raised	from	2,300	on	the	first
CPU	 (the	 4004	 in	 1971)	 to	 7,200,000,000	 on	 an	 Intel	 Broadwell-EP	 Xeon	 in
2017.	This	is	an	3,100,000-fold	increase	in	45	years’	time!
	

Figure	93:	Moore's	law

Figure	 93	 clearly	 shows	 the	 trend.	 Please	 note	 that	 the	 vertical	 scale	 is
logarithmic	 instead	 of	 linear,	 showing	 a	 10-fold	 increase	 of	 the	 number	 of
transistors	in	each	step.
Note	 that	 Moore's	 law	 only	 speaks	 of	 the	 number	 of	 transistors;	 not	 the
performance	of	the	CPU.	The	performance	of	a	CPU	is	dependent	on	a	number
of	variables,	like	the	clock	speed,	the	use	of	caches	and	pipelines,	and	the	width
of	 the	 data	 bus.	When	we	 look	 at	 the	 performance	 gain	we	 see	 a	 doubling	 of
CPU	performance	every	18	months;	even	faster	than	what	Moore's	law	states.

Obviously,	Moore’s	law	cannot	continue	forever,	as	there	are	physical	 limits	to
the	number	of	transistors	a	single	chip	can	hold.	In	2017,	 the	connections	used
inside	 a	 high-end	 CPU	 had	 a	 physical	 width	 of	 14	 nm	 (nanometer).	 This	 is
extremely	small	–	the	size	of	140	atoms	(the	diameter	of	an	atom	is	of	the	order

of	0.1	nm
[78]

)!	It	is	expected	that	in	2020,	5	nm	CPUs	are	produced,	where	the
traces	on	the	chip	are	a	mere	50	atoms	wide.
When	designing	an	infrastructure,	it	sometimes	makes	sense	to	take	Moore's	law
into	 account	 by	 not	 purchasing	 too	 much	 spare	 capacity	 in	 advance.	 By
purchasing	 and	 implementing	 new	 servers	 "just	 in	 time",	 the	 purchased	 server
will	have	twice	the	processing	capacity	of	a	server	you	could	have	purchased	18
months	earlier,	for	the	same	price.	Therefore,	to	get	the	full	benefits	of	Moore's
law,	 the	 infrastructure	 (management)	 must	 be	 designed	 to	 handle	 just	 in	 time
upgrades.

10.4.2				Increasing	CPU	and	memory	performance
Various	techniques	have	been	invented	to	increase	CPU	performance.	The	most
important	 ones	 are	 increasing	 the	 clock	 speed,	 caching,	 prefetching,	 branch
prediction,	 pipelines,	 and	 use	 of	 multiple	 cores.	 These	 technologies	 are
explained	in	the	following	sections.
While	the	inner	working	of	a	CPU	cannot	be	changed,	it	is	useful	to	understand
some	of	it.	Not	only	for	choosing	an	optimal	processor	architecture	for	a	certain
situation,	but	also	to	be	able	 to	 tune	external	parameters	(like	compiler	options
for	application	programmers)	 to	have	software	running	in	an	optimal	way	on	a
certain	CPU,	and	to	find	root	causes	in	case	of	performance	problems.

10.4.2.1			Increasing	clock	speed
In	 the	early	years,	CPU	clock	speed	was	the	main	performance	indicator.	A	33
MHz	 80486	 processor	 was	 clearly	 slower	 than	 a	 66	 MHz	 80486	 processor.
While	 this	 is	 still	 true	 in	 some	ways,	 today’s	 processor	 clock	 speed	 is	 not	 the
most	important	indicator	of	speed	anymore.
CPU	clock	speed	is	measured	in	Hertz	(Hz)	–	clock	ticks	or	cycles	per	second.	A
MHz	 is	 a	 million	 cycles	 per	 second	 and	 a	 GHz	 is	 a	 billion	 clock	 cycles	 per
second.

Figure	94:	Clock	ticks	and	clock	cycles

The	CPU	processes	instructions	stored	in	memory.	These	instructions	need	to	be
fetched,	 decoded,	 executed	 (for	 which	 often	 data	 needs	 to	 be	 fetched	 from
memory	 as	 well),	 and	 the	 result	 must	 often	 be	 written	 back	 to	 memory.	 In
principle,	each	of	these	steps	is	executed	sequentially.	Each	step	in	the	sequence
is	executed	when	an	external	clock	signal	is	changed	from	0	to	1	(the	cock	tick).
The	clock	signal	is	supplied	to	the	CPU	by	an	external	oscillator.
Depending	on	the	type	of	CPU	instruction,	one	or	more	clock	ticks	are	needed	to
execute	the	instruction.	The	used	CPU	architecture	has	a	large	influence	on	the
number	of	 clock	 ticks	needed	 for	 an	 instruction.	Because	of	 the	very	 complex
technologies	used	 in	 today’s	CPUs,	 it	 is	not	easy	 to	determine	 in	advance	how
many	clock	ticks	a	certain	instruction	will	take	to	complete.	Caching,	pipelines,
and	out	of	order	execution	of	instructions	are	used	to	optimize	the	CPU	and	get
as	much	as	possible	done	in	as	few	clock	ticks	as	possible.
Today’s	 CPUs	 use	 clock	 speeds	 as	 high	 as	 3	 GHz,	 sometimes	 even	 higher.
Because	of	physical	 limitations,	oscillators	cannot	run	at	 this	speed.	Therefore,
an	 oscillator	with	 a	 lower	 frequency	 is	 used	 (for	 instance	 400	MHz)	 and	 this
clock	rate	is	multiplied	on	the	CPU	chip.	An	8	times	multiplication	of	400	MHz
leads	to	a	CPU	clock	of	3200	MHz	or	3.2	GHz.	The	oscillator	speed	is	used	for
other	parts	of	the	system	board	as	well	(like	the	RAM).	This	speed	is	known	as
the	Front	Side	Bus	(FSB)	speed.
	

Figure	95:	Oscillator	and	multiplier

Note	 that	 the	 speed	 of	 the	 FSB	 and	 CPU	 are	 linked;	 changing	 the	 oscillator
speed	will	 change	 both	 the	 FSB	 and	 the	 CPU	 speed.	 Changing	 the	multiplier
only	changes	the	CPU	speed.

10.4.2.2			CPU	Caching
Dynamic	 RAM,	 typically	 used	 for	 the	main	memory,	 is	 about	 5	 times	 slower
than	 static	RAM.	While	 static	RAM	 is	 very	 fast,	 it	 is	 also	 expensive:	 it	 takes
about	6	times	as	much	circuitry	compared	to	dynamic	RAM.
All	CPUs	in	use	today	contain	on-chip	caches.	A	cache	is	a	relatively	small	piece
of	high	speed	static	RAM	on	the	CPU	that	temporarily	stores	data	received	from
slower	main	memory.	The	purpose	of	cache	memory	is	to	speed	up	the	fetching
of	instructions	and	data	the	CPU	needs.
Main	 memory	 RAM	 runs	 at	 a	 considerably	 lower	 clock	 speed	 than	 cache
memory.	 Cache	 memory	 runs	 at	 full	 CPU	 speed	 (say	 3	 GHz),	 whereas	 main
memory	runs	at	the	CPU	external	clock	speed	(say	100	MHz,	which	is	30	times
slower).
The	memory	path	between	RAM	and	CPU	cache	is	typically	64	bits	wide,	while
the	data	path	between	 the	caches	and	 the	CPU	core	 is	 typically	256	bits	wide.
This	allows	for	transfer	of	multiple	words	of	data	in	one	CPU	clock	tick.
Most	CPUs	contain	two	types	of	cache:	level	1	and	level	2	cache.	Level	1	cache
is	smaller	than	level	2	cache,	but	also	faster.	Since	it	is	very	hard	to	create	very
fast	static	memory,	able	to	run	at	CPU	speed	with	close	to	zero	latency,	level	1

cache	is	placed	closest	to	the	core	of	the	CPU.
	

Figure	96:	CPU	Cache

The	level	1	cache	is	fed	by	level	2	cache,	which	in	turn	gets	its	data	from	RAM.
Level	 1	 cache	 is	 usually	 split	 between	 a	 read-only	 instruction	 cache	 and	 a
read/write	data	cache,	whereas	level	2	cache	is	used	for	both	reading	and	writing
data	and	instructions.
Some	multi-core	CPUs	 also	have	 a	 large	 level	 3	 cache;	 a	 cache	 shared	by	 the
cores.	This	optimizes	the	use	of	the	limited	amount	of	cache	memory	available
on	the	CPU	chip.
Some	 CPUs	 use	 an	 exclusive	 cache	 system,	 which	 means	 that	 the	 cached
memory	is	in	only	one	of	the	available	caches.

10.4.2.3			Pipelines
The	first	CPUs	handled	one	instruction	at	a	time.	Only	when	an	instruction	was
fully	finished,	the	next	instruction	would	be	handled.	Handling	instructions	can
be	split	up	in	multiple	stages:

·									Fetching	the	instruction	from	memory.
·									Decoding	the	instruction.
·									Executing	the	instruction.
·									Writing	the	result	of	the	instruction	back	to	memory	or	a	register.

Early	 processors	 first	 fetched	 an	 instruction,	 decoded	 it,	 then	 executed	 the
fetched	instruction,	and	wrote	the	result	back	before	fetching	the	next	instruction
and	starting	the	process	over	again.
	

Figure	97:	Instruction	phases

Later,	CPUs	started	 to	use	so-called	pipelines.	The	width	of	 the	pipeline	 is	 the
same	 as	 the	 number	 of	 instruction	 stages.	The	 idea	 behind	 the	 pipeline	 is	 that
while	 the	 first	 instruction	 is	 being	 executed,	 the	 second	 instruction	 can	 be
fetched	(since	that	circuitry	is	idling	anyway),	creating	instruction	overlap.
	

Figure	98:	Instruction	overlap	in	a	4	stages	deep	pipeline

Ideally	this	leads	to	one	instruction	being	executed	per	available	clock	tick.	But
because	some	instructions	need	the	output	from	the	previous	instruction	as	input,
these	instructions	are	held	until	the	previous	instruction	has	completed	its	current
stage.	To	overcome	delays	associated	with	this	pipeline	design,	most	processors
have	broken	down	the	execute	and/or	fetch	cycle	into	a	number	of	extra	stages	to
optimize	the	pipelines	to	try	and	execute	instructions	each	and	every	clock	tick.

10.4.2.4			Prefetching	and	branch	prediction
When	a	CPU	needs	data	from	memory,	it	first	checks	its	level	1	cache	(as	this	is
the	 fastest	 memory	 available).	 When	 the	 data	 is	 not	 available	 in	 the	 level	 1
cache,	the	CPU	tries	the	level	2	cache.	If	the	data	is	not	available	there	as	well

(and	there	is	no	higher-level	cache	available),	it	fetches	the	data	from	RAM.
Let’s	assume	all	caches	are	empty	and	the	CPU	needs	an	instruction.	Since	the
data	could	not	be	found	in	cache,	it	is	fetched	from	RAM.	After	the	instruction	is
executed	 by	 the	CPU,	 it	 needs	 the	 next	 instruction.	Usually	 this	 instruction	 is
stored	at	the	next	address	location	in	RAM.	To	speed	up	the	CPU,	prefetching	is
done	 by	 the	 cache	memory	 system.	Using	 prefetching,	 when	 an	 instruction	 is
fetched	from	main	memory,	also	the	next	instructions	are	fetched	and	stored	in
cache,	so	that	when	the	CPU	needs	the	next	instruction	it	is	already	available	in
cache.
Unfortunately,	most	programs	contain	jumps	(also	known	as	branches),	resulting
in	 cache	 misses	 because	 the	 next	 instruction	 is	 not	 the	 next	 instruction	 in
memory.
To	prevent	as	much	cache	misses	as	possible;	 the	cache	system	tries	 to	predict
the	outcome	of	branch	instructions	before	they	are	executed	by	the	CPU	(called
branch	prediction).	The	cache	system	recognizes	JUMP	instructions	and	checks
where	the	next	instruction	after	the	JUMP	is	located.	The	cache	then	fills	itself
with	 these	 instructions	 from	 main	 memory.	 Of	 course,	 this	 system	 is	 not
foolproof,	 but	 in	 practice	 more	 than	 80%	 of	 the	 processor	 instructions	 are
delivered	 to	 the	 CPU	 from	 cache	 memory	 using	 prefetching	 and	 branch
prediction.

10.4.2.5			Superscalar	CPUs
Essentially	 all	 general-purpose	 CPUs	 developed	 since	 about	 1998	 are
superscalar.	A	superscalar	CPU	can	process	more	than	one	instruction	per	clock
tick.	 This	 is	 done	 by	 simultaneously	 dispatching	 multiple	 instructions	 to
redundant	 functional	 units	 on	 the	 processor.	 Each	 functional	 unit	 is	 not	 a
separate	CPU	core,	 but	 an	 execution	 resource	within	 a	 single	CPU	such	 as	 an
arithmetic	logic	unit	(ALU),	a	bit	shifter,	or	a	multiplier.	In	a	superscalar	design,
the	processor	actually	has	multiple	data	paths	where	multiple	instructions	can	be
executed	simultaneously,	one	in	each	data	path.
	

Figure	99:	Superscalar	CPU

In	order	for	superscalar	CPUs	to	perform	well,	the	CPU	dynamically	checks	for
data	 dependencies	 between	 instructions.	 In	 a	 superscalar	 CPU,	 a	 dispatcher
circuit	reads	instructions	from	memory	and	decides	which	ones	can	be	executed
in	 parallel,	 dispatching	 them	 to	 the	 redundant	 functional	 units.	 This	 obviously
makes	the	CPU	logic	very	complex.

10.4.2.6			Multi-core	CPUs
With	CPU	clock	 speeds	accelerating	past	 the	1	GHz	mark	around	2002,	many
predicted	new	CPUs	would	 reach	speeds	of	10	GHz	 in	 the	 future.	 Instead,	 the
fastest	commercial	CPUs	have	been	between	running	between	3	GHz	and	4	GHz
for	a	number	of	years	now.	There	are	several	reasons	for	this.
High	clock	speeds	(way	beyond	radio	frequencies)	traveling	over	a	circuit	board
make	 connections	 on	 the	 circuit	 board	 work	 as	 a	 radio	 antenna,	 creating
interference	 with	 other	 connections	 in	 the	 circuit	 board.	 This	 could	 make	 the
circuitry	vulnerable	 to	 instability.	Only	a	very	rigid	circuit	board	design	makes
this	effect	manageable.
A	 frequency	 of	 3	GHz	means	 a	 wavelength	 of	 10	 cm.	 This	means	 that	 when
signals	 travel	for	more	than	a	few	cm	on	a	circuit	board,	 the	signal	gets	out	of
phase	with	the	clock.
But	 the	 most	 problematic	 issue	 with	 using	 very	 high	 clock	 speeds	 is	 the

temperature	of	 the	CPU.	When	a	CPU	runs	at	3	GHz,	 transistors	on	 that	CPU
change	 their	 current	 flow	 3	 billion	 times	 per	 second.	 Transistors	 in	 the	 CPU
create	heat	whenever	 they	switch	current.	At	3	billion	switches	per	second	and
with	the	very	high	density	of	CPUs	(containing	billions	of	transistors	on	a	very
small	surface),	the	CPU	can	heat	up	tremendously	at	certain	spots.	At	a	rate	of
more	 than	 3	 GHz	 some	 heat	 spots	 on	 the	 CPU	 cannot	 be	 cooled	 effectively
anymore,	 resulting	 in	 a	meltdown	 of	 the	 CPU.	 The	majority	 of	 today's	 CPUs
should	not	exceed	temperatures	of	95	degrees	Celsius	and	most	will	run	between
70-90	degrees	Celsius.
For	these	reasons	the	clock	speed	at	which	a	CPU	can	run	reliably	is	limited	to
approximately	4	GHz.	For	a	while	this	problem	was	seen	as	the	end	of	Moore's
law.
Multi-core	CPUs	are	a	solution	for	these	problems.	Until	about	2005,	most	CPUs
were	single	core	processors.	The	CPU	consisted	of	one	central	processing	unit
that	fetched,	decoded,	and	executed	machine	code	instructions,	called	the	core	of
the	 CPU.	A	multi-core	 processor	 is	 a	 CPU	with	multiple	 separate	 cores,	 each
with	 their	own	cache.	 It	 is	 the	equivalent	of	getting	multiple	processors	 in	one
package.	If	 these	cores	were	placed	on	a	single	chip	without	any	modification,
the	chip	would	consume	 twice	as	much	power	and	generate	a	 large	amount	of
heat.	To	 solve	 this,	 the	cores	 in	 a	multi-core	CPU	 run	at	 a	 lower	 frequency	 to
reduce	power	consumption.
All	 PCs	 and	 servers	 now	 have	 multi-core	 CPUs.	 It	 is	 likely	 to	 see	 a	 huge
increase	 of	 the	 number	 of	 cores	 in	 a	 CPU	 in	 the	 future.	 The	 general	 trend	 in
processor	 development	 has	moved	 from	dual-core	 chips	 to	CPUs	with	 tens	 or
even	hundreds	of	cores.

	

Moore's	 law	 leads	 to	 having	more	 cores	 on	 a	 single	CPU	 instead	 of	 having
CPUs	running	on	higher	clock	speeds.	This	has	some	side	effects	that	might	not
be	obvious.
I	recently	executed	a	performance	test	of	a	new	VMware	infrastructure,	using
the	 latest	CPUs.	To	be	able	 to	check	 the	performance	 increase,	a	copy	of	 the
virtual	machines	from	the	existing	production	environment	was	installed	on	the
new	infrastructure.	That	way,	the	performance	of	the	new	environment	could	be
compared	with	the	performance	of	the	existing	environment.
The	amount	of	RAM	and	 the	number	of	CPU	cores	 for	 each	virtual	machine
were	set	to	the	same	value	as	in	the	old	production	environment,	to	show	how
much	faster	the	new	CPUs	performed.
We	found,	however,	that	the	new	hardware	seemed	not	to	be	much	faster	than
the	five-year-old	hardware	currently	in	use	in	production.
The	reason	was	that	while	the	total	performance	of	each	CPU	was	much	higher
(because	each	physical	CPU	had	much	more	cores),	the	individual	CPU	cores
were	not	running	much	faster	than	the	cores	on	the	CPUs	from	five	years	ago.

10.4.2.7			Hyper-threading
Certain	Intel	CPUs	(like	 the	Core	 i3/i5/i7	and	Xeon	CPUs)	contain	a	propriety
technology	 called	 hyper-threading.	 Hyper-threading	 makes	 a	 single	 processor
core	virtually	work	as	a	multi-core	processor.
Hyper-threading	 (recent	 versions	 of	 which	 are	 called	 simultaneous
multithreading,	or	SMT)	allows	a	single	physical	processor	core	to	behave	like
two	 logical	 processors,	 essentially	 allowing	 two	 independent	 threads	 to	 run
simultaneously.	 Unlike	 having	 twice	 as	 many	 processor	 cores	 —	 that	 can
roughly	 double	 performance	—	 hyper-threading	 can	 provide	 some	 increase	 in
system	performance	by	keeping	the	processor	pipelines	busier.
It	 is	 not	 enough	 that	 a	 processor	 supports	 hyper-threading	—	 the	 BIOS	must
support	it	as	well.

10.4.3				Virtualization	performance
Consolidating	 multiple	 virtual	 machines	 on	 one	 physical	 machine	 increases

CPU	usage,	and	thus	reduces	CPU	idle	time.	This	is	generally	considered	a	good
thing	and	is	a	primary	driver	for	the	use	of	virtualization.	But	it	also	means	that
the	physical	machine	needs	 to	 handle	 the	disk	 and	network	 I/O	of	all	 running
virtual	 machines	 (possibly	 dozens	 of	 them).	 This	 can	 easily	 lead	 to	 an	 I/O
performance	bottleneck.
So,	when	choosing	a	physical	machine	to	host	virtual	machines,	consider	getting
a	 machine	 with	 not	 only	 plenty	 of	 CPU	 and	 memory	 capacity,	 but	 also	 one
capable	 of	 very	 high	 I/O	 throughput.	Mainframes,	midrange,	 and	 x86	 systems
with	multiple	PCI	bridges	are	best	suited	to	handle	the	high	I/O	load	needed	in	a
virtualized	environment.
Compared	 to	 running	 operating	 systems	 directly	 on	 a	 physical	 machine,	 by
definition,	 virtualization	 introduces	 performance	 penalties,	 both	 in	 resources
required	 to	 run	 the	 hypervisor	 and	 in	 reduced	 performance	 on	 the	 virtual
machines	 due	 to	 operation	 transformations.	 This	 makes	 the	 performance	 of
virtualization	solutions	always	a	point	of	discussion.
But	 opinions	 about	 virtualization	 performance	 are	 mostly	 just	 that	 –	 they	 are
rarely	backed	with	hard	numbers.	Some	performance	degradation	is	evident,	as
an	extra	layer	is	added,	but	it	is	usually	less	than	10%	of	the	total	performance.
Databases	 should	 be	 carefully	 evaluated	 before	 migrating	 them	 to	 a	 virtual
machine.	Databases	generally	require	a	lot	of	network	bandwidth	and	high	disk
I/O	 performance.	 This	 makes	 databases	 less	 suitable	 for	 a	 virtualized
environment.	However,	the	involvement	of	the	hypervisor	can	be	minimized	by
providing	a	virtual	machine	(running	a	database)	with	a	Raw	Device	Mapping.
RDMs	 allow	 a	 virtual	 machine	 unrestricted	 exclusive	 access	 to	 a	 physical
storage	 medium.	 RDMs	 prevent	 almost	 all	 interference	 from	 the	 hypervisor,
diminishing	 the	 performance	 overhead	 of	 the	 hypervisor	 on	 storage	 to	 almost
zero.
Most	 large	 databases	 on	 physical	 machines	 utilize	 all	 available	 hardware
capacity.	 This	 means	 that	 implementing	 such	 a	 database	 in	 a	 virtual	 machine
only	allows	the	physical	machine	to	handle	one	virtual	machine,	reducing	some
of	 the	 benefits	 of	 virtualization.	 Virtualization,	 however,	 still	 ensures	 that	 the
database	server	can	easily	be	migrated	 (possible	without	downtime)	 to	another
physical	 server.	Management	of	 the	 servers	 is	unified	as	well	when	all	 servers
run	hypervisors,	even	if	they	just	run	one	virtual	machine.

10.5									Compute	security

10.5.1				Physical	security
Servers	can	be	physically	secured	using	the	following	features:

·									Disable	external	USB	ports	in	the	BIOS.	USB	ports	enable
connectivity	of	external	devices,	which	is	a	security	threat.	USB	devices
can	be	storage	devices	(which	can	be	used	to	spread	viruses	and	worms	or
for	creating	illegal	data	copies),	network	devices	like	a	Wi-Fi	or	Bluetooth
device	(which	can	be	used	to	get	uncontrolled	access	to	the	server),	or
other	devices.
·									BIOS	settings	in	an	x86	server	should	be	protected	using	a	password.
Using	the	BIOS	password	is	a	good	practice	since	via	the	BIOS	external
USB	ports	can	be	enabled,	and	other	parameters	can	be	set.
·									Some	servers	allow	the	detection	of	the	physical	opening	of	the	server
housing.	Such	an	event	can	be	sent	to	a	central	management	console	using
for	instance	SNMP	traps.	If	possible,	enable	this	to	detect	unusual
activities.

10.5.2				Virtualization	security
Virtual	machines	must	 be	 protected	 the	 same	way	 as	 physical	machines.	They
should	run	anti-virus	software,	be	equipped	with	host	based	firewalls,	and	have
all	security	patches	applied.	But	the	use	of	virtualization	introduces	new	security
vulnerabilities	of	its	own.
If	possible,	 firewalls	and	 Intrusion	Detection	Systems	 (IDSs)	 in	 the	hypervisor
should	be	deployed.	These	firewalls,	 IDSs	and	also	 the	virtual	switches	should
be	managed	 by	 the	 same	 systems	managers	 that	 manage	 these	 devices	 in	 the
physical	 world	 (i.e.	 the	 network	 systems	 managers),	 not	 the
virtualization	systems	managers.
Don't	 forget	 that	 the	 virtualization	 platform	 itself	 needs	 patching	 too!	 Since	 a
hypervisor	is	in	fact	a	small	operating	system,	they	are	also	vulnerable	to	attacks.
And	when	malicious	 software	 is	 installed	 in	 the	hypervisor,	 it	 is	 impossible	 to
detect	it	from	within	the	virtual	machines!

To	minimize	the	risk	of	an	attack	on	the	hypervisor,	the	size	and	complexity	of
the	 hypervisor	 should	 be	 kept	 to	 a	 minimum,	 reducing	 the	 attack	 target	 area.
VMware	ESX,	for	example,	uses	a	small	(approximately	32	MB)	hypervisor	that
directly	 runs	 on	 the	 hardware,	 while	 Hyper-V	 uses	 a	 complete	 Windows
operating	system.

10.5.2.1			DMZ
Consider	using	separate	physical	machines	to	increase	security	for	servers	inside
the	DMZ.	These	physical	machines	can	 run	all	 the	virtual	machines	needed	 in
the	DMZ,	while	still	preserving	physical	separation	from	systems	outside	of	the
DMZ.

10.5.2.2			Systems	management	console
Virtual	 machines	 are	 managed	 using	 a	 systems	 management	 console.	 This
systems	management	 console	 connects	 to	 all	 hypervisors	 and	virtual	machines
and	provides	functions	like	shutting	down	(clusters	of)	virtual	machines,	starting
virtual	 machines,	 adding	 or	 removing	 resources	 of	 virtual	 machines	 (storage,
memory,	CPUs),	 and	 connecting	 to	 server	 consoles.	The	 systems	management
console	therefore	poses	a	major	security	risk.	When	the	security	of	the	systems
management	 console	 is	 breached,	 effectively	 all	 virtual	 machine’s	 security	 is
breached.	 The	 systems	 management	 console	 must	 therefore	 be	 thoroughly
protected.
It	is	good	practice	to	implement	separation	of	duties	in	the	systems	management
console.	Not	 all	 systems	managers	 should	 have	 access	 to	 all	 virtual	machines.
Special	 user	 accounts	 and	 passwords	 should	 be	 configured	 for	 high	 risk
operations	like	shutting	down	physical	machines	or	virtualized	clusters.	And	all
user	activity	in	the	systems	management	console	should	be	logged	to	a	physical
machine	in	a	locked	room,	not	accessible	for	systems	managers.
	

11					

OPERATING	SYSTEMS

11.1									Introduction

An	operating	system	is	the	set	of	programs	that,	after	being	initially	loaded	into	a
computer	by	a	boot	program,	controls	 all	 the	other	programs	 in	a	 computer.	 It
also	manages	a	computer’s	internal	workings	–	its	memory,	processors,	internal
and	peripheral	devices,	 the	 file	 system,	etc.	Operating	 systems	are	designed	 to
make	best	use	of	a	computer’s	resources.	PCs,	laptops,	virtual	machines,	servers,
and	 tablets	 all	 use	 an	 operating	 system.	 But	 most	 other	 devices	 containing	 a
(small)	 computer	 use	 an	 operating	 system	 as	well:	 a	mobile	 phone,	 a	 network
router,	a	storage	array,	a	car,	a	television,	or	sometimes	even	a	washing	machine.
Operating	systems	provide	an	abstraction	layer	between	(virtualized	or	physical)
hardware	 and	 software	 applications.	 As	 a	 service	 to	 applications,	 low	 level
hardware	 management	 like	 process	 management,	 memory	 management,
interrupt	management,	multi	user	management,	file	locking,	and	file	sharing	are
all	handled	by	the	operating	system.
Operating	 systems	 also	 provide	 services	 to	 applications	 in	 the	 form	 of
Application	Programming	 Interfaces	 (APIs),	 for	 example	 for	 file	management,
I/O	interfaces	(like	video	and	keyboard),	hardware	drivers	(like	printer	drivers),
and	other	hardware.
	

Figure	100:	Operating	systems	in	the	infrastructure	model

Early	operating	systems	could	execute	only	one	program	at	a	time.	At	any	given
time,	one	user	had	sole	use	of	the	computer.	He	would	arrive	at	a	scheduled	time

with	 program	 and	 data	 on	 punched	 cards	 or	 on	 tape.	 The	 program	 would	 be
loaded	into	the	machine,	and	the	machine	would	be	set	to	work	until	the	program
completed	and	another	user	could	use	the	computer.
Through	the	1950s,	many	major	features	were	pioneered	in	the	field	of	operating
systems,	including	multitasking.	Now	it	was	possible	to	have	multiple	users’	jobs
run	in	parallel.
During	 the	 1960s,	 IBM	 introduced	 the	 concept	 of	 a	 single	 operating	 system
(OS/360)	for	all	of	its	mainframes.	IBM's	current	mainframe	operating	systems
are	 still	 descendants	 of	 this	 original	 operating	 system:	 applications	written	 for
OS/360	can	still	run	on	today’s	machines.
Personal	 computers	 neither	 had	 the	 capacity,	 nor	 the	 need	 for	 the	 complex
operating	systems	that	had	been	developed	for	mainframes.	Instead,	minimalistic
operating	systems	were	developed,	often	loaded	from	ROM,	known	as	Monitors.
One	 of	 the	 early	 disk	 based	 operating	 systems	 for	 personal	 computers	 was
CP/M.	 Parts	 of	 CP/M	 were	 imitated	 in	 MS-DOS,	 which	 became	 extremely
popular	when	chosen	as	the	default	operating	system	for	the	IBM	PC.
The	 most	 popular	 operating	 systems	 running	 on	 servers	 today	 are	 Microsoft
Windows,	 Linux,	 and	UNIX.	On	 end	 user	 devices,	Windows,	 Linux,	Mac	OS
X,	and	mobile	operating	systems	iOS	and	Android	are	popular.
Besides	 these	 popular	 operating	 systems,	 some	 other	 operating	 systems	 are	 in
use,	typically	designed	for	special	purposes,	like	real-time	operating	systems,	or
operating	 systems	 for	 embedded	 systems	 and	 consumer	 products,	 like	 cars	 or
DVD	players.

11.2									Operating	System	building	blocks

An	operating	system	basically	performs	two	operations:
·									It	enables	multiple	users,	multiple	processes,	and	multiple	applications
to	run	together	on	a	single	piece	of	hardware.
·									It	hides	the	technical	complexities	of	the	underlying	hardware	from
the	applications	running	on	top	of	the	operating	system.

	

Figure	101:	Operating	system	working	environment

In	Figure	101,	the	working	environment	of	an	operating	system	is	shown.
The	kernel	 is	 the	 heart	 of	 an	 operating	 system.	 It	 starts	 and	 stops	 programs,
manages	the	file	system,	and	performs	other	so	called	"low	level"	tasks	that	most
programs	need.	And,	 perhaps	most	 importantly,	 the	kernel	 schedules	 access	 to
hardware	 to	avoid	conflicts	 if	 two	programs	try	 to	access	 the	same	resource	or
device	simultaneously.
Drivers	 are	 small	 applications	 that	 connect	 specific	 hardware	 devices,	 like	 a
printer	of	a	network	card,	to	the	kernel.
Utilities	 are	 applications	 that	 are	 considered	part	 of	 the	 operating	 system,	 like
user	interfaces	(text-based	shells	and	GUIs),	installation	and	configuration	tools,
logging	tools,	editors,	system	update	processes,	and	web	browsers.

Applications	 consist	 of	 one	 or	 more	 processes	 that	 communicate	 with	 the
operating	 system	 using	 system	 calls	 that	 are	 invoked	 through	 Application
Programming	Interfaces	(APIs).
In	 the	 next	 sections	 the	 most	 important	 functions	 of	 an	 operating	 system	 are
explained	in	more	detail.

11.2.1				Process	scheduling
In	 most	 computer	 systems,	 a	 large	 number	 of	 multiple	 processes	 are	 running
simultaneously,	while	each	CPU	core	is	physically	only	capable	of	running	one
process	 at	 a	 certain	 time.	 Operating	 systems	 create	 the	 illusion	 of	 multiple
running	 processes	 in	 parallel	 by	 scheduling	 each	 process	 to	 run	 only	 during	 a
short	 time	 frame.	 This	 principle	 is	 also	 known	 as	 preemptive	 multitasking.
Periodically,	the	operating	system	decides	if	a	running	process	is	to	be	suspended
in	favor	of	another	process,	or	if	the	running	process	can	keep	on	running	for	a
while.	Processes	that	wait	for	something	(usually	for	I/O)	are	suspended	until	the
I/O	request	is	finished,	freeing	the	CPU	for	other	processes.
Process	 scheduling	 is	 fairly	 complex,	 as	 switching	 processes	 introduces	 some
overhead.	The	dilemma	 is	 that	 too	 frequent	 switching	of	processes	generates	a
lot	of	overhead,	while	on	 the	other	hand	having	each	process	 run	 for	 too	 long
would	make	the	system	seem	to	perform	slow	for	processes	that	are	waiting	for	a
free	CPU	core.	A	good	scheduling	algorithm	guarantees	each	process	gets	its	fair
share	 of	 CPU	 time.	 It	 ensures	 that	 the	 CPU	 is	 used	 efficiently,	 minimizes
response	 times	 for	 interactive	users,	while	 still	providing	enough	 resources	 for
batch	processes.
The	 most	 basic	 process	 scheduler	 uses	 a	 round	 robin	 schedule,	 where	 each
process	 gets	 the	 same	 amount	 of	 CPU	 time.	 This	 assumes,	 however,	 that	 all
processes	are	equally	important	at	all	times.	This	is	often	not	the	case,	so	round
robin	 scheduling	 is	 enhanced	 with	 priority	 scheduling.	 Priority	 scheduling
assigns	 processes	 a	 priority	 compared	 to	 the	 other	 processes.	 Prioritizing
algorithms	can	become	very	complex,	because	they	must	take	into	account	many
contradictory	 rules	 in	 a	 dynamically	 changing	 environment.	 But	 because
operating	 systems	 have	 evolved	 over	 decades,	 the	 scheduling	 algorithms	 have
become	 very	 sophisticated.	 Therefore,	 it	 is	 usually	 a	 bad	 practice	 to	 try	 to
outsmart	the	scheduling	algorithm	by	manually	changing	process	priorities.

11.2.2				File	systems
The	 operating	 system	 virtualizes	 the	 complexities	 of	 handling	 individual	 disk
blocks	 or	 communication	 with	 a	 SAN	 or	 NAS	 by	 providing	 a	 file	 system	 to
applications.	File	systems	usually	consist	of	directories	(also	known	as	folders)
with	files	or	other	directories	in	them.
The	 operating	 system	 hides	 the	 complexity	 of	 managing	 the	 files	 and	 the
directory	structure.	It	also	manages	the	security	of	the	files:	who	has	permission
to	read,	write,	create,	and	delete	files	and	directories.
Various	types	of	file	systems	exist.	Most	operating	systems	can	handle	multiple
types	 of	 file	 systems	 on	 multiple	 disks	 at	 the	 same	 time,	 and	 the	 user	 or
application	 is	 typically	 unaware	 of	 the	 file	 system	 in	 use.	 Some	 popular	 file
systems	are:

·									FAT	(File	Allocation	Table),	vFAT,	and	FAT32,	used	in	MS-DOS,
older	versions	of	Windows,	and	removable	storage	devices	like	USB
memory	sticks.
·									NTFS	(New	Technology	File	System)	used	in	Windows.
·									UFS	(Universal	File	System)	and	VxFS	(Veritas	File	System)	used	in
most	UNIX	flavors.
·									Ext	(and	Ext2,	Ext3,	Ext4)	-	used	in	Linux.

NTFS,	VxFS	and	Ext4	are	examples	of	journaling	file	systems.	They	keep	track
of	changes	made	to	files	in	a	journal	log	before	committing	them	to	the	main	file
system.	 This	 allows	 for	 greater	 availability	 and	 fast	 recovery	 in	 case	 of	 a
malfunction	 like	 a	 power	 failure,	 because	 the	 journal	 can	 be	 used	 by	 the
operating	 system	 to	 guarantee	 that	 a	 change	 to	 the	 storage	 medium	 is	 either
made	entirely	successfully	or	not	made	at	all	(this	principle	is	often	referred	to	as
atomicity).
File	systems	must	be	mounted	before	they	can	be	used	by	the	operating	system.
Mounting	 means	 that	 a	 disk	 and	 the	 file	 system	 on	 it	 are	 recognized	 by	 the
operating	system.	After	mounting,	the	file	system	is	typically	given	a	drive	letter
(Windows),	a	drive	name	(OpenVMS),	or	a	mount	point	in	the	global	directory
tree	(UNIX	and	Linux).
Most	 operating	 systems	provide	 file	 sharing	 functionality.	File	 sharing	 enables
files	on	one	system	to	be	accessed	by	(users	on)	other	systems.	This	access	can

be	 limited	 to	 a	 combination	 of	 read,	write,	 visibility,	 and	 delete	 access	 rights.
Protocols	like	NFS	(which	originates	from	UNIX),	and	SMB/CIFS	(originating
from	Windows),	are	used	for	file	sharing.	An	operating	system	that	shares	files
provides	similar	functionality	as	a	NAS	(see	9.2.6).
Some	file	systems	provide	disk	and/or	file	encryption	functionality	to	secure	the
stored	data.

11.2.3				APIs	and	system	calls
System	calls	are	programming	functions	which	provide	a	hardware-independent
interface	to	tasks	the	operating	system	can	perform	for	applications.
For	instance,	in	an	application,	the	function	call
int	read(int	handle,	void	*buffer,	int	nbyte);
in	the	C	programming	language,	or
int	readfile	(string	$filename,	bool	$use_include_path	=	false,	resource	$context)
in	the	PHP	programming	language,	both	use	the	system	call
READ(FILEHANDLE,	DESTINATION	DATA	POINTER,
NUMBER_OF_BYTES)
in	 the	operating	 system	 to	 read	a	number	of	bytes	 from	a	 file	 and	 to	 copy	 the
read	bytes	to	memory.
When	 an	 application	 process	 reads	 a	 file	 using	 the	 system	 call	 READ,	 the
operating	system	takes	care	of:

·									Looking-up	the	file	in	a	file	allocation	table
·									Looking	up	the	disk	blocks	associated	with	the	file	on	disk
·									Instructing	the	disk	controller	to	fetch	the	needed	disk	blocks
·									Copy	the	disk	blocks	to	memory
·									Providing	a	pointer	to	the	disk	blocks	in	memory

The	application	has	no	knowledge	of	all	of	 this	complexity;	 it	 just	receives	the
contents	of	the	file	in	a	buffer.
System	calls	are	grouped	and	presented	to	application	processes	as	Application
Programming	 Interfaces	 (APIs).	APIs	describe	 the	available	 system	calls	 in	an
operating	 system	 and	 how	 they	 can	 be	 used	 by	 programmers	 in	 their

applications.

11.2.4				Device	drivers
One	of	the	main	functions	of	an	operating	system	is	to	manage	all	hardware.	The
operating	system	provides	a	single	interface	for	multiple	related	devices,	like	all
printers	and	all	video	cards,	and	it	manages	the	use	of	these	devices	for	multiple
users	and	processes.
I/O	 devices	 are	 controlled	 using	 device	 drivers.	 Device	 drivers	 are	 pieces	 of
software	 that	 interact	 with	 the	 device's	 hardware	 (like	 an	 Ethernet	 network
adapter	or	a	SCSI	disk	adapter),	and	that	provide	an	Application	Programming
Interface	(API)	to	the	operating	system.
In	Figure	102	this	is	illustrated.
	

Figure	102:	Example	of	the	use	of	operating	system	components

In	 this	 example,	 Microsoft	Word	 is	 started	 by	 the	 user	 and	 the	 user	 opens	 a
document.	Microsoft	Word	 is	 run	 as	 a	 process	 called	WINWORD.EXE	 in	 the
operating	 system.	 WINWORD.EXE	 uses	 an	 API	 system	 call	 the	 operating
system	provides.	The	system	call	is	understood	by	the	kernel,	that	uses	a	driver
(Disk.sys)	 to	 open	 a	 file	 on	 the	 hard	 disk	 (WDC	ATA	 device),	 containing	 the
document	the	user	needs.

11.2.5				Memory	management
It	 is	 the	 operating	 system's	 task	 to	manage	 the	 available	memory	 in	 a	 system.
The	 operating	 system	 allocates	 and	 de-allocates	 memory	 on	 behalf	 of
applications	and	manages	what	happens	when	the	amount	of	requested	memory
exceeds	the	physical	amount	of	memory.
Memory	management	in	today's	operating	systems	is	very	complex;	it	 includes
cache	management,	 paging,	 high	 volume	 data	 transfers,	multi-core	 processors,
memory	 management	 units	 (MMUs),	 thin	 memory	 provisioning	 (memory
overcommitting),	and	Direct	Memory	Access	(DMA).
Fortunately,	 the	 operating	 system	 takes	 care	 of	 all	 of	 this	 and	 just	 provides
chunks	 of	 memory	 to	 applications.	 Applications	 simply	 allocate	 the	 memory
they	need	and	de-allocate	it	when	it	is	not	needed	anymore.	The	rest	is	done	by
the	operating	system.
	

While	 memory	 capacity	 has	 grown	 tremendously	 over	 the	 last	 decades,
programs	 still	 tend	 to	 use	 all	 available	 memory	 and	 often	 degrade	 systems’
performance	by	using	every	byte	available.

Or,	 as	 Parkinson's	 law
[79]
	 states:	 “Data	 tends	 to	 expand	 to	 fill	 the	 space

available	for	storage”.

11.2.6				Shells,	CLIs	and	GUIs
A	shell	provides	a	user	interface	to	the	operating	system.	The	primary	purpose	of
shells	is	to	launch	another	program	by	end	users.	The	name	shell	originates	from
shells	 being	 an	outer	 layer	of	 interface	between	 the	user	 and	 the	kernel	 of	 the
operating	system.
There	are	 two	 types	of	 shells:	Command-Line	 Interfaces	 (CLIs)	and	Graphical
User	Interfaces	(GUIs).
In	 a	 CLI,	 the	 user	 types	 commands	 on	 a	 keyboard	 on	 an	 operating	 system
provided	 command-prompt	 (a	 sequence	 of	 characters	 to	 indicate	 readiness	 to
accept	commands,	like	C:\	or	$).	The	best	known	CLI	based	shells	are	the	UNIX
shells	(bash,	sh,	csh)	and	Windows’	cmd.exe	(also	known	as	a	DOS	box).
In	a	GUI,	the	user	uses	a	mouse	to	click	on	icons	or	buttons	the	operating	system

provides.	 The	 best-known	 GUI	 based	 shells	 are	 Microsoft	 Windows	 and	 X
Window	(UNIX	and	Linux).

11.2.7				Operating	system	configuration
The	 configuration	 of	 an	 operating	 system	 is	 stored	 in	 an	 operating	 system
specific	database	or	in	text	files.
An	 example	 of	 a	 configuration	 database	 is	 the	Windows	 registry.	 It	 stores	 the
configuration	of	 the	Windows	 environment	 and	of	 the	 applications	 running	on
Windows.	Windows	provides	 tools	 (in	 the	so-called	Control	Panel)	 to	setup	 its
configuration.	These	tools	use	the	registry	for	storage.
UNIX	and	Linux	use	 text	based	configuration	 files,	 typically	 stored	 in	 the	 /etc
directory.	 In	 this	directory,	 each	operating	 system	 functionality	uses	 a	 separate
file	 (like	 resolv.conf	 for	 DNS	 or	 host.conf	 that	 contains	 the	 computer	 name).
These	 text	 files	 can	 be	 edited	 manually,	 but	 for	 most	 used	 configuration
parameters,	user-friendly	tools	are	provided.	These	tools	still	edit	 the	text	files,
but	that	is	hidden	from	the	user.
Not	all	UNIX	systems	use	text	files,	however.	IBM's	AIX,	for	example,	uses	an
Object	Data	Manager	(ODM)	database	to	store	system	settings.
Other	 operating	 systems	 use	 similar	 configuration	 tools	 and	 storage	 for	 their
configuration	parameters.

11.2.8				Popular	operating	systems

11.2.8.1			z/OS
One	of	the	first	operating	systems	was	IBM's	OS/360,	introduced	in	1964.	It	was
a	batch	processing	system,	created	for	the	IBM	system/360	mainframe	computer.
Later,	OS/360	MFT	 (Multitasking	with	 a	Fixed	number	 of	Tasks)	 and	OS/360
MVT	(Multitasking	with	a	Variable	number	of	Tasks)	provided	multitasking	to
mainframes.	 The	 successor	 of	 OS/360	 was	 OS/370,	 which	 introduced	 the
concept	of	virtual	memory	in	1972	(see	section	10.2.5.4	for	more	information	on
virtual	memory).
MVS,	 released	 in	 1974,	was	 the	 primary	 operating	 system	 on	 the	 System/370
and	System/390.	The	64-bit	version	of	MVS	for	the	zSeries	was	named	z/OS	and
was	introduced	in	2000.	IBM’s	z/OS	is	now	the	most	used	mainframe	operating

system.	It	runs	on	IBM	mainframes	only.
Extreme	 backward	 compatibility	 is	 one	 of	 z/OS's	 main	 design	 philosophies:
programs	 written	 for	 MVS	 in	 1974	 can	 still	 run	 on	 today's	 z/OS	 without
modification.
Reading	 and	 writing	 a	 tremendous	 amount	 of	 data	 and	 performing	 relatively
simple	calculations	on	it	(for	example,	"read	in	these	400,000	records	of	data,	do
6	 calculations	 on	 each,	 and	 then	 output	 400,000	 separate	 reports")	 is	 a	 typical
use	of	mainframes	running	z/OS.
While	 z/OS	 is	 still	most	used	 for	 this	 type	of	batch	processing,	 it	 can	be	used
interactively	 as	 well.	 A	 system	 running	 z/OS	 can	 support	 thousands	 of
interactive	users	simultaneously.
z/OS	doesn't	always	have	the	default	settings	 that	we	take	for	granted	on	other
systems.	Most	of	the	settings	are	to	be	set	by	systems	managers.	Many	settings
and	details	are	site-specific,	so	a	new	user	on	a	particular	z/OS	system	needs	to
find	his	way	around	the	system	first	in	order	to	work	with	it.

11.2.8.2			IBM	i	(OS/400)
IBM	 i	 is	 an	 operating	 system	only	 used	 on	 IBM's	 Power	 Systems	 (previously
called	iSeries	and	AS/400	systems)	midrange	systems.
In	1969,	eight	years	after	DEC	 introduced	 the	PDP-1,	 IBM	 introduced	 its	 first
minicomputer:	The	System/3.	Because	the	system	was	relatively	expensive	and
was	less	advanced	than	the	DEC	systems,	the	System/3	was	never	very	popular.
The	IBM	System/32,	introduced	in	1975,	and	its	successor,	the	System/34,	were
also	not	very	popular,	but	the	System/38	(in	1978)	and	the	System/36	(in	1983)
were.
Users	found	the	System/36	and	its	operating	system	easy	to	use.	IBM	kept	this	in
mind	when	designing	the	OS/400	operating	system	for	the	new	series	of	AS/400
midrange	systems.	Over	the	years,	the	name	of	the	operating	system	has	changed

from	OS/400	to	i5/OS	to	IBM	i
[80]

.
One	of	 the	biggest	 advantages	of	 IBM	 i	 is	 its	 completeness.	Communications,
transaction	processing,	and	system	security	were	implemented	as	intrinsic	parts
of	 the	 operating	 system	 from	 the	 start.	 IBM	 i	 also	 has	 a	 relational
database	manager	built	 in	as	an	 integral	part	of	 the	operating	 system.	Features
for	 the	 implementation	 and	 maintenance	 of	 data	 security	 are	 implemented

natively	as	part	of	the	operating	system.
The	latest	version	is	known	officially	as	"IBM	i	7.2"	and	was	released	to	general

availability	in	2014
[81]

.

11.2.8.3			OpenVMS
OpenVMS	 is	 an	 operating	 system	 developed	 by	 DEC.	 VMS	 means	 Virtual
Memory	System.
The	first	version	of	VMS	(introduced	in	1977)	ran	on	a	32-bit	DEC	VAX	system.
VMS	 was	 rewritten	 in	 1992	 for	 DEC's	 64-bit	 Alpha	 processor.	 From	 that
moment	on	the	name	was	changed	in	OpenVMS.	OpenVMS	is	not	open	source
software	 (as	 the	 name	 suggests),	 but	 the	 source	 listings	 are	 available	 for
purchase.
DEC	was	taken	over	by	Compaq	in	1998,	and	in	2001	OpenVMS	was	ported	to
Intel's	 Itanium	 (IA-64)	 processor.	 Compaq	 was	 taken	 over	 by	 HP	 in	 2002.
OpenVMS	is	now	maintained	by	VMS	Software,	Inc.	that	licensed	it	from	HP.	In
June	2015	OpenVMS	for	HP	Integrity	servers	based	on	Intel	Itanium	9500	series

processors	was	released
[82]

.
OpenVMS	is	known	as	a	robust	and	stable	operating	system.	Sometimes	people
joke	that	the	uptime	of	Windows	is	measured	in	days,	of	UNIX	in	months,	but	of
OpenVMS	systems	in	years.
	

At	the	hacking	conference	DEFCON9,	held	in	2001,	none	of	the	4300	hackers
present	was	able	to	break-in	into	an	OpenVMS	system,	running	an	HP	Secure
Web	server.	As	a	result,	the	system	was	declared	"cool	and	unhackable"	by	the
hackers.

	
OpenVMS	 is	 a	 multi-user	 operating	 system	 designed	 for	 use	 in	 time	 sharing,
batch	processing,	real-time	processing,	and	transaction	processing.
Organizations	 typically	 use	 OpenVMS	 for	 various	 purposes,	 including	 mail
servers,	 network	 services,	 manufacturing,	 or	 transportation	 control	 and
monitoring,	 critical	 applications,	 and	databases.	OpenVMS	 is	 typically	used	 in
environments	where	system	uptime	and	data	access	is	critical.

11.2.8.4			UNIX
UNIX	 is	 a	 multitasking,	 multi-user	 operating	 system,	 originally	 created	 by
AT&T.
In	1969,	at	Bell	Labs,	Ken	Thompson,	Dennis	Ritchie,	and	others	got	hold	of	a
little-used	PDP-7	system.	They	used	 the	machine	 to	create	a	new	 time	sharing
multi-user	 multitasking	 operating	 system,	 based	 on	 earlier	 work	 on	 a	 system
called	MULTICS.
The	 first	UNIX	version	was	written	 entirely	 in	PDP	assembler,	which	made	 it
highly	dependent	on	 the	hardware.	 In	1973,	UNIX	was	rewritten	 in	 the	new	C
programming	 language	 (C	 was	 also	 created	 by	 Dennis	 Ritchie,	 together	 with
Brian	 Kernighan).	 This	 made	 UNIX	 portable	 to	 multiple	 types	 of	 computer
hardware.
In	1975,	version	6	was	the	first	to	be	widely	available	outside	of	Bell	Labs	(later
AT&T).	 In	1982,	UNIX	was	 licensed	 to	a	number	of	computer	manufacturers,
including	Sun	Microsystems	and	Hewlett-Packard.	Most	of	these	vendors	started
to	market	 their	 own	UNIX	 versions	 based	 on	 the	 original	UNIX	 source	 code.
They	adapted	the	code	to	meet	their	own	hardware	and	software	requirements.
In	 early	 1993,	 AT&T	 sold	 its	 UNIX	 System	 Laboratories	 to	 Novell.	 In	 1994
Novell	transferred	the	rights	to	the	UNIX	trademark	and	the	specification	to	The
Open	 Group.	 Subsequently,	 it	 sold	 the	 source	 code	 and	 the	 product
implementation	(UNIXWARE)	to	SCO.
Because	UNIX	 is	written	almost	 entirely	 in	 the	C	programming	 language,	 and
because	 the	 source	 code	 is	 published,	 it	 has	 been	 ported	 to	 a	wider	 variety	 of
machine	architectures	than	any	other	operating	system.
Originally,	AT&T	registered	"UNIX"	as	a	trademark,	so	although	anyone	could
create	their	own	version	of	UNIX	and	market	it,	they	were	not	allowed	to	call	it
UNIX.	 As	 a	 result,	 vendors	 came	 up	 with	 different	 names	 for	 their	 UNIX
flavors:
	
Vendor UNIX	flavor

IBM AIX

Oracle/Sun Solaris

HP HP-UX

Apple Mac	OS	X	(built	on	FreeBSD,	discussed	in	the	next	section)

Table	25:	UNIX	flavors

These	 versions	 are	 90%	 the	 same,	 but	 have	 some	 minor	 differences,	 like	 the
wording	of	error	messages,	the	order	of	commands	used	to	startup	the	machine,
or	the	location	of	certain	files.
Each	of	these	flavors	needs	specific	hardware.	HP-UX	only	runs	on	HP	Integrity
systems,	and	these	systems	cannot	run	for	example	AIX.
Applications	 running	 on	 a	 particular	 flavor	 of	 UNIX	 cannot	 run	 on	 another
flavor	 without	 (at	 least)	 recompiling.	 This	 means	 that	 software	 vendors	 must
provide	separate	versions	of	their	applications	for	each	flavor	of	UNIX.
UNIX	 popularized	 the	 hierarchical	 file	 system	 with	 nested	 subdirectories,	 a
feature	now	implemented	in	most	other	operating	systems	as	well.	All	files	and
directories	appear	under	the	so-called	root	directory	"/",	even	if	 they	are	stored
on	 different	 physical	 disks.	 UNIX	 has	 no	 concept	 of	 drive	 letters;	 drives	 are
mounted	 on	 a	 branch	 in	 the	 directory	 tree,	 providing	 disk	 space	 for	 that
particular	branch.
UNIX	typically	uses	a	large	set	of	small	tools	that	do	only	one	thing,	and	do	it
very	well.	To	perform	complicated	 tasks,	 commands	 can	be	 combined	using	 a
system	 called	 pipes.	 Pipes	 feed	 the	 output	 of	 one	 command	 to	 the	 input	 of
another	 command,	 without	 storing	 the	 intermediate	 result.	 For	 instance,	 the
UNIX	command:
ls	|	sort
prints	a	sorted	list	of	files	on	the	screen.	The	pipe	sign	“|”	ensures	that	the	output
of	the	“ls”	command	is	routed	(as	input)	to	the	“sort”	command.	Since	after	the
sort	 command	 there	 is	 no	 further	pipe	 specified	 the	 final	 output	 is	 send	 to	 the
standard	output	system:	the	screen.
Of	 course,	 this	 is	 a	 very	 simple	 example.	 In	 practice	 these	 chains	 of	 piped
commands	can	get	very	long	and	complex.
In	UNIX,	 everything	 is	 treated	 as	 a	 file,	 even	 printers,	modems,	 the	 keyboard
and	 the	 screen.	 This	 allows	 piped	 commands,	 for	 instance,	 to	 use	 typed	 input
from	 the	 keyboard,	 process	 them	using	 some	 application,	 and	 have	 the	 output
send	automatically	to	a	printer.

11.2.8.5			Linux
Linux	is	a	UNIX-like	operating	system,	but	is	not	derived	from	the	UNIX	source
code.	 Instead,	 it	was	 developed	 independently	 by	 a	 group	 of	 developers	 in	 an

informal	alliance	on	the	internet	as	a	free	operating	system	for	the	x86	platform.
In	1987,	Andrew	Tanenbaum,	who	was	a	professor	of	computer	 science	at	 the
Vrije	Universiteit,	Amsterdam	in	the	Netherlands,	wrote	a	clone	of	UNIX,	called
MINIX	 (MIni	 uNIX),	 for	 the	 IBM	 PC.	 He	 wrote	 MINIX	 especially	 for	 his
students	 to	 teach	 them	 how	 an	 operating	 system	worked.	 Tanenbaum	wrote	 a

book
[83]

	 that	 not	 only	 listed	 the	 12,000	 lines	 of	MINIX	 source	 code,	 but	 also
described	each	important	part	of	the	source	code	in	detail,	 including	the	theory
about	why	it	was	programmed	the	way	it	was.
Linus	 Torvalds,	 at	 the	 time	 a	 student	 at	 the	 University	 of	 Helsinki,	 studied
MINIX	 in	 an	 operating	 system	 course	 and	 bought	 a	 PC	 to	 try	 it.	 In	 1991,
Torvalds	wanted	to	explore	the	multitasking	possibilities	of	the	new	Intel	80386
CPU	in	his	PC	and	decided	to	create	a	small	multitasking,	multi-user	operating
system	himself	with	the	help	of	the	internet	community.	On	USENET,	he	asked

developers	on	the	internet	to	help	him	with	the	development
[84]

.	Because	of	the
open	source	nature	of	Linux	many	developers	contributed	with	kernel	patches,
device	 drivers,	 and	 additions	 like	multilingual	 keyboards,	 floppy	 disk	 drivers,
support	for	video	card	devices,	and	much	more.
It	 is	 important	 to	 understand	 that	 Linux	 is	 actually	 only	 an	 operating	 system
kernel.	Today’s	Linux	distributions	 consist	of	 the	Linux	kernel	 and	 its	drivers,
and	the	GNU	project’s	applications,	libraries,	compilers,	and	tools.
The	GNU	project	 (GNU	is	a	 recursive	acronym	for	“GNU's	Not	UNIX!”)	was
launched	 in	1984	by	Richard	Stallman,	 to	develop	 a	 free	UNIX-like	operating
system.	By	1990,	the	GNU	project	had	recreated	all	the	major	components	of	the
UNIX-like	system	except	one	–	 the	kernel.	Combining	Linux	with	 the	almost-
complete	GNU	system	resulted	in	a	complete	operating	system:	the	GNU/Linux
system.
Linux	and	the	GNU	tools	are	 licensed	under	 the	GNU	General	Public	License,
ensuring	that	the	all	source	code	will	be	free	for	all	to	copy,	study,	and	to	change.
Soon,	 commercial	 vendors	 showed	 interest.	Linux	 itself	was,	 and	 still	 is,	 free.
What	 the	 vendors	 did	was	 compiling	 the	 source	 code,	 adding	 some	 tools	 and
configurations	of	their	own,	and	releasing	it	 in	a	distributable	format.	Red	Hat,
SuSe,	 Ubuntu	 and	 Debian	 are	 some	 of	 the	 best-known	 Linux	 distributions.
Extended	 with	 Graphical	 User	 Interfaces	 (like	 X-window	 System,	 KDE,	 or
GNOME),	user-friendly	Linux	distributions	became	very	popular.

Today	Linux	 is	 a	 very	mature	 operating	 system.	Companies	 like	Red	Hat	 and
Novell	(who	purchased	SuSe	and	Caldera)	sell	professional	Linux	distributions
including	 support	 contracts.	 Linux	 is	 used	 in	 servers,	 workstations,	 mobile
devices,	 all	 Android	 smartphones,	 and	 appliances	 like	 set-top	 boxes,	 firewalls
and	NAS	devices.	Ninety-five	per	 cent	of	 the	 supercomputers	 listed	 in	 the	 top

500	list	of	the	fastest	computers	in	the	world
[85]

	are	running	Linux.
Since	Linux	runs	on	many	hardware	platforms	it	 is	very	attractive	for	software
vendors	to	create	applications	for	it.	Many	business	software	today	is	released	on
Linux	before	being	released	on	the	various	flavors	of	UNIX.
Since	 Linux’s	 design	 is	 derived	 from	 UNIX’s	 design,	 Linux	 commands	 and
scripts	are	 to	a	 large	degree	similar	 to	 those	of	UNIX.	Linux	not	only	uses	 the
same	 (well-known)	 commands,	 but	 also	 the	 same	 file	 structure,	 scripting
language,	 pipes,	 etc.	 This	 allows	 experienced	UNIX	 systems	managers	 to	 use
Linux	without	the	need	for	much	extra	knowledge.	Porting	systems	from	UNIX
to	 Linux	 is	 therefore	 generally	much	 easier	 than	 porting	 them	 to	 for	 instance
Windows.

11.2.8.5.1			Linux	support
Linux	is	created	as	an	open	source	project.	This	means	that	 the	source	code	of
Linux	 is	 published	 and	 freely	 available.	While	 this	 allows	users	 to	 change	 the
source	code	to	their	needs,	this	is	hardly	ever	done,	due	to	the	complexity	of	the
Linux	source	code	and	the	limited	benefits	of	changing	the	code.
Most	 organizations	 demand	 professional	 support	 for	 their	 software.	 And
although	 Linux	 can	 be	 downloaded	 from	 the	 internet	 for	 free,	 professional
support	is	certainly	not	free.	Most	Linux	distribution	vendors,	like	Red	Hat	and
SuSe,	and	some	independent	vendors,	offer	support	contracts	for	Linux.

11.2.8.5.2			Linux	on	mainframes
While	Linux	typically	runs	on	x86	servers,	some	Linux	distributions	can	be	used
on	IBM	mainframes,	running	in	virtual	machines.
Linux	 does	 not	 use	 3270	 (virtual)	 display	 terminals	 typically	 used	 on
mainframes,	but	uses	X-Windows	emulators	on	PCs	instead.	The	emulated	LAN
on	the	mainframe	can	be	used	to	connect	multiple	Linux	virtual	machines	and	to
provide	an	external	LAN	route	for	them.
Linux	on	mainframes	operates	with	 the	ASCII	character	set,	while	mainframes

typically	use	the	EBCDIC	character	set.	With	Linux,	EBCDIC	is	only	used	when
writing	to	character	based	devices	like	displays	and	printers.	Specialized	Linux
drivers	handle	the	character	translation	between	ASCII	and	EBCDIC.

11.2.8.6			BSD
Berkeley	Software	Distribution	 (BSD),	 sometimes	 called	Berkeley	UNIX,	 is	 a
UNIX	operating	system	derivative	developed	and	distributed	by	 the	University
of	California,	Berkeley.	BSD	was	 the	basis	 for	 three	open	source	development
projects	that	continue	to	this	day.

11.2.8.6.1			FreeBSD
FreeBSD	is	the	most	widely	used	BSD-derived	operating	system.	FreeBSD	is	a
complete	 operating	 system;	 the	 kernel,	 device	 drivers,	 and	 all	 of	 the	 utilities,
such	 as	 the	 shell,	 are	 held	 in	 the	 same	 source	 code	 tree.	 (This	 in	 contrast	 to
Linux	 distributions,	 for	 which	 the	 kernel,	 utilities,	 and	 applications	 are
developed	 separately,	 and	 then	 packaged	 together	 in	 various	 ways,	 called
distributions.)

11.2.8.6.2			NetBSD
NetBSD	has	been	ported	to	57	hardware	platforms	across	15	different	processor
architectures.	Due	to	its	convenient	license	and	portability,	NetBSD	is	often	used
in	embedded	systems.

11.2.8.6.3			OpenBSD
OpenBSD	 includes	 a	 number	 of	 security	 features	 absent,	 or	 optional	 in	 other
operating	systems,	and	has	a	tradition	in	which	developers	audit	the	source	code
for	software	bugs	and	security	problems.
In	 the	 10+	years	 of	 its	 existence,	 only	 three	 security	 bugs	 have	 been	 found	 in
OpenBSD.	OpenBSD	 is	 widely	 known	 for	 the	 developers'	 insistence	 on	 open
source	 code,	 high	 quality	 documentation,	 and	 focus	 on	 security	 and	 code
correctness.	 The	 OpenBSD	 project	 maintains	 ports	 for	 17	 different	 hardware
platforms.

11.2.8.7			Windows
The	most	popular	operating	system	ever	is	without	a	doubt	Microsoft	Windows.
The	first	version	of	Microsoft	Windows	was	released	in	1985,	but	was	not	used

much.	Windows	1.0	was	actually	not	an	operating	system,	but	rather	a	graphical
"operating	 environment"	 that	 ran	 as	 an	 application	 op	 top	 of	 the	 MS-DOS
operating	system.	Microsoft	Windows	version	2	was	released	in	1987,	and	was
hardly	 more	 popular	 than	 its	 predecessor.	 But	 Windows	 2.0	 could	 run
Microsoft's	new	graphical	applications:	Excel	and	Word	for	Windows.	In	1990,
Microsoft	 Windows	 3.0	 was	 the	 first	 successful	 Windows	 version.	 Its	 user
interface	 was	 seen	 as	 a	 serious	 competitor	 to	 the	 user	 interface	 of	 Apple’s
Macintosh.
Windows	NT	arrived	in	1992	and	turned	out	to	be	a	huge	success.	It	was	the	first
version	of	Windows	designed	to	run	on	servers.	Windows	NT	was	no	 longer	a
layer	built	on	MS-DOS,	but	instead	it	was	a	real	operating	system	with	its	own
kernel,	memory	management,	and	device	drivers.	Deployed	in	many	datacenters
as	 an	 easy	 to	 use	 application,	 file,	 and	 print	 server,	Windows	 NT	was	 strong
competition	for	Novell's	NetWare	operating	system.
In	 late	1995,	Microsoft	 released	Windows	95,	positioned	as	 the	new	operating
system	 for	 desktops.	 Windows	 95	 provided	 a	 new	 Graphical	 User	 Interface
(GUI)	 that	 made	 other	 Windows	 versions	 look	 old	 fashioned.	 Windows	 95
introduced	the	"start"	button,	from	where	all	applications	could	be	started.	This
feature	greatly	increased	the	usability	for	first	time	users	of	Windows.
Windows	 NT	 4	 included	 the	 Windows	 95	 style	 GUI.	 By	 this	 time	 most
companies	were	starting	to	switch	from	Novell	servers	to	Windows	NT	4.	Even
some	UNIX	systems	were	being	replaced	by	Windows	NT	4	systems.	This	was
largely	 due	 to	 the	 huge	 amount	 of	 commercial	 power	 Microsoft	 had	 put	 in
making	Windows	 95	 successful.	 The	 vast	 adoption	 of	 Microsoft	 software	 by
home	users	accelerated	Microsoft’s	absorption	in	the	business	market.
With	 Windows	 2000,	 Microsoft	 introduced	 an	 implementation	 of	 LDAP
directory	 services,	 called	 Active	 Directory.	 With	 this	 development,	 the	 last
hurdle	 for	 a	 number	 of	 systems	 managers	 to	 adopt	 Windows	 as	 a	 server
operating	 system	 was	 taken	 away,	 as	 their	 Novell	 Directory	 Service	 (NDS),
Netscape	 Directory	 Service,	 or	 Banyan	 Vines	 could	 easily	 be	 migrated	 to
Microsoft’s	Active	Directory.
Some	versions	 of	Windows	were	 targeted	 at	workstations,	 including	Windows
XP,	Windows	Vista,	Windows	7,	8	and	10.	The	 server	operating	 systems	were
named	after	the	year	of	release:	Windows	server	2003,	2008	and	2012.
For	 a	 long	 time,	Windows	 suffered	 from	 two	 great	 weaknesses:	 stability	 and

security.
The	 stability	 of	Windows	was	 not	 as	 good	 as	 competing	 products	 like	Novell
NetWare	and	UNIX	systems.	While	NetWare	and	UNIX	would	run	for	at	least	a
year	without	crashing,	it	was	not	uncommon	that	a	Windows	server	crashed	once
a	 day.	 The	 infamous	 “Blue	 Screen	 Of	 Death”	 was	 the	 screen	 showing	 that	 a
Windows	server	had	crashed.
	

Picture	39:	A	crashed	Windows	system

The	main	cause	of	 this	 instability	was	 the	need	for	backwards	compatibility	of
Windows.	While	technology	allowed	for	more	and	more	enhanced	features	to	be
built	 in	 operating	 systems,	 Microsoft	 decided	 that	 every	 version	 of	Windows
needed	to	be	able	 to	run	all	already	developed	software	without	recompilation.
This	meant	that	all	sorts	of	tweaks	were	built	into	Windows	to	be	able	to	handle
old	applications.
Another	issue	was	caused	by	the	fact	that	Windows	runs	on	all	kinds	of	hardware
(as	 opposed	 to	 UNIX	 or	 Apple	 systems,	 which	 are	 designed	 for	 specific
hardware).	 All	 sorts	 of	 new,	 old,	 and	 obscure	 video	 cards,	 modems,	 printers,
CPUs,	 disk	 drives,	 etc.	 that	 were	 supposed	 to	 work	 in	 Windows,	 mostly
interfaced	with	device	drivers	created	by	third	parties.	The	quality	of	these	third-
party	drivers	was	not	always	guaranteed	and	was	a	cause	of	many	problems.
Another	weakness	was	 the	security	of	Windows.	The	main	 reason	for	 this	was
that	Windows	was	based	on	MS-DOS	–	a	single	user	/	single	tasking	operating
system.	Multi-user	features	and	concurrently	running	multiple	applications	was
built	 in	 later,	 leading	 to	 all	 kinds	of	 issues.	Because	of	 the	need	 for	backward
compatibility,	and	because	most	applications	were	not	designed	with	multi	user

usage	 in	 mind,	 these	 applications	 had	 to	 run	 with	 the	 highest	 possible	 user
permissions	 (administrator	 rights).	 This	 elevated	 security	 level	 led	 to
applications	being	able	to	bring	down	other	applications	or	even	Windows	itself.
It	 also	 provided	 hackers	 the	 possibility	 to	 change	 or	 delete	 files	 on	Windows
computers	 that	 were	 not	 part	 of	 a	 user	 application	 (like	 the	Windows	 kernel
files).	This	led	to	the	rise	of	viruses	and	worms	attacking	Windows.	And	because
Windows	was	so	popular,	a	hacker	that	could	exploit	a	vulnerability	in	Windows
could	use	it	to	attack	almost	all	PC	based	systems	in	the	world.
In	2002,	Microsoft	recognized	the	security	and	stability	issues,	and	spent	several
months’	 full-time	 effort	 of	 all	 developers	 to	 update	 the	Windows	 code	base	 to
make	it	more	stable	(the	Trustworthy	Computing	initiative).	As	a	result,	today's
Windows	versions	are	pretty	stable	and	secure.
Because	of	Window’s	popularity,	a	large	collection	of	software	is	available	that
runs	on	it.	Microsoft	provides	a	fairly	complete	stack	of	business	solutions	like
SharePoint,	 BizTalk	 and	 Exchange.	 They	 also	 provide	 a	 development
environment	 (Visual	 Studio	 and	 the	 .Net	 framework).	 Many	 organizations
therefore	 have	 a	 "Microsoft	 unless"	 strategy	 –	 software	 is	 purchased	 from
Microsoft	 or	 built	 using	 Microsoft	 tools,	 unless	 there	 is	 no	 solution	 from
Microsoft	available.

11.2.8.7.1			Support
Windows	is	closed	source	software.	Only	one	company	(Microsoft)	has	access	to
the	 source	 code	 and	 knows	 how	Windows	 works	 internally.	 This	 means	 that
users	are	very	dependent	on	Microsoft	 for	 support	 and	updates,	 and	 they	must
follow	updates	and	software	upgrades	to	be	able	to	keep	that	support.	This	leads
to	frequent	(and	usually	costly)	upgrade	projects.	Extended	support	is	sometimes
possible,	but	at	a	price.

11.2.8.8			End	user	operating	systems
While	 most	 operating	 systems	 described	 earlier	 run	 on	 either	 servers	 or
workstations,	some	operating	systems	are	exclusively	designed	to	be	used	on	end
user	devices.	Some	examples	are:

·									Windows	workstation	versions	(XP,	Vista,	Windows	7,	Windows	8,
and	Windows	10)	-	Microsoft's	PC	operating	system.
·									Mac	OS	-	Apple's	operating	system	for	laptops	and	desktops,	based	on

BSD.
·									Ubuntu	-	Linux	distribution	specially	designed	for	laptops	and
desktops.
·									iOS	-	Apple's	operating	system	for	mobile	devices	(iPhone,	iPad,	etc.),
based	on	BSD.
·									Android	-	Google's	operating	system	for	mobile	devices,	based	on
Linux.

11.2.8.9			Special	purpose	operating	systems
Some	operating	 systems	 are	 created	 for	 special	 purposes	 like	 the	ones	used	 in
firewalls,	 intrusion	 detection	 and	 prevention	 systems,	 routers,	 phones,	 ATM
machines,	 media	 centers,	 etc.	 These	 operating	 systems	 are	 typically	 based	 on
existing	 operating	 systems	 (usually	 Linux	 or	 Windows),	 but	 stripped	 of	 all
unneeded	features.
An	 example	 of	 a	 special	 type	 of	 operating	 system	 is	 a	 real-time	 operating
system	 (RTOS).	 Real-time	 operating	 systems	 guarantee	 to	 perform	 tasks	 in	 a
predefined	 amount	 of	 time.	 For	 instance,	 initiating	 a	 process	 after	 a	 hardware
based	 interrupt	 is	 guaranteed	 to	 be	 finished	 within	 2	 ms.	 Real-time	 operating
systems	are	used	where	handling	events	within	a	predefined	time	is	critical,	for
instance	 in	 factories,	 power	 plants	 and	 vehicles.	 An	 example	 of	 a	 real-time
operating	system	is	QNX.

11.3									Operating	system	availability

To	enhance	 the	 availability	of	 an	operating	 system,	 failover	 clustering	 is	 often
used.

11.3.1				Failover	clustering
A	failover	cluster	is	a	group	of	independent	servers	running	identical	operating
systems	 (known	 as	 “nodes”),	 that	 are	 connected	 via	 a	 network,	 and	 that	 are
controlled	 by	 cluster	 software	 running	 on	 the	 nodes.	 Examples	 of	 cluster
software	products	are:

·									Parallel	Sysplex	for	IBM	mainframes.
·									HACMP	for	IBM	AIX	UNIX.
·									MC/Service	Guard	for	HP-UX	UNIX.
·									Windows	Cluster	Service	for	Microsoft	Windows.
·									Heartbeat	and	Pacemaker	for	Linux.

A	 failover	 cluster	 provides	 high	 availability	 to	 applications	 by	managing	 each
running	 application	 within	 a	 node	 as	 a	 package	 of	 application	 components,
called	a	 resource	pool	or	an	application	package.	A	 resource	pool	 is	 the	single
unit	of	failover	within	a	cluster.	It	typically	contains:

·									Application	name	and	identifier.
·									Start	script	for	the	application.
·									Stop	script	for	the	application.
·									Monitor	script	for	the	application	–	this	script	continuously	checks
the	status	of	the	application.	If	the	application	does	not	work	as	expected,	a
restart	or	failover	is	initiated.
·									Virtual	IP	address	the	application	can	be	addressed	with.
·									Mount	points	for	storage	–	the	disks	that	must	be	available	to	the
application.

	

Figure	103:	Cluster	heartbeat

A	cluster	network	typically	consists	of	redundant	physical	Ethernet	connections
that	carry	heartbeats	between	all	nodes	in	the	cluster,	as	well	as	membership	and
state	change	information.	A	heartbeat	allows	nodes	to	detect	the	unavailability	of
nodes	by	regularly	sending	packets	to	each	other's	network	interfaces.
Monitoring	 the	health	of	 the	operating	 system	and	applications	 running	on	 the
node	can	be	done	by	 for	 instance	checking	 the	process	 table	 (are	all	processes
still	 running?),	 or	 by	 connecting	 to	 the	 application	 and	 testing	 its	 ability	 to
communicate	(for	instance	by	connecting	to	a	database	server,	a	web	server,	or	a
mail	server	and	check	if	it	responds	as	expected).
In	most	failover	clusters	all	nodes	are	able	to	access	data	on	shared	storage,	but
every	 individual	 disk	 is	 mounted	 to	 one	 active	 application	 only	 at	 any	 given
time.	If	an	application	is	restarted	on	another	node,	the	application	can	still	use
the	data	on	the	shared	storage	since	the	application	package	describes	the	needed
mount	 points	 and	 the	 cluster	 software	 automatically	 remounts	 the	 configured
storage	to	the	new	active	application.
This	 usage	 of	 shared	 storage	 is	 also	 called	 ‘shared	 nothing	 clustering’,	 as
opposed	to	for	 instance	Distributed	Lock	Management	(DLM)	clustering.	With
DLM	clustering	each	cluster	node	can	access	 the	same	resource,	 for	 instance	a
disk,	at	 the	 same	 time,	 and	 a	 lock	 management	 mechanism	 is	 responsible	 to
manage	the	data	in	order	to	avoid	corruption.
In	 a	 cluster,	 every	 active	 application	 has	 a	 standby	 counterpart	 available	 on	 a
passive	node	that	sits	idle	until	a	failover	is	needed.	After	a	failover,	this	standby
application	 becomes	 active	 and	 provides	 service	 to	 clients.	 The	 passive	 node
should	 have	 enough	 capacity	 to	 run	 the	 failed-over	 application	 without
performance	degradation.

In	case	of	for	instance	a	server	crash	or	a	power	outage,	all	applications	running
on	that	server	node	will	not	be	brought	down	cleanly.	When	the	applications	are
restarted	 on	 another	 node	 in	 the	 cluster,	 standard	 crash	 recovery	 should	 take
place.	The	file	system	must	take	care	of	performing	necessary	file	system	checks
before	 mounting,	 and	 the	 application	 must	 perform	 its	 standard	 recovery	 on
startup.
It	 is	 essential	 to	 understand	 that	 application	 recovery	 in	 case	 of	 a	 failover	 is
identical	to	an	application	startup	following	a	server	power	failure.
A	spare	node	could	be	added	to	a	cluster	to	handle	failovers.	This	is	called	a	N+1
cluster,	where	N	represents	the	number	of	nodes	with	active	applications,	and	1
indicates	a	single	spare	node.	In	a	larger	cluster,	N+2	or	N+3	can	also	be	used	to
provide	more	redundancy.
	

Figure	104:	N+1	cluster

An	alternative	is	an	N	to	N	cluster,	where	there	is	no	spare	idle	node,	but	each
node	has	some	amount	of	spare	capacity	to	host	additional	applications	in	case
of	a	failover.
	

Figure	105:	N+N	cluster

The	advantage	of	an	N+N	cluster	is	that	the	available	hardware	is	always	used.
All	memory	and	CPU	cycles	in	the	operating	system	can	be	used	by	all	running
applications.	 But	 when	 a	 failover	 occurs,	 less	 memory	 and	 CPU	 cycles	 are
available	to	the	applications,	possibly	leading	to	some	performance	degradation.

11.3.1.1			Voting	and	quorum	disks
When	 in	 a	 cluster	 with	 an	 even	 number	 of	 nodes	 (most	 clusters	 contain	 two
nodes)	nodes	are	disconnected	from	each	other,	 the	status	of	the	other	nodes	is
unknown	to	each	node.	This	means	that	one	of	two	situations	occurs:

·									Each	node	decides	that	the	other	node	must	be	down,	so	each	node
decides	to	be	the	new	active	node	in	the	cluster	(leading	to	a	so-called
split-brain	situation)
·									Each	node	decides	that	it	has	lost	contact	with	the	active	cluster,	so
both	nodes	decide	to	stop	(effectively	bringing	down	the	cluster)

To	 solve	 this	 problem,	 when	 a	 node	 in	 the	 cluster	 fails,	 a	 voting	 mechanism
determines	which	 part	 of	 the	 cluster	 is	 faulty	 and	which	 part	 of	 the	 cluster	 is
working	properly.
	

Figure	106:	Cluster	with	quorum

Because	in	a	two-node	cluster	there	is	no	majority	possible	in	a	voting	system,	a
virtual	third	node	is	used,	usually	in	the	form	of	a	shared	disk,	called	a	quorum
disk.	The	quorum	disk	acts	as	one	vote	in	the	voting	system.
	

Figure	107:	Cluster	failover

Since	 the	 quorum	 disk	 is	 always	 assigned	 to	 one	 (and	 only	 one)	 node	 at	 any
time,	 and	 because	 a	 faulty	 node	 releases	 it	 quorum	 disk	 automatically,	 the
properly	 working	 node	 gets	 two	 votes:	 one	 from	 itself,	 the	 other	 from	 the
quorum	disk.	The	faulty	node	will	stop	working,	because	 it	has	only	one	vote.
This	way	no	split-brain	situation	can	occur.

11.3.1.2			Cluster-aware	applications
Some	cluster-aware	applications,	 like	Oracle	RAC,	Microsoft	SQL	Server,	 and
Microsoft	 Exchange	 Server,	may	 run	 active	 instances	 on	multiple	 nodes.	 This
enhances	switch-over	times	in	case	of	a	failure,	because	the	application	does	not
need	to	be	started	on	another	node	before	it	can	service	clients.
For	 these	 so-called	 cluster-aware	 applications,	 failover	 clusters	 provide
scalability	 in	 addition	 to	 high	 availability.	 Client	 requests	 can	 be	 distributed
among	 multiple	 cluster	 nodes,	 and	 systems	 managers	 can	 meet	 increased
demand	and	traffic	by	adding	additional	nodes	to	the	cluster.

11.4									Operating	system	performance

The	performance	of	an	operating	system	is	highly	dependent	on	the	performance
of	 the	 underlying	 hardware,	 the	 type	 of	 load	 generated	 by	 the	 applications
running	on	the	operating	system,	and,	to	a	smaller	extend,	on	the	configuration
of	the	operating	system	itself.
Some	 performance	 can	 be	 gained	 by	 increasing	 memory,	 and	 decreasing	 the
kernel	size.

11.4.1				Increasing	memory
An	operating	system	should	have	enough	memory	to	run	all	applications	needed
at	 any	 time.	 When	 an	 application	 needs	 more	 than	 the	 available	 memory,
memory	 is	 freed	 by	 either	 moving	 less	 used	 memory	 pages	 to	 disk	 (called
paging),	 or,	 when	 memory	 is	 really	 low,	 by	 moving	 an	 entire	 application’s
allocated	 memory	 to	 disk	 (called	 swapping).	 While	 some	 paging	 is	 not	 bad,
swapping	 totally	 ruins	 the	 performance	 of	 an	 operating	 system,	 because	 data
stored	 on	 disk	 is	 at	 least	 three	 orders	 of	magnitude	 slower	 than	 data	 stored	 in
RAM	memory.	Swapping	must	 therefore	be	 avoided	at	 all	 times	by	 increasing
memory	or	by	running	less	(demanding)	applications.
Another	 reason	 why	 increasing	 memory	 benefits	 the	 operating	 systems’
performance	is	disk	caching.	In	most	operating	systems,	all	memory	not	used	by
applications	 is	 used	 to	 cache	 disk	 blocks.	 This	 is	 the	 main	 reason	 why	 the
performance	 of	 operating	 systems	 usually	 increases	 when	 memory	 is	 added.
Operating	systems	use	highly	sophisticated	algorithms	to	optimize	disk	caching.
For	instance,	when	an	application	doesn't	use	a	block	of	memory	for	some	time,
it	is	paged	to	disk,	freeing	the	memory	block	to	be	used	for	disk	cache	instead.
In	 general,	 tweaking	 the	memory	management	 system	 of	 an	 operating	 system
provides	little	benefits.

11.4.2				Decreasing	kernel	size
Some	operating	systems	(like	UNIX	and	Linux)	allow	tuning	kernel	parameters
of	 the	operating	 system.	Unused	 features	 (like	 support	 for	 IPv6	or	 floppy	disk
drives)	can	be	switched	off	when	they	are	not	used,	leading	to	a	smaller	kernel
size.

A	smaller	kernel	has	the	following	benefits:
·									It	simplifies	the	kernel,	leading	to	a	lower	risk	of	crashes	and	a	smaller
security	attack	surface.
·									Since	the	kernel	must	be	in	memory	at	all	times	(it	cannot	be	paged	or
swapped-out),	a	smaller	kernel	will	free	up	memory	for	applications	and
disk	caching.
·									Switched-off	features	don't	need	patching	to	keep	them	up-to-date.
·									The	operating	system	starts	faster	when	the	kernel	is	small.

To	create	a	smaller	kernel,	the	kernel	must	be	recompiled	or	re-linked.	This	is	a
highly	 automated,	 low	 risk	 operation	 on	 most	 UNIX	 and	 Linux	 systems.	 A
restart	of	the	operating	system	is	of	course	needed	after	a	kernel	rebuild.
Not	all	operating	systems	allow	rebuilding	the	kernel.	For	instance,	the	Windows
kernel	cannot	be	rebuilt.

11.5									Operating	system	security

The	security	of	an	operating	system	can	be	enhanced	by:
·									Patching
·									Hardening
·									Virus	scanning
·									Host-based	firewalls
·									Log	analysis
·									Limitations	of	user	accounts

11.5.1				Patching
All	 operating	 system	 vendors	 (semi-)automatically	 provide	 small	 software
updates	called	patches	for	their	operating	systems	when	bugs	or	design	flaws	are
fixed,	 security	 holes	 are	 closed	 or	 small	 improvements	 are	 made.	 In	 general,
patches	come	in	three	categories:

·									Regular	patches	are	meant	to	fix	low	priority	software	bugs.	Some
regular	patches	fix	multiple	bugs	at	once.
·									Hot-fixes	repair	a	bug	or	flaw	in	the	operating	system	that	needs	to	be
fixed	fast.	Typically,	hot-fixes	are	used	to	close	a	security	hole	or	to	fix	an
error	introduced	by	another	patch	or	service	pack.	In	most	cases,	hot-fixes
should	be	installed	as	soon	as	possible.
·									Service	packs	(also	known	as	support	packs	or	patch	packs)	are	a
collection	of	patches	and	hot-fixes	that	are	packed	together	and	can	be
installed	in	one	deployment.	Sometimes	service	packs	also	introduce	new
functionality	to	the	operating	system.

While	 it	 is	 good	 practice	 to	 install	 all	 patches,	 hot-fixes,	 and	 service	 packs	 as
soon	 as	 possible,	 they	 should	 be	 tested	 before	 deploying	 them	 in	 production,
since	they	could	introduce	unwanted	effects	in	the	infrastructure.
Patches	 hot-fixes,	 and	 service	 packs	 are	 usually	 provided	 with	 release	 notes
describing	what	changes	they	make	to	the	operating	system.	It	is	good	practice	to
read	these	release	notes	before	installing	the	patch.	When	a	patch	or	hot	fix	does
not	have	impact	on	a	specific	deployment	it	can	be	discarded,	knowing	that	the

next	service	pack	will	include	the	patch	anyway.

11.5.2				Hardening
Hardening	is	a	step	by	step	process	of	configuring	an	operating	system	to	protect
it	against	security	threats.	In	a	hardening	process	the	operating	system	is	stripped
down	 to	 support	 only	 essential	 services	 and	 processes.	 Unnecessary	 protocols
and	 subsystems	 are	 switched	 off,	 and	 unused	 user	 accounts	 are	 removed	 or
disabled.	All	new	and	relevant	hot-fixes,	patches,	and	service	packs	are	applied.
It	 is	good	practice	 to	harden	all	operating	systems	 in	 the	 infrastructure	using	a
hardened	operating	system	configuration	template.	This	template	is	then	used	to
instantiate	new	operating	systems	ensuring	security	is	optimal	and	is	consistent
in	all	deployments.

11.5.3				Virus	scanning
When	installing	server	operating	systems	that	are	vulnerable	to	viruses	(typically
Windows,	Linux	and	end	user	operating	systems),	it	is	good	practice	to	install	a
virus	scanner	as	well.
Virus	scanners	can	have	an	impact	on	the	performance	of	the	operating	system,
so	 the	 virus	 scanner	 must	 be	 configured	 to	 only	 scan	 high	 risk	 files	 and
directories	based	on	a	risk	analysis.	For	instance,	it	makes	no	sense	to	protect	a
database	table	file	with	a	virus	scanner.
For	more	information	on	viruses	and	malware	see	section	6.2.4.

11.5.4				Host-based	firewalls
Most	operating	systems,	including	Windows,	Linux,	and	UNIX,	provide	a	built-
in	host-based	firewall.
A	host-based	firewall	is	a	software	firewall	that	is	installed	as	part	of	a	running
operating	 system	 in	 the	 infrastructure,	 protecting	 an	 individual	 host	 from
unwanted	network	traffic.	Host-based	firewalls	provide	an	extra	security	layer,	in
addition	to	network	firewalls	(as	explained	in	section	8.6.1),	and	other	security
measures.
Much	 like	network	 firewalls,	 host-based	 firewalls	 typically	block	 all	 incoming
network	traffic.	Rule	sets	define	which	type	of	traffic	is	allowed	to	communicate

with	 the	operating	 system,	based	on	 the	 source	and	destination	 IP	address,	 the
TCP	or	UDP	port	and	the	running	process	sending	and/or	receiving	the	network
traffic.
It	is	good	practice	to	enable	host-based	firewalls	on	all	machines;	on	servers,	but
especially	on	end	user	devices.

11.5.5				Limiting	user	accounts
Most	operating	systems	by	default	include	local	user	accounts	that	can	login	to
the	operating	system.	These	default	users	sometimes	have	default	passwords	that
of	course	should	be	changed	as	soon	as	possible.	It	is	even	better	to	remove	the
default	usernames	altogether.
In	 addition,	 most	 operating	 systems	 have	 a	 special	 super	 user	 account	 called
"root",	"supervisor",	"admin",	 or	 "administrator".	 These	 accounts	 have	 almost
unlimited	 power	 on	 the	 operating	 system	 and	 should	 be	 used	 only	 to	 provide
permissions	 to	user	 accounts	bound	 to	 a	physical	person.	The	password	of	 the
super	user	account	should	be	very	secure	(long	and	complex),	should	be	stored
in	 a	 safe	 place	 and	 changed	 regularly.	 Under	 normal	 circumstances,	 these
accounts	should	never	be	needed,	as	it	should	be	possible	to	do	all	work	using	a
user-bound	account	with	sufficient	rights.
Operating	 systems	 only	 store	 encrypted	 passwords	 (although	 it	 is	 sometimes
configurable	not	to,	which	is	a	bad	idea).	When	a	user	logs	in,	his	password	is
encrypted	and	compared	to	the	stored	encrypted	password.	If	the	two	are	equal
the	login	succeeds.	There	is	no	way	to	calculate	or	extract	the	original	password
from	the	encrypted	one;	therefore,	in	early	UNIX	systems,	everyone	could	read
the	password	file	with	all	encrypted	passwords.	When	weak	passwords	are	used
however,	brute	force	of	dictionary	attacks	can	be	used	to	find	the	passwords.	The
encrypted	passwords	should	therefore	never	be	disclosed.
	

12					

END	USER	DEVICES

12.1									Introduction

Humans	 interact	 with	 applications	 using	 end	 user	 devices.	 Typical	 end	 user
devices	 are	desktop	PCs,	 laptops,	 virtual	 desktops,	mobile	devices	 like	phones
and	tablets,	and	printers.
	

Figure	108:	End	user	devices	in	the	infrastructure	model

The	 first	 end	 user	 devices	 were	 teletypes.	 Teletypes	 were	 electromechanical
typewriters	 that	 provided	 a	 user	 interface	 to	 early	 mainframes,	 sending	 typed
data	to	the	computer	and	printing	the	response.
	

Picture	40:	Teletype
[86]

Later,	electronic	terminals	replaced	the	teletypes.	Terminals	provided	a	monitor
screen	 instead	of	printed	paper,	allowing	full	screen	editing	and	 instant	output.
Terminals	were	“dumb”,	as	they	did	not	have	their	own	processing	power.	They
relayed	 typed-in	 commands	 to	 the	 mainframe	 computer	 and	 the	 mainframe
computer	sent	data	back	to	the	terminal	to	be	displayed.	Terminals	were	used	for
decades	to	interact	with	mainframe	and	midrange	computers.
In	1981,	IBM	introduced	the	Personal	Computer	(PC).	The	IBM	PC	became	the
de	facto	end	user	device	in	many	office	environments,	allowing	office	workers	to
have	full	control	over	their	own	computer	for	the	first	time.
	

Picture	41:	The	original	IBM	PC-XT
[87]

IBM	developed	the	PC	in	about	a	year.	To	achieve	this,	they	decided	to	build	the
machine	with	 "off-the-shelf"	 parts	 from	 a	 variety	 of	manufacturers.	 They	 also
decided	 on	 an	 open	 architecture,	 enabling	 other	manufacturers	 to	 produce	 and
sell	peripheral	components	and	compatible	software	without	having	to	purchase
licenses.	 IBM	 even	 sold	 an	 IBM	 PC	 Technical	 Reference	 Manual	 which
included	complete	circuit	diagrams	and	a	listing	of	the	ROM	BIOS	source	code.
The	result	was	that	many	parties	copied	the	PC	–	the	so-called	PC	clones.	These
clones	 (or	 IBM-compatible	 PCs)	 used	 the	 same	 architecture,	 used	 the	 same
chipset	 as	 the	 IBM	PC,	and	used	 reversed-engineered	BIOS	software	 (because

even	 though	 the	 source	 code	 was	 published,	 it	 was	 still	 copyrighted).	 This
allowed	 clones	 to	 run	 unmodified	 IBM	 software.	 One	 of	 the	 first	 and	 most
successful	companies	building	clones	was	Compaq,	which	would	 later	become
part	of	HP.
All	of	the	IBM	PC	software	was	developed	by	third	parties.	The	most	influential
one	 being	Microsoft	 that	 provided	 the	DOS	 operating	 system	 and	 office	 tools
like	Word	and	Excel.
While	 IBM	 was	 already	 a	 large	 manufacturer	 of	 computers	 before	 the
introduction	 of	 the	 PC,	 in	 contrast,	 Apple	 was	 founded	 by	 two	 hobbyists.	 In
1984,	 Apple	 introduced	 the	 Apple	 Macintosh.	 It	 was	 the	 first	 commercially
successful	 personal	 computer	 to	 feature	 a	 mouse	 and	 a	 GUI	 rather	 than	 a
command	line	interface.	It	was	designed	to	be	used	by	consumers,	and	not	as	an
office	tool.
Both	the	Mac	and	the	PC	evolved	over	time	to	become	much	faster.	Color	video
screens	and	sound	boards	became	the	norm,	and	laptops	became	the	most	used
form	factor.
The	introduction	of	tablets	and	smartphones	made	the	end	user	experience	truly
mobile.

12.2									End	user	device	building	blocks

End	user	devices	can	be	categorized	as:
·									Desktop	PCs
·									Laptops
·									Virtual	desktops
·									Mobile	devices
·									Printers

All	of	these	categories	are	discussed	in	the	following	sections.

12.2.1				Desktop	PCs	and	laptops
The	most	used	end	user	devices	 today	are	desktop	and	laptop	computers	based
on	Intel’s	x86	architecture,	mostly	 referred	 to	as	PCs.	While	Apple	 iMacs	also

run	on	the	x86	platform,	according	to	Gartner
[88]

,	in	2014	more	than	90%	of	the
x86	based	PCs	run	the	Microsoft	Windows	operating	system.
Over	 the	 years,	 PCs	 have	 become	 very	 powerful.	 This	 enables	 them	 to	 run
complex	software	and	to	store	relatively	large	amounts	of	data.	But	because	of
the	sheer	complexity	of	the	PC	itself,	the	very	advanced	operating	systems,	the
amount	 of	 locally	 installed	 software,	 and	 the	 performance,	 availability,	 and
security	issues	related	to	all	of	 these	aspects,	many	organizations	are	searching
for	more	cost-effective	and	simple	solutions.
But	people	are	attached	to	their	PCs.	The	term	personal	computer	is	still	correct
–	most	users	feel	their	PC	is	their	personal	tool	that	systems	managers	should	not
tamper	with.	This	 is	 one	of	 the	main	 reasons	why	 the	 adoption	of	 alternatives
like	thin	clients	(see	12.3.4)	has	never	been	as	successful	as	it	could	have	been.
Nowadays,	most	laptops	are	as	powerful	as	desktop	PCs.	And	because	users	can
take	 them	home	or	 use	 them	on	 the	 road,	 they	 are	 even	more	 "personal"	 than
desktops.	Laptops,	however,	have	some	disadvantages	compared	to	desktop	PCs,
like:

·									Laptops	frequently	get	lost	or	stolen.	On	average,	10%	of	the	laptops

are	lost	or	stolen	during	their	life	cycle
[89]

.	These	laptops	must	be	replaced,

the	user	cannot	work	in	the	meantime,	and	data	on	the	laptop	that	was	not
backed-up	is	lost.
·									Laptops	break	more	easily	than	desktops,	because	they	are	more
vulnerable	to	drops,	bumps,	coffee	spills,	etc.
·									Since	most	laptops	are	taken	home	every	night,	the	chance	of	illegal	or
malicious	software	being	installed	on	the	laptop	is	much	higher	than	on	a
desktop	PC	in	the	office.

12.2.2				Mobile	devices
The	use	of	mobile	devices	has	grown	tremendously	over	the	last	few	years	and
their	use	will	most	likely	increase	much	more	in	the	years	to	come.
Mobile	 devices	 in	 the	 context	 of	 this	 book	 are	 devices	 that	 connect	 to	 the	 IT
infrastructure	 using	wireless	 public	 or	 off-site	Wi-Fi	 networks.	Typical	mobile
devices	 are	 smartphones	 and	 tablets,	 but	 modern	 computerized	 networked
devices	 like	 cars,	 smart	 watches,	 music	 players	 or	 digital	 cameras	 are	 also
considered	mobile	devices.
While	 the	 computing	 power	 of	 some	mobile	 devices	 is	 getting	 comparable	 to
desktop	and	laptop	computers,	mobile	devices	have	some	specific	properties	that
infrastructure	architects	must	be	aware	of.
Mobile	devices	typically	connect	to	the	IT	infrastructure	using	public	networks
based	 on	 for	 example	 UMTS	 or	 LTE	 technology	 (these	 technologies	 are
explained	in	chapter	8).	The	bandwidth	of	these	connections	is	lower	than	that	of
Wi-Fi	 and	 wired	 Ethernet	 connections.	 Also,	 connection	 speed	 can	 heavily
fluctuate	 as	 the	 users	 move	 around,	 and	 it	 sometimes	 can	 fluctuate	 quite	 fast
when	 the	 mobile	 device	 is	 used	 inside	 a	 car	 or	 train.	 The	 reliability	 of	 the
connections	is	therefore	worse	than	that	of	Wi-Fi	or	wired	Ethernet	connections.
When	moving	around,	connections	sometimes	drop	for	short	periods	of	time	or
drop	 altogether.	 Signal	 noise	 can	 force	 resending	 large	 numbers	 of	 network
packets.	 Applications	 using	 mobile	 devices	 must	 cope	 with	 these	 network
limitations.
Another	 limitation	 of	 mobile	 devices	 is	 the	 small	 form	 factor	 forcing	 limited
keyboard	and	screen	sizes.	Applications’	user	interfaces	must	be	re-engineered	to
handle	these	smaller	sizes.

12.2.3				Bring	Your	Own	Device	(BYOD)
Ten	years	ago,	PCs	used	in	the	office	were	superior	to	those	people	had	at	home.
This	 situation	 has	 changed.	 While	 most	 organizations	 use	 standard	 PCs	 or
laptops	with	a	limited	set	of	business	software,	users	at	home	have	access	to	fast,
sexy	laptops	of	the	brand	they	like,	tablets	and	smart	phones	that	allow	them	to
run	 thousands	 of	 highly	 attractive	 apps	 and	 they	 have	 fast	 broadband	 internet
connections	at	home	that	are	often	faster	than	the	shared	network	in	the	office.
To	attract	new	employers	and	because	people	will	take	their	personal	device	to
the	office	anyway,	most	organizations	are	now	confronted	with	a	concept	called
Bring	Your	Own	Device	(BYOD).
BYOD	allows	people	to	bring	personally	owned	–	typically	mobile	–	devices	to
the	office,	to	use	them	to	access	the	organization’s	applications	and	data,	as	well
as	their	personal	applications	and	data.
The	BYOD	concept	 creates	 a	 conflict	 of	 interests.	To	optimize	 stability	 of	 the
organization’s	infrastructure	and	security,	systems	managers	need	to	fully	control
the	 end	 user	 device,	 while	 the	 owners	 of	 the	 devices	want	 full	 freedom.	And
since	the	user	paid	for	the	device	(they	brought	their	own	device),	it	will	not	be
acceptable	 for	 users	 to	 have	 systems	managers	 erase	 the	 device	 (including	 all
family	 photos	 or	 purchased	music)	 in	 case	 of	 an	 incident,	 or	 to	 have	 personal
data	visible	to	the	systems	managers.
Virtualization	 techniques	 can	 be	 used	 to	 create	 isolated	 environments	 on	 these
devices.	 Some	 solutions	 implement	 a	 hypervisor	 on	 the	 device	 that	 runs	 two
virtual	machines:

·									One	virtual	machine	with	has	access	to	the	organization’s	data	and
applications	and	is	fully	managed	by	the	organization’s	systems	managers.
This	virtual	machine	is	managed	using	Mobile	Device	Management
(MDM)	software	that	can	be	used	to	monitor,	maintain	and	secure	virtual
machines	on	mobile	devices.	When	needed,	the	virtual	machine	can	be
remotely	wiped	to	remove	all	sensitive	data.
·									One	virtual	machine	that	is	owned	and	managed	by	the	end	user.	This
machine	runs	whatever	applications	the	user	wants	(browsers,	social
network	clients,	games,	music	players,	video	players,	etc.).

Both	 virtual	 machines	 use	 the	 same	 underlying	 hardware	 like	 network
connectivity,	touch	screen,	GPS,	compass,	and	the	sound	system.	But	since	both

virtual	 machines	 are	 run	 on	 top	 of	 a	 hypervisor,	 no	 sensitive	 data	 will	 be
available	from	the	user’s	managed	virtual	machine.

12.2.4				Printers
Printers	are	used	in	almost	all	organizations	to	provide	paper	output.	Most	used
printer	types	are:

·									Line	printers
·									Laser	printers
·									Inkjet	printers
·									Multi-Functional	Printers
·									Specialized	printers	like	dot	matrix	printers,	line	printers,	plotters,	and
thermal	printers

12.2.4.1			Laser	printers
The	 original	 laser	 printer	 called	EARS	was	 developed	 at	 the	Xerox	Palo	Alto
Research	Center	in	1971,	based	on	Xerox	copier	technology.	In	1992,	Hewlett-
Packard	 released	 the	popular	LaserJet	4,	with	a	Canon	based	engine,	a	600	by
600	dot	per	 inch	 resolution	 laser	printer	used	 in	many	office	 environments	 for
many	years.
A	laser	printer	rapidly	produces	high	quality	text	and	graphics	on	plain	sheets	of
paper.	 In	 laser	 printers,	 the	 image	 is	 produced	 using	 a	 so-called	 drum.	 This
photoreceptive	drum	is	electrically	charged	using	high	voltages.	After	lighting	it
with	a	laser	beam	(which	eliminates	the	electrostatic	charge	on	all	places,	except
the	image),	the	electrostatic	charge	left	on	the	drum	attracts	toner	(ink	powder)
that	transfers	the	image	on	paper.	A	fuser	then	heats	the	toner	to	burn	it	on	paper.
	

Picture	42:	HP’s	LaserJet	4	printer

Both	 monochrome	 and	 color	 laser	 printers	 are	 in	 use.	 In	 color	 printers	 four
toners	are	used,	one	for	each	basic	color	(cyan,	magenta	and	yellow),	and	one	for
black.	 Each	 color	 is	 put	 on	 paper	 separately.	 This	 makes	 color	 printing	more
expensive	and	sometimes	slower	than	monochrome	printing.

12.2.4.2			Inkjet	printers
In	1976,	the	inkjet	printer	was	invented.	But	it	took	until	1988	for	the	inkjet	to
become	 a	 home	 consumer	 item	with	Hewlett-Packard’s	 release	 of	 the	Deskjet
inkjet	 printer.	 Inkjet	 printers	 are	 relatively	 cheap	 and	 produce	 high	 quality
printouts,	usually	in	color.
Inkjet	printers	create	text	and	graphics	by	propelling	droplets	of	ink	onto	paper
through	high	print	head	resolution,	making	them	ideal	for	office	environments.
Inkjet	 printers	 don’t	 need	 to	 warm	 up	 and	 use	much	 less	 energy	 than	 a	 laser
printer.
Some	 professional	 inkjet	 printers	 provide	 wide	 format	 printing,	 with	 a	 print
width	 ranging	 from	 75	 cm	 to	 5	 m.	 They	 can	 be	 used	 for	 instance	 to	 create
advertising	billboards.

12.2.4.3			Multi-Functional	Printers	(MFPs)
A	Multi-Function	 Printer	 (MFP)	 is	 an	 office	 device	 which	 not	 only	 acts	 as	 a
printer,	 but	 also	 as	 a	 scanner,	 a	 photocopier,	 and	 a	 fax	 machine.	 It	 typically
provides	centralized	document	management	and	production	in	an	office	setting.
Multi-functional	printers	are	available	from	most	printer	manufacturers;	they	are

quickly	replacing	separate	printers	in	office	environments.
	

Picture	43:	Multi-Function	Printer	(MFP)

In	most	 situations,	 one	MFP	 is	 placed	 on	 each	 floor	 in	 an	 office	 building,	 so
everyone	on	that	floor	can	use	it.	Therefore,	most	MFPs	use	Active	Directory	or
another	authentication	functionality	to	start	the	actual	printing	only	when	a	user
is	 authenticated	 to	 the	 printer	 (typically	 with	 the	 same	 pass	 used	 to	 enter	 the
building).	This	“printing	on	demand”	enhances	security	as	no	printed	paper	with
possibly	sensitive	text	is	left	on	the	MFP	waiting	to	be	collected.	And	because	a
single	printer	is	used,	people	are	forced	to	walk	to	the	printer	which	is	not	only
good	exercise,	but	also	is	a	psychological	barrier	to	avoid	unneeded	printing.	For
those	 people	 that	 don’t	 want	 to	 stand	 in	 line	 waiting	 for	 their	 printout,	 some
MFPs	have	separate	locked	mail	bins	where	one	can	collect	printouts.
MFPs	are	essentially	a	type	of	computer	themselves.	They	contain	memory,	one
or	more	processors,	often	some	kind	of	storage,	such	as	a	hard	disk	drive	or	flash
memory,	and	an	operating	system.	An	MFP	should	 therefore	be	handled	 like	a
computer	–	patches	must	be	installed,	and	the	hard	drive	should	be	erased	before
repair.
Because	 the	MFP	 is	a	computer	connected	 to	 the	network,	monitoring	of	print
quotas,	toner/ink	levels,	etc.	can	be	done	remotely.

12.2.4.4			Specialized	printers

12.2.4.4.1			Dot	Matrix	printers
In	dot	matrix	printers,	characters	are	drawn	out	of	a	matrix	of	dots,	where	each
dot	is	produced	by	a	tiny	metal	rod	driven	forward	by	a	tiny	electromagnet.	The
moving	portion	of	the	printer	is	called	the	print	head.
The	printer	typically	prints	one	line	of	text	at	a	time,	character-by-character.	Dot
matrix	 printers	 are	 noisy	 during	 operation	 as	 a	 result	 of	 the	 hammer-like
mechanism	in	the	print	head.
	

Figure	109:	Output	of	a	dot	matrix	printer

From	 the	 1970s	 until	 the	 1990s,	 dot	 matrix	 printers	 were	 by	 far	 the	 most
common	type	of	printer	used	with	personal	computers,	the	Epson	MX-80	being
one	of	the	most	popular	dot	matrix	printers	of	all	times.
	

Picture	44:	The	Epson	MX-80	dot	matrix	printer
[90]

Dot	 matrix	 printers	 can	 print	 on	 multi-part	 stationery	 or	 make	 carbon-copies,
used	 for	 instance	 for	 printing	 invoices.	 Dot	 matrix	 printers	 have	 one	 of	 the
lowest	printing	costs	per	page.	They	use	continuous	paper	rather	than	individual
sheets,	making	them	useful	for	printing	continuous	data	logs.	Dot	matrix	printers
are	very	reliable	work	horses	and	are	therefore	still	in	use	in	many	places.

12.2.4.4.2			Line	printers
Line	printers	are	high	speed	printers	that	print	one	complete	line	of	text	at	once.

http://upload.wikimedia.org/wikipedia/commons/0/02/Dot_matrix_example_text.png

Line	 printers	 were	 mostly	 used	 in	 the	 early	 days	 of	 computing,	 but	 the
technology	is	still	in	use	for	specific	tasks.	Line	printers	print	at	a	speed	of	600
to	 1200	 lines	 per	minute.	 Line	 printers	 use	 paper	 of	 continuous	 fanfold	 paper
rather	than	cut-sheets.
	

Picture	45:	IBM	1403	line	printer
[91]

Multiple	technologies	can	be	used	in	line	printers,	using	spinning	drums,	chains,
or	 bands	 that	 contain	 the	 character	 set.	 Small	 hammers	 are	 used	 to	 push	 the
paper	 to	 the	 passing	 characters	 at	 exactly	 the	 right	 moment,	 putting	 the
characters	on	paper.
Modern	 line	 matrix	 printers	 are	 significantly	 more	 sophisticated	 than	 their
predecessors,	 offering	 high	 resolution	 print	 quality	 and	 often	 laser-printer

emulation,	including	the	ability	to	print	PostScript	fonts
[92]

.
Line	 printers	 are	 especially	 well-suited	 to	 shop	 floors	 and	 industrial
environments,	where	dust,	humidity,	temperature	extremes,	and	other	factors	can
quickly	 bring	 laser	 printers	 to	 a	 standstill.	 Line	 printers	 are	 physically	 more
durable	 than	 laser	printers,	and	 their	consumables	are	both	 less	costly	and	 less
harmful	to	the	environment.

12.2.4.4.3			Plotters
A	plotter	is	a	specialized	printer	that	draws	vector	graphics	using	a	pen.	They	are

mainly	used	in	computer-aided	design,	for	creating	blueprints.
In	large	plotters,	a	roll	of	paper	is	placed	over	a	roller	that	moves	the	paper	back
and	forth	for	Y-axis	motion,	while	the	pen	moves	left	and	right	on	a	track	for	X-
axis	motion.	Small	 (A4,	A3	or	Letter	paper)	plotters	do	not	move	 the	paper	at
all;	instead	the	pen	moves	over	the	paper.
Plotters	 can	 draw	 high	 quality	 complex	 line	 art,	 including	 text,	 but	 are	 slow
because	of	the	mechanical	movement	of	the	pen	and	paper.
Pen	 plotters	 have	 essentially	 become	 obsolete	 in	 most	 places,	 and	 have	 been
replaced	by	large-format	inkjet	printers.

12.2.4.4.4			Thermal	printers
A	thermal	printer	produces	a	printed	image	by	selectively	heating	thermal	paper
when	 the	 paper	 passes	 over	 the	 thermal	 print	 head.	 Thermal	 paper	 is
impregnated	with	a	chemical	that	changes	color	when	exposed	to	heat.	Thermal
printers	print	quietly	and	fast.	Since	they	are	also	small,	light,	and	don’t	consume
much	power,	they	are	ideal	for	portable	and	retail	applications	like	point	of	sale
terminals	and	voucher	printers.
A	major	drawback	of	 thermal	printing	 is	 that	 the	 image	will	disappear	when	a
print	is	exposed	to	sunlight	or	heat	for	a	certain	period	of	time.

12.3									Desktop	virtualization

A	number	of	virtualization	 technologies	can	be	deployed	 for	 end	user	devices.
Application	 virtualization	 can	 be	 used	 to	 run	 applications	 on	 an	 underlying
virtualized	 operating	 system.	And	 instead	 of	 running	 applications	 on	 end	 user
devices	 themselves,	 using	 a	 thin	 client,	 applications	 can	 also	 be	 run	 on
virtualized	 PCs	 based	 on	 Server	 Based	 Computing	 (SBC)	 or	 Virtual	 Desktop
Infrastructure	(VDI).	All	of	these	technologies	are	explained	in	the	next	sections.

12.3.1				Application	virtualization
The	term	application	virtualization	is	a	bit	misleading,	as	the	application	itself	is
not	 virtualized,	 but	 the	 operating	 system	 resources	 the	 application	 uses	 are
virtualized.	Application	virtualization	isolates	applications	from	some	resources
of	 the	 underlying	 operating	 system	 and	 from	 other	 applications,	 to	 increase
compatibility	and	manageability.
The	 application	 is	 fooled	 into	 believing	 that	 it	 is	 directly	 interfacing	with	 the
operating	 system	 and	 all	 the	 resources	 managed	 by	 it.	 But	 in	 reality,	 the
application	virtualization	layer	provides	the	application	with	virtualized	parts	of
the	runtime	environment	normally	provided	by	the	operating	system.
Application	 virtualization	 is	 typically	 implemented	 in	 a	 Windows-based
environment
	

Figure	110:	Application	virtualization

The	application	virtualization	layer	proxies	all	requests	to	the	operating	system,
but	intercepts	all	file	and	registry	operations.	These	operations	are	transparently
redirected	to	a	virtualized	location,	often	a	single	real	file.
Since	 the	 application	 is	 now	working	with	 one	 file	 instead	 of	many	 files	 and
registry	 entries	 spread	 throughout	 the	 system,	 it	 becomes	 easy	 to	 run	 the
application	on	a	different	computer,	and	previously	incompatible	applications	or
application	versions	can	be	run	side-by-side.
Examples	 of	 application	 virtualization	 products	 are	 Microsoft	 App-V	 and
VMware	ThinApp.

12.3.2				Server	Based	Computing
Server	Based	Computing	(SBC)	is	a	concept	where	applications	and/or	desktops
running	 on	 remote	 servers	 relay	 their	 virtual	 display	 to	 the	 user's	 device.	 The
user’s	device	 runs	a	 relatively	 lightweight	application	 (a	 thin	client	 agent)	 that

displays	 the	 video	 output,	 and	 that	 fetches	 the	 keyboard	 strokes	 and	 mouse
movements,	 sending	 them	 back	 to	 the	 application	 on	 the	 remote	 server.	 The
keyboard	and	mouse	 information	 is	processed	by	 the	application	on	 the	server,
and	the	resulting	display	changes	are	sent	back	to	the	user	device.
	

Figure	111:	Server	Based	Computing

SBC	 requires	 a	 limited	 amount	 of	 network	 bandwidth	 because	 only	 changed
display	information	is	sent	to	the	end	user	device	and	only	keyboard	strokes	and
mouse	movements	are	sent	to	the	server.
SBC	is	typically	implemented	in	a	Windows	based	environment,	where	the	SBC
server	 is	 either	Windows	 Remote	 Desktop	 Service	 (RDS,	 formerly	 known	 as
Windows	Terminal	Services)	or	Citrix	XenApp	(formerly	known	as	MetaFrame
Presentation	 Server).	 XenApp	 provides	more	 functionality	 than	 RDS,	 but	 is	 a
separate	product,	whereas	RDS	is	part	of	the	Windows	operating	system.
A	big	 advantage	 of	 using	SBC	 is	 that	maintenance	 (like	 applying	 patches	 and
upgrades)	can	be	done	at	the	server	level.	The	changes	are	available	instantly	to
all	users	–	freeing	systems	managers	of	managing	a	large	set	of	PC	deployments.
With	SBC,	server-side	CPU	and	RAM	capacity	is	shared	with	applications	from
all	users.	Extensive	use	of	CPU	and/or	RAM	in	one	user's	session	can	influence
the	performance	of	sessions	of	other	users	on	the	same	server.
Application	 configurations	 are	 the	 same	 for	 all	 users	 and	 use	 the	 graphical

properties	of	the	SBC	server	instead	of	that	of	the	client	end	user	device.
Limitations	 on	 the	 desktop	 experience	 (slow	 response	 or	 keyboard	 lag)	 are
mostly	 due	 to	 network	 latency	 or	 the	 configuration	 of	 the	 remote	 desktop.	 In
most	 cases	 security	 and	 stability	 settings	 (protecting	 changes	 to	 shared
resources)	could	also	influence	the	experience.	With	a	good	configuration	of	the
roaming	user	profile,	folder	redirection	for	network	storage	of	user	data,	and	the
latest	 application	virtualization	 techniques,	 limitations	 in	desktop	usage	can	be
minimal.

12.3.3				Virtual	Desktop	Infrastructure	(VDI)
Virtual	Desktop	Infrastructure	 (VDI)	 is	a	similar	concept	as	SBC,	only	 in	VDI
user	applications	run	in	their	own	virtual	machine.
VDI	utilizes	a	virtual	desktop	running	on	top	of	a	hypervisor,	typically	VMware
View,	Citrix	XenDesktop,	or	Microsoft	MED-V.	The	hypervisor's	primary	task	is
to	distribute	available	hardware	resources	between	virtual	machines	hosted	on	a
physical	machine.
	

Figure	112:	VDI

Just	 like	 with	 a	 physical	 PC,	 with	 VDI,	 each	 user	 has	 exclusive	 use	 of	 the
operating	 system,	 CPU,	 and	 RAM,	whereas	 SBC	 users	 share	 these	 resources.

VDI	 enables	 applications	 and	 operating	 systems	 to	 run	 next	 to	 each	 other	 in
complete	isolation	without	interference.
Protocols	 supported	 to	 exchange	 video,	 keyboard,	 and	 mouse	 from	 client	 to
virtual	machine	are	 the	ICA	(Independent	Computing	Architecture)	protocol	of
Citrix,	 Microsoft’s	 RDP	 (Remote	 Desktop	 Protocol),	 or	 the	 VMware	 PCoIP
protocol.
VDI	 tends	 not	 to	 scale	 well	 in	 terms	 of	 CPU	 resources	 and	 storage	 IOPS,
because	 each	 client	 uses	 an	 entire	 virtual	machine.	 Booting	 a	 system	 leads	 to
much	I/O	to	the	server.	A	so-called	'Logon	storm'	occurs	when	many	virtualized
systems	boot	up	at	the	same	time.	These	logon	storms	can	partly	be	prevented	by
pre-starting	a	predefined	number	of	virtual	machines	at	configured	time	slots.

12.3.4				Thin	clients
VDI	and	SBC	both	enable	 the	hosting	of	desktops	on	central	 server	 farms	and
use	the	same	protocols	to	deliver	the	output	of	application	screens	to	users.	Thin
clients	 communicate	with	 the	 SBC	 or	VDI	 server.	 They	 come	 in	 two	 flavors:
hardware	and	software	based	thin	clients.
Hardware	 based	 thin	 clients	 are	 lightweight	 computers	 that	 are	 relatively
inexpensive	and	have	no	moving	parts	or	local	disk	drives.	The	devices	have	no
configuration	 and	 can	 be	 used	 directly	 after	 plugging	 them	 into	 the	 network,
making	 it	 easy	 to	 replace	when	 one	 fails.	 They	 eliminate	 the	 requirement	 for
upgrading	PCs	or	laptops	on	a	regular	basis.
Software	based	thin	clients	are	applications	running	in	a	normal	client	operating
system	like	Windows,	Linux,	or	Mac	OS	X.	They	can	also	run	on	mobile	devices
like	tablets	and	smartphones.

12.3.4.1			PXE	boot
The	Preboot	eXecution	Environment	(PXE)	allows	desktop	PCs	or	thin	clients	to
boot	from	an	operating	system	disk	image	stored	on	the	network	instead	of	from
a	 local	hard	disk.	This	allows	for	diskless	 thin	clients	 (where	no	data	 is	 stored
locally),	 leading	 to	 lower	 cost	 and	 less	 systems	 management	 effort.	 Since	 no
operating	system	is	stored	on	a	local	disk,	no	updates	or	patches	are	necessary;
these	are	installed	on	the	central	PXE	server.	For	PXE	to	work,	 the	PC	always
needs	 a	 network	 connection.	 PXE	 is	 therefore	 not	 suitable	 for	mobile	 devices
like	laptops.

PXE	 uses	 a	 combination	 of	 the	DHCP	 and	 TFTP	 protocols.	On	 PXE	 enabled
PCs	the	BIOS	tries	to	locate	a	PXE	boot	server	on	the	network	using	DHCP	(see
section	8.2.8.1).	The	BIOS	will	ask	the	PXE	boot	server	for	the	file	path	of	the
image	to	load	(usually	a	Windows	image),	download	it	into	the	PC’s	RAM	using
TFTP,	possibly	verify	it,	and	finally	execute	it.
The	 startup	 time	 of	 a	 PC	 using	 PXE	 is	 highly	 dependent	 on	 how	 fast	 a	 PXE
image	 can	 be	 downloaded	 from	 the	 TFTP	 server.	 And	 because	 in	 most
organizations	 each	 morning	 all	 PCs	 are	 started	 up	 around	 the	 same	 time,
implementing	a	high	performing	TFTP	server	is	crucial	for	fast	startup	times.

12.4									End	user	device	availability

12.4.1				Reliability
Compared	to	a	few	years	ago,	today’s	hardware	is	much	more	reliable.	End	user
devices	now	run	mature,	stable	operating	systems	and	applications.	But	to	keep
the	cost	of	end	user	devices	 low,	 their	hardware	 is	still	much	less	reliable	 than
hardware	installed	in	the	datacenter.	End	user	devices	are	designed	to	last	only	3
to	5	years	before	they	are	replaced	by	new	equipment,	so	the	chance	of	a	failing
end	user	system	is	relatively	high.	And	mobile	devices	like	laptops	or	tablets	can
get	physically	damaged	quite	easily	leading	to	hardware	failures.	Typical	failures
are	 hard	disk	 crashes	 in	 laptops	or	 screen	 cracks	 in	 tablets.	A	 failing	 end	user
device	 immediately	 leads	 to	 downtime	 for	 a	 user	 and	 therefore	 loss	 of
availability	of	business	functions	to	the	end	user.
Systems	management	 should	 therefore	 be	 ready	 to	 cope	 with	 failing	 systems.
When	an	end	user	device	fails,	it	should	be	easy	to	replace	the	device	with	a	new
one	or	to	wipe	the	hard	disk	and	install	a	fresh	copy	of	the	standard	software	set.

12.4.2				Backup	of	end	user	devices
Backup	of	local	disks	is	very	important,	as	still	most	of	the	work	worldwide	is
first	saved	to	a	local	disk	on	an	end	user	device.	Automated	synchronization	of
local	 data	 to	 a	 server	 can	 be	 implemented	 to	 solve	 this	 problem.	 In	 these
solutions,	as	soon	as	the	device	is	connected	to	the	network,	local	data	is	copied
from	 the	device	 to	a	 server	 in	 the	datacenter,	where	 it	 is	properly	back-upped.
For	end	users,	it	should	be	impossible	to	disable	this	synchronization	function.
	

And	of	course,	end	users	should	be	trained	to	save	their	work	early	and	often.
In	practice,	I	have	seen	several	occasions	of	people	working	on	a	document	for
a	 full	day	without	hitting	 the	Save	button	once!	When	close	 to	 the	end	of	 the
day	their	text	editor	crashed,	a	full	day	work	was	gone.
Never	 trust	 technology	–	 it	will	break,	and	 typically	at	 the	most	 inconvenient
moment!

12.4.3				Software	stack

The	availability	of	 end	user	devices	 is	 also	 threatened	by	 the	 instability	of	 the
application	stack	as	a	result	of	installing	all	kinds	of	software.	End	user	devices
should	be	protected	from	random	installs	of	potential	bad	software	by	end	users.

12.4.4				Printers	and	other	equipment
Don’t	 forget	 printers	 and	 other	 equipment.	Make	 sure	 service	 contracts	 are	 in
place	to	repair	failing	devices.	And	remember:	a	printer	without	enough	supply
of	paper	and	toner/ink	is	just	as	unavailable	as	a	defective	printer!

12.5									End	user	device	performance

The	 performance	 of	 end	 user	 devices	 is	 in	 most	 cases	 not	 a	 big	 issue.	 With
today’s	hardware,	when	properly	installed	and	managed,	end	user	devices	have
few	performance	issues.

12.5.1				RAM
It	 is	 good	 practice	 to	 install	 enough	 RAM	 to	 run	 most	 needed	 applications
simultaneously.	In	general,	adding	more	RAM	increases	the	performance	of	the
end	user	device	more	than	choosing	a	faster	CPU.

12.5.2				Hard	disk
The	 local	disk	drive’s	 speed	 is	 also	 important	 for	 the	performance	of	 end	user
devices.	 The	 local	 disk	 drive	 is	 used	 to	 start	 the	 operating	 system	 and	 the
applications,	 and	 to	 store	 temporary	 files	 and	 swap	 files.	 A	 faster	 disk	 –
preferably	an	SSD	disk	–	can	positively	affect	the	performance	of	the	whole	end
user	device	in	a	big	way.

12.5.3				Network	connectivity
Also,	 the	 network	 connection	 can	 be	 crucial	 to	 get	 proper	 performance.	Most
data	 processed	 on	 a	 PC	of	 laptop	 is	 transferred	 using	 the	 network.	Make	 sure
enough	bandwidth	 is	available	for	each	end	user	device,	both	on	a	wired	LAN
and	on	a	Wi-Fi	network.
Using	public	wireless	networks	can	dramatically	slow	down	performance,	as	the
bandwidth	can	be	low	and/or	fluctuating.	When	end	user	devices	are	used	with
public	wireless	networks	(like	public	Wi-Fi,	or	3G)	ensure	the	used	software	is
capable	 of	 handling	 low	 bandwidth	 and	 unreliable	 connectivity.	 Technologies
like	 Server	 Based	 Computing	 can	 help	 to	 make	 mitigate	 the	 effect	 of	 these
issues.

12.6									End	user	device	security

Securing	end	user	devices	is	quite	a	challenge,	as	these	devices	are	not	located	in
a	 locked	 down	 datacenter,	 but	 are	 spread	 around	 offices,	 homes	 and	 client
locations.

12.6.1				Physical	security
When	 laptop	 computers	 are	 used,	 provide	 users	 with	 laptop	 cable	 locks	 to
physically	lock	the	laptop	to	an	unmovable	object	to	prevent	theft.
If	end	user	devices	are	at	 the	end-of-life,	or	when	 they	need	repair,	 fully	erase
the	hard	disk	first!

12.6.2				Malware	protection
Malware	protection	software	 like	a	virus	scanner	needs	 to	be	 installed	on	each
device.	They	 should	 check	 for	 all	 known	viruses,	 spyware,	 rootkits,	 and	 other
malware.	 As	 soon	 as	 a	 virus	 is	 located,	 files	 containing	 the	 virus	 must	 be
quarantined	immediately	to	prevent	further	propagation.	Most	virus	scanners	are
capable	 of	 this	 sort	 of	 quarantining.	 When	 malware	 is	 detected,	 it	 should	 be
reported	automatically	 to	a	central	 systems	management	 tool,	 to	allow	systems
managers	 to	 take	appropriate	action.	Of	course,	users	should	not	be	allowed	to
disable	the	functionality	of	the	malware	protection	software.
As	 soon	as	new	virus	 signatures	 are	published	by	 the	virus	 scanner’s	 supplier,
they	 should	 be	 installed	 as	 soon	 as	 possible	 on	 all	 end	 user	 devices
automatically.	A	regular	full	scan	of	each	end	user	device	should	be	scheduled	as
well;	in	case	any	infected	file	was	missed.

12.6.3				Hard	disk	encryption
Because	 PCs	 and	 laptops	 usually	 have	 large	 hard	 disks	 installed,	 they	 can
contain	a	large	amount	of	(business	critical)	data.	When	a	PC	or	laptop	is	stolen,
lost,	 or	 replaced,	 chances	 are	 that	 sensitive	 data	 gets	 in	 the	 wrong	 hands.
Therefore,	 every	PC	 (and	 especially	 every	 laptop!)	 should	 have	 their	 full	 hard
disk	encrypted.

12.6.4				Mobile	device	management
Mobile	devices	are	very	attractive	to	thieves	and	must	therefore	be	secured.
Mobile	device	management	(MDM)	can	be	used	to	monitor,	maintain	and	secure
devices	 that	 are	not	 regularly	connected	 to	 the	organization’s	network.	A	good
example	 is	 a	 mobile	 phone	 or	 tablet.	 Over	 the	 air	 distribution	 of	 software
releases	and	updates	of	virus	scanner	signatures	can	be	done	using	MDM.
When	a	mobile	device	is	stolen,	MDM	enables	systems	management	to	remotely
erase	 the	device’s	 content.	Many	 tools	 are	available	 for	 this,	but	keep	 in	mind
that	the	market	for	this	software	is	young	and	most	tools	are	not	very	mature	at
this	point.
Software	 to	 locate	 the	 stolen	 device	 can	 be	 installed	 to	 help	 law	 enforcement
locating	 the	 device	 and	 arresting	 the	 thief.	 It	 is	 sometimes	 even	 possible	 to
remotely	switch	on	the	installed	camera	on	stolen	mobile	devices	to	see	the	face
and	surroundings	of	the	thief.

12.6.5				End	user	authorizations	and	awareness
End	users	should	not	be	able	to	remove	important	software	or	alter	system	files
or	 log	 files.	 Therefore,	 they	 should	 not	 have	 (access	 to)	 the	 administrator
password	 of	 their	 device.	 When	 users	 need	 to	 install	 software	 (which	 is	 a
frequent	requirement	in	practice),	they	could	be	given	the	right	to	do	so,	without
giving	them	the	administrator	password	of	their	device
BIOS	 passwords	 can	 be	 used	 on	 laptops	 and	 desktops	 to	 further	 increase
security.	BIOS	setting	should	be	applied	to	prevent	booting	from	USB	sticks	or
DVD	players.
But	the	security	issue	with	end	user	devices	is	not	so	much	a	matter	of	the	device
as	 it	 is	 a	matter	 of	 the	 end	 user.	Users	 need	 to	 be	 aware	 of	 common	 security
guidelines	including	the	possibility	of	social	engineering,	using	strong	passwords
and	knowing	how	to	handle	sensitive	data.
	

PART	IV	–	INFRASTRUCTURE	MANAGEMENT

	

13					

INFRASTRUCTURE	LIFECYCLE	

Where	 the	chapters	 in	Part	 III	were	about	 technological	 infrastructure	building
blocks,	 this	 part	 IV	 is	 about	 the	 systems	management	 processes	 based	 on	 the
infrastructure	lifecycle.
	

Figure	113:	Infrastructure	management

The	infrastructure	lifecycle	encompasses	the	following	steps:
·									Determine	the	best	deployment	option	for	the	infrastructure
·									Purchasing	infrastructure	and	services
·									Build-up,	testing	and	go-live
·									Maintaining	the	infrastructure
·									Deploying	applications

·									Decommissioning	the	infrastructure
All	of	these	steps	are	described	in	the	following	chapters.
	

14					

INFRASTRUCTURE	DEPLOYMENT	OPTIONS

14.1									Introduction

This	 chapter	 discusses	 how	 to	 select	 the	 best	 deployment	 option	 for
infrastructure,	 based	 on	 requirements.	 Hosting	 options	 define
where	infrastructure	is	hosted,	and	deployment	models	define	how	infrastructure
is	deployed.

14.2									Hosting	options

Infrastructure	 can	 be	 hosted	 on-premises,	 in	 a	 colocation,	 or	 the	 infrastructure
can	be	outsourced.
With	on-premises	hosting,	infrastructure	components	run	on	the	premises	of	the
organization	using	the	infrastructure.	This	can	be	in	the	datacenter	of	an	existing
building,	or	in	a	dedicated,	specially	designed	datacenter	building.
As	 the	 datacenter	 is	 implemented	 in	 an	 organization	 owned	 building,	 the
building	 must	 have	 enough	 space,	 an	 uninterruptable	 power	 supply	 (UPS),
options	 to	 install	 sufficient	 cooling,	 fire	 prevention	 and	 detection,	 external
redundant	 network	 capabilities	 with	 enough	 bandwidth,	 and	 sufficient	 floor
loading	 capacity	 (see	 section	 7.2.3.1	 for	 more	 details	 on	 datacenter
requirements).
Two	major	drawbacks	of	on-premises	hosting	are:

·									Typically,	on-premises	datacenters	don’t	scale	well,	as	they	are
embedded	in	existing	(office)	buildings.
·									As	the	organization	owns	and	runs	their	own	datacenter,	it	must	have
enough	knowledge	and	staff	available	to	manage	the	datacenter.

In	contrast,	a	colocation	is	a	third	party	dedicated	datacenter	where	racks,	floor
space,	 and	 network	 bandwidth	 can	 be	 rented.	 A	 colocation	 provides	 power,
cooling,	 and	 physical	 security,	 and	 hosts	 and	 connects	 customer	 owned
infrastructure	 components.	 Colocation	 racks	 are	 empty	 –	 all	 infrastructure
components	 must	 be	 provided	 and	 managed	 by	 the	 organization	 renting	 the
colocation	racks.
An	organization	can	also	decide	to	outsource	their	entire	infrastructure.	Full
infrastructure	outsourcing	is	a	subcontracting	service	in	which	some	third-party
purchases,	 deploys,	 hosts,	 and	 manages	 the	 infrastructure,	 and	 performs	 its
lifecycle	 management.	 The	 outsourcing	 is	 managed	 using	 Service	 Level
Agreements	 and	 typically	 has	 a	 very	 rigid	 change	 management	 process.
Outsourcing	 frees	 the	 organization	 from	 investing	 in	 hardware	 –	 only	 leaving
operational	cost.	The	outsourcing	organization	must	have	a	demand	organization
and	process	in	place	in	order	to	manage	the	outsourcing	party,	but	it	can	be	freed
from	internal	infrastructure	systems	managers.

14.3									Enterprise	infrastructure	deployment

In	 a	 traditional	 enterprise	 infrastructure	 deployment,	 as	 shown	 in	 Figure	 114,
enterprise	 grade	 hardware	 delivers	 three	 infrastructure	 resources:	 compute,
storage	 and	 network.	 These	 resources	 are	 implemented	 such	 that	 they	 provide
high	availability	(using	for	instance	redundant	components,	data	replication,	and
RAID	 technology),	 high	performance	 (using	 for	 instance	 caching,	 disk	 tiering,
and	 large	 servers),	 and	 some	 security	 controls	 (like	 firewalls,	 network	 zoning,
and	IDS	systems).
	

Figure	114:	Enterprise	infrastructure	deployment

Most	 enterprise	 infrastructure	 deployments	 today	 implement	 compute
virtualization	to	provide	virtual	machines.
Typically,	 each	 resource	 (compute,	 storage,	 and	 networking)	 is	managed	 by	 a
team	of	dedicated	 systems	managers	 and	changes	 are	managed	by	a	workflow
based	change	process,	where	each	systems	manager	 is	 responsible	 to	manually

perform	his	part	of	the	change.
Enterprise	 infrastructures	 can	 deliver	 complex	 virtual	 infrastructures	 to
applications.	The	virtual	infrastructure	includes	in	most	cases	a	number	of	virtual
machines	running	Linux	or	Windows,	virtual	disks,	replicated	storage,	automatic
backup	of	data	and	redundant	network	connections.	The	virtual	infrastructure	is
designed	 to	meet	 the	 requirements	of	 applications,	 and	applications	depend	on
the	 high	 availability,	 performance	 and	 security	 controls	 delivered	 by	 the
infrastructure.

14.4									Software-defined	datacenter	-	SDDC

A	 software-defined	 datacenter	 (SDDC)	 is	 an	 architecture	 in	 which	 all
infrastructure	resources	–	compute,	storage	and	networking	–	are	virtualized,	and
can	be	configured	using	software	APIs.
	

Figure	115:	Software-defined	datacenter

As	 shown	 in	 Figure	 115,	 an	 SDDC	 is	 an	 extension	 on	 an	 enterprise
infrastructure,	 where	 all	 resources	 are	 virtualized	 and	 managed	 by	 SDDC
automation	and	orchestration	software.
An	 SDDC	 is	 characterized	 by	 automation,	 orchestration,	 and	 abstraction	 of
resources	into	software	and	code.	By	nature,	code	is	more	reliable	than	humans,
which	means	that	compared	to	a	traditional	datacenter,	an	SDDC	is	more	secure
and	 more	 agile.	 Changes	 are	 managed	 by	 an	 automated	 workflow,	 where	 an
orchestrated	 change	 can	 lead	 to	 a	 number	 of	 automated	 changes	 in	 various
resources.

An	SDDC	is	the	foundation	for	cloud	computing.	It	enables	developers,	DevOps
teams	 and	 systems	 managers	 to	 create	 and	 deploy	 new	 infrastructures	 using
either	a	manual	self-service	portal,	or	a	combination	of	a	build	server	and	APIs.
It	allows	the	user	to	request	the	desired	infrastructure	components,	their	sizing	to
meet	 performance	 demands,	 and	 their	 required	 availability;	 and	 automatically
configures	 the	 SDDC	 components	 to	 deliver	 a	 secured	 infrastructure
implementation.	 The	 SDDC	 software	 also	 provides	 tools	 for	 costing,	 logging,
reporting,	 scaling	 (up	 and	 down),	 and	 decommissioning	 of	 the	 infrastructure
resources.
Examples	 of	 SDDC	 automation	 and	 orchestration	 products	 are	 OpenStack’s
Horizon,	IBM	Cloud	Orchestrator,	and	VMware	vRealize.
An	SDDC	is	not	the	solution	for	all	problems	–	there	are	many	applications	that
need	 a	 much	 more	 custom-designed	 infrastructure	 than	 the	 standard	 SDDC
building	 blocks	 can	 deliver.	 Examples	 of	 these	 applications	 are	 SAP	 HANA,
high	performance	databases,	OLTP,	high	secure	bank	or	stock	trade	transaction
systems,	and	SCADA	systems.

14.5									(Hyper)	Converged	Infrastructure

In	a	traditional	infrastructure	deployment,	compute,	storage	and	networking	are
deployed	and	managed	independently,	often	based	on	components	from	multiple
vendors.	 In	 a	 converged	 infrastructure,	 the	 compute,	 storage,	 and	 network
components	are	designed,	assembled,	and	delivered	by	one	vendor	and	managed
as	 one	 system,	 typically	 deployed	 in	 one	 or	 more	 racks.	 A	 converged
infrastructure	minimizes	 compatibility	 issues	 between	 servers,	 storage	 systems
and	network	devices	while	reducing	costs	for	cabling,	cooling,	power	and	floor
space.	 Scaling	 up	 a	 converged	 infrastructure	 requires	 the	 deployment	 of
additional	racks.
	

Picture	46:	Example	of	a	converged	system
[93]

Where	in	a	converged	infrastructure	the	infrastructure	is	deployed	as	individual
components	in	a	rack,	a	hyperconverged	infrastructure	brings	together	the	same
components	within	a	single	server	node.
A	hyperconverged	infrastructure	comprises	a	large	number	of	identical	physical
servers	 from	one	 vendor	with	 direct	 attached	 storage	 in	 the	 server	 and	 special

software	that	manages	all	servers,	storage,	and	networks	as	one	cluster	running
virtual	machines.
The	 technology	 is	 easy	 to	 expand	 on-demand,	 by	 adding	 nodes	 to	 the
hyperconverged	cluster.
	

Picture	47:	Example	of	a	hyperconverged	system
[94]

Hyperconverged	systems	are	an	ideal	candidate	for	deploying	VDI	environments
(see	 section	 12.3.3),	 because	 storage	 is	 close	 to	 compute	 (as	 it	 is	 in	 the	 same
box)	and	the	solution	scales	well	with	the	rise	in	the	number	of	users.
A	big	advantage	of	converged	and	hyperconverged	 infrastructures	 is	managing
only	 one	 vendor,	 that	 provides	 hardware,	 firmware,	 and	 software.	 Vendors	 of
hyperconverged	 infrastructures	 make	 all	 updates	 for	 compute,	 storage	 and
networking	 available	 in	 one	 service	 pack	 and	 deploying	 these	 patches	 is
typically	much	easier	than	deploying	upgrades	in	all	individual	components	in	a
traditional	infrastructure	deployment.
Drawbacks	of	converged	and	hyperconverged	infrastructures	are:

·									Vendor	lock-in	–	the	solution	is	only	beneficial	if	all	infrastructure	is
from	the	same	vendor.
·									Scaling	can	only	be	done	in	fixed	building	blocks	–	if	more	storage	is
needed,	compute	must	also	be	purchased.	This	can	have	a	side	effect:	since
some	software	licenses	are	based	on	the	number	of	used	CPUs	or	CPU
cores,	adding	storage	also	means	adding	CPUs	and	hence	leads	to	extra
license	costs.

14.6									Cloud	computing

Cloud	computing	is	one	of	the	most	important	paradigm	shifts	in	computing	in
recent	years.	Cloud	computing	is	an	outsourcing	model,	in	which	IT	services	are
provided	 and	 paid	 based	 on	 actual	 on-demand	 use.	 Infrastructure	 as	 a	 Service
(IaaS)	is	a	specific	service	model	of	cloud	computing.

14.6.1				Cloud	definition
The	most	accepted	definition	of	cloud	computing	is	that	of	the	National	Institute

of	Standards	and	Technology	(NIST)
[95]

:
Cloud	 computing	 is	 a	 model	 for	 enabling	 ubiquitous,	 convenient,	 on-demand
network	access	to	a	shared	pool	of	configurable	computing	resources	that	can	be
rapidly	 provisioned	 and	 released	 with	 minimal	 management	 effort	 or	 service
provider	interaction.
	

It	is	important	to	realize	that	cloud	computing	is	not	about	technology;	it	is	an
outsourcing	business	model.	 It	 enables	 organizations	 to	 cut	 cost	while	 at	 the
same	time	focusing	on	their	primary	business	–	 they	should	focus	on	running
their	business	instead	of	running	a	mail	server.

	
Clouds	are	composed	of	five	essential	characteristics,	four	deployment	models,
and	three	service	models.

14.6.2				Cloud	characteristics
Essential	cloud	characteristics	are:

·									On	demand	self-service	–	As	a	result	of	optimal	automation	and
orchestration,	minimal	systems	management	effort	is	needed	to	deploy
systems	or	applications	in	a	cloud	environment.	In	most	cases,	end	uses
can	configure,	deploy,	start	and	stop	systems	or	applications	on	demand.
·									Rapid	elasticity	–	A	cloud	is	able	to	quickly	scale-up	and	scale-down
resources.	When	temporarily	more	processing	power	or	storage	is	needed,
for	instance	as	a	result	of	a	high-exposure	business	marketing	campaign,	a

cloud	can	scale-up	very	quickly	on	demand.	When	demand	decreases,
cloud	resources	can	rapidly	scale	down,	leading	to	elasticity	of	resources.
·									Resource	pooling	–	Instead	of	providing	each	application	with	a	fixed
amount	of	processing	power	and	storage,	cloud	computing	provides
applications	with	resources	from	a	shared	pool.	This	is	typically
implemented	using	virtualization	technologies.
·									Measured	service	–	In	a	cloud	environment	the	actual	resource	usage
is	measured	and	billed.	There	are	no	capital	expenses,	only	operational
expenses.	This	in	contrast	with	the	investments	needed	to	build	a
traditional	infrastructure.
·									Broad	network	access	–	Capabilities	are	available	over	the	network
and	accessed	through	standard	mechanisms.

	

Be	 aware	 that	 when	 using	 off-premises	 cloud	 based	 solutions,	 the	 internet
connection	becomes	a	Single	Point	of	Failure.	Internet	availability	and	internet
performance	becomes	critical	and	redundant	connectivity	is	therefore	key.

14.6.3				Cloud	deployment	models
A	cloud	can	be	implemented	in	one	of	four	deployment	models.

·									A	public	cloud	deployment	is	delivered	by	a	cloud	service	provider,	is
accessible	through	the	internet,	and	available	to	the	general	public.
Because	of	their	large	customer	base,	public	clouds	largely	benefit	from
economies	of	scale.
·									A	private	cloud	is	operated	solely	for	a	single	organization,	whether
managed	internally	or	by	a	third-party,	and	hosted	either	on	premises	or
external.	It	extensively	uses	virtualization	and	standardization	to	bring
down	systems	management	cost	and	staff.
·									A	community	cloud	is	much	like	a	private	cloud,	but	shared	with	a
community	of	organizations	that	have	shared	concerns	(like	compliance
considerations).	It	may	be	owned,	managed,	and	operated	by	one	or	more
of	the	organizations	in	the	community,	a	third	party,	or	some	combination,
and	it	may	exist	on	or	off	premises.
·									In	a	hybrid	cloud	deployment,	a	service	or	application	is	provided	by

a	combination	of	a	public	cloud,	and	a	community	cloud	and/or	a	private
cloud.	This	enables	running	generic	services	(like	email	servers)	in	the
public	cloud	while	hosting	specialized	services	(like	a	business	specific
application)	in	the	private	or	community	cloud.

14.6.4				Cloud	service	models
Clouds	can	be	delivered	in	one	of	three	service	models:

·									Software-as-a-Service	(SaaS)	delivers	full	applications	that	can	be
used	by	business	users,	and	need	little	or	no	configuration.	Examples	are
Microsoft	Office365,	LinkedIn,	Facebook,	Twitter,	and	Salesforce.com.
·									Platform-as-a-Service	(PaaS)	delivers	a	scalable,	high	available,
open	programming	platform	that	can	be	used	by	developers	to	build
bespoke	applications	that	run	on	the	PaaS	platform.	Examples	are
Microsoft	Azure	Cloud	Service	and	Google	App	Engine.
·									Infrastructure-as-a-Service	(IaaS)	delivers	(virtual)	machines,
networking,	and	storage.	The	user	needs	to	install	and	maintain	the
operating	systems	and	the	layers	above	that.	Examples	are	Amazon	Elastic
Cloud	(EC2	and	S3)	and	Microsoft	Azure	IaaS.

The	 following	 figure	 shows	 the	 responsibility	 of	 the	 cloud	 provider	 for	 each
service	model.
	

Figure	116:	Cloud	provider	responsibilities

In	the	context	of	this	book,	IaaS	is	the	most	relevant	service	model.

14.6.5				Infrastructure	as	a	Service	(IaaS)
Infrastructure	 as	 a	 Service	 provides	 virtual	 machines,	 virtualized	 storage,
virtualized	networking	and	the	systems	management	tools	to	manage	them	(see
Figure	117).
	

Figure	117:	Infrastructure	as	a	service

IaaS	 is	 typically	 based	 on	 cheap	 commodity	 white	 label	 hardware.	 The
philosophy	is	to	keep	the	cost	down	by	allowing	the	hardware	to	fail	every	now
and	 then.	 Failed	 components	 are	 either	 replaced	 or	 simply	 removed	 from	 the
pool	of	available	resources.
IaaS	provides	simple,	highly	standardized	building	blocks	to	applications.	It	does
not	 provide	 high	 availability,	 guaranteed	 performance	 or	 extensive	 security
controls.	Consequently,	applications	running	on	IaaS	should	be	robust	 to	allow
for	failing	hardware	and	should	be	horizontally	scalable	to	increase	performance.

In	order	to	use	IaaS,	users	must	create	and	start	a	new	server,	and	then	install	an
operating	system	and	their	applications.	Since	the	cloud	provider	only	provides
basic	 services,	 like	billing	and	monitoring,	 the	user	 is	 responsible	 for	patching
and	maintaining	the	operating	systems	and	application	software.
Not	all	operating	systems	and	applications	can	be	used	in	an	IaaS	cloud;	many
software	 licenses	 prohibit	 the	 use	 of	 a	 fully	 scalable,	 virtual	 environment	 like
IaaS,	where	 it	 is	 impossible	 to	 know	 in	 advance	 on	which	machines	 software
will	run.

14.7									Infrastructure	as	code

Until	 recently,	most	 servers,	 storage,	 and	 networks	were	 configured	manually.
Systems	 managers	 installed	 operating	 systems	 from	 an	 installation	 medium,
added	 libraries	 and	 applications,	 patched	 the	 system	 to	 the	 latest	 software
versions,	and	configured	the	software	to	this	specific	installation.	This	approach
is,	 however,	 slow,	 error	 prone,	 not	 easily	 repeatable,	 introduces	 variances	 in
server	 configurations	 that	 should	 be	 equal,	 and	 makes	 the	 infrastructure	 very
hard	to	maintain.
As	an	alternative,	servers,	storage,	and	networks	can	be	created	and	configured
automatically,	a	concept	known	as	infrastructure	as	code.
	

Figure	118:	Infrastructure	as	code	building	blocks

Figure	118	shows	the	infrastructure	as	code	building	blocks.	Tools	to	implement
infrastructure	as	code	include	Puppet,	Chef,	Ansible,	SaltStack,	and	Terraform.
The	process	to	create	a	new	infrastructure	component	is	as	follows:

·									Standard	templates	are	defined	that	describe	the	basic	setup	of
infrastructure	components.
·									Configurations	of	infrastructure	components	are	defined	in
configuration	definitions.

·									New	instances	of	infrastructure	components	can	be	created
automatically	by	a	creation	tool,	using	the	standard	templates.	This	leads
to	a	running,	unconfigured	infrastructure	component.
·									After	an	infrastructure	component	is	created,	the	configuration	tool
automatically	configures	it,	based	on	the	configuration	definitions,	leading
to	a	running,	configured	infrastructure	component.
·									When	the	new	infrastructure	component	is	created	and	configured,	its
properties,	like	DNS	name	and	if	a	server	is	part	of	a	load	balancer	pool,
are	automatically	stored	in	the	configuration	registry.
·									The	configuration	registry	allows	running	instances	of	infrastructure	to
recognize	and	find	each	other	and	ensures	all	needed	components	are
running.
·									Configuration	definition	files	and	standard	templates	are	kept	in	a
version	control	system,	which	enables	roll	backs	and	rolling	upgrades.
This	way,	infrastructure	is	defined	and	managed	the	same	way	as	software
code.

The	 point	 of	 using	 configuration	 definition	 files	 and	 standard	 templates	 is	 not
only	 that	 an	 infrastructure	 deployment	 can	 easily	 be	 implemented	 and	 rebuilt,
but	 also	 that	 the	 configuration	 is	 easy	 to	 understand,	 test,	 and	 modify.
Infrastructure	as	code	ensures	all	infrastructure	components	that	should	be	equal,
are	equal.
	

15					

PURCHASING	INFRASTRUCTURE	AND	SERVICES

Most	 large-scale	 IT	 projects	 require	 procurement	 of	 hardware,	 software,	 or
services.	 The	 purchase	 process	 entails	 determining	what	 is	 needed,	 getting	 an
offer,	ordering,	delivery,	warranty	and	renewal.	Each	of	these	topics	is	described
in	the	following	sections.

15.1									Determine	what	is	needed

Before	 any	 purchase	 can	 be	 made,	 it	 must	 be	 crystal	 clear	 what	 is	 actually
needed.	 In	 most	 cases,	 a	 Bill	 of	 Materials	 (BoM)	 is	 made	 that	 includes	 part
numbers	of	all	items.	If	allowed	by	the	purchasing	rules,	I	recommend	working
with	suppliers	to	get	the	BoM	right	the	first	time.	The	supplier	can	verify	that	all
needed	items	are	on	the	BoM,	including	small	items,	like	cables,	connectors,	and
mounting	brackets.
Apart	from	the	bill	of	materials,	typically	a	Statement	of	Work	(SoW)	is	made.	A
SoW	describes	what	 the	 supplier	will	do,	 apart	 from	delivering	 the	goods.	For
example,	 should	 the	 supplier	 build	 up	 racks,	 place	 them	 in	 the	 datacenter,
connect	them	to	the	power	supply,	label	the	cables,	etc.?	To	mitigate	the	risk	of
misunderstanding,	it	must	be	clear	from	the	start	who	does	what.
The	supplier	can	also	have	specific	requirements.	For	instance,	is	a	loading	dock
available	to	deliver	goods	to	the	datacenter,	or	is	the	elevator	large	enough	to	lift
the	 equipment	 to	 the	 final	 destination?	Do	not	 forget	 to	 ask	 for	 these	 supplier
requirements!

15.2									Getting	an	offer

In	a	large	organization,	the	lead	time	for	the	internal	procurement	process	can	be
several	weeks,	or	even	longer.	This	lead	time	is	due	to	the	time	it	takes	to	find	a
supplier,	to	handle	contract	issues	and/or	to	get	signatures	from	management	to
formally	 place	 the	 order.	 Often,	 after	 getting	 an	 offer	 from	 a	 supplier,
procurement	will	try	to	get	discounts,	which	could	further	delay	the	process.	So,
check	as	soon	as	possible	how	long	this	process	will	 take,	 to	adjust	 the	project
planning	accordingly.
It	must	be	noted	that	apart	from	the	lead	time	to	get	an	offer,	 it	 typically	takes
four	to	eight	weeks	for	the	supplier	to	deliver	the	goods.

15.3									Choice	of	suppliers

Most	 organizations	 use	 preferred	 suppliers	 for	 standard	 purchases.	 Having	 a
small	 number	 of	 preferred	 suppliers	 makes	 the	 purchase	 process	 easier	 –
contracts	are	already	in	place,	and	discounts	can	be	negotiated	because	of	large
volume	purchases.
In	practice,	organizations	often	choose	for	a	predefined	purchase	policy	for	their
software	 stack:	 when	 possible	 all	 software	 is	 either	 purchased	 from	 these
suppliers,	 or	 built	 based	 on	 technology	 from	 these	 suppliers.	An	 example	 is	 a
Microsoft	 and	 SAP	 unless	 strategy.	 Using	 a	 standard	 product	 line	 from	 one
supplier	eases	integration	of	components.	The	alternative	is	using	a	best	of	breed
landscape,	where	each	component	is	chosen	based	on	the	best	quality	or	the	most
comprehensive	 feature	 set.	 Sometimes	 an	 organization	 chooses	 a	 standard
software	 stack	 for	 commodity	 components	 (like	 office	 tools,	 file	 and	 web
servers,	CRM	systems	and	email	servers),	and	best	of	breed	products	for	highly
specific	tasks,	that	are	close	to	the	core	business	processes.
With	 hardware,	 predefined	 choices	 are	 typically	made	 as	well.	 For	 instance,	 a
policy	could	be	 to	buy	all	network	equipment	 from	Cisco	and	all	 servers	 from
HP.	 One	 reason	 for	 this	 is	 easier	 management	 of	 support	 contracts	 –	 when	 a
hardware	component	fails,	one	telephone	number	to	the	supplier’s	support	desk
is	all	 it	 takes	 to	start	 the	 repair	process.	Another	 reason	 to	 limit	 the	number	of
hardware	 vendors	 is	 to	 limit	 the	 knowledge	 needed	 in	 the	 organization	 to
manage	the	components.
Having	 preferred	 suppliers	 can	 lead	 to	 a	 vendor	 lock-in;	 after	 some	 time,	 for
practical	 reasons,	 it	 becomes	unfeasible	 to	 change	 suppliers.	 If	 all	 hardware	 is
from	Dell,	for	instance,	then	changing	to	another	supplier	–	like	IBM	–	is	often
not	good	economics.	The	resulting	lack	of	competition	can	lead	to	a	higher	price
level	in	the	long	run	and	to	a	decrease	in	service	levels.

15.4									Bidding	and	tendering

Getting	an	offer	may	involve	a	formal	bidding	process,	also	known	as	tendering.
For	 instance,	 a	 company	 policy	 could	 state	 that	 any	 purchase	 over	 $250,000
requires	 a	 bidding	 process.	 If	 the	 cost	 of	 a	 product	 or	 service	 is	 over	 this
threshold,	a	rigid	purchase	process	must	be	followed.	The	reason	for	a	bidding
process	 can	 also	 be	 a	 regulation	 requirement;	 for	 instance,	many	public-sector
organizations	require	a	bidding	process	for	large	purchases.
In	general,	a	bidding	process	comprises	the	following	steps:

·									RFI	–	Request	for	Information.	In	this	step	a	relatively	large	group
of	suppliers	is	asked	to	inform	the	purchase	department	if	they	are	capable
of	providing	the	required	goods	or	service.	This	step	involves	writing	an
RFI	document	and	giving	the	suppliers	time	to	respond.	An	RFI	process
typically	takes	two	to	four	weeks.
·									Short	list.	In	this	step,	based	on	the	RFI	responses,	the	purchase
department	creates	a	short	list	of	suppliers	that	are	most	likely	to	be	able	to
deliver	the	goods	for	a	good	price	and	with	good	service.	A	short	list
comprises	typically	three	to	five	suppliers.
·									RFP	–	Request	for	Proposal.	In	this	step	the	suppliers	in	the	short	list
are	requested	to	make	a	proposal	for	the	delivery.	A	full	list	of
requirements	is	provided	to	them,	including	a	draft	statement	of	work.	The
suppliers	typically	get	two	to	eight	weeks	to	respond	with	an	offer	and	a
description	of	how	they	propose	to	provide	the	goods	and/or	services.
There	are	often	strict	rules	about	the	time	table	and	the	format	in	which	the
response	must	be	given	(for	instance,	all	responses	must	be	delivered	in
three-fold,	before	a	certain	date	and	time,	in	person	to	the	head	of
purchasing).
·									Questions	and	clarification.	In	this	step,	which	is	planned	between
the	publication	of	the	RFP	and	the	supplier’s	responses,	the	suppliers	are
given	the	opportunity	to	ask	questions	about	the	RFP	(in	writing),	in	case
something	is	unclear	or	in	case	there	are	multiple	options	to	fulfill	a
requirement.	Usually,	these	questions	and	the	answers	are	communicated
to	all	suppliers	on	the	short	list.	Often,	suppliers	are	hesitant	to	answer
questions,	because	it	reveals	parts	of	their	offer	to	other	suppliers.
Sometimes,	the	suppliers	are	requested	to	present	their	proposed	solution

in	a	face-to-face	meeting	before	the	offer	is	finalized.
·									Offer.	Typically,	at	the	latest	possible	moment	the	suppliers	provide
the	answers	to	the	RFP,	including	an	initial	offer.	The	purchase	department
checks	the	offers	on	completeness	(are	all	questions	answered,	is	the
prescribed	procedure	followed)	and	price.
·									Terms	and	conditions	negotiations.	Next,	the	purchase	department
starts	negotiations	with	the	suppliers	that	provided	the	best	response	to	the
RFP.	These	are	typically	the	top	two	suppliers.	The	terms	and	conditions	of
the	delivery,	including	payment	terms,	warranty	conditions,	and	discounts
are	discussed	with	them.
·									BAFO	-	Best	and	final	offer.	In	this	step	the	preferred	suppliers	make
a	final	price	and	SoW,	which	is	their	last	chance	to	change	the	offer.
·									Award.	Based	on	the	BAFO,	the	purchase	department	awards	the
supplier	with	the	deal	and	the	supplier	can	start	the	delivery.

As	this	list	implies,	this	process	can	take	a	long	time.
	

I	 have	 been	 in	 such	 a	 process	 several	 times,	 and	 it	 is	 very	 time	 and	 energy
consuming,	both	for	the	supplier	and	the	purchase	department.	As	an	example,
at	 one	occasion	 I	was	 in	 a	 complex	RFI/RFP	process	 that	 took	 two	 years	 to
complete!

15.5									Ordering

Ordering	 is	 typically	done	by	 the	purchasing	department.	They	place	 the	order
and	monitor	the	delivery	time.	When	the	order	includes	multiple	delivery	dates,
a	choice	can	be	made	to	deliver	the	goods	in	partial	deliveries	or	to	deliver	the
goods	in	one	delivery,	but	at	a	later	date.
Because	 the	delivery	 time	 is	 often	weeks	 after	 the	purchase	order	 is	 placed,	 it
makes	sense	to	start	ordering	the	goods	as	early	as	possible	in	the	project.

15.6									Delivery

When	 the	 order	 is	 placed,	 after	 some	 time,	 the	 goods	 are	 delivered.	 For
hardware,	 it	 is	 good	 practice	 to	 inform	 the	 department	 or	 person	 that	 has	 to
physically	 receive	 the	 goods	 well	 in	 advance.	 Beware	 that	 the	 person	 that
physically	 receives	 the	 goods,	 is	 not	 always	 the	 one	 formally	 accepting	 the
delivery.
The	formal	acceptance	must	be	done	by	someone	who	is	entitled	to	do	so,	often
someone	 from	 the	 project	 that	 asked	 for	 the	 goods,	 or	 someone	 from	 the
purchasing	 department.	 Before	 signing	 for	 delivery,	 check	 the	 boxes	 for	 any
damage	and	check	for	completeness	of	the	delivery!

15.7									Warranty

Typically,	 a	 warranty	 period	 is	 one	 year	 for	 hardware	 and	 two	 months	 for
projects.	 During	 the	 warranty	 period,	 defects	 will	 be	 fixed	 without	 additional
cost.	 For	 projects,	 most	 of	 the	 time	 the	 project	 team	will	 be	 dismantled	 after
warranty	period	as	well.

15.8									Renewal

When	 purchased	 goods	 are	 used	 for	 some	 time,	 they	 might	 need	 renewal.
Hardware	is	often	used	for	three	to	five	years	before	it	is	replaced,	and	software
typically	 has	 releases	 every	 few	 years.	 Service	 contracts	 are	 also	 often	 agreed
upon	for	a	fixed	number	of	years.
Sometimes	 a	 renewal	 of	 the	 hardware,	 software	 licenses,	 or	 service	 contracts
leads	to	a	new	purchase	process.
Systems	 management	 should	 have	 a	 Life	 Cycle	 Management	 (LCM)	 process
implemented	to	handle	the	renewal,	as	each	piece	of	hardware	and	software	has
its	own	life	cycle.	Renewal	of	service	contracts	is	often	managed	by	the	purchase
department.
	

16					

DEPLOYING	THE	INFRASTRUCTURE

After	the	infrastructure	is	purchased	and	delivered,	it	needs	to	be	assembled	and
tested	before	it	can	be	put	into	production.

16.1									Assembling	the	infrastructure

The	first	step	in	deploying	a	new	infrastructure	is	assembling	the	infrastructure.
After	 the	datacenter	 is	set-up	 to	host	hardware,	 the	compute,	operating	system,
networking,	 and	 storage	 must	 be	 set	 up.	 Finally,	 systems	 management	 tools
should	be	installed.
Infrastructure	can	be	assembled	using	the	following	checklist:

·									Build	up	the	physical	datacenter	room,	including	raised	floors,
uninterruptable	power	supply,	cooling	facilities,	fire	prevention	and
detection,	and	physical	security.
·									Install	redundant	power	cabling	using	separate	cables	and	fuses	for
every	rack.
·									Install	racks.	Ensure	enough	room	is	available	to	walk	around	the
racks	and	to	open	all	doors.	Typically,	separate	racks	are	installed	for
network,	storage,	and	compute	components.	Check	if	the	computer	floor
can	still	be	opened	(no	racks	placed	on	multiple	tiles).
·									Test	the	facilities.	Test	alarms	that	should	respond	to	a	power	failure
or	heating,	ventilating	and	air	conditioning	(HVAC)	failure.	Perform	a
visual	check	of	the	facilities.	Ensure	cables	are	properly	fixed	in	the	racks
and	labelled.	Measure	the	airflow,	temperature,	and	humidity	and	test	the
physical	security	controls.
·									Install	the	server,	networking,	and	storage	hardware	in	the	racks.
Ensure	not	too	much	equipment	is	placed	in	one	rack	to	prevent	racks	from
falling	over,	using	too	much	power,	or	obstructing	cooling	air	flow.	Ensure
cabling	is	properly	installed	and	labelled.	Ensure	equipment	can	be	sled
out	of	the	racks	without	damaging	cabling.	Check	if	maintenance	on	a
component	can	be	done	without	interfering	with	the	other	components.
·									Allow	for	a	burn-in	period	to	ensure	the	equipment	is	not	“dead	on
arrival”	(DOA)	or	fails	within	the	first	day.	Switch	the	equipment	off	and
on	several	times	to	see	if	it	doesn’t	break.
·									Check	the	power	and	cooling	usage	of	the	equipment.	Are	they
within	the	designed	and	specified	range?
·									Configure	the	infrastructure	components.	Configure	routers,

switches,	and	storage	LUNs	and	install	virtualization	and	operating
systems,	based	on	technical	designs.	Configure	DNS,	NTP	and	security
configurations	like	network	zoning	and	firewalls.	Perform	a	basic	test	to
check	network	connectivity	and	storage	availability.
·									Install	systems	management	tools	like	backup	and	recovery,
monitoring,	logging,	and	IDS/IPS.
·									Test	systems	management	processes.	Create	incidents,	create	and
handle	changes,	etc.
·									Provide	as-built	documentation	to	the	systems	managers.	Populate
the	Configuration	Management	Database	(CMDB).

16.2									Testing	the	infrastructure

After	assembling	the	infrastructure,	it	should	be	tested.	Testing	is	done	based	on
a	test	scope,	and	is	performed	in	various	test	stages.

16.2.1				Test	scope
Each	test	type	has	a	predefined	scope:

·									Functional	tests	ensure	the	infrastructure	delivers	the	required
functionality.	Is	it	possible	to	run	applications	on	the	implemented
infrastructure?	Can	applications	use	compute	resources	and	do	they	have
access	to	storage?	Can	applications	communicate	with	each	other,	to
external	parties,	and	with	the	end	users?
·									Performance	tests,	like	load,	stress,	and	endurance	tests	prove	the
infrastructure	has	enough	resources	to	run	applications	with	the	required
performance.
·									Security	tests,	like	penetration	tests	and	vulnerability	scans	prove
security	controls	are	in	place	and	are	functioning	as	designed.
·									Availability	of	the	infrastructure	can	be	tested	by	physical	actions,
like	pulling	cables	from	infrastructure	components,	or	unexpectedly
rebooting	machines.	A	failover	test,	a	fallback	test	and	a	disaster	recovery
test	should	be	performed,	and	backup	and	recovery	processes	and	disaster
recovery	plans	should	be	tested.

16.2.2				Test	stages
Testing	the	infrastructure	is	often	done	in	a	number	of	stages.
A	 unit	 test	 checks	 if	 individual	 infrastructure	 components,	 like	 servers,
networking	 components,	 storage,	 and	 shared	 services	 meet	 the	 requirements,
both	on	a	functional	and	a	non-functional	level.	Part	of	this	test	is	for	instance	a
redundancy	test,	where	dual	power	supplies	are	tested	by	removing	one	of	them
from	a	running	component.
In	a	system	integration	test	the	combination	of	components	is	tested	including
their	 interfaces.	 A	 system	 integration	 test	 checks	 both	 functional	 and	 non-
functional	requirements.

During	 a	 fallback	test	 the	 fallback	 from	 the	main	 datacenter	 to	 the	 secondary
datacenter	is	checked	on	a	technical	level.
Migration	test	 activities	 start	when	an	application	along	with	 its	database	and
other	middleware	components	are	installed	and	configured	on	the	infrastructure.
Migration	testing	ensures	applications	are	installed	without	errors	and	data	from
previous	systems	can	be	migrated	to	the	new	system	as	designed.
An	acceptance	test	is	the	final	check	of	the	delivered	infrastructure	and	consists
mainly	 of	 verifying	 that	 all	 tests	 are	 performed	 and	 that	 defects	 found	 in
previous	 tests	 are	 either	 solved	 or	 accepted.	 The	 acceptance	 test	 leads	 to	 a
discharge	of	the	project	for	the	delivery	of	the	infrastructure.

16.3									Go	live	scenarios

There	are	a	number	of	scenarios	that	can	be	used	to	put	the	new	infrastructure	in
production	as	the	replacement	for	an	existing	system	–	to	“Go	Live”:

·									Big	Bang	–	In	the	big	bang	scenario,	at	a	set	time,	the	existing	system
is	switched	off	and	the	new	system	is	immediately	put	in	production,
possibly	after	a	short	data	migration	run.	This	is	the	riskiest	scenario
because	it	may	be	impossible	to	roll	back	to	the	old	system	after	the
system	is	live	for	some	time,	and	because	downtime	can	occur	when
something	goes	wrong	during	the	switchover.
·									Parallel	changeover	–	In	this	scenario,	both	the	new	and	the	existing
system	run	simultaneously	for	some	time	(typically	weeks).	This	allows
for	testing	the	new	system	on	both	functionality	and	non-functional
attributes,	and	ensuring	it	works	with	live	production	data	before	switching
off	the	existing	system.	As	both	systems	are	running	and	processing	data,
switching	back	is	possible	at	any	time,	minimizing	risk.	A	big
disadvantage	of	this	scenario	is	the	cost	of	maintaining	both	systems	and
the	possible	extra	work	to	keep	both	systems	in	sync.	Also,	many	system
designs	don’t	allow	running	two	systems	in	parallel,	for	instance,	if	the
system	has	many	data	interfaces	with	other	systems.
·									Phased	changeover	–	In	a	phased	scenario,	individual	components	or
functionalities	of	the	existing	system	are	taken	over	by	the	new	system,
one	by	one.	This	reduces	risk,	as	the	changeover	can	be	done	gradually
and	controlled.	This	scenario	can	be	quite	costly,	since	typically	many
interfaces	between	the	existing	and	the	new	system	must	be	created	and
maintained.	These	new	interfaces	introduce	new	risk	to	the	scenario,	as
they	must	be	tested	extensively	and	could	fail	in	production.	Also,	the
existing	system	must	be	kept	online	until	the	last	component	or
functionality	is	moved	to	the	new	system,	which	can	lead	to	high	cost.

While	a	big	bang	scenario	has	the	highest	risk,	in	practice,	it	is	most	often	used,
as	the	scenario	is	the	least	complex	to	execute,	and	because	the	risk	is	limited	to
the	changeover	moment,	when	 the	project	 team	is	at	 full	 strength	and	ready	 to
jump	in	if	anything	fails.
The	 go-live	 should	 be	 very	 well	 prepared.	 After	 the	 go-live	 scenario	 is
determined,	 a	 step-by-step	 plan	 must	 be	 created	 describing	 each	 step	 in	 the

scenario	 in	 detail.	 This	 plan	 must	 be	 reviewed,	 tested	 and	 improved	 multiple
times,	well	in	advance	of	the	go-live	date	to	eliminate	possible	surprises	and	to
minimize	 risk.	 The	 scenario	 should	 include	 intermediate	 tests	 and	 multiple
“go/no	go”	milestones,	where	the	go-live	can	be	aborted	if	anything	unexpected
happens.	The	plan	should	also	have	a	defined	point	of	no	return	–	a	go	decision
at	this	point	means	there	is	no	way	back	to	the	old	system.	Either	because	there
is	no	time	left	to	move	back	to	the	original	situation,	or	because	an	irreversible
step	is	taken	(like	an	update	of	a	critical	data	model).
At	 the	 go-live	 date,	 high	 alert	 is	 needed	 from	 the	 project	 team	 and	 from	 the
systems	managers,	 service	 desk	 and	 senior	management	 to	 be	 able	 to	 fix	 any
issues	that	might	arise.
After	 the	 new	 system	 is	 live,	 on-site	 support	 should	 be	 available	 for	 some
predefined	 time	 to	 fix	any	 issues	 that	may	arise	after	 the	system	is	 live;	 issues
the	service	desk	cannot	be	responsible	for	yet.
	

17					

MAINTAINING	THE	INFRASTRUCTURE

While	a	typical	infrastructure	project	takes	a	couple	of	months	to	complete,	the
infrastructure	 is	 often	 used	 in	 operation	 for	 many	 years,	 sometimes	 even
decades.	During	its	lifecycle,	the	infrastructure	needs	to	be	maintained	to	ensure
reliable	and	secure	operations.

17.1									Systems	management	processes

Systems	management	processes,	like	incident	management,	change	management
and	configuration	management	can	be	implemented	using	one	of	the	well-known
and	 published	 frameworks	 and	 methods.	 While	 the	 full	 description	 of	 these
frameworks	is	out	of	scope	of	this	book,	we	briefly	present	the	three	most	used
ones:	COBIT,	ITIL	and	DevOps.	Many	books	exist	on	these	and	other	methods
and	frameworks.	Some	suggested	reading	is	given	in	the	appendix.

17.1.1				COBIT
Control	Objectives	for	Information	and	Related	Technology	(COBIT)	provides	a
structure	for	setting	up	IT	Governance,	an	IT	organization,	and	IT	architecture.
COBIT	describes	thirty-four	IT	processes.	Within	these	processes,	management
objectives	and	associated	measures,	performance	indicators,	and	maturity	levels
are	described.
COBIT	is	 focused	on	management	 issues	and	 less	on	 the	detailed	design	of	IT
processes,	such	as	in	ITIL.
COBIT	is	a	framework	created	by	ISACA.	The	most	recent	version	is	COBIT	5,
published	in	2012.

17.1.2				ITIL
The	IT	Infrastructure	Library	(ITIL)	is	the	most	used	approach	to	implementing
systems	 management	 processes.	 ITIL	 entails	 the	 full	 life	 cycle	 of	 IT
management,	 covering	 the	 entire	 IT	 organization	 and	 all	 supporting	 processes
needed	 to	 deliver	 services	 to	 the	 end	 user.	 It	 describes	 processes	 like	 incident
management,	change	management,	problem	management,	 release	management,
and	capacity	management.
ITIL	 is	 a	 registered	 trademark	of	 the	United	Kingdom's	Office	of	Government
Commerce	 (OGC)	 –	 now	 part	 of	 the	 Cabinet	 Office.	 The	 current	 version	 is
ITILv3,	published	in	2011.

17.1.3				DevOps	for	infrastructure
DevOps	 is	 a	 contraction	 of	 the	 terms	 "developer"	 and	 "system	 operator".

DevOps	teams	consist	of	developers,	testers	and	application	systems	managers,
and	each	 team	is	responsible	for	developing	and	running	one	or	more	business
applications	or	services.
The	 whole	 team	 is	 responsible	 for	 developing,	 testing,	 and	 running	 their
application(s).	 In	 case	 of	 incidents	 with	 the	 applications	 under	 their
responsibility,	every	team	member	of	the	DevOps	team	is	responsible	to	help	fix
the	problem.	The	DevOps	philosophy	is	“If	you	built	it,	you	run	it”.
While	 DevOps	 is	 typically	 used	 for	 teams	 developing	 and	 running	 functional
software,	the	same	philosophy	can	be	used	to	develop	and	run	an	infrastructure
platform	 that	 functional	 DevOps	 teams	 can	 use.	 In	 an	 infrastructure	 DevOps
team,	 infrastructure	 developers	 design,	 test,	 and	 build	 the	 infrastructure
platforms	and	manage	their	lifecycle;	infrastructure	operators	keep	the	platform
running	smoothly,	fix	incidents,	and	apply	small	changes.

17.2									Monitoring

Monitoring	continuously	inspects	IT	components	for	events	like	error	conditions
or	 signs	 of	 (upcoming)	 failures,	 like	 a	 disk	 with	 only	 little	 free	 space	 left,
unusually	high	CPU	utilization,	or	extreme	network	bandwidth	usage.
Monitoring	 systems	 like	 Nagios,	 Zabbix,	 HP	 Operations	 Manager,	 and	 BMC
Patrol	provide	dashboards	with	overviews	of	an	entire	infrastructure	landscape.
	

Figure	119:	Example	of	a	Nagios	dashboard
[96]

Monitoring	systems	can	have	alarms	configured	that	trigger	if	a	certain	threshold
is	 reached.	 The	 monitoring	 system	 can	 forward	 these	 alarms	 to	 systems
managers,	who	can	take	action	to	fix	the	event	that	led	to	the	alarm,	preferably
before	the	end	users	notice	anything	unusual.

17.3									Management	using	SNMP

The	 Simple	 Network	Management	 Protocol	 (SNMP)	 can	 be	 used	 to	 remotely
change	 or	 update	 configurations	 and	 collect	 statistics	 and
performance	 information	 of	 infrastructure	 components.	 Devices	 that	 support
SNMP	include	routers,	switches,	servers,	workstations,	printers,	and	even	some
racks	and	power	strips.
SNMP	 uses	 a	 management/agent	 model.	 The	 agent	 on	 the	 monitored	 device
communicates	with	the	management	server	(the	Network	Management	System	–
NMS)	 that	 collects	 information	 from	 all	 attached	 devices.	 An	 agent	 has	 local
knowledge	 of	 the	 system	 it	 resides	 on,	 and	 translates	 that	 information	 to	 the
SNMP	 protocol.	 The	 NMS	 monitors	 and	 controls	 managed	 devices	 via	 the
agents.
The	SNMP	protocol	allows	reading	counters	and	statistics	over	the	network	to	an
NMS,	which	 in	 turn	 show	 them	 to	 systems	managers	 using	 values	 or	 graphs.
This	 reading	 of	 values	 is	 done	 in	 regular	 polling	 intervals	 (like	 every	 30
seconds).
SNMP	also	supports	so-called	traps.	A	trap	is	an	alarm	that	is	sent	to	the	NMS
when	 a	 certain	 value	 in	 a	 device	 exceeds	 its	 configured	 default	 (for	 instance
when	the	network	load	exceeds	80%).	Systems	managers	can	immediately	take
action	when	a	SNMP	trap	occurs.
Security	 in	 SNMP	 is	 implemented	 using	 a	 shared	 secret	 string	 (called	 the
community	name)	which	provides	access	to	agent	functionality.	By	default,	 the
SNMP	community	strings	are	set	to	‘public’	and	‘private’	for	reading	and	writing
configurations	 respectively.	 This	 should	 be	 changed	 immediately	 after	 a	 new
installation.
Since	SNMP	version	1	and	2	do	not	implement	encryption,	they	are	considered
insecure.	 Unfortunately,	 these	 versions	 are	 still	 used	 in	 many	 devices.	 SNMP
version	3	provides	strong	security	 features	by	 implementing	encryption,	 strong
authentication,	and	integrity	measures.

17.4									Logging

Most	infrastructure	components	generate	log	data.	Examples	are	network	routers
and	switches,	operating	systems,	applications,	databases,	firewalls,	and	intrusion
detection	systems.
Log	data	from	these	sources	can	be	used	to	correlate	events	and	identify	sources
of	application	issues.	Log	data	can	also	be	used	to	 identify	 trends	 to	predict	or
even	 prevent	 unavailability,	 or	 to	 find	 security	 vulnerabilities	 or	 security
breaches.
Logging	 usually	 provides	 a	 wealth	 of	 information	 about	 what	 happened	 on
infrastructure	components.
	

Figure	120:	Part	of	a	log	file	from	a	Linux	operating	system

Logging	often	generates	 large	amounts	of	data	every	day.	The	 level	of	 logging
(to	what	 detail	 logging	 is	 generated	 and	 hence	 the	 size	 of	 the	 logs)	 is	 usually
configurable.
Logs	may	be	directed	to	files	and	stored	on	disk,	or	directed	as	a	network	stream
to	a	log	collector	system.	Various	commercial	and	open	source	tools	can	be	used
to	analyze	log	data,	like	Splunk	and	Logstash.
In	most	cases,	log	analysis	is	performed	for	the	following	reasons:

·									Compliance	with	security	policies,	law,	or	regulation
·									System	troubleshooting

·									Forensics
·									Security	incident	response

To	be	able	to	correlate	logs	from	various	sources,	timestamps	of	log	entries	must
match	exactly.	Therefore,	it	is	important	to	have	a	time	synchronization	system
like	NTP	(see	8.2.8.4)	in	place	on	all	devices.
Since	 the	 amount	 of	 log	 data	 is	 typically	 very	 large,	 and	 datacenters	 are
becoming	denser,	 log	analysis	 is	 increasingly	moving	 into	 the	Big	Data	 realm.
Big	data	reporting	tools	can	be	used	to	create	overviews	and	to	find	anomalies.
Analyzing	log	files	is	something	fundamentally	different	than	monitoring.	Both
have	 different	 goals.	Monitoring	 systems,	 like	 SNMP	based	 systems,	 are	 real-
time	 systems.	As	 soon	 as	 something	 happens	 an	 alarm	goes	 off.	 Log	 files	 are
meant	for	analyzing	situations	afterwards.
Examining	 log	 files	 can	 also	 reveal	performance	 issues,	 especially	 clues	 about
bad	behaving	applications.
	

I	once	worked	in	a	team	helping	a	customer	improve	the	performance	of	a	web
server.	We	found	in	the	log	files	that	the	web	application	tried	to	open	a	non-
existing	 file	 every	 time	 the	 home	 page	 was	 presented	 –	 in	 our	 case	 many
thousand	times	a	day.
Removing	 that	 specific	 call	 to	 the	 non-existing	 file	 from	 the	 HTML	 source
improved	the	web	server's	performance	immediately!

17.5									Capacity	management

Capacity	Management	ensures	the	timely	availability	of	sufficient	infrastructural
capacity	 to	 process,	 transport,	 and	 store	 data	 now	 and	 in	 the	 future.	 Capacity
Management	 tries	 to	 avoid	 unexpected	 hardware	 purchases	 through	 the	 better
use	 of	 available	 resources	 and	 providing	 sufficient	 lead	 time	 to	 extend	 the
infrastructure.	In	order	 to	perform	capacity	management,	 the	following	input	 is
needed:

·									Monitoring	of	resources	to	detect	trends	–	for	instance,	reduced	free
disk	capacity	provides	insight	in	when	to	purchase	or	free-up	disk	capacity.
·									Business	plans	to	anticipate	on	business	changes	that	might	have
impact	on	the	infrastructure	–	for	instance	a	marketing	campaign	during
the	summer	time	could	justify	temporary	adding	server	capacity.
·									Developments	in	technology,	for	instance	the	possibility	of	upgrading
servers	when	a	higher	capacity	server	blade	becomes	available.
	

18					

DEPLOYING	APPLICATIONS

18.1									DTAP	environments

In	most	organizations,	 the	infrastructure	not	only	hosts	 the	production	systems,
but	also	development,	test	and	acceptance	systems.	These	DTAP	(Development,
Test,	 Acceptance,	 Production)	 environments	 are	 used	 in	 the	 software
development	 process.	 In	 the	 development	 environment,	 new	 software	 is
developed	or	existing	software	is	modified.	In	the	test	environment,	the	software
is	tested	by	independent	testers	and	in	the	acceptance	environment	the	software
is	accepted	by	a	delegation	of	the	user	population.	When	all	tests	are	successful,
the	software	is	deployed	in	the	production	environment.
While	the	term	DTAP	suggests	using	four	environments	(or	stages),	in	practice,
often	 more	 environments	 are	 used.	 A	 real-world	 DTAP	 environment	 could
contain	a:

·									Sandbox	environment	-	The	sandbox	environment	is	setup	as	a	pre-
development	environment,	where	preliminary	tests	can	be	performed	on
new	technology	or	solutions.	No	service	level	agreements	are	made	for	this
environment,	as	the	availability,	performance,	and	security	cannot	be
guaranteed.	The	environment	is	not	part	of	the	backup	process,	as	the
usage	of	the	environment	is	temporarily	by	default.	After	testing	new
technology	or	a	new	solution,	the	sandbox	environment	will	be	erased	to
allow	for	new	tests.
·									Development	environment	-	The	development	environment	is	used	to
develop	new	software	and	configurations.	Development	leads	to	a	new
software	release.
·									Test	environment	-	The	test	environment	is	used	to	functionally	test
new	releases.
·									User	Acceptance	test	environment	-	This	environment	is	used	to
allow	end	users	to	functionally	test	new	releases.
·									Non-Functional	acceptance	environment	–	This	environment	is	setup
to	be	identical	to	the	production	environment	to	enable	reliable
performance,	availability,	and	security	testing.
·									Hot	Fix	environment	-	The	Hot	Fix	environment	contains	a	functional
copy	of	the	production	environment	and	is	used	to	find	fixes	for
production	problems	and	to	test	these	fixes	before	they	are	deployed	to	the

production	environment.
·									Production	environment	-	The	production	environment	runs	the	actual
software	for	end	users.	Since	the	system	is	live	and	serves	many	users,
both	internally	and	externally,	changes	in	the	production	environment	are
only	allowed	as	a	result	of	a	strict	and	formal	change	process	through	the
DTAP	stages.	The	production	environment	does	not	contain	any
unnecessary	tools	like	compilers,	editors,	and	other	utilities.

Apart	from	these	DTAP	environments,	a	Systems	Management	environment	is
often	used	to	manage	the	other	environments.

18.2									Blue-Green	deployment

A	 hot	 fix	 environment	 can	 be	 used	 in	 conjunction	 with	 the	 production
environment	 in	 a	 so-called	 blue-green	 deployment,	 where	 both	 environments
switch	 roles	 when	 new	 software	 is	 deployed.	 Let’s	 call	 the	 production
environment	 the	 blue	 environment	 and	 the	 hot	 fix	 environment	 the	 green
environment.

Figure	121:	Blue-Green	deployment

At	any	time	one	of	the	two	environments,	let's	say	the	blue	environment,	is	live
and	a	new	software	release	is	tested	in	the	green	environment.	Once	the	software
is	working	in	the	green	environment,	the	routing	is	switched	so	that	all	incoming
requests	go	to	the	green	environment;	it	is	now	the	production	environment	–	the
blue	 one	 is	 now	 idle	 and	 can	 be	 considered	 the	 new	 hot	 fix	 environment.	 If
anything	goes	wrong,	routing	can	be	switched	back	to	the	blue	environment.
Once	the	green	environment	is	live	and	stable,	the	blue	environment	can	be	used
as	 the	 staging	 environment	 for	 the	 final	 testing	 step	 for	 the	 next	 deployment.
When	deploying	 the	 following	 release,	a	 switch	 is	made	 from	green	 to	blue	 in
the	same	way	 it	was	done	 from	blue	 to	green	 in	 the	previous	cycle.	That	way,
both	green	and	blue	environments	are	 regularly	cycling	between	 live,	previous
version	(for	rollback)	and	staging	for	the	next	version.

18.3									Continuous	Delivery

Continuous	delivery	speeds	up	the	time	and	effort	it	takes	to	deploy	changed	and
new	 applications	 in	 production.	The	 primary	 goal	 of	 continuous	 delivery	 is	 to
make	 software	 deployments	 painless,	 predictable,	 low-risk,	 routine	 events	 that
can	be	performed	at	any	time,	on	demand.
The	traditional	way	of	developing	software	led	to	large	implementations	that	had
to	be	scheduled	long	in	advance.	Continuous	delivery,	on	the	other	hand,	allows
performing	multiple	software	deployments	per	day	with	one	mouse	click	–	from
a	long-term	release	planning	and	maintenance	weekends	to	a	deployment	button
that	can	be	touched	any	time	a	software	change	is	made.
To	enable	continuous	delivery,	automation	is	key.	Tooling	is	needed	and	pushing
software	 from	 development	 via	 a	 testing	 stage	 to	 production	 must	 be	 fully
automated.	A	deployment	pipeline	is	a	key	part	of	continuous	delivery.
In	the	deployment	pipeline,	every	change	in	the	software	version	control	system
triggers	 a	 process	which	 creates	 deployable	 packages	 and	 runs	 automated	 unit
tests	and	other	validations	such	as	static	code	analysis.	Because	the	outcome	of
the	tests	is	known	in	a	few	minutes,	developers	get	feedback	they	can	use	to	fix
any	deficiencies	quickly.	After	 the	unit	 tests,	a	more	comprehensive	automated
acceptance	 test	 is	 run.	Once	all	packages	pass	all	 the	automated	 tests,	 they	are
available	for	on-demand	release	by	the	business	owner	of	the	software.
	

19					

DECOMMISSIONING	INFRASTRUCTURES

At	 the	 end	 of	 its	 lifecycle,	 infrastructure	 must	 be	 decommissioned.	 The
decommissioning	process	 can	be	 broken	down	 into	 preparation,	 execution	 and
cleanup	activities.

19.1									Preparation

Preparation	for	the	decommissioning	process	comprises	the	following	steps:
·									Prepare	a	plan	(interview	specialists,	plan	a	date)
·									Communicate	that	the	system	will	go	down	well	in	advance
·									Check	for	interdependencies	with	other	systems	and	remove	any
dependency
·									Determine	if	and	how	long	backup	or	archived	data	must	be	retained.
Remember,	data	retention	for	compliance	purposes	is	mandatory!
·									Check	if	the	system	is	really	not	used	anymore	(firewall	logs	can	be
helpful	here,	as	they	show	any	network	communications	with	the	system)
·									Ask	for	vendor	assistance	if	needed
·									Inform	the	floor	manager	of	the	datacenter

19.2									Execution

The	decommissioning	process	is	executed	by	the	following	steps:
·									Create	a	final	backup
·									Remove	the	system	from	the	monitoring	and	alerting	system
·									Remove	the	system	from	the	backup	schedule
·									Close	the	network	communications,	for	instance	by	disabling	firewall
rules	related	to	the	system,	or	by	manually	removing	network	cables
·									Switch	off	the	system	and	stand	by	to	redeploy	it	immediately	if	any
dependency	pops	up
·									Physically	remove	hardware
·									Remove	cabling	and	patching	related	to	the	system

19.3									Cleanup

After	the	decommissioning,	the	following	steps	are	performed	to	cleanup:
·									Check	if	no	SLAs	and	licenses	are	active	and	paid	for
decommissioned	systems
·									Remove	firewall	rules	that	are	no	longer	needed
·									Remove	unneeded	installation	software	from	the	software	vault
·									Update	documentation	and	remove	redundant	documentation
·									Wipe	all	data	and/or	destroy	data	media	like	disks	and	tapes	that	were
part	of	the	decommissioned	infrastructure
·									Remove	databases,	database	schemes,	or	database	tables	used	by	the
decommissioned	system
·									Remove	DNS	records	and	administered	IP	addresses
·									Remove	all	user	credentials	and	system	roles	from	the	Identity	and
Access	Management	system
·									Inform	the	finance	department	that	the	system	is	decommissioned
(because	of	bookkeeping)
·									Remove	all	decommissioned	components	from	the	CMDB	database

	

	

PART	V	-	APPENDICES

ABBREVIATIONS

Abbreviation Meaning

ADSL Asymmetric	Digital	Subscriber	Line

AES Advanced	Encryption	Standard

ALU Arithmetic	Logic	Unit

AMD Advanced	Micro	Devices

API Application	Programming	Interface

ARM Advanced	RISC	Machine

ASHRAE American	Society	of	Heating,	Refrigerating	and	Air-conditioning	Engineers

ASIC Application-specific	Integrated	Circuit

ATA Advanced	Technology	Attachment

ATM Asynchronous	Transfer	Mode

b Bit

B Byte	(8	bits)

BAFO Best	and	Final	Offer

BCM Business	Continuity	Management

BCP Business	Continuity	Management

BGP Border	Gateway	Protocol

BI Business	Intelligence

BIND Berkeley	Internet	Name	Domain

BIOS Basic	Input/Output	system

BOOTP Bootstrap	Protocol

BSD Berkeley	Software	Distribution

BSOD Blue	Screen	Of	Death

BTU British	Thermal	Unit

BYOD Bring	Your	Own	Device

CCITT Comité	Consultatif	International	Télégraphique	et	Téléphonique

ccNUMA Cache-coherent	Non	Uniform	Memory	Access

CCTV Closed-circuit	television

ccUMA Cache-coherent	Uniform	Memory	Access

CDN Content	Distribution	Network

CDP Continuous	Data	Protection

CERT Computer	Emergency	Response	Team

CFCC Coupling	Facility	Control	Code

CIA Confidentiality,	Integrity	and	Availability

CICS Customer	Information	Control	System

CIDR Classless	Inter-Domain	Routing

CIFS Common	Internet	File	System

CLI Command-Line	Interface

CMDB Configuration	Management	Database

CNA Converged	Network	Adapters

COBIT Control	Objectives	for	Information	and	Related	Technology

COP Coefficient	Of	Performance

CP Central	processors

CPC Central	Processor	Complex

CPU Central	Processing	Unit

CRAC Computer	Room	Air	Conditioner

CRAH Computer	Room	Air	Handler

CRM Customer	Relationship	Management

CSMA/CD Carrier	Sense	Multiple	Access	with	Collision	Detection

DAS Direct	Attached	Storage

DASD Direct	Attached	Storage	Device

DAT Digital	Audio	Tape

DBMS Database	Management	System

DDoS Distributed	Denial	of	Service

DDS Digital	Data	Storage

DES Data	Encryption	Standard

DHCP Dynamic	Host	Configuration	Protocol

DLM Distributed	Lock	Management

DLT Digital	Linear	Tape

DMA Direct	Memory	Access

DMI Direct	Media	Interface

DMZ De-Militarized	Zone

DNS Domain	Name	System

DNSSEC DNS	Security	Extensions

DOA Dead	on	arrival

DoS Denial	of	Service

DRAM Dynamic	Random-Access	Memory

DRP Disaster	Recovery	Planning

DSL Digital	Subscriber	Line

DTAP Development,	Test,	Acceptance,	Production

EBCDIC Extended	Binary	Coded	Decimal	Interchange	Code

EDGE Enhanced	Data	rates	for	GSM	Evolution

EEPROM Electrically	erasable	programmable	read-only	memory

EER Energy	Efficiency	Ratio

ENIAC Electronic	Numerical	Integrator	And	Computer

EPROM Erasable	Programmable	Read	Only	Memory

ERP Enterprise	Resource	Planning

ESCON Enterprise	Systems	CONnection

ESD Electro	Static	Discharge

ETL Extraction,	Transformation	and	Load

FAT File	Allocation	Table

FC Fibre	Channel

FCoE Fibre	Channel	over	Ethernet

FICON Fiber	Connection

FLOPS Floating	Point	Operations	Per	Second

FSB Front	Side	Bus

FTP File	Transfer	Protocol

Gb Giga	bit

GB Giga	Byte

GB/s Gigabyte	per	second

Gbit/s Gigabit	per	second

GFS Grandfather-Father-Son

GHZ Giga	Hertz

GNU GNU's	Not	Unix

GPRS General	packet	radio	service

GPU Graphics	Processing	Unit

GSM Global	System	for	Mobile	Communications

GUI Graphical	User	Interface
Host	Bus	Adapter

HBA
HCI Hyperconverged	infrastructure

HIDS Host-based	Intrusion	Detection	System

HSDPA High	Speed	Downlink	Packet	Access

HSM Hierarchical	Storage	Management

HVAC Heating,	Ventilation,	and	Air	Conditioning

Hz Hertz

I/O Input/Output

IaaS Infrastructure	as	a	Service

IAM Identity	and	Access	Management

IC Integrated	Circuit

ICA Independent	Computing	Architecture

ICMP Internet	Control	Message	Protocol

IDE Integrated	Drive	Electronics

IDS Intruder	Detection	System

IDSN Integrated	Services	Digital	Network

IFL Integrated	Facility	for	Linux

IGRP Interior	Gateway	Routing	Protocol

ILM Information	Lifecycle	Management

IMP Interface	Message	Processors

IOPS Input-Output	Per	Second

IP Internet	Protocol

IRQ Interrupt	ReQuest

ISA Industry	Standard	Architecture

ISDN Integrated	Services	Digital	Network

ISP Internet	Service	Provider

ISPF Interactive	System	Productivity	Facility

IT Information	Technology

ITIL IT	Infrastructure	Library

JCL Job	Control	language

kb Kilobit	(1024	bits)

kB Kilobyte	(1024	bytes)

kHz Kilo	Hertz

KVM Keyboard,	Video,	Mouse

kW Kilowatt

LAN Local	Area	Network

LCM Life	Cycle	Management

LDAP Lightweight	Directory	Access	Protocol

LDOM Logical	Domain

LED Light-Emitting	Diode

LPAR Logical	Partition

LTE Long	Term	Evolution

LTO Linear	Tape-Open

LUN Logical	Unit	Number

LXC Linux	Containers

MAC Media	Access	Control

Mb Megabit

MB Megabyte

MB/s Megabyte	per	second

Mbit/s Megabit	per	second

MDM Mobile	Device	Management

MER Main	Equipment	Room

MFP Multi-Functional	Printer

MHZ Mega	Hertz

MIB Management	Information	Base

MIPS Million	Instructions	Per	Second

MLC Multi-Level	Cell

MMF Multi-Mode	Fiber

MMU Memory	Management	Unit

MPLS Multi-Protocol	Label	Switching

ms Milli-seconds

MTBF Mean	Time	Between	Failures

MTTR Mean	Time	To	Repair

MTU Maximum	Transmission	Unit

MVS Multiple	Virtual	Storage

MW Megawatt

NAC Network	Access	Control

NAS Network	Attached	Storage

NAT Network	Address	Translation

NCP Network	Control	Protocol

NFR Non-functional	Requirement

NFS Network	File	System

NFS Network	Interface	Controller

NFV Network	Function	Virtualization

NIDS Network-based	Intrusion	Detection	System

NL-SAS Near-Line	Serial	Attached	SCSI

nm Nanometer

NTFS New	Technology	File	System

NTP Network	Time	Protocol

NUMA Non	Uniform	Memory	Access

OC Optical	Carrier

ODS Operational	Data	Store

OEM Original	Equipment	Manufacturer

OS Operating	System

OSD On	Screen	Display

OSI Open	Systems	Interconnection

OSPF Open	Shortest	Path	First

PaaS Platform	as	a	Service

PB Petabyte

PC Personal	Computer

PCH Platform	Controller	Hub

PCI Peripheral	Component	Interconnect

PCIe Peripheral	Component	Interconnect	Express

PHP PHP:	Hypertext	Preprocessor

PIN Personal	Identification	Number

PKI Public	Key	Infrastructure

POF Plastic	Optical	Fiber

POP Point-Of-Presence

PPP Point-to-point	Protocol

PPTP Point-to-point	Tunneling	Protocol

PROM Programmable	read-only	memory

PSTN Public	Switched	Telephone	Network

PSU Power	Supply	Unit

PU Processing	Unit

PUE Power	Usage	Effectiveness

PXE Preboot	Execution	Environment

PXE Quarter-inch	cartridge

QoS Quality	of	Service

RADIUS Remote	Authentication	Dial	In	User	Service

RAID Redundant	Arrays	of	Independent	Disks

RBAC Role	Based	Access	Control

RDP Remote	Desktop	Protocol

RDS Remote	Desktop	Service

RFI Request	For	Information

RFID Radio-frequency	identification

RFP Request	For	Proposal

RIP Routing	Information	Protocol

RISC Reduced	instruction	set	computer

ROM Read	Only	Memory

RPM Revolutions	Per	Minute

RPO Recovery	Point	Objective

RS-232 Recommended	Standard	232

RSTP Rapid	Spanning	Tree	Protocol

RTO Recovery	Time	Objective

RTOS Real-time	Operating	System

SaaS Software	as	a	Service

SAN Storage	Area	Network

SAP System	Assisted	Processor

SAS Serial	Attached	SCSI

SATA Serial	ATA

SBC Server	Based	Computing

SCADA Supervisory	Control	And	Data	Acquisition

SCSI Small	Computer	System	Interface

SDC Software	Defined	Compute

SDDC Software	Defined	Datacenter

SDH Synchronous	Digital	Hierarchy

SDLT Super	Digital	Linear	Tape

SDN Software	Defined	Networking

SDS Software	Defined	Storage

SDSL Symmetric	Digital	Subscriber	Line

SEER Seasonal	Energy	Efficiency	Ratio

SER Sub	Equipment	Room

SFTP Secure	File	Transfer	Protocol

SIMM Single	In-line	Memory	Module

SLC Single	Level	Cell

SMB Server	Message	Block

SMF Single	Mode	Fiber

SMP Symmetric	Multi-Processor

SMS Short	Message	Service

SNMP Simple	Network	Management	Protocol

SoC System	on	a	Chip

SONET Synchronous	Optical	Networking

SoW Statement	of	Work

SPARC Scalable	Processor	ARChitecture

SPEC Standard	Performance	Evaluation	Corporation

SPOF Single	Point	of	Failure

SRAM Static	random-access	memory

SSD Solid	State	Disk
Secure	Shell

SSH
SSL Secure	Sockets	Layer

SSO Single	Sign-On

STP Spanning	Tree	Protocol	/	Shielded	Twisted	Pair

TB Terabyte

TCB Trusted	Computing	Base

TCP Transmission	Control	Protocol

TFTP Trivial	File	Transfer	Protocol

TIA Telecommunications	Industry	Association

TKIP Temporal	Key	Integrity	Protocol

TLS Transport	Layer	Security

TMR Triple	Modular	Redundancy

TPC Transaction	Processing	Performance	Council

TSO Time	Sharing	Option

TTL Time	to	Live

TTY Teletype

UDP User	Datagram	Protocol

UFS Union	File	System

UMA Uniform	Memory	Access

UMTS Universal	Mobile	Telecommunications	System

UPS Uninterruptable	Power	Supply

USB Universal	Serial	Bus

UTP Unshielded	Twisted	Pair

VDI Virtual	Desktop	Infrastructure

VDSL Very	High	Digital	Subscriber	Line

VGA Video	Graphics	Array

VLAN Virtual	LAN

VLSM Variable-Length	Subnet	Masking

VM Virtual	Machine

VMDK Virtual	Machine	Disk

VMM Virtual	Machine	Monitor

VMS Virtual	Memory	System

VoIP Voice	over	IP

VoLTE Voice	over	LTE

VPAR Virtual	Partition

VPN Virtual	Private	Network

VTL Virtual	Tape	Library

VxFS Veritas	File	System

VXLAN Virtual	Extensible	LAN

WAN Wide	Area	Network

WDM Wavelength-division	multiplexing

WLAN Wireless	Local	Area	Network

WLAN Wi-Fi	Protected	Access

WPAR Working	Partitions

WWN World	Wide	Name

WWW World	Wide	Web

	

IS	2010.4	CURRICULUM	REFERENCE
MATRIX

IS	 2010.4	 based	 courses	 offer	 an	 introduction	 to	 IT	 infrastructure	 issues	 for
students	majoring	 in	 Information	Systems.	 It	gives	 the	 students	 the	knowledge
and	skills	that	they	need	for	communicating	effectively	with	professionals	whose
special	focus	is	on	hardware	and	systems	software	technology	and	for	designing
organizational	 processes	 and	 software	 solutions	 that	 require	 in-depth
understanding	of	the	IT	infrastructure	capabilities	and	limitations.
This	 book	 covers	 all	 topics	 that	 are	 part	 of	 the	 IS	 2010.4	 curriculum.	 Many
universities	worldwide	already	use	this	book	in	their	IS	2010.4	based	courses.
In	 the	 matrix	 provided	 in	 this	 appendix,	 the	 relation	 between	 the	 IS	 2010.4
curriculum	topics	and	sections	in	this	book	is	specified.
	
Topic Section	in	this

book
Core	computing	system	architecture	concepts 2

2.1
Core	computing	system	organizing	structures 2.2

2.3
2.4
2.5

Core	technical	components	of	computer-based	systems 10.2

Role	of	IT	infrastructure	in	a	modern	organization 1

Operating	systems 11
Core	operating	systems	functionality 11.2
Internal	organization	of	an	operating	system 11.2
Types	of	devices	that	require	and	use	operating	systems 11.1
Multitasking	and	multithreading 10.4.2.5

10.4.2.7
11.2.1

File	systems	and	storage 11.2.2
User	interfaces 11.2.6
Operating	system	configuration 11.2.8
Securing	an	operating	system 11.5
Virtualization	of	computing	services 10.2.5

Networking 8
Types	of	networks 8.1

8.2
Core	network	components 8.2.1
TCP/IP	model 8.2.4.1

8.2.5.1
Physical	layer:	wired	and	wireless	connectivity 8.2.2
Data	link	layer:	Ethernet 8.2.3
Network	layer:	IP,	IP	addressing	and	routing 8.2.4
Transport	layer:	TCP 8.2.5

Application	layer:	core	internet	application	protocols 8.2.8
Network	security	and	security	devices 8.6
The	internet	as	a	key	networking	platform 8.1
Network	device	configuration 8.2.3.3

8.2.4.5
Organizing	storage	on	organizational	networks 9

Datacenters 7

Securing	IT	infrastructure 6
Principles	of	encryption	and	authentication 6.3.4
Component	level	security:	clients,	servers,	storage	network	devices,	data	transport,	applications 7.5

8.6
9.5
10.5
11.5
12.6

Perimeter	security:	firewalls 8.6.1
Using	public	networks	for	secure	data	transport:	VPNs 8.2.6.1

The	role	of	IT	control	and	service	management	frameworks	(COBIT,	ITIL,	etc.)	in	managing	the	organizational	IT
infrastructure

17

Ensuring	business	continuity 4.4.4

Grid	computing 5.5.10

Cloud	computing,	computing	as	a	service 14.6

System	performance	analysis	and	management 5.3
5.4
5.5
16.2

Purchasing	of	IT	infrastructure	technologies	and	services 15

	

FURTHER	READING

More	information	about	the	subjects	described	in	this	book	can	be	found	in	the
following	sources.	I	have	used	these	sources	when	performing	research	for	this
book.
Apart	 from	 these	 sources,	 I	 have	 used	 Wikipedia	 extensively,	 especially	 for
checking	historic	facts	and	dates,	and	for	checking	technical	details.	Please	join
me	in	donating	a	small	amount	of	money	to	Wikipedia:
	

http://wikimediafoundation.org/wiki/Ways_to_Give

	

http://wikimediafoundation.org/wiki/Ways_to_Give

Books

·									Tom	Gilb.	Principles	of	Software	Engineering	Management.
Addison-	Wesley,	1988.
·									Andrew	S.	Tanenbaum.	Operating	Systems:	Design	and
implementation.	Prentice-Hall,	1987
·									Bruce	Robertson,	Valentin	Sribar.	The	Adaptive	Enterprise.	Addison
Wesley,	2002.
·									L.	Bass,	P.	Clements	and	R.	Kazman.	Software	Architecture	in
Practice	(3rd	Edition).	Addison-Wesley	Professional,	2012.

·									Adam	Gordon,	Javvad	Malik,	Steven	Hernandez.	Official	(ISC)2
guide	to	the	CISSP	CBK	Fourth	Edition.	CRC	Press,	2015.
·									William	J.	Brown,	Raphael	C.	Malveau,	Hays	W.	"Skip"	McCormick
III,	Thomas	J.	Mowbray.	Anti-patterns	-	Refactoring	Software,
Architectures,	and	Projects	in	Crisis.	Wiley	Computer	Publishing,	1998.
·									Paul	Dyson,	Andy	Longshaw.	Architecting	Enterprise	Solutions.
Wiley,	2004.
·									B.	Elliott.	Designing	a	structured	cabling	system	to	ISO	11801:
Cross-referenced	to	European	CENELEC	and	American	Standards
(Second	edition).	Woodhead	Publishing	Limited,	2002.
·									Jennifer	Acuna-Narvaez,	Ashoka	Reddy	Linda	Sandberg,	Irene	D.
Sideris,	Scott	Vetter.	RS/6000	Systems	Handbook.	IBM.	1999.
·									Hewlett-Packard	Company.	Architecture	HP	9000	V-Class	Server
Second	Edition.	Hewlett-Packard	Company.	March,	1998.
·									IBM.	Mainframe	concepts.	International	Business	Machines
Corporation,	2008.
·									A.	Ranjbar,	K.	Hutton.	CCDP	Self-Study:	Designing	Cisco	Network
Architectures.	Cisco	Press,	2004.
·									Tom	Clark.	Designing	Storage	Area	Networks.	Addison	Wesley
2003.
·									Peter	H.	Salus.	A	Quarter	Century	of	UNIX.	Addison	Wesley,	1994.

·									Paul	Andrews.	Gates:	How	Microsoft's	Mogul	Reinvented	an
Industry--	and	Made	Himself	the	Richest	Man	in	America.
Touchstone,	2002.
·									Bob	Ducharme.	The	Operating	Systems	Handbook:	UNIX,
OpenVMS,	OS/400,	VM,	and	MVS.	McGraw-Hill	Companies,	1994.
·									Paul	Goransson,	Chuck	Black.	Software	Defined	Networks:	A
Comprehensive	Approach.	Morgan	Kaufmann,	2014.
·									ISACA.	CRISC	Review	Manual.	2015.
·									Kief	Morris.	Infrastructure	as	Code	–	Managing	Servers	in	the
Cloud.	O’Reilly,	2016.
·									Adrian	Mouat.	Using	Docker	–	Developing	and	Deploying	Software
with	Containers.	O’Reilly,	2016.

	
	

Papers

·									E.	van	der	Wijngaard.	Using	the	Infrastructure	Architecture
Method.	2001.
·									R.	Kazman,	M.	Klein	and	P.	Clements.	ATAM:	Method	for
Architecture	Evaluation.	Report	CMU/SEI-2000-TR-004,	2000.
·									K.	Trivedi,	D.	S.	Kim,	A.	Roy,	D.	Medhi.	Dependability	and
Security	Models.	Keynote	paper	Proceedings	of	7th	International
Workshop	on	the	Design	of	Reliable	Communication	Networks,	October
2009.
·									W.	Greene,	B.	Lancaster.	Carrier	Grade:	Five	Nines,	the	Myth	and
the	Reality.	Pipeline	Volume	3,	Issue	1.	2006.
·									Microsoft.	Microsoft	High	Availability	Overview.	White	Paper,
2008.
·									Microsoft.	Overview	of	Failover	Clustering	with	Windows	Server
2008.	White	Paper,	2007.
·									Microsoft.	Windows	Server	2008	Failover	Clustering	Architecture
Overview	-	New	Features	and	Capabilities.	White	Paper,	2007.
·									The	Open	Group.	The	UNIX	Operating	System:	A	Robust,
Standardized	Foundation	for	Cluster	Architectures.	Cluster	White
Paper.
·									Eric	Hennessey.	High	Availability	for	Mission-	Critical
Applications	-	Protecting	Applications	with	Veritas	Cluster	Server.
White	paper,	2008.
·									Hewlett-Packard.	Designing	high	availability	solutions	with	HP
Serviceguard	and	HP	Integrity	Virtual	Machines.	Technical	White
paper,	2010.
·									VMware.	VMware	High	Availability	-	Easily	Deliver	High
Availability	for	All	of	Your	Virtual	Machines.	White	paper,	2009.
·									ADC.	TIA-952	Data	Center	Standards	Overview.	White	paper,
2006.
·									Uptime	Institute.	Data	Center	Site	Infrastructure	Tier	Standard:

Topology.	2009.
·									Liebert.	Evaluating	the	economic	impact	of	UPS	technology.	White
paper,	2004.
·									American	Society	of	Heating,	Refrigerating	and	Air	Conditioning
Engineers,	Inc.	2008	ASHRAE	Environmental	Guidelines	for	Datacom
Equipment.	2008.
·									Robert	E	Moncrief	II.	RS/6000.	2002.
·									Per	Stenstrom.	A	Survey	of	Cache	Coherence-	Schemes	for
Multiprocessors.	Lund	University,	1990.
·									Yi	Zhang.	Non-blocking	Shared	Data	Structures	for	Shared
Memory	Multiprocessor	Systems	-	Thesis	for	the	Degree	of	Licentiate
of	Philosophy.	Department	of	Computing	Science	Chalmers	University	of
Technology	and	Göteborg	University,	2001.
·									Microsoft.	Hyper-V	Cloud	Fast	Track	Program	-	Reference
Architecture	Technical	White	Paper.	Microsoft	White	paper,	2011.
·									Herco	van	Brug.	VDI	&	Storage:	Deep	Impact.	PQR	White	paper,
2010.
·									Fujitsu	Siemens.	Storage	basics.	An	introduction	to	the
fundamentals	of	storage	technology.	Fujitsu	Siemens	White	paper,	2009.
·									Larry	Freeman.	The	NetApp	Storage	Efficiency	Guide.	NetApp
White	paper,	2009.
·									Peter	Baer	Galvin.	VMware	vSphere	Vs.	Microsoft	Hyper-V:	A
Technical	Analysis.	CTI	White	paper,	2009.
·									VMware.	VMware	ESX	server	2	Architecture	and
Performance	Implications.	White	paper,	2005.
·									VMware.	VMware	High	Availability	(VMware	HA):	Deployment
Best	Practices	vSphere	4.1.	Technical	white	paper,	2010.
·									VMware.	Using	VMware	Infrastructure	for	Backup	and	Restore.
Best	Practice,	2006.
·									Citrix.	The	three	levels	of	high	availability	-	Balancing	priorities
and	cost.	White	paper,	2009.
·									Citrix.	Technical	guide:	Using	a	comprehensive

virtualization	solution	to	maintain	business	continuity.	White	paper,
2009.
·									Citrix.	Technical	and	commercial	comparison	of	Citrix	XenServer
and	VMware.	White	paper,	2010.
·									Microsoft.	Windows	Server	2008	Hyper-V	Product	Overview	–	An
Early	look.	White	paper,	2007.
·									Microsoft.	Performance	Tuning	Guidelines	for	Windows	Server
2008.	White	paper,	2009.
·									VMware.	Understanding	Full	Virtualization,	Paravirtualization,
and	Hardware	Assist.	White	paper,	2007.
·									Microsoft.	Microsoft	High	Availability	Overview.	White	Paper,
2008.
·									Eric	Hennessey.	High	Availability	for	Mission-Critical
Applications,	Protecting	Applications	with	Veritas™	Cluster	Server.
White	paper,	2008.
·									IBM.	Z/Architecture	Principles	of	Operation.	White	Paper,	2008.
·									Cisco.	Cisco	Application	Centric	Infrastructure	(ACI)	at	a	Glance.
White	paper,	2013.
·									SNIA:	Mark	Carlson,	Alan	Yoder,	Leah	Schoeb,	Don	Deel,	Carlos
Pratt,	Chris	Lionetti,	Doug	Voigt.	Software	Defined	Storage.	White
paper,	2015

	

	

END	NOTES

[1]	Source:	http://oldcomputers.net/zx81.html
[2]

	Copyright:	Beareyes.com.	Source:	http://bj.beareyes.com.cn/2/lib/201211/27/20121127416_2.htm

[3]
	Box,	G.	E.	P.,	and	Draper,	N.	R.,	(1987),	Empirical	Model	Building	and	Response	Surfaces,	John	Wiley

&	Sons,	New	York,	NY,	p.	424

[4]
	Source:	http://www.datacenterknowledge.com/archives/2014/05/30/survey-enterprise-data-centers-fail-

often-colos/?
utm_content=buffer2c086&utm_medium=social&utm_source=linkedin.com&utm_campaign=buffer

[5]
	Source:	http://www.energie-nederland.nl/wp-content/uploads/2013/04/EnergieTrends2014.pdf

[6]
	"Understanding	the	Cost	of	Power	Interruptions	to	U.S.	Electricity	Consumers",	p38,	University	of

California	Berkeley,	2004.	https://emp.lbl.gov/sites/all/files/REPORT%20lbnl%20-%2055718.pdf

[7]
	Gartner	RAS	Core	Research	Note	G00208328,	Ronni	Spaffort,	29	October	2010,	RA6	05012011

[8]
	“When	more	Website	visitors	hurt	your	business:	Are	you	ready	for	peak	traffic?”,	Equation	Research,

2010.	http://www.informationweek.com/whitepaper/Internet/Traffic-Reporting-Monitoring/when-more-
website-visitors-hurt-your-business-ar-wp1273171222135

[9]
	Key	findings	from	the	"Consumer	Response	to	Travel	Site	Performance	study	conducted	by

PhoCusWright	and	Akamai.	http://www.phocuswright.com/Free-Travel-Research/Consumer-Response-to-
Travel-Site-Performance

[10]
	"Feeling	good	at	the	right	time:	Why	people	value	predictability	in	goal	attainment",	Nadav	Klein	and

Ayelet	Fishbach,	Journal	of	Experimental	Social	Psychology,	Volume	55,	November	2014,	pp	21–30.
http://home.uchicago.edu/~nklein/RightTime.pdf

[11]
	Source:	http://berriprocess.com/en/todas-las-categorias/item/47-ley-del-cuello-de-botella

[12]
	http://www.seagate.com/www-content/product-content/enterprise-performance-savvio-

fam/enterprise-performance-15k-hdd/ent-perf-15k-5/en-gb/docs/enterprise-performance-15k-hdd-ds1797-3-
1406gb.pdf

[13]
	http://www.anandtech.com/show/6372/memory-performance-16gb-ddr31333-to-ddr32400-on-ivy-

bridge-igp-with-gskill

[14]
	http://www.extremetech.com/extreme/188776-how-l1-and-l2-cpu-caches-work-and-why-theyre-an-

essential-part-of-modern-chips/2

[15]	Copyright:	ddgenome.	Source:	http://www.flickr.com/photos/ddgenome/3730193968/sizes/z/in/set-
72157603633991423/

[16]
	Copyright:	ddgenome.	Source:

http://www.flickr.com/photos/ddgenome/3730196210/sizes/z/in/photostream/

[17]
	Copyright:	Lgate74.	Source:	http://en.wikipedia.org/wiki/File:Ups_batteries.jpg

[18]
	https://www.ashrae.org/resources--publications/bookstore/datacom-series#thermalguidelines

[19]
	Copyright:	Paul	Morris.	Source:	http://www.flickr.com/photos/aa3sd/3709581232/

[20]
	Copyright:	Chassis	Plans	(http://www.chassis-plans.com).	Source:

http://en.wikipedia.org/wiki/File:Chassis-Plans-KVM.jpg

[21]
	"Report	to	Congress	on	Server	and	Data	Center	Energy	Efficiency".	U.S.	Environmental	Protection

Agency	ENERGY	STAR	Program.	August	2,	2007.
http://www.energystar.gov/ia/partners/prod_development/downloads/
EPA_Datacenter_Report_Congress_Final1.pdf

[22]
	Gartner	Symposium/ITxpo	2007	Emerging	Trends.	http://www.gartner.com/newsroom/id/503867

[23]	Source:	Federal	Statistical	Office,	Data	on	energy	price	trends.
https://www.destatis.de/DE/Publikationen/Thematisch/Preise/Energiepreise/EnergyPriceTrendsPDF_5619002.pdf?
__blob=publicationFile

[24]
	The	Green	Grid.	Describing	Datacenter	Power	Efficiency,	20	february	2007.

http://www.thegreengrid.org/~/media/WhitePapers/Green_Grid_Metrics_WP.ashx?lang=en

[25]
	Typical	price	in	the	US,	according	to	http://shrinkthatfootprint.com/average-electricity-prices-kwh

[26]
	According	to	a	survey	by	the	Uptime	Institute	in	2014.

http://www.datacenterknowledge.com/archives/2014/06/02/survey-industry-average-data-center-pue-stays-

http://www.flickr.com/photos/ddgenome/3730193968/sizes
http://www.chassis-plans.com
http://en.wikipedia.org/wiki/File:Chassis-Plans-KVM.jpg
https://www.destatis.de/DE/Publikationen/Thematisch/Preise/Energiepreise/EnergyPriceTrendsPDF_5619002.pdf?__blob=publicationFile

nearly-flat-four-years/

[27]
	Measuring	to	improve:	comprehensive,	real-world	data	center	efficiency	numbers.	Google	official

Blog,	26	March	2012.	http://googleblog.blogspot.nl/2012/03/measuring-to-improve-comprehensive-
real.html

[28]
	The	Prineville	data	center	has	had	PUE	measurements	as	low	as	1.06.

http://www.datacenterknowledge.com/archives/2013/04/18/facebook-	unveils-live-dashboard-on-pue-water-
use/

[29]
	http://www.uptimeinstitute.com/

[30]
	Copyright:	Leonard	Kleinrock.	Source:	http://en.wikipedia.org/wiki/File:Leonard-Kleinrock-and-

IMP1.png

[31]
	Based	on	the	numbers	on	http://www.internetlivestats.com/internet-users/

[32]
	Copyright:	F.	Dominec.	Source:	http://commons.wikimedia.org/wiki/File:Coaxial_cable_cut.jpg

[33]
	Copyright:	Dmitry	Barsky.	Source:

http://www.flickr.com/photos/dbarsky/2262194362/in/photostream

[34]
	According	to	http://www.ieee802.org/3/bs/

[35]
	Copyright:	Cisco.	Source:

http://www.flickr.com/photos/ciscosp360/5334068230/sizes/z/in/photostream/

[36]
	Source:	https://www.nro.net/news/ipv4-free-pool-depleted

[37]
	According	to	the	publication	“Software	Defined	Storage	For	Dummies®,	IBM	Platform	Computing

Edition,	John	Wiley	&	Sons,	Inc.”

[38]
	Copyright:	IBM	Archives.	Source:	http://www.ed-thelen.org/RAMAC/RAMAC-

EngProtoType-.jpeg
[39]

	Copyright	Poil.	Source:	http://en.wikipedia.org/wiki/File:Largetape.jpg

[40]
	As	stated	in	this	article:	http://www.lto.org/technology/lto-generation-7/

[41]
	Copyright:	Austin	Murphy.	Source:	http://en.wikipedia.org/wiki/File:LTO2-cart-purple.jpg

[42]
	http://www.oracle.com/us/products/servers-storage/storage/tape-storage/t10000-data-

http://www.flickr.com/photos/ciscosp360/5334068230/sizes
https://www.nro.net/news/ipv4-free-pool-depleted
http://www.ed-thelen.org/RAMAC/RAMAC-EngProtoType-.jpeg
http://www.oracle.com/us/products/servers-storage/storage/tape-storage/t10000-data-cartridges/overview/index.html

cartridges/overview/index.html

[43]
	Copyright:	Clive	Darra.	Source:	https://www.flickr.com/photos/osde-info/20943120629/

[44]
	As	published	in	Scientific	American,	July	2005.	http://www.scientificamerican.com/article/kryders-

law/

[45]
	Picture	by	Daniel	Sancho.	Source:	https://www.flickr.com/photos/teclasorg/2852716477/

[46]
	Source:	https://www.oracle.com/sun/index.html	and

http://downloads.quantum.com/sdlt320/handbook.pdf

[47]
	http://www.tapeandmedia.com/lto-7-tape-media-tapes.asp

[48]
	Copyright:	Aaron	Kuhn	from	Hatfield,	PA.	Source:

http://en.wikipedia.org/wiki/File:ADIC_Scalar_100_tape_library.jpg

[49]
	Copyright:	Compellent	Technologies.	Source:	http://www.crn.com/slide-shows/channel-

programs/208403760/the-hottest-companies-in-the-midmarket-right-now.htm/pgno/0/7

[50]
	Copyright:	LeSimonPix.	Source:

http://www.flickr.com/photos/photobysimon/3260876496/sizes/z/in/photostream/

[51]
	Copyright:	LeSimonPix.	Source:

http://www.flickr.com/photos/photobysimon/3260037977/sizes/z/in/photostream/

[52]
	Care	and	Handling	of	CDs	and	DVDs:	A	Guide	for	Librarians	and	Archivists,	Fred	R.	Byers,	ISBN	1-

932326-04-9,	page	20.	http://www.clir.org/pubs/reports/reports/pub121/pub121.pdf

[53]
	Source:		https://en.wikipedia.org/wiki/Hard_disk_drive_performance_characteristics

[54]
	An	interesting	story	about	the	Colossus	computer	can	be	found	here:	http://www.colossus-

computer.com/colossus1.html

[55]
	Public	domain	picture.	Source:	https://commons.wikimedia.org/wiki/File:ENIAC-

changing_a_tube.jpg

[56]
	Copyright:	Robert	van	Jemimus.	Source:	https://flic.kr/p/6SZom

[57]
	Copyright:	Robert	van	Jemimus.	Source:	https://flic.kr/p/7zAdj

[58]
	Definition	by	Wikipedia:	https://en.wikipedia.org/wiki/Central_processing_unit

https://www.flickr.com/photos/teclasorg/2852716477/
https://www.oracle.com/sun/index.html
http://www.tapeandmedia.com/lto-7-tape-media-tapes.asp
http://www.flickr.com/photos/photobysimon/3260876496
http://www.flickr.com/photos/photobysimon/3260037977/sizes
http://www.colossus-computer.com/colossus1.html

[59]
	Source:	http://www.hardwarezone.com.sg/feature-intel-xeon-5130-and-5160-2-way-smp-

performance-review

[60]
	According	to	Intel’s	website:	http://ark.intel.com/search/advanced?

FamilyText=Intel%C2%AE%20Xeon%C2%AE%20Processor%20E5%20v4%20Family

[61]
	According	to	AMD’s	website:	http://www.amd.com/en-us/products/server/opteron/6000/6300#

[62]
	According	to	ARM’s	website:

http://www.arm.com/files/event/1_2014_Physical_IP_Workshop_ARM_Embedded_Market.pdf

[63]
	Source:	https://www.siliconrepublic.com/companies/softbank-arm-takeover-completed

[64]
	According	to	Pracle’s	website:	http://www.oracle.com/us/products/servers-storage/sparc-m7-

processor-ds-2687041.pdf

[65]
	Source:	https://openpowerfoundation.org/wp-content/uploads/2016/04/5_Brad-McCredie.IBM_.pdf

[66]
	Picture	by	H.J.	Sommer	III,	Professor	of	Mechanical	Engineering,	Penn	State	University.	Source:

http://commons.wikimedia.org/wiki/File:Magnetic_core.jpg

[67]
	Source:	http://www.corememoryshield.com/report.html

[68]
	Copyright:	Jonathan.	Source:	https://commons.wikimedia.org/wiki/File:PCIExpress.jpg

[69]	http://www-03.ibm.com/systems/z/hardware/z13_specs.html
[70]	http://public.dhe.ibm.com/common/ssi/ecm/zs/en/zsd03035usen/ZSD03035USEN.PDF
[71]

	Source:	Computermuseum	der	Fakultät	Informatik.	http://computermuseum.informatik.uni-
stuttgart.de/dev_en/pdp8e/

[72]
	http://www.v3.co.uk/v3-uk/news/2324612/lenovo-buys-ibms-mid-range-server-business-for-usd23bn

[73]
	https://www.pugetsystems.com/labs/articles/Linpack-performance-Haswell-E-Core-i7-5960X-and-

5930K-594/

[74]
	http://top500.org/system/177999

[75]
	Source:	https://devblogs.nvidia.com/parallelforall/inside-pascal/

http://www.arm.com/files/event/1_2014_Physical_IP_Workshop_ARM_Embedded_Market.pdf
http://www.corememoryshield.com/report.html
https://commons.wikimedia.org/wiki/File:PCIExpress.jpg
http://public.dhe.ibm.com/common/ssi/ecm/zs/en/zsd03035usen/ZSD03035USEN.PDF
http://top500.org/system/177999

[76]
	Copyright:	Luca	Detomi.	Source:	http://en.wikipedia.org/wiki/File:Intel_4004.jpg

[77]
	Electronics,	Volume	38,	Number	8,	April	19,	1965.

http://www.cs.utexas.edu/~pingali/CS395T/2013fa/papers/moorespaper.pdf

[78]
	Henry	F.	Holtzclaw	&	William	R.	Robinson.	General	Chemistry.	Lexington,	MA:	Heath,	1988:	98.

[79]
	It	is	actually	a	variation	of	the	original	Parkinson’s	law,	as	originally	formulated	by	Prof.	Cyril

Northcote	Parkinson	in	1958.	The	text	can	be	found	here:	http://www.heretical.com/miscella/parkinsl.html.
Parkinson’s	law	of	data	can	be	found	here:	http://dictionary.reference.com/browse/parkinson's+law+of+data

[80]
	According	to	http://wiki.midrange.com/index.php/OS/400_101

[81]
	http://wiki.midrange.com/index.php/History_of_OS/400#Current_releases

[82]
	As	announced	in	this	press	release:

https://vmssoftware.com/news/PR20150601/PR20150601_VSI_8.4-IHI.pdf

[83]
	Andrew	S.	Tanenbaum.	Operating	Systems:	Design	and	Implementation.	Prentice-Hall,	1987,	ISBN

0-13-637406-9

[84]
	The	original	usenet	post	can	be	found	here:

https://groups.google.com/forum/#!topic/comp.os.minix/dlNtH7RRrGA[1-25]

[85]
	Top500.org

[86]
	Copyright:	picture	by	ArnoldReinhold	-	Own	work,	CC	BY-SA	3.0.	Source:

https://commons.wikimedia.org/w/index.php?curid=31105488

[87]
	Copyright:	Ruben	de	Rijcke.	Source:	http://commons.wikimedia.org/wiki/File:Ibm_pc_5150.jpg

[88]
	http://www.gartner.com/newsroom/id/2705117?

utm_source=Triggermail&utm_medium=email&utm_term=Tech%20Chart%20Of%20The%20Day&utm_campaign=SAI_COTD_041014

[89]
	According	to	Samsung:	http://www.storagevisions.com/2013/Book/Michael%20Willett.pdf

[90]
	Copyright:	Nakamura2828.	Source:	http://en.wikipedia.org/wiki/File:Epson_MX-80.jpg

[91]
	Copyright:	Waelder.	Source:	http://en.wikipedia.org/wiki/File:IBM_line_printer_1403.JPG

[92]
	Quote	from	http://smallbusiness.chron.com/line-printer-56785.html

http://www.heretical.com/miscella/parkinsl.html
http://dictionary.reference.com/browse/parkinson's+law+of+data
http://wiki.midrange.com/index.php/History_of_OS/400#Current_releases
https://vmssoftware.com/news/PR20150601/PR20150601_VSI_8.4-IHI.pdf
https://groups.google.com/forum/#!topic/comp.os.minix/dlNtH7RRrGA[1-25
http://www.gartner.com/newsroom/id/2705117?utm_source=Triggermail&utm_medium=email&utm_term=Tech%20Chart%20Of%20The%20Day&utm_campaign=SAI_COTD_041014
http://www.storagevisions.com/2013/Book/Michael%20Willett.pdf
http://smallbusiness.chron.com/line-printer-56785.html

[93]
	Copyright	NetApp.	Source:	http://community.netapp.com/t5/Technology/FlexPod-Continues-Market-

Momentum/ba-p/82131

[94]
	Copyright	au@cs.stanford.edu.	Source:	http://www-cs-students.stanford.edu/~au/

[95]
	http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[96]
	Source:	http://www.intuittech.my/nagios_xi_gallery.html

http://www-cs-students.stanford.edu/~au/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.intuittech.my/nagios_xi_gallery.html

	Trademarks
	Introduction
	Foreword by the author
	Preface
	Note to the third edition
	PART I - INTRODUCTION TO IT INFRASTRUCTURE
	1 The definition of IT infrastructure
	1.1 Introduction
	1.2 What is IT infrastructure?

	2 The infrastructure model
	2.1 IT building blocks
	2.2 Processes / Information building block
	2.3 Applications building block
	2.4 Application Platform building block
	2.5 Infrastructure building blocks
	2.6 Non-Functional attributes

	PART II – NON FUNCTONAL ATTRIBUTES
	3 Introduction to Non-functional attributes
	3.1 Introduction
	3.2 Non-functional Requirements

	4 Availability concepts
	4.1 Introduction
	4.2 Calculating availability
	4.2.1 Availability percentages and intervals
	4.2.2 MTBF and MTTR
	4.2.2.1 Mean Time Between Failures (MTBF)
	4.2.2.2 Mean Time To Repair (MTTR)

	4.2.3 Some calculation examples

	4.3 Sources of unavailability
	4.3.1 Human errors
	4.3.2 Software bugs
	4.3.3 Planned maintenance
	4.3.4 Physical defects
	4.3.5 Environmental issues
	4.3.6 Complexity of the infrastructure

	4.4 Availability patterns
	4.4.1 Redundancy
	4.4.2 Failover
	4.4.3 Fallback
	4.4.3.1 Hot site
	4.4.3.2 Warm site
	4.4.3.3 Cold site

	4.4.4 Business Continuity
	4.4.4.1 Business Continuity Management
	4.4.4.2 Disaster Recovery Planning
	4.4.4.3 RTO and RPO

	5 Performance Concepts
	5.1 Introduction
	5.2 Perceived performance
	5.3 Performance during infrastructure design
	5.3.1 Benchmarking
	5.3.2 Using vendor experience
	5.3.3 Prototyping
	5.3.4 User profiling

	5.4 Performance of a running system
	5.4.1 Managing bottlenecks
	5.4.2 Performance testing

	5.5 Performance patterns
	5.5.1 Increasing performance on upper layers
	5.5.2 Caching
	5.5.2.1 Disk caching

	5.5.3 Web proxies
	5.5.4 Operational data store
	5.5.5 Front-end servers
	5.5.6 In-memory databases
	5.5.7 Scalability
	5.5.8 Load balancing
	5.5.9 High performance clusters
	5.5.10 Grid Computing
	5.5.11 Design for use
	5.5.12 Capacity management

	6 Security Concepts
	6.1 Introduction
	6.2 Risk management
	6.2.1 Risk response
	6.2.2 Exploits
	6.2.3 Security controls
	6.2.4 Attack vectors
	6.2.4.1 Malicious code
	6.2.4.2 Denial of service attack
	6.2.4.3 Social engineering
	6.2.4.4 Phishing
	6.2.4.5 Baiting

	6.3 Security Patterns
	6.3.1 Identity and Access Management
	6.3.2 Segregation of duties and least privilege
	6.3.3 Layered security
	6.3.4 Cryptography
	6.3.4.1 Symmetric key encryption
	6.3.4.2 Asymmetric key encryption
	6.3.4.3 Hash functions and digital signatures
	6.3.4.4 Cryptographic attacks

	PART III – ARCHITECTURE BUILDING BLOCKS
	7 Datacenters
	7.1 Introduction
	7.2 Datacenter building blocks
	7.2.1 Datacenter categories
	7.2.2 Location of the datacenter
	7.2.3 Physical structure
	7.2.3.1 Floors
	7.2.3.2 Walls, windows, and doors
	7.2.3.3 Water and gas pipes
	7.2.3.4 Layout of the datacenter

	7.2.4 Power supply
	7.2.4.1 Power density
	7.2.4.2 Uninterruptable Power Supply (UPS)
	7.2.4.3 Power generators
	7.2.4.4 Battery powered UPS systems
	7.2.4.5 Flywheel UPS systems
	7.2.4.6 UPS maintenance
	7.2.4.7 Power distribution

	7.2.5 Cooling
	7.2.5.1 Operating temperatures
	7.2.5.2 Airflow
	7.2.5.3 Humidity and dust

	7.2.6 Fire prevention, detection, and suppression
	7.2.6.1 Fire prevention
	7.2.6.2 Passive fire protection
	7.2.6.3 Fire detection systems
	7.2.6.4 Fire suppression systems

	7.2.7 Equipment racks
	7.2.7.1 Rack design tips
	7.2.7.2 KVM switches

	7.2.8 Datacenter cabling and patching
	7.2.8.1 Demarcation point

	7.2.9 Datacenter energy efficiency

	7.3 Datacenter availability
	7.3.1 Availability tiers
	7.3.2 Redundant datacenters

	7.4 Datacenter performance
	7.5 Datacenter security

	8 Networking
	8.1 Introduction
	8.2 Networking building blocks
	8.2.1 OSI Reference Model
	8.2.2 Physical layer
	8.2.2.1 Cables
	8.2.2.1.1 Twisted pair cables
	8.2.2.1.2 Coax cable
	8.2.2.1.3 Fiber optic cable
	8.2.2.1.4 Vertical and horizontal cabling and patch panels

	8.2.2.2 Leased lines
	8.2.2.2.1 T and E carrier lines
	8.2.2.2.2 SONET and SDH
	8.2.2.2.3 Dark fiber

	8.2.2.3 Cable internet access
	8.2.2.4 DSL
	8.2.2.5 Network Interface Controllers (NICs)

	8.2.3 Data link layer
	8.2.3.1 Ethernet
	8.2.3.2 WLAN (Wi-Fi)
	8.2.3.3 Switching
	8.2.3.4 WAN
	8.2.3.5 Public wireless networks
	8.2.3.5.1 1G and 2G: GSM, CDMA, GPRS and EDGE
	8.2.3.5.2 3G: UMTS and HSDPA
	8.2.3.5.3 4G: LTE

	8.2.4 Network layer
	8.2.4.1 The IP protocol
	8.2.4.2 IPv4
	8.2.4.2.1 Subnetting
	8.2.4.2.2 Private IP ranges

	8.2.4.3 IPv6
	8.2.4.4 ICMP
	8.2.4.5 Routing
	8.2.4.5.1 Routing protocols
	8.2.4.5.2 Distance vector protocols
	8.2.4.5.3 Link state protocols
	8.2.4.5.4 Path vector routing

	8.2.4.6 MPLS

	8.2.5 Transport layer
	8.2.5.1 TCP and UDP
	8.2.5.2 Network Address Translation (NAT)

	8.2.6 Session layer
	8.2.6.1 Virtual Private Network (VPN)

	8.2.7 Presentation layer
	8.2.7.1 SSL and TLS

	8.2.8 Application layer
	8.2.8.1 BOOTP and DHCP
	8.2.8.2 DNS
	8.2.8.2.1 DNSSEC

	8.2.8.3 IPAM systems
	8.2.8.4 Network Time Protocol (NTP)

	8.3 Network virtualization
	8.3.1 Virtual LAN (VLAN)
	8.3.2 VXLAN
	8.3.3 Virtual NICs
	8.3.4 Virtual switch
	8.3.5 Software Defined Networking
	8.3.6 Network Function Virtualization

	8.4 Network availability
	8.4.1 Layered network topology
	8.4.2 Spine and Leaf topology
	8.4.3 Network teaming
	8.4.4 Spanning Tree Protocol
	8.4.5 Multihoming

	8.5 Network performance
	8.5.1 Throughput and bandwidth
	8.5.2 Latency
	8.5.3 Quality of Service (QoS)
	8.5.4 WAN link compression

	8.6 Network security
	8.6.1 Firewalls
	8.6.2 IDS/IPS
	8.6.3 DMZ
	8.6.4 RADIUS
	8.6.5 Network Access Control (NAC)

	9 Storage
	9.1 Introduction
	9.2 Storage building blocks
	9.2.1 Disks
	9.2.1.1 Command sets
	9.2.1.2 Mechanical hard disks
	9.2.1.3 Solid State Drives (SSDs)
	9.2.1.4 Disk capacity - Kryder's law

	9.2.2 Tapes
	9.2.2.1 Tape library
	9.2.2.2 Virtual tape library

	9.2.3 Controllers
	9.2.3.1 RAID (Redundant Array of Independent Disks)
	9.2.3.1.1 RAID 0 - Striping
	9.2.3.1.2 RAID 1 - Mirroring
	9.2.3.1.3 RAID 10 - Striping and mirroring
	9.2.3.1.4 RAID 5 - Striping with distributed parity
	9.2.3.1.5 RAID 6 - Striping with distributed double parity

	9.2.3.2 Data deduplication
	9.2.3.3 Cloning and snapshots
	9.2.3.4 Thin provisioning

	9.2.4 Direct Attached Storage (DAS)
	9.2.5 Storage Area Network (SAN)
	9.2.5.1 SAN connectivity protocols
	9.2.5.1.1 Fibre Channel
	9.2.5.1.2 FCoE
	9.2.5.1.3 iSCSI

	9.2.6 Network Attached Storage (NAS)
	9.2.7 Object Storage
	9.2.8 Software Defined Storage

	9.3 Storage availability
	9.3.1 Redundancy and data replication
	9.3.2 Backup and recovery
	9.3.2.1 Consistent backups
	9.3.2.2 Backup schemes
	9.3.2.3 Backup data retention time

	9.3.3 Archiving

	9.4 Storage performance
	9.4.1 Disk performance
	9.4.1.1 IOPS
	9.4.1.2 RAID penalty

	9.4.2 Interface throughput
	9.4.3 Caching
	9.4.4 Storage tiering
	9.4.5 Load optimization

	9.5 Storage security
	9.5.1 Protecting data at rest
	9.5.1.1 Disk encryption
	9.5.1.2 Tape encryption

	9.5.2 SAN zoning
	9.5.3 SAN LUN masking

	10 Compute
	10.1 Introduction
	10.2 Compute building blocks
	10.2.1 Computer housing
	10.2.2 Processors
	10.2.2.1 Intel x86 processors
	10.2.2.2 AMD x86 processors
	10.2.2.3 Itanium and x86-64 processors
	10.2.2.4 ARM processors
	10.2.2.5 Oracle SPARC processors
	10.2.2.6 IBM POWER processors

	10.2.3 Memory
	10.2.3.1 RAM
	10.2.3.2 BIOS

	10.2.4 Interfaces
	10.2.4.1 RS-232
	10.2.4.2 USB
	10.2.4.3 Thunderbolt
	10.2.4.4 PCI and PCIe

	10.2.5 Compute virtualization
	10.2.5.1 Software Defined Compute (SDC)
	10.2.5.2 Disadvantages of computer virtualization
	10.2.5.3 Virtualization technologies
	10.2.5.3.1 Emulation
	10.2.5.3.2 Logical Partitions (LPARs)
	10.2.5.3.3 Hypervisors

	10.2.5.4 Virtual memory management
	10.2.5.4.1 Memory overcommit
	10.2.5.4.2 Memory sharing

	10.2.6 Container technology
	10.2.6.1 Container implementation
	10.2.6.2 Containers and security
	10.2.6.3 Container orchestration

	10.2.7 Mainframes
	10.2.7.1 History
	10.2.7.2 Mainframe architecture
	10.2.7.2.1 Processing Units
	10.2.7.2.2 Main Storage
	10.2.7.2.3 Channels, ESCON and FICON
	10.2.7.2.4 Control units

	10.2.7.3 Mainframe virtualization

	10.2.8 Midrange systems
	10.2.8.1 History
	10.2.8.2 Midrange architecture
	10.2.8.2.1 UMA
	10.2.8.2.2 NUMA

	10.2.8.3 Midrange virtualization

	10.2.9 x86 servers
	10.2.9.1 History
	10.2.9.2 x86 architecture
	10.2.9.3 x86 virtualization

	10.2.10 Supercomputers

	10.3 Compute availability
	10.3.1 Hot swappable components
	10.3.2 Parity and ECC memory
	10.3.3 Lockstepping
	10.3.4 Virtualization availability
	10.3.4.1 Admission

	10.4 Compute performance
	10.4.1 Moore's law
	10.4.2 Increasing CPU and memory performance
	10.4.2.1 Increasing clock speed
	10.4.2.2 CPU Caching
	10.4.2.3 Pipelines
	10.4.2.4 Prefetching and branch prediction
	10.4.2.5 Superscalar CPUs
	10.4.2.6 Multi-core CPUs
	10.4.2.7 Hyper-threading

	10.4.3 Virtualization performance

	10.5 Compute security
	10.5.1 Physical security
	10.5.2 Virtualization security
	10.5.2.1 DMZ
	10.5.2.2 Systems management console

	11 Operating systems
	11.1 Introduction
	11.2 Operating System building blocks
	11.2.1 Process scheduling
	11.2.2 File systems
	11.2.3 APIs and system calls
	11.2.4 Device drivers
	11.2.5 Memory management
	11.2.6 Shells, CLIs and GUIs
	11.2.7 Operating system configuration
	11.2.8 Popular operating systems
	11.2.8.1 z/OS
	11.2.8.2 IBM i (OS/400)
	11.2.8.3 OpenVMS
	11.2.8.4 UNIX
	11.2.8.5 Linux
	11.2.8.5.1 Linux support
	11.2.8.5.2 Linux on mainframes

	11.2.8.6 BSD
	11.2.8.6.1 FreeBSD
	11.2.8.6.2 NetBSD
	11.2.8.6.3 OpenBSD

	11.2.8.7 Windows
	11.2.8.7.1 Support

	11.2.8.8 End user operating systems
	11.2.8.9 Special purpose operating systems

	11.3 Operating system availability
	11.3.1 Failover clustering
	11.3.1.1 Voting and quorum disks
	11.3.1.2 Cluster-aware applications

	11.4 Operating system performance
	11.4.1 Increasing memory
	11.4.2 Decreasing kernel size

	11.5 Operating system security
	11.5.1 Patching
	11.5.2 Hardening
	11.5.3 Virus scanning
	11.5.4 Host-based firewalls
	11.5.5 Limiting user accounts

	12 End User Devices
	12.1 Introduction
	12.2 End user device building blocks
	12.2.1 Desktop PCs and laptops
	12.2.2 Mobile devices
	12.2.3 Bring Your Own Device (BYOD)
	12.2.4 Printers
	12.2.4.1 Laser printers
	12.2.4.2 Inkjet printers
	12.2.4.3 Multi-Functional Printers (MFPs)
	12.2.4.4 Specialized printers
	12.2.4.4.1 Dot Matrix printers
	12.2.4.4.2 Line printers
	12.2.4.4.3 Plotters
	12.2.4.4.4 Thermal printers

	12.3 Desktop virtualization
	12.3.1 Application virtualization
	12.3.2 Server Based Computing
	12.3.3 Virtual Desktop Infrastructure (VDI)
	12.3.4 Thin clients
	12.3.4.1 PXE boot

	12.4 End user device availability
	12.4.1 Reliability
	12.4.2 Backup of end user devices
	12.4.3 Software stack
	12.4.4 Printers and other equipment

	12.5 End user device performance
	12.5.1 RAM
	12.5.2 Hard disk
	12.5.3 Network connectivity

	12.6 End user device security
	12.6.1 Physical security
	12.6.2 Malware protection
	12.6.3 Hard disk encryption
	12.6.4 Mobile device management
	12.6.5 End user authorizations and awareness

	PART IV – INFRASTRUCTURE MANAGEMENT
	13 Infrastructure Lifecycle
	14 Infrastructure Deployment options
	14.1 Introduction
	14.2 Hosting options
	14.3 Enterprise infrastructure deployment
	14.4 Software-defined datacenter - SDDC
	14.5 (Hyper) Converged Infrastructure
	14.6 Cloud computing
	14.6.1 Cloud definition
	14.6.2 Cloud characteristics
	14.6.3 Cloud deployment models
	14.6.4 Cloud service models
	14.6.5 Infrastructure as a Service (IaaS)

	14.7 Infrastructure as code

	15 Purchasing infrastructure and services
	15.1 Determine what is needed
	15.2 Getting an offer
	15.3 Choice of suppliers
	15.4 Bidding and tendering
	15.5 Ordering
	15.6 Delivery
	15.7 Warranty
	15.8 Renewal

	16 Deploying the infrastructure
	16.1 Assembling the infrastructure
	16.2 Testing the infrastructure
	16.2.1 Test scope
	16.2.2 Test stages

	16.3 Go live scenarios

	17 Maintaining the infrastructure
	17.1 Systems management processes
	17.1.1 COBIT
	17.1.2 ITIL
	17.1.3 DevOps for infrastructure

	17.2 Monitoring
	17.3 Management using SNMP
	17.4 Logging
	17.5 Capacity management

	18 Deploying applications
	18.1 DTAP environments
	18.2 Blue-Green deployment
	18.3 Continuous Delivery

	19 Decommissioning infrastructures
	19.1 Preparation
	19.2 Execution
	19.3 Cleanup

	PART V - APPENDICES
	Abbreviations
	IS 2010.4 Curriculum reference matrix
	Further reading
	End notes

