Pavement Design

Outline

1. Pavement
2. History + Material
3. Pavement Purpose
4. Pavement Significance
5. Pavement Condition
6. Pavement Types
a. Flexible
b. Rigid
7. Pavement Design
8. Example

Pavement

- A pavement is a structure which separates the wheels of vehicles from the underlying foundation material.
- Pavements over soil are normally of multilayer construction with relatively weak materials below and progressively stronger ones above
- Similarly pavement layers thickness varies from top to bottom.

A Typical Pavement

Aggregate Subbase Course

Pavement

- Pavements can be considered to consist of three main layers, the surfacing, the base, and the foundation.

Pavement

- In the case of asphalt pavements, the surfacing is generally divided into surface course and base course which are laid separately. The base is the main structural component in the pavement.
- The foundation of pavement essentially comprises of two layers. The upper layer is termed as subbase and is usually formed of good quality granular material. The subbase provides a structural layer which distributes loads to the subgrade and provides a working platform for construction traffic and a compaction platform onto which bituminous materials can be laid and compacted.

Pavement

- The lower section, the subgrade is the natural soil or fill material which provides the surface upon which the pavement is constructed.
- Where the soil is considered to be very weak, a capping layer may also be introduced additionally between the subbase and the soil foundation.

History

- The modern concept of pavement construction was pioneered by the Romans.
- The concept used by the Romans is not very different to the typical multi-layer flexible pavement layout.

Material

- Bitumen
- Viscoelastic organic liquid comprised predominantly of hydrocarbon molecules
- Asphalt
- Combination of bitumen, aggregate (stone), and air with visco-elasto-plastic properties

Rock

Crushed Rock

Glue it together again!

Pavement Purpose

- Load support
- Smoothness
- Drainage

Pavement Significance

- How much pavement?
- 3.97 million centerline miles in U.S.
- 2.5 million miles (63%) are paved
- 8.30 million lane-miles total
- Largest single use of HMA and PCC
- Costs
- \$20 to \$30 billion spent annually on pavements

Pavement Condition

Pavement Condition

Pavement Condition

Pavement Condition

From WSDOT
I - 90 "fat driver" syndrome

Pavement Condition

- Defined by users (drivers)
- Develop methods to relate physical attributes to driver ratings
- Result is usually a numerical scale

Present Serviceability Rating (PSR)

Figure 2-F. Acceptability vs present serviceability rating; 74 flexible pavements.

Figure 3-F. Acceptability vs present serviceability rating; 49 rigid pavements.

Present Serviceability Index (PSI)

- Values from 0 through 5
- Calculated value to match PSR

$$
P S I=5.41-1.80 \log (1+\overline{S V})-0.9 \sqrt{C+P}
$$

$\mathrm{SV}=$ mean of the slope variance in the two wheelpaths (measured with the CHLOE profilometer or BPR Roughometer)
$\mathrm{C}, \mathrm{P}=$ measures of cracking and patching in the pavement surface
$C=$ total linear feet of Class 3 and Class 4 cracks per $1000 \mathrm{ft}^{2}$ of pavement area.
A Class 3 crack is defined as opened or spalled (at the surface) to a width of 0.25 in. or more over a distance equal to at least one-half the crack length.

A Class 4 is defined as any crack which has been sealed.
$\mathrm{P}=$ expressed in terms of ft^{2} per $1000 \mathrm{ft}^{2}$ of pavement surfacing.

Typical PSI vs. Time

Design Parameters

- Subgrade
- Loads
- Environment

Subgrade

- Characterized by strength and/or stiffness
- California Bearing Ratio (CBR)
- Measures shearing resistance
- Units: percent
- Typical values: 0 to 20
- Resilient Modulus (M_{R})
- Measures stress-strain relationship
- Units: psi or MPa
- Typical values: 3,000 to $\mathbf{4 0 , 0 0 0} \mathbf{~ p s i}$

Subgrade

Some Typical Values

Classification	CBR	$\mathbf{M}_{\mathbf{R}}$ (psi)	Typical Description
Good	≥ 10	20,000	Gravels, crushed stone and sandy soils. GW, GP, GM, SW, SP, SM soils are often in this category.
Fair	$5-9$	10,000	Clayey gravel and clayey sand, fine silt soils. GM, GC, SM, SC soils are often in this category.
Poor	$3-5$	5,000	Fine silty sands, clays, silts, organic soils. CL, CH, ML, MH, CM, OL, OH soils are often in this category.

Loads

- Load characterization
- Tire loads
- Axle and tire configurations
- Load repetition
- Traffic distribution
- Vehicle speed

Load Quantification

- Equivalent Single Axle Load (ESAL)
- Converts wheel loads of various magnitudes and repetitions ("mixed traffic") to an equivalent number of "standard" or "equivalent" loads
- Based on the amount of damage they do to the pavement
- Commonly used standard load is the $18,000 \mathrm{lb}$. equivalent single axle load
- Load Equivalency
- Generalized fourth power approximation

$$
\left(\frac{\text { load }}{18,000 \mathrm{lb} .}\right)^{4}=\text { relative damage factor }
$$

Typical LEFs

Notice that cars are insignificant and thus usually ignored in pavement design.

LEF Example

The standard axle weights for a standing-room-only loaded Metro articulated bus (60 ft . Flyer) are:

Axle	Empty	Full
Steering	$13,000 \mathrm{lb}$.	$17,000 \mathrm{lb}$.
Middle	$15,000 \mathrm{lb}$.	$20,000 \mathrm{lb}$.
Rear	$9,000 \mathrm{lb}$.	$14,000 \mathrm{lb}$.

Using the $4^{\text {th }}$ power approximation, determine the total equivalent damage caused by this bus in terms of ESALs when it is empty. How about when it is full?

Solution

- Empty
- $(13,000 / 18,000)^{4}=0.272$
- $(15,000 / 18,000)^{4}=0.482$
- $(9,000 / 18,000)^{4}=0.063$
- Total = 0.817 ESALs
- Full
- $(17,000 / 18,000)^{4}=0.795$
- $(20,000 / 18,000)^{4}=1.524$
- $(14,000 / 18,000)^{4}=0.366$
- Total = 2.685 ESALs
- Increase in total weight $=\mathbf{1 4 , 0 0 0} \mathbf{l b}$. (about 80 people) or 39%
- Increase in ESALs is 1.868 (229\%)

Environment

- Temperature extremes
- Frost action
- Frost heave
- Thaw weakening

Pavement Types

- Flexible Pavement
- Hot mix asphalt (HMA) pavements
- Called "flexible" since the total pavement structure bends (or flexes) to accommodate traffic loads
- About 82.2\% of paved U.S. roads use flexible pavement
- About 95.7\% of paved U.S. roads are surfaced with HMA
- Rigid Pavement
- Portland cement concrete (PCC) pavements
- Called "rigid" since PCC's high modulus of elasticity does not allow them to flex appreciably
- About 6.5\% of paved U.S. roads use rigid pavement

Flexible Pavement

- Structure
- Surface course
- Base course
- Subbase course
- Subgrade

Subgrade (Existing Soil)

Types of Flexible Pavement

Flexible Pavement - Construction

Rigid Pavement

- Structure
- Surface course
- Base course
- Subbase course

- Subgrade

Types of Rigid Pavement

- Jointed Plain Concrete Pavement (JPCP)

Top View

Types of Rigid Pavement

- Continuously Reinforced Concrete Pavement (CRCP)

Top View

© 2003 Steve Muench

Photo from the Concrete Reinforcing Steel Institute

Rigid Pavement - Construction

Slipform

Fixed form

Pavement Design

- Several typical methods
- Design catalog
- Empirical
- 1993 AASHTO method
- Mechanistic-empirical
- New AASHTO method (as yet unreleased)

Design Catalog

Recommended Minimum Pavement Thickness and Design (inches)

Example design catalog from the Washington Asphalt Pavement Association (WAPA) for residential streets

Empirical

- 1993 AASHTO Flexible Equation

$$
\log _{10}\left(W_{18}\right)=Z_{R} \times S_{o}+9.36 \times \log _{10}(S N+1)-0.20+\frac{\log _{10}\left(\frac{\Delta P S I}{4.5-1.5}\right)}{0.40+\frac{1094}{(S N+1)^{5.19}}}+2.32 \times \log _{10}\left(M_{R}\right)-8.07
$$

- 1993 AASHTO Rigid Equation

$$
\log _{10}\left(W_{18}\right)=Z_{R} \times S_{o}+7.35 \times \log _{10}(D+1)-0.06+\frac{\log _{10}\left(\frac{\Delta P S I}{4.5-1.5}\right)}{1+\frac{1.624 \times 10^{7}}{(D+1)^{8.46}}}+\left(4.22-0.32 p_{t}\right) \times \log _{10}\left[\frac{\left(S_{c}^{\prime}\right)\left(C_{d}\right)\left(D^{0.75}\right)-1.132}{215.63(J)\left(D^{0.75}-\frac{18.42}{\left(E_{c} /\right)^{0.25}}\right)}\right)
$$

Terms - Flexible

- \mathbf{W}_{18} (loading)
- Predicted number of ESALs over the pavement's life.
- SN (structural number)
- Abstract number expressing structural strength
$-S N=a_{1} D_{1}+a_{2} D_{2} m_{2}+a_{3} D_{3} m_{3}+\ldots$
- $a=a$ layer coefficient that represents the relative strength of the material
- D= layer thickness in inches
- M= a drainage coefficient
- $\Delta \mathrm{PSI}$ (change in present serviceability index)
- Change in serviceability index over the useful pavement life
- Typically from 1.5 to 3.0
- M_{R} (subgrade resilient modulus)
- Typically from 3,000 to $\mathbf{3 0 , 0 0 0}$ psi (10,000 psi is pretty good)

Terms - Rigid

- D (slab depth)
- Abstract number expressing structural strength
- $S^{\prime}{ }_{c}$ (PCC modulus of rupture)
- A measure of PCC flexural strength
- Usually between 600 and 850 psi
- C_{d} (drainage coefficient)
- Relative loss of strength due to drainage characteristics and the total time it is exposed to near-saturated conditions
- Usually taken as 1.0

Terms - Rigid

- J (load transfer coefficient)
- Accounts for load transfer efficiency
- Lower J-factors = better load transfer
- Between 3.8 (undoweled JPCP) and 2.3 (CRCP with tied shoulders)
- E_{c} (PCC elastic modulus)
- 4,000,000 psi is a good estimate
- k (modulus of subgrade reaction)
- Estimates the support of the PCC slab by the underlying layers
- Usually between 50 and 1000 psi/inch

Reliability

Reliability $=\mathrm{P}[\mathrm{Y}>\mathrm{X}]$

$$
P[Y>X]=\int_{-\infty}^{\infty} f_{x}(x)\left[\int_{x}^{\infty} f_{y}(y) d y\right] d x
$$

\uparrow| $X=$ Probability distribution of stress |
| :---: |
| (e.g., from loading, environment, etc.) |

[^0]
Stress/Strength

WSDOT Flexible Table

Design Period ESALs	Subgrade Condition	Layer Thickness ${ }^{1}$ (feet)											
		Reliability $=75 \%$				Reliability $=\mathbf{8 5 \%}$				Reliability $=\mathbf{9 5 \%}$			
		HMA Surface Course	HMA Base Course	ATB	Crushed Stone ${ }^{2}$	HMA Surface Course	HMA Base Course	ATB	Crushed Stone ${ }^{2}$	HMA Surface Course	HMA Base Course	ATB	Crushed Stone ${ }^{2}$
0.5-1 million	Poor	0.35	-	-	1.25	0.40	-	-	1.30	0.45	-	-	1.45
	Average	0.35	-	-	0.65	0.40	-	-	0.70	0.45	-	-	0.75
	Good	0.35	-	-	0.25	0.40	-	-	0.25	0.45	-	-	0.25
1-5 million	Poor	0.35	0.30	0.30	0.30	0.35	0.35	0.30	0.30	0.35	0.45	0.30	0.30
	Average	0.35	0.30	-	0.30	0.35	0.35	-	0.30	0.35	0.45	-	0.30
	Good	0.25	0.35	-	0.30	0.25	0.25	-	0.30	0.35	0.25	-	0.30
5-10 million	Poor	0.25	0.40	0.30	0.35	0.35	0.30	0.30	0.35	0.35	0.55	0.30	0.35
	Average	0.35	0.40	-	0.35	0.35	0.45	-	0.35	0.35	0.50	-	0.35
	Good	0.25	0.30	-	0.35	0.35	0.25	-	0.35	0.35	0.30	-	0.35
10-25 million	Poor	0.35	0.50	0.30	0.45	0.35	0.55	0.30	0.45	0.35	0.70	0.30	0.45
	Average	0.35	0.45	-	0.45	0.35	0.50	-	0.45	0.35	0.60	-	0.45
	Good	0.35	0.25	-	0.45	0.35	0.30	-	0.45	0.35	0.40	-	0.45
25-50 million	Poor	0.35	0.60	0.30	0.45	0.35	0.70	0.30	0.45	0.35	0.80	0.30	0.45
	Average	0.35	0.55	-	0.45	0.35	0.60	-	0.45	0.35	0.75	-	0.45
	Good	0.35	0.35	-	0.45	0.35	0.40	-	0.45	0.35	0.50	-	0.45
50-75 million	Poor	0.35	0.70	0.30	0.45	0.35	0.75	0.30	0.45	0.35	0.85	0.30	0.45
	Average	0.35	0.60	-	0.45	0.35	0.70	-	0.45	0.35	0.80	-	0.45
	Good	0.35	0.40	-	0.45	0.35	0.45	-	0.45	0.35	0.55	-	0.45

1. Based on the 1993 AASHTO Guide for Design of Pavement Structures for flexible pavements with the following inputs:

$$
\begin{array}{llr}
\text { APSI = } 1.5 & a_{\text {surface } H M A}=0.44 & \text { Subgrade condition (effective modulus): } \\
\mathrm{S}_{0}=0.50 & a_{\text {base HMA }}=0.44 & \text { Poor: } \mathrm{M}_{\mathrm{R}}=35 \mathrm{MPa}(5,000 \mathrm{psi}) \\
\mathrm{m}=1.0 & a_{\text {ATB }}=0.30 & \text { Average: } \mathrm{M}_{\mathrm{R}}=70 \mathrm{MPa}(10,000 \mathrm{psi}) \\
& a_{\text {crushed stone }}=0.13 & \text { Good: } \mathrm{M}_{\mathrm{R}}=140 \mathrm{MPa}(20,000 \mathrm{psi})
\end{array}
$$

2. Gravel borrow may be substituted for a portion of crushed stone when the required thickness of the crushed stone is at least 0.70 ft.

The minimum thickness of crushed stone is 0.35 ft . when such a substitution is made.
3. Shaded areas indicate unlikely combinations of ESALs and reliability for mainline roadways.

WSDOT Rigid Table

Design Period ESALs	Slab Thickness ${ }^{1}$ (feet)		
	Reliability $=75 \%$	Reliability $=\mathbf{8 5} \%$	Reliability $=\mathbf{9 5} \%$
Undoweled Joints, Crushed Stone Base Material			
<5 million	0.74	0.79	0.85
5-10 million	0.82	0.87	0.95
10-15 million	0.89	0.94	1.02
Undoweled Joints, HMA Base Material			
<5 million	0.71	0.75	0.84
5-10 million	0.80	0.85	0.94
10-25 million	0.94	0.98	1.08
Doweled Joints, Crushed Stone Base Material			
<25 million	0.85	0.90	0.98
25-50 million	1.28	1.00	1.02
>50 million	1.02	1.07	1.16
Doweled Joints, HMA Base Material			
<25 million	0.75	0.79	0.87
25-50 million	0.84	0.90	0.97
>50 million	0.90	0.95	1.03

1. Based on the 1993 AASHTO Guide for Design of Pavement Structures for rigid pavements with the following inputs:

$\mathrm{APSI}=1.5$	$\mathrm{E}_{\mathrm{c}}=26,700 \mathrm{MPa}(4,000,000 \mathrm{psi})$	Modulus of subgrade reaction (k):
$\mathrm{S}_{0}=0.40$	$\mathrm{~S}_{\mathrm{C}}^{\prime}=4,480 \mathrm{kPa}(650 \mathrm{psi})$	$\mathrm{k}=54 \mathrm{MPa} / \mathrm{m}(200 \mathrm{pci})$ for stone base
$\mathrm{C}_{d}=1.0$	$\mathrm{~J}=3.4$ for undoweled pavement	$\mathrm{k}=108 \mathrm{MPa} / \mathrm{m}(400 \mathrm{pci})$ for HMA base
	$\mathrm{J}=2.7$ for doweled pavement	assumes unyielding subgrade conditions

Design Utilities

From the WSDOT Pavement Guide Interactive http://guides.ce.washington.edu/uw/wsdot ://www.pavementinteractive.org/1993-aashto-rigid-pavement-structural-design-ap/

New AASHTO Method

- Mechanistic-empirical
- Can use load spectra (instead of ESALs)
- Computationally intensive
- Rigid design takes about 10 to 20 minutes
- Flexible design can take several hours

Design Example - Part 1

A WSDOT traffic count on Interstate 82 in Yakima gives the following numbers:

Parameter
AADT
Singles
Doubles
Trains

$\frac{\text { Data }}{\text { 18,674 vehicles }}$

WSDOT Assumptions

971 vehicles
1,176 vehicles
280 vehicles
18,674 vehicles
0.40 ESALs/truck 1.00 ESALs/truck
1.75 ESALs/truck

Assume a 40-year pavement design life with a 1% growth rate compounded annually. How many ESALs do you predict this pavement will by subjected to over its lifetime if its lifetime were to start in the same year as the traffic count?

$$
\text { Total }=\frac{P\left((1+i)^{n}-1\right)}{i}
$$

Solution

- First year ESALs
- ESALs in traffic count year = 0.40(971) + 1.00(1176) $+1.75(280)=2,054.4$ ESALs/day
- Total ESALs $=2,054.4 \times 365=749,856$
- In 40 years
- Total ESALs = 749,856((1+0.01)40-1)/0.01 = 36,657,740 ESALs

Design Example - Part 2

Design a flexible pavement for this number of ESALs using (1) the WSDOT table, and (2) the design equation utility in the WSDOT Pavement Guide Interactive. Assume the following:
-Reliability $=95 \% ~\left(Z_{R}=-1.645, S_{0}=0.50\right)$
$\cdot \Delta \mathrm{PSI}=1.5\left(\mathrm{p}_{0}=4.5, \mathrm{p}_{\mathrm{t}}=3.0\right)$
-2 layers (HMA surface and crushed stone base)
HMA coefficient $=0.44$, minimum depth $=4$ inches Base coefficient $=0.13$, minimum depth $=6$ inches Base $\mathrm{M}_{\mathrm{R}}=28,000 \mathrm{psi}$
-Subgrade $M_{R}=9,000 \mathrm{psi}$

Design Example - Part 3

Design a doweled JPCP rigid pavement for this number of ESALs using (1) the WSDOT table, and (2) the design equation utility in the WSDOT Pavement Guide Interactive. Assume the following:
-Reliability $=95 \%\left(Z_{R}=-1.645, S_{0}=0.40\right)$
$\cdot \triangle \mathrm{PSI}=1.5\left(\mathrm{p}_{0}=4.5, \mathrm{p}_{\mathrm{t}}=3.0\right)$

- $\mathrm{E}_{\mathrm{PCC}}=4,000,000 \mathrm{psi}$
- $\mathrm{S}^{\prime}{ }_{\mathrm{C}}=700 \mathrm{psi}$
-Drainage factor $\left(\mathrm{C}_{\mathrm{d}}\right)=1.0$
-Load transfer coefficient $(\mathrm{J})=2.7$
-Modulus of subgrade reaction (k) $=400$ psi/in
HMA base material

Primary References

- Mannering, F.L.; Kilareski, W.P. and Washburn, S.S. (2005). Principles of Highway Engineering and Traffic Analysis, Third Edition. Chapter 4
- Muench, S.T.; Mahoney, J.P. and Pierce, L.M. (2003) The WSDOT Pavement Guide Interactive. WSDOT, Olympia, WA. http://guides.ce.washington.edu/uw/wsdot
- Muench, S.T. (2002) WAPA Asphalt Pavement Guide. WAPA, Seattle, WA. http://www.asphaltwa.com

[^0]: $Y=$ Probability distribution of strength (variations in construction, material, etc.)

