Antimicrobial Prophylaxis In Surgical Patients

Prof. Naveed Jabbar Bandesha SMC/UOS Sargodha

Introduction

- First concept of infection by Egyptians by mummification skills

 Hippocrates used wine & vinegar to irrigate open infected wound

Introduction

 Surgical antibiotic prophylaxis means use of antibiotics to prevent infection

• Standard of care

• Right time

- Unnecessary antibiotics increase cost and resistance
- 40% of prescriptions were found to be inappropriate (2015)

Clean Wound

•

- An incision in which
- A. No inflammation
- B. No break in sterile technique

• C. Respiratory, alimentary or genitourinary tracts are not entered.

Mastectomy, Lipoma excision

THYROIDECTOMY

Potential of infection is 1-5%

Examples: Thyroidectomy,

Clean Contaminated Wound

- An incision in which the respiratory system, GIT or genitourinary system is entered under control conditions but without contamination
- Potential of infection rate 8-10%

• Examples: Simple appendectomy, Cholecystectomy

shutterstock.com · 228843106

Contaminated

- An incision undertaken during on operation in which there is
- OR
- Open traumatic wounds > 12-24/24 also fall in it
- Major break in sterile technique

OR

• Gross spillage from GIT or incision in which acute non purulent inflammation is encountered. • Infection rate is 15-30%

Dirty or Infected

- An incision undertaken during an operation in which
- Viscera are perforated
- OR
- Acute pus is encountered (Fecal peritonitis)
- OR
- Traumatic wounds where treatment delayed

- OR
- There is fecal contamination
- OR
- Devitalized tissue present

Infection rate is 40-70%

Type of Wound	Inflammation is ncountered by incision	Break in Sterile Technique	Respiratory, Alimentary or Genitourinary Tracts Are Entered	Traumatic Wounds/ Faecal Contamination / Devitalised tissue is present
Clean	NO	NO	NO	-
Clean- contaminated	NO	NO	YES	-
Contaminated	YES	YES	YES	YES (12-24HRS OLD)
Dirty or infected	YES	YES	YES	YES

Statement of Concern

• Up to 60% SSIs are preventable

• If SSI additional stay of 7-11/7

• Pts SSI have 2-11 times higher risk of death

Factors Increasing Risk of SSI

Common Surgical Pathogens

- Clean surgery skin flora, including S. aureus & coagulasenegative staphylococci (S. epidermitis)
- Clean-contaminated surgery including abdominal surgery & heart, renal % liver transplantation mostly
- Gm –ve rods
- &
- Enterococci
- In addition to skin flora

Aventriax

Commonest postoperative infective pathogen by type of surgery¹

Type of Surgery

Commonest postoperative pathogens

Insertion of prosthetic heart valves Insertion of prosthetic joints

Instrumentation of the lower urinary tract

Colorectal surgery

Upper respiratory tract surgery

1. Munckhof W. Antibiotics for surgical prophylaxis, Aust Prescr 2005;28:38-40

Staphylococci

Enteric Gram-negative bacteria, enterococci

Enteric Gram-negative bacteria, enterococci anaerobes

Aerobic and microaerophilic streptococci, anaerobes

Need & Requirement

• Surgeon's experience

• Duration of Procedure

- OT ?
- •
- Growning & Scrubbing
- Antisepsis
- Hair removal

• Co-morbidity

• Disposable instrument

Principles of surgical antibiotic prophylaxis

- Appropriate prophylaxis
- Bacterial flora
- Narrowest antibacterial spectrum
- Less expensive drug if two drugs are otherwise of equal antibacterial spectrum, efficacy, toxicity, and ease of administration
- Right time
- Avoid antibiotics likely to be of use in the treatment of serious sepsis

- Do not use antibiotic prophylaxis to overcome poor surgical technique
- Review antibiotic prophylaxis protocols
- Choice of antibiotic
- Always ask the patient about a prior history of antibiotic
- Intravenous 'first generation' cephalosporins – cephazolin or cephalothin
- Intravenous gentamicin intravenous or rectal metronidazole (if anaerobic infection is likely)

Dose Timing

- Within 120 minutes before incision, while considering the half-life of the antibiotic
- Best practice at the time of incision
- Single dose or 24/24

World Health Organization

Commonly Used Antibiotics

- Commonly used surgical prophylactic antibiotics include:
- intravenous first generation' cephalosporins – cephazolin or cephalothin
- intravenous gentamicin
- Intravenous or rectal metronidazole (if anaerobic infection is likely)

- Oral tinidazole (if anaerobic infection is likely)
- Intravenous flucloxacillin (if methicillin-susceptible staphylococcal infection is likely)
- Intravenous vancomycin (if methicillin-resistant staphylococcal infection is likely)

Commonly Used Antibiotics

- Parenteral 'second' generation' cephalosporins such as cefotetan have improved anaerobic and aerobic Gram-negative cover compared to first generation cephalosporins
- Used but more expensive

Conclusion

• Prophylaxis is effective strategy

• Right antibiotics

Right dose

• Right time

Hospital protocols

- Horan TC, Culver DH, Gaynes RP, Jarvis WR, Edwards JR, Reid CR. Nosocomial infections in surgical patients in the United States, January 1986 June 1992. Infect Control Hosp Epidemiol 1993;14:73-80.
- 2. McGowan JE Jr. Cost and benefit of perioperative antimicrobial prophylaxis: methods for economic analysis. Rev Infect Dis 1991;13(Suppl 10):S879-89
- . 3. Burke JF. The effective period of preventative antibiotic action in experimental incisions and dermal lesions. Surgery 1961;50:161-8
- .Patchen Dellinger E, Gross PA, Barrett TL, Krause PJ, Martone WJ, McGowan JE Jr, et al. Quality standard for antimicrobial prophylaxis in surgical procedures. Clin Infect Dis 1994;18:422-7.
- 5. Dettenkofer M, Forster DH, Ebner W, Gastmeier P, Ruden H, Daschner FD. The practice of perioperative antibiotic prophylaxis in eight German hospitals. Infection 2002;30:164-7.
- 6. Howard JM, Barker WF, Culbertson WR, Grotzinger PJ, lovine VM, Keehn RJ, et al. Postoperative wound infections: the influence of ultraviolet irradiation of the operative room and of various other factors. Ann Surg 1964;160(Suppl 2): 1-196.
- 7. Therapeutic Guidelines: Antibiotic. Version 12. Melbourne: Therapeutic Guidelines Limited; 2003.
- 8. McDonald M, Grabsch E, Marshall C, Forbes A. Singleversus multiple-dose antimicrobial prophylaxis for major surgery: a systematic review. Aust N Z J Surg 1998;68:388-96

WE NEED TO IMPROVE THINGS

Thanks