See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320268229

29.Management of non-cropped land weeds

Presentation · October 2016 DOI: 10.13140/RG.2.2.29975.88486

citations 0	;	READS 721	
1 author	1 author:		
	Surinder Singh Rana CSK HPKV Palampur 578 PUBLICATIONS 983 CITATIONS SEE PROFILE		
Some of the authors of this publication are also working on these related projects:			

Climate Change Adaptation View project

AICRP-MULLaRP (Off-season pulses nursery) View project

Management of non-cropped land weeds

Surinder Singh Rana

Department of Agronomy,

CSK HP Krishi Vishvavidyalaya, Palampur 176062, HP, India

Email: ranass_dee@yahoo.com

Non-cropped land?

Non-cropped land refers to all the lands that are in various uses other than crops cultivation, like road side, rail track sides, waste lands, Nallah sides and banks of streams and rivers.

Consequences of spread of weeds in non-cropland weeds

- The fast growth and spread of these weeds prevent establishment of native trees, shrubs and grasses thus posing serious threat to the plant biodiversity.
- There is increased danger of wild animals to the inhabitants and their livestock.
- Due to fodder scarcity caused due to invasion by these weeds, farmers are compelled to leave their cattle loose for stray grazing which cause damage to the cultivated crops.

- Lantana camara and Ageratum plants when taken alongwith other grasses or are grazed accidentally cause death of animals due to presence of poisonous alkaloids.
- The presence of these weeds in pastures and grasslands has reduced the productivity of grasses.
- The vast slopes and arable lands in the close vicinity of our villages have been severely infested with these weeds.
- These thickets of weeds are forcing people to depend on other forest trees to meet their fodder requirements causing thereby deforestation and destruction of useful vegetation.

Important non-cropped land weeds of Himachal Pradesh

Scientific name	Common name	Family	Category
Parthenium	Congress grass, Gajar	Asteraceae	Perennial
hysterophorus L.	ghas		broad- <mark>le</mark> af
Ageratum conyzoides	Neela phulnu	Asteraceae	Annual
			broadleaf
A houstonianum (Mill)	Bill goat weed, neela	Asteraceae	Perennial
	phulnu		broadleaf
Bidens pilosa	Cobbler's	Asteraceae	Annual
	Pegs or Spanish Needle		
Erigeron Canadensis	Horseweed	Compositae	Annual
Chromolaena	Crofton weed, kali	Asteraceae or	Perennial
adenophorum Spreng.	basuti	Compositae	broadleaf
Cirsium arvense	Canada thistle	Asteraceae	Perennial
		/	broadleaf
Іротеа	Morning glory	Convolulaceae	Annual

Scientific name	Common name	Family	Category	
Cynodon dactylon	Bermudagrass	Poaceae	Perennial grass	
Achyranthus	Prickly chaff flower,	Amarantha	Annual	
	devil's horsewhip	ceae	broadleaf	
Lantana camara L.	Wildsage, bunch berry,	Verbenacea	Perennial	
	lal phulanoo and	e	broad-leaf	
	punch phul buti			
Hackelia uncinata	Jhangeer	Boraginace	Annual	
		ae	broadleaf	
Imperata cylindrica (l)	Thatch grass, chhiz,	Poaceae	Perennial grass	
Beauv.	alang-alang,			
	Congograss			
Polygonum alatum	Nepalese Knotweed	Polygonace	Annual	
		ae	broadleaf	
Oxalis latifolia	Khat-mithi	Oxalidacea	Broadleaf	
H.B.&K.		e		
Echinochloa colona	Jungle rice	Gramineae	Annual grass	

Scientific name	Common name	Family	Category
Polygonum barbatum	Knotgrass	Polygonace	Broadleaf
		ae	
Urtica dioca L.	Stinging nettle, ain,	Urticaceae	Perennial
	bitchu booti		broad-leaf
Rumex obtusifolius	Broad-leaved dock,	Polygonace	Broadleaved
	Sorrel, wild palak	ae	perennial
Solanum xanthocarpum	Yellow Berried	Solanaceae	Annual
	Nightshade, Kantakari,		broadleaf
	Nidigadhika, Kateli		
Datura stramonianum	Jimson weed,	Solanaceae	Annual
	Thornapple		broadleaf
Xanthium strumarium	Cocklebur	Composita	Annual
L.		e	broadleaf
Alternethera	Alligator weed	Amarantha	Perennial plant
philoxeroides		ceae	
Galium aparine	Bedstraw, catch weed	Rubiaceae	Broadleaf

Integrate Weed Management

- One method of weed control may be effective and economical in a situation and it may not be so in other situation.
- Continuous use of only one practice may result in undesirable effects
- Only one method of weed control may lead to increase in population of particular weed.
- No single herbicide is effective in controlling wide range of weed flora
- Continuous use of same herbicide creates resistance in escaped weed flora or causes shift in the flora.
- Indiscriminate herbicide use and its effects on the environment and human health

Concept

- Uses a variety of technologies in a single weed management with the objective to produce optimum results at a minimum cost taking in to consideration ecological and socio-economic constraints under a given ecosystem.
- A system in which two or more methods are used to control a weed. These methods may include cultural practices, natural enemies and selective herbicides.

Advantages of IWM

- Prevents resistance in weeds to herbicides
- No danger of herbicide residue in soil or plant
- ✤ No environmental pollution


Methods of weed management

For designing any weed control programme in a given area, one must know the nature & habitat of the weeds in that area, how they react to environmental changes & how they respond to herbicides.

Principles of weed management are;

- Prevention
- Eradication
- Control

COMPONENTS OF IWM

Mechanical Weed Control

Digging:

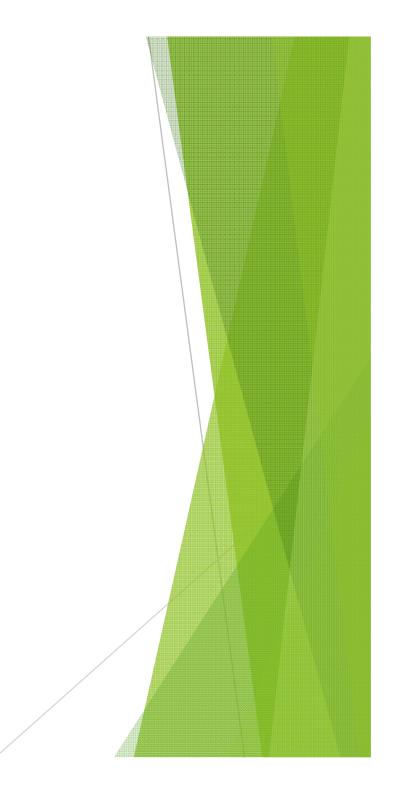
Digging is very useful in the case of perennial weeds to remove the underground propagating parts of weeds from the deeper layer of the soil.

Sickling and mowing:

Sickling is also done by hand with the help of sickle to remove the top growth of weeds to prevent seed production and to starve the underground parts. **Mowing** is a machine-operated practice mostly done on roadsides and in lawns.

Burning:

Burning or fire is often an economical and practical means of controlling weeds.


> Power rotary weeder

> Dry Land Weeder

> Tractor operated multi row rotary weeder

Cultural

Growing of useful plants

Chemical Control

Chemicals that are used to kill plants or weeds are called herbicides. Their use has been increasing rapidly since 1944 when 2,4-D was first use as herbicide. In many instance, they offer most practical, effective and economic means for controlling weeds.

example :-

Biological control

Use of insects, disease organisms, or competitive plants for the control of weeds

In biological control method, it is not possible to eradicate weeds but weed population can be reduced. This method is not useful to control all types of weeds.

Introduced weeds are best targets for biological control. The bioagent must feed or effect only one host. It should not feed other useful plants. It must be free of predators or parasites. It must adopt to the environmental condition. The bioagent must be capable of seeking out the host. It must be able to kill the weed or at least prevents its reproduction in some direct or indirect way.

Example:

Insects : Uroplata giraldi - Lantana camara,

mites - prickly pear

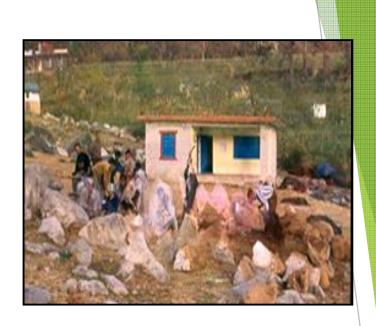
Plants: Planting of fodder trees and grasses Lantana camara can be controlled by Crocidosema lantana Busk (moth).

Lantana camara

- Lantana camara is regarded as one of the worst weeds because of its invasiveness, potential for spread, and economic and environmental impacts. Lantana forms dense, impenetrable thickets that take over native bushland and pastures. It competes for resources with, and reduces the productivity of pastures and forestry plantations.
- It adds fuel to fires, and is toxic to stock. Lantana is a serious threat to biodiversity in several World Heritagelisted areas. Numerous plant and animal species of conservation significance are threatened. It is listed as the most significant environmental weed by the South-East Queensland Environmental Weeds Management Group. It is a problem in gardens because it can cross-pollinate with weedy varieties to create new, more resilient forms.

Three phased integrated technology (Palampur)

- Cut the Lantana bushes in August-September at 5-7 cm above ground and utilize the cut biomass for making furniture, vermicomposting and fuel wood.
- Apply glyphosate 0.41% or 0.31%+surfactant 0.1% in Sepember-October on 30-45 cm regenerated foliage.
- Utilize the land as per its capability to avoid emergence of other weeds by growing grasses (Setaria, NB-37, Guinea), fortuler tress and other useful vegetation.
- Uproot or give spot treatment on plants (1-2% emerging from already fallen seeds.



Phase-I Cutting of bushes

Phase-II

Proper stage of herbicide application

After the kill of *Lantana* bushes

Phase-III Tree plantation

Ferrell et al (2012) obtained effective control of largeleaf lantana by two applications of fluroxypyr, two applications of fluroxypyr + aminopyralid, or a single application of aminocyclopyrachlor as basal or cut surface applications. At 1 YAT, only triclopyr + aminopyralid provided > 90% control as a basal application. Cut surface applications were similar with triclopyr + aminopyralid and triclopyr + fluroxypyr providing effective control. Neither triclopyr alone nor imazapyr provided effective control for 1 YAT with basal or cut surface applications.

Parthenium hysterophorus

Type of Chem	ical Biological	Physical	Pasture	Mechanical
infestation		Physical	management	Mechanicai
Light - few Spot s plants, over before a small area set	pray Not suitab e seeds	le Hand pulling is not recommende d because of the health	good pasture e cover by not	Some landholders have achieved success by
Medium - Spray plants over a seeds medium area	before Release set. biological control agents	risks. Use strategic fencing to separate different		ploughing in parthenium weed in the rosette stage before it
Heavy - large Spray number of seeds plants	before Establish a set nursery sit for biologi control agents if possible	e and improve		seeds, but this must be followed up by sowing a crop or direct seeding perennial pasture

- Spread seed of *Cassia tora* or *Cassia sericea*.
- Do not allow the plants to flower or set seeds by frequent cutting/uprooting before flowering or by applying
- Atrazine 1.5 kg/ha or 2,4-D (Na) 0.5-1.0 kg/ha or 2,4-DEE 1.0 kg/ha or metsulfuron-methyl 4 g/ha or or metrubuzin 0.5 kg/ha or paraquat 0.6 kg/ha at its 2-3 leaf stage.
- Glyphosate 1.0 kg/ha before onset of monsoon on campaign basis.
- Introduce Zygogramma bicolorata beetle during rainy season. Follow integrated approach for management of Ageratum and Parthenium on campaign basis.

Zygogramma bicolorata

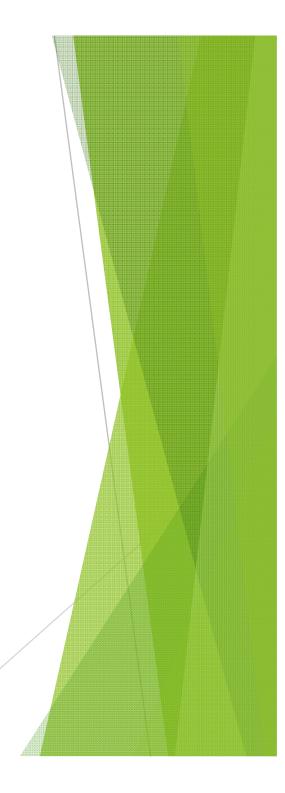
Parthenium <u>hys</u>terophorus

tora

"Atrazine 1.5 kg/ha or 2,4-D(Na) 1.5 G kg/ha or paraquat 0.6 kg/ha in May-June and or September-October on emerging plants at their 2-3 leaf stage Ε "Glyphosate 1.5 kg/ha in May-June and Sept.-Oct. on old Ageratum plants R before flowering "Plant improved grasses as per agro-Α climatic conditions Spread/sow seeds of Cassia tora Ageratum houstonianum

Grasslands

After spray



C Chromolaena adenophorum

- C > Uproot plants after rains but before flowering
 b Cut buches at ground lovel in April N
 - Cut bushes at ground level in April-May
 - and August-September

Chromolaena adenophorum

- Glyphosate 1.5 kg/ ha or 2,4-D(Na) or 2,4-D-EE 1.5 kg ha⁻¹ on regenerated foliage in May-June or September-October
 - Utilize the land as per its capability

т о І а е п а

r

0

Erigeron canadensis is a species which is particularly difficult to eradicate. Under mid hill conditions of Himachal Pradesh glyphosate (1.0 kg/ha and 0.5 kg/ha), 2, 4-D (Na) (1.50 kg/ha and 1.0 kg/ha) and 2, 4-D (EE) 1.0 kg/ha controlled this weed effectively. Gluphosinate ammonium when spray at 10-15 cm height of weeds has been found selective in peach orchards. Four litre Basta (gluphosinate), 5 litre Basagram (bentazone), 4 litre Blazer, 2 litre aciflurfen and 2 litre goal (oxyflourfen)/ha provide 100% control of E. canadensis within 4 weeks of treatment

> Erigeron canadensis

Bidens pilosa can be easily removed with hands before

flowering but after seed setting it does not allow even to pass through the invaded areas. Germination may be prevented by mulches if they are thick enough. B. pilosa is ptable several herbicides. Residual herbic atrazine, oryzalin, and ametryn; trans d herbicides glyphosate, amitrole, metribuzin, and dicar herbicides bentazone, diquat, and paraguat have all been evaluated as effective means of controlling B. pilosa when applied at standard rates. B. pilosa is thou ceptible to the majority of broad-leaf plant herbicide application of atrazine, metribuzin, etc. ca weed free for the whole season. Post-emergence 2, 4-D at 2 to 4 leaf stage can effectively control this weed in grasslands without any effect on grasses.

For *Rumex obtusifolius*, 2, 4-D and atrazine are quite effective herbicides and their combination has been found more promising (Rana et al 2016).

Imperata cylindrica can be managed by following hot weather cultivation in May – M June by deep ploughing, spray of glyphsate 1.0 kg/ha or glyphosate 0.75 kg/ha + surfactant p 0.5% in June or dalapon 4 5 kg/ha in February eor paraquat 0.6 kg/ha or c existing weeds with spade) r oxyfluorfen 0.25 kg/ha et al 1990). \boldsymbol{a} a

A Alligator weed grows in different situations, each requiring particular herbicide controls. In non-cropped lands, it can be controlled with glyphosate 1.50 kg/ha or 2,4-D 1.0 kg/ha or metsulfuron-methyl 4 g/ha.

2

a

Urtica dioca 2,4-D, MSM or glyphosate

References

- Rana SS and MC Rana. 2016. Principles and Practices of Weed Management. Department of Agronomy, College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, 138 pages. (DOI: 10.13140/RG.2.2.33785.47207)
- Rana SS and Suresh Kumar. 2014. Practical Manual Principles and practices of weed management. Department of Agronomy, College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, 55 pages. (DOI: 10.13140/RG.2.2.27494.01603)
- Rana SS, Suresh Kumar, Neelam Sharma and N.N. Angiras. 2017. HERBICIDAL MANAGEMENT OF PARTHENIUM HYSTEROPHORUS L. IN GRASSLAND ECOSYSTEM OF HIMACHAL PRADESH. CONTEMPORARY RESEARCH IN INDIA 7(1): 30-35.
- Rana SS, D Badiyala, Neelam Sharma and Rajinder Kumar. 2015. Major weeds in the non-cropped lands of Himachal Pradesh. Department of Agronomy, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur.
- Ferrell Jason, Brent Sellers, and Ed Jennings 2012. Herbicidal Control of Largeleaf Lantana (Lantana camara). Weed Technology July-September : Vol. 26, Issue 3, pg(s) 554- 558 <u>https://doi.org/10.1614/WT-D-11-00170.1</u>