
Server Virtualization

CPU VIRTUALIZATION

Virtualization Technique

• From emulation to virtualization :
 While emulation techniques emulate guest on host, whose ISA

differ from guest, in virtualization techniques, guest and host have
the same ISA.

 Some problems in emulation will not exist in virtualization :
• No need to translate each binary instruction to host ISA.
• No need to worry about unmatched special register mapping.

 Some new problems didn’t exist in emulation exist now :
• Instruction privileges should be well-controlled.

• Goal of virtualization :
 Run or simulate all instructions

of gust OS.

Virtualization Technique

• Virtualization requirements from Popek and Goldberg :
 Popek and Goldberg provide a set of sufficient conditions for a

computer architecture to efficiently support system virtualization.
 Popek and Goldberg provide guidelines for the design of virtualized

computer architectures.

• In Popek and Goldberg terminology, a VMM must present
all three properties :
 Equivalence (Same as real machine)
 Resource control (Totally control)
 Efficiency (Native execution)

CPU Architecture

• Modern CPU status is usually classified as several modes.
• In general, we conceptually divide them into two modes :

 Kernel mode (Ring 0)
• CPU may perform any operation allowed by its architecture, including any

instruction execution, IO operation, area of memory access, and so on.
• Traditional OS kernel runs in Ring 1 mode.

 User mode (Ring 1 ~ 3)
• CPU can typically only execute a subset of those available instructions in

kernel mode.
• Traditional application runs in Ring 3 mode.

CPU Architecture

• By the classification of CPU modes, we divide instructions
into following types :
 Privileged instruction

• Those instructions that trap if the machine is in user mode and do not
trap if the machine is in kernel mode.

 Sensitive instructions
• Those instructions that interact with hardware, which include control-

sensitive and behavior-sensitive instructions.

 Innocuous instruction
• All other instructions.

 Critical instruction
• Those sensitive but not privileged instructions.

CPU Architecture

CPU Architecture
• What is trap ?

 When CPU is running in user mode, some internal or external
events, which need to be handled in kernel mode, take place.

 Then CPU will jump to hardware exception handler vector, and
execute system operations in kernel mode.

• Trap types :
 System Call

• Invoked by application in user mode.
• For example, application ask OS for system IO.

 Hardware Interrupts
• Invoked by some hardware events in any mode.
• For example, hardware clock timer trigger event.

 Exception
• Invoked when unexpected error or system malfunction occur.
• For example, execute privilege instructions in user mode.

Trap and Emulate Model

• If we want CPU virtualization to be efficient, how should we
implement the VMM ?
 We should make guest binaries run on CPU as fast as possible.
 Theoretically speaking, if we can run all guest binaries natively,

there will NO overhead at all.
 But we cannot let guest OS handle everything, VMM should be able

to control all hardware resources.

• Solution :
 Ring Compression

• Shift traditional OS from kernel mode(Ring 0) to user mode(Ring 1), and
run VMM in kernel mode.

• Then VMM will be able to intercept all trapping event.

Trap and Emulate Model

• VMM virtualization paradigm (trap and emulate) :
1. Let normal instructions of guest OS run directly on processor in

user mode.
2. When executing privileged instructions, hardware will make

processor trap into the VMM.
3. The VMM emulates the effect of the privileged instructions for the

guest OS and return to guest.

Trap and Emulate Model

• Traditional OS :
 When application invoke a

system call :
• CPU will trap to interrupt

handler vector in OS.
• CPU will switch to kernel

mode (Ring 0) and execute
OS instructions.

 When hardware event :
• Hardware will interrupt CPU

execution, and jump to
interrupt handler in OS.

Trap and Emulate Model
• VMM and Guest OS :

 System Call
• CPU will trap to interrupt

handler vector of VMM.
• VMM jump back into guest OS.

 Hardware Interrupt
• Hardware make CPU trap to

interrupt handler of VMM.
• VMM jump to corresponding

interrupt handler of guest OS.

 Privilege Instruction
• Running privilege instructions

in guest OS will be trapped to
VMM for instruction emulation.

• After emulation, VMM jump
back to guest OS.

Context Switch
• Steps of VMM switch different virtual machines :

1. Timer Interrupt in running VM.
2. Context switch to VMM.
3. VMM saves state of running VM.
4. VMM determines next VM to execute.
5. VMM sets timer interrupt.
6. VMM restores state of next VM.
7. VMM sets PC to timer interrupt handler of next VM.
8. Next VM active.

System State Management

• Virtualizing system state :
 VMM will hold the system states

of all virtual machines in memory.
 When VMM context switch from

one virtual machine to another
• Write the register values back to memory
• Copy the register values of next guest OS

to CPU registers.

Virtualization Theorem

• Subset theorem :
 For any conventional third-generation computer, a VMM may be

constructed if the set of sensitive instructions for that computer
is a subset of the set of privileged instructions.

• Recursive Emulation :
 A conventional third-generation computer is recursively

virtualizable if
• It is virtualizable
• VMM without any timing dependencies can be constructed for it.

• Under this theorem, x86 architecture cannot be
virtualized directly. Other techniques are needed.

Virtualization Techniques

• How to virtualize unvirtualizable hardware :
 Para-virtualization

• Modify guest OS to skip the critical instructions.
• Implement some hyper-calls to trap guest OS to VMM.

 Binary translation
• Use emulation technique to make hardware virtualizable.
• Skip the critical instructions by means of these translations.

 Hardware assistance
• Modify or enhance ISA of hardware to provide virtualizable architecture.
• Reduce the complexity of VMM implementation.

Para-Virtualization

• Para-Virtualization implementation :
 In para-virtualization technique, guest OS should be modified to

prevent invoking critical instructions.
 Instead of knowing nothing about hypervisor, guest OS will be

aware of the existence of VMM, and collaborate will VMM smoothly.
 VMM will provide the hyper-call interfaces, which will be the

communication channel between guest and host.

Binary Translation

• In emulation techniques :
 Binary translation module is used to optimize binary code

blocks, and translate binaries from guest ISA to host ISA.

• In virtualization techniques :
 Binary translation module is used to skip or modify the guest

OS binary code blocks which include critical instructions.
 Translate those critical instructions into some privilege

instructions which will trap to VMM for further emulation.

Binary Translation

• Static approach vs. Dynamic approach :
 Static binary translation

• The entire executable file is translated into an executable of the target
architecture.

• This is very difficult to do correctly, since not all the code can be
discovered by the translator.

 Dynamic binary translation
• Looks at a short sequence of code, typically on the order of a single basic

block, translates it and caches the resulting sequence.
• Code is only translated as it is discovered and when possible, branch

instructions are made to point to already translated and saved code.

Binary Translation

• Dynamic binary translation and optimization
 VMM can dynamically translate binary code and collect profiling

data for further optimization.

Some Difficulties
• Difficulties of binary translation :

 Self-modifying code
• If guest OS will modify its own binary code in runtime, binary translation

need to flush the responding code cache and retranslate the code block.

 Self-reference code
• If guest code need to reference(read) its own binary code in runtime,

VMM need to make it referring back to original guest binaries location.

 Real-time system
• For some timing critical guest OS, emulation environment will lose precise

timing, and this problem cannot be perfectly solved yet.

• Difficulty of para-virtualization :
 Guest OS modification

• User should at least has the source code of guest OS and modify its kernel;
otherwise, para-virtualization cannot be used.

CPU VIRTUALIZATION

Hardware Solution

• Why are there so many problems and difficulties ?
 Critical instructions do not trap in user mode.
 Even if we make those critical instructions trap, their semantic may

be also changed; which is not acceptable.

• In short, legacy processors did not design for virtualization
purpose at the beginning.
 If processor can be aware of the different behaviors between guest

and host, the VMM design will be more efficient and simple.

Hardware Solution

• Let’s go back to trap model :
 Some trap types do not need the VMM involvement.

• For example, all system calls invoked by application in guest OS should be
caught by gust OS only. There is no need to trap to VMM and then
forward it back to guest OS, which will introduce context switch overhead.

 Some critical instructions should not be executed by guest OS.
• Although we make those critical instructions trap to VMM, VMM cannot

identify whether this trapping action is caused by the emulation purpose
or the real OS execution exception.

• Solution :
 We need to redefine the semantic of some instructions.
 We need to introduce new CPU control paradigm.

Intel VT-x

• In order to straighten those problems out, Intel Company
introduces one more operation mode of x86 architecture.
 VMX Root Operation (Root Mode)

• All instruction behaviors in this mode are no different to traditional ones.
• All legacy software can run in this mode correctly.
• VMM should run in this mode and control all system resources.

 VMX Non-Root Operation (Non-Root Mode)
• All sensitive instruction behaviors in this mode are redefined.
• The sensitive instructions will trap to Root Mode.
• Guest OS should run in this mode and be fully virtualized through typical

“trap and emulation model”.

Intel VT-x
• VMM with VT-x :

 System Call
• CPU will directly trap to

interrupt handler vector
of guest OS.

 Hardware Interrupt
• Still, hardware events

need to be handled by
VMM first.

 Sensitive Instruction
• Instead of trap all privilege

instructions, running guest
OS in Non-root mode will
trap sensitive instruction
only.

Context Switch

• VMM switch different virtual machines with Intel VT-x :
 VM XO N /VM XO FF

• These two instructions are used to turn on/off CPU Root Mode.

 VM Entry
• This is usually caused by the execution of VM LAU N CH /VM RESU M Einstructions,

which will switch CPU mode from Root Mode to Non-Root Mode.

 VM Exit
• This may be caused by many reasons, such as hardware interrupts or

sensitive instruction executions.
• Switch CPU mode from Non-Root Mode to Root Mode.

System State Management

• Intel introduces a more efficient hardware approach for
register switching, VMCS (Virtual Machine Control Structure) :

 State Area
• Store host OS system state when VM-Entry.
• Store guest OS system state when VM-Exit.

 Control Area
• Control instruction behaviors in Non-Root Mode.
• Control VM-Entry and VM-Exit process.

 Exit Information
• Provide the VM-Exit reason and hardware other information.

• Whenever VM Entry or VM Exit occur, CPU will automatically
read or write corresponding information into VMCS.

System State Management
• Binding virtual machine to virtual CPU

 VCPU (Virtual CPU) contains two parts
• VMCS maintains virtual system states, which is approached by hardware.
• Non-VMCS maintains other non-essential system information, which is

approach by software.

 VMM needs to handle Non-VMCS part.

CPU Virtualization Summary

• Emulation technique
 Interpretation and binary translation approaches
 System state mapping and performance issue

• Translation chaining, Dynamic binary optimization

• Virtualization technique
 Modern CPU architecture
 Trap and emulation model
 Critical instruction issue

• Para-virtualization, Dynamic binary translation

• Hardware assistance
 Intel VT-x approach

• Root Mode & Non-Root Mode

MEMORY VIRTUALIZATION

Shadow page table
Hardware assistance

Memory Virtualization

• Memory management in OS
 Traditionally, OS fully controls all physical memory space and

provide a continuous addressing space to each process.
 In server virtualization, VMM should make all virtual machines

share the physical memory space without knowing the fact.

• Goals of memory virtualization :
 Address Translation

• Control table-walking hardware that accesses translation tables in main
memory.

 Memory Protection
• Define access permission which uses the Access Control Hardware.

 Access Attribute
• Define attribute and type of memory region to direct how memory

operation to be handled.

Memory Architecture
• Memory Management Unit (MMU)

 What is MMU ?
• A computer hardware component responsible for handling accesses to

memory requested by the CPU.
• Its functions include translation of virtual addresses to physical addresses,

memory protection, cache control, bus arbitration and etc.

 What is PTBR ?
• Page Table Base Register (PTBR) is a register point to the base of page

table for MMU.

Memory Architecture

• Translation Lookaside Buffer (TLB)
 What is TLB ?

• A CPU cache that memory management hardware uses to improve virtual
address translation speed.

Memory Virtualization

• Memory virtualization architecture

58

Memory Virtualization

• The performance drop of memory access is usually
unbearable. VMM needs further optimization.

• VMM maintains shadow page tables :
 Direct virtual-to-physical address mapping
 Use hardware TLB for address translation

59

Shadow Page Table

• Map guest virtual address to host physical address
 Shadow page table

• Guest OS will maintain its own virtual memory page table in
the guest physical memory frames.

• For each guest physical memory frame, VMM should map it to
host physical memory frame.

• Shadow page table maintains the mapping from guest virtual
address to host physical address.

 Page table protection
• VMM will apply write protection to all the physical frames of

guest page tables, which lead the guest page table write
exception and trap to VMM.

Shadow Page Table

• How does this technique work ?
 VMM should make MMU virtualized

• VMM manages the real PTBR and a virtual PTBR for each VM
• When guest OS is activated, the real PTBR points to a shadow page table
• When guest OS attempts to modify the PTBR, it will be intercepted by

VMM for further emulation

Shadow Page Table
• Construct shadow page table

 Guest OS will maintain its own page table for each process.
 VMM maps each guest physical page to host physical page.
 Create shadow page tables for each guest page table.
 VMM should protect host frame which contains guest page table.

Shadow Page Table
• Implement with PTBR :

 For example, process 2 in guest OS want to access its memory
whose page number is 1.

Shadow Page Table
• Shadow page table operations :

64

Process
Page Table

Shadow
Page Table

Process
Page Table

Shadow
Page Table

Virtual PTPR

Real PTPR

Guest OS
VMM

Corresponding mapping table

Context switch

Switch the pointer to new location

Process
Page Table

Shadow
Page Table

New process

Create new shadow page table mapping to new process

Access

Page fault !

Load !

Other Issues

• Page fault and page protection issue
 When a physical page fault occurs, VMM need to decide whether

this exception should be injected to guest OS or not.
• If the page entry in the page table of guest OS is still valid, VMM should

prepare the corresponding page and not inject any exception to guest OS.
• If the page entry in the page table of guest Os is invalid either, then VMM

should directly inject the virtual page fault to guest OS.

 When guest OS want to modify its page tables, VMM need to
intercept this operation.

• When guest OS reload PTBR, CPU will trap to VMM due to the Ring
Compression nature.

• VMM will walk the page table of guest OS and modify the related shadow
page table to make MMU get host physical address.

MEMORY VIRTUALIZATION

Shadow page table
Hardware assistance

Hardware Solution

• Difficulties of shadow page table technique :
 Shadow page table implementation is extremely complex.
 Page fault mechanism and synchronization issues are critical.
 Host memory space overhead is considerable.

• But why we need this technique to virtualize MMU ?
 MMU do not first implemented for virtualization.
 MMU is knowing nothing about two level page address translation.

• Now, let us consider hardware solution.

Extended Page Table

• Concept of Extended Page Table (EPT) :
 Instead of walking along with only one page table hierarchy, EPT

technique implement one more page table hierarchy.
• One page table is maintained by guest OS, which is used to generate guest

physical address.
• The other page table is maintained by VMM, which is used to map guest

physical address to host physical address.

 For each memory access operation, EPT MMU will directly get
guest physical address from guest page table, and then get host
physical address by the VMM mapping table automatically.

Extended Page Table

• Memory operation :

8
9

6

4
7

8

Data

Memory Virtualization Summary

• Software implementation
 Memory architecture

• MMU (memory management unit)
• TLB (translation lookaside buffer)

 Shadow page table
• MMU virtualization by virtual PTBR
• Shadow page table construction
• Page fault and page table protection

• Hardware assistance
 Extended page table

• Hardware walk guest and host page table simultaneously

IO VIRTUALIZATION

Overview
Device Model
Hardware Assistance

IO Virtualization
• Goal :

 Share or create IO devices for virtual machines.

• Two types of IO subsystem architecture :
 Port Mapped IO

• Port-mapped IO uses a special class of CPU instructions specifically for
performing IO.

 Memory Mapped IO (MMIO)
• Memory Mapped IO uses the same address bus to address both memory

and IO devices, and the CPU instructions used to access the memory are
also used for accessing devices.

• Traditional IO techniques :
 Direct memory Access (DMA)
 PCI / PCI Express

Port Mapped IO
• IO devices are mapped into a separate address space

 IO devices have a separate address space from general memory,
either accomplished by an extra “IO" pin on the CPU's physical
interface, or an entire bus dedicated to IO.

 Generally found on Intel microprocessors, specifically the IN and
O U Tinstructions which can read and write one to four bytes (outb,
outw, outl) to an IO device.

• Pros & Cons
 Pros

• Less logic is needed to decode a discrete address.
• Benefits for CPUs with limited addressing capability.

 Cons
• More instructions are required to accomplish the same task.
• IO addressing space size is not flexible.

Memory Mapped IO

• IO devices are mapped into the system memory map along
with RAM and ROM.
 To access a hardware device, simply read or write to those 'special'

addresses using the normal memory access instructions.

• Pros & Cons
 Pros

• Instructions which can access memory can be used to operate an IO device.
• Operate on the data with fewer instructions.

 Cons
• Physical memory addressing space must be shared with IO devices.
• The entire address bus must be fully decoded for every device.

Direct Memory Access

• What is DMA ?
 Allow certain hardware subsystems within the computer to access

system memory for reading and/or writing independently of the
central processing unit.

• Two types of DMA :
 Synchronous DMA

• The DMA operation is caused by software.
• For example, sound card driver may trigger DMA operation to play music.

 Asynchronous DMA
• The DMA operation is caused by devices (hardware).
• For example, network card use DMA operation to load data into memory

and interrupt CPU for further manipulation.

PCI & PCI Express

• What is PCI ?
 PCI (Peripheral Component Interconnect) is a computer bus for

attaching hardware devices.
 Typical PCI cards used include :

• Network cards, sound cards, modems
• Extra ports such as USB or serial, TV tuner cards and disk controllers.

• What is PCI Express ?
 PCIe is a computer expansion card standard designed to replace the

older PCI, PCI-X, and AGP standards.
 Its topology is based on point-to-point serial links, rather than a

shared parallel bus architecture.

PCI & PCI Express

• PCI based system build in a tree topology
 PCI bus

• Parallel connect devices and bridges

 PCI-PCI Bridge
• Connect two PCI buses
• Become the root of lower bus

 PCI-ISA Bridge
• Connect to conventional ISA device

PCI & PCI Express

• PCIe based system build in a point to point architecture
 Root Complex

• Similar to a host bridge in a PCI system, the root complex generates
transaction requests on behalf of the processor, which is interconnected
through a local bus.

 Switch
• Connect endpoint devices or other switches

 Endpoint Device
• Physical PCIe devices
• Legacy PCI devices

 PCI Express Bridge
• Connect to other legacy

subsystems

IO Virtualization

• Implementation Layers :
 System call

• The interface between applications
and guest OS.

 Driver call
• The interface between guest OS and

IO device drivers.

 IO operation
• The interface between IO device

driver of guest OS and virtualized
hardware (in VMM).

79

IO Virtualization

• In system call level :
 When application invoke a

system call, system will trap to
VMM first.

 VMM intercepts system calls,
and maintains shadowed IO
system call routines to
simulate functionalities.

 After simulation, VMM directly
return to application in gust
OS.

80

IO Virtualization

• In device driver call level :
 Utilize para-virtualization technique,

which means the IO device driver in
guest OS should be modified.

 The IO operation is invoked by
means of hyper-call between the
modified device driver and VMM IO
component.

81

IO Virtualization

• In IO operation level,
two approaches :
 Memory mapped IO

• Loads/stores to specific region of real
memory are interpreted as command
to devices.

• The memory mapped IO region is
protected.

 Port mapped IO
• Special input/output instructions with

special addresses.
• The IO instructions are privileged .

• Due to the privileged nature, these
IO operations will be trapped to
the VMM.

82

IO VIRTUALIZATION

Overview
Device Model
Hardware Assistance

Device Model

• We focus on IO operation level implementation.
 This is an approach of full virtualization.

• Logic relation between guest OS and VMM :
 VMM intercepts IO operations from guest OS.
 Pass these operations to device model on a running platform.
 Device model need to emulate

the IO operation interfaces.
• Port mapped IO
• Memory mapped IO
• DMA
• ... etc.

Device Model

• Two different implementations of device model :
1. Device model is implemented as a part of VMM.
2. Device model is running in user space as a stand alone service.

Type 1 Virtualization Type 2 Virtualization

Device Model

• IO virtualization paradigm
 Initialization – device discovery

• VMM will make guest OS discover the virtualized IO devices.
• Then guest OS will load the corresponding device driver.

 Operation – access interception
• When guest OS applies IO operations, VMM will intercept those accesses.
• After virtual device operations, VMM returns the control to guest OS.

 Virtualization – device virtualization
• Device model should emulate the real electronic logic to satisfy all device

interface definition and its effects.
• VMM may share physical devices to all virtual machines.

Device Discovery

• Virtualize physical bus devices
 Non-enumerable physical device

• These devices have their own hard-coded numbers.
• VMM should setup some status information on the virtual device ports.
• For example, PS/2 keyboard and mouse.

 Enumerable physical device
• These devices defined a complete device discover method.
• VMM have to emulate not only the device itself, but the bus behavior.
• For example, PCI or PCI express devices.

• Virtualize non-exist devices
 VMM must define and emulate all functions of these devices

• VMM may define them as either non-enumerable or enumerable devices.
• Guest OS needs to load some new drivers of these virtual devices.

Access Interception

• After virtual device discovered by guest OS, VMM has to
intercept and control all the IO operations from guest OS.

• Port mapped IO operation
 Direct device assignment

• VMM should turn ON the physical IO bitmap.
• All the IO instructions (IN/O U T) from guest OS will be directly performed

onto hardware without VMM intervention.

 Indirect device assignment
• VMM should turn OFF the physical IO bitmap.
• All the IO instructions from guest OS will be intercepted by VMM and

forward to physical hardware.

Access Interception

• Memory mapped IO operation
 Direct device assignment

• VMM should use the shadow page table to map IO device addressing
space of guest OS to the space of host.

• Then all the IO operations from guest OS will not be intercepted.

 Indirect device assignment
• VMM should make the all entries of the IO device addressing space in the

shadow page table to be invalid.
• When guest OS access those addressing space, it will introduce the page

fault which trap CPU to VMM for device emulation.

• DMA mechanism
 Address remapping

• Because the device driver in the guest OS have nothing to know with the
host physical address, VMM need to automatic remap the DMA target
when intercepting guest OS.

Device Virtualization

• IO device types :
 Dedicated device

• Ex : displayer, mouse, keyboard …etc.

 Partitioned device
• Ex : disk, tape …etc

 Shared device
• Ex : network card, graphic card …etc.

 Nonexistent physical device
• Ex : virtual device …etc.

Device Virtualization

• Dedicated device
 Do not necessarily have to be virtualized.
 In theory, requests of such device could bypass the VMM.
 However, they are handled by the VMM first since OS is running in

user mode.

• Partitioned device
 Be partitioned into several smaller virtual devices as dedicated to

VM.
 VMM translates address spaces to those of the physical devices.

91

Device Virtualization

• Shared device
 Should be shared among VMs.
 Each VM has its own virtual device state.
 VMM translates requests from a VM to physical device .

• Nonexistent physical device
 Virtual device “attached” to a VM for which there is no

corresponding physical device.
 VMM intercepts requests from a VM, buffers it and interrupts other

VMs.

92

Performance Issues

• When considering performance, two major problems :
 How to make guest OS directly access IO addresses ?

• Other than software approaches discussed above, we can make use of the
hardware assistance (Intel EPT technique in memory virtualization) to
map IO addresses from host to guest directly without software overhead.

 How to make DMA directly access memory space in guest OS ?
• For the synchronous DMA operation, guest OS will be able to assign the

correct host physical memory address by EPT technique.
• For the asynchronous DMA operation, hardware must access memory

from host OS which will introduce the VMM intervention.

IO VIRTUALIZATION

Overview
Device Model
Hardware Assistance

Hardware Solution

• Difficulty :
 Software cannot make data access directly from devices.

• Tow hardware solutions :
 Implement DMA remapping in hardware

• Remap DMA operations automatically by hardware.
• For example, Intel VT-d .

 Specify IO virtualization standards of PCI Express devices
• Implement virtualizable device with PCI Express interface.
• For example, SR-IOV or MR-IOV.

Intel VT-d

• Add DMA remapping hardware component.

Software Approach Hardware Approach

IO Virtualization Brief Review

• Let’s give a brief IO virtualization review.

• Software based sharing
 Implement virtualization

by VMM software stack.
 Advantage

• Full virtualization without
special hardware support.

 Disadvantage
• Significant CPU overhead

may be required by the
VMM.

IO Virtualization Brief Review

• Hardware direct assignment
 Implement virtualization

with Intel VT-x and VT-d
supports.

 Advantage
• Data access bypass VMM.
• Improve IO performance.

 Disadvantage
• Dedicate physical device

assignment limit the system
scalability.

IO Virtualization Brief Review

• New industrial standard
 Instead of implementing virtualization in CPU or memory only,

industry com up with new IO virtualization standard in PCI Express
devices.

 Advantages
• Fully collaboration with

physical hardware devices.
• Improve system scalability.
• Improve system agility.

 Disadvantages
• IO devices must implement

with new specification.

Single Root – IO Virtualization

• What is SR-IOV ?
 The PCI-SIG Single Root I/O Virtualization and Sharing (SR-IOV)

specification defines a standardized mechanism to create natively
shared devices.

• Basic components :
 Physical Functions (PFs):

• These are full PCIe functions that include the SR-IOV Extended Capability.
• The capability is used to configure and manage the SR-IOV functionality.

 Virtual Functions (VFs):
• These are “lightweight” PCIe functions that contain the resources

necessary for data movement but have a carefully minimized set of
configuration resources.

Single Root – IO Virtualization

• SR-IOV works with VMM :
 VMM

• An SR-IOV-capable device
can be configured to appear
in the PCI configuration
space as multiple functions.

 VM
• The VMM assigns one or

more VFs to a VM by
mapping the actual
configuration space the VFs
to the configuration space
presented to the virtual
machine by the VMM.

IO Virtualization Summary

• IO subsystem architecture
 Port Mapped IO vs. Memory Mapped IO
 Direct Memory Access (DMA)
 PCI / PCI Express

• IO virtualization
 Three implementation layers
 IO virtualization paradigm with device model

• Hardware assistance
 DMA remapping hardware
 Single Root – IO Virtualization specification

ECOSYSTEM
VMware , Xen , KVM

Venders and Projects
• Virtual machine venders :

 VMware
• The company was founded in 1998 and is based in Palo Alto, California.

The company is majority owned by EMC Corporation.
• Implement both type-1 and type-2 VM.

 Xen
• First developed in University of Cambridge Computer Laboratory.
• As of 2010 the Xen community develops and maintains Xen as free

software, licensed under the GNU General Public License (GPLv2).
• Implement para-virtualization.

• Virtual machine project :
 KVM (Kernel-based Virtual Machine)

• A Linux kernel virtualization infrastructure.
• As of 2010, KVM supports native virtualization using Intel VT-x or AMD-V.

VMware

• Basic properties :
 Separate OS and hardware –

break hardware dependencies
 OS and Application as single

unit by encapsulation
 Strong fault and security

isolation
 Standard, HW independent

environments can be
provisioned anywhere

 Flexibility to chose the right OS
for the right application

VMware Virtualization Stack

VMware Major Products

• VMware GSX Server
 Run multiple servers on your server
 Hosted Architecture
 Available for Linux hosts and Windows hosts

• VMware ESX Server
 Quality of Service
 High-performance I/O
 Host-less Architecture (bare-metal)

VMware GSX Server Architecture

VMware ESX Server Architecture

Xen
• Basic properties :

 Para-virtualization
• Achieve high performance even on its host architecture (x86) which has a

reputation for non-cooperation with traditional virtualization techniques.

 Hardware assisted virtualization
• Both Intel and AMD have contributed modifications to Xen to support

their respective Intel VT-x and AMD-V architecture extensions.

 Live migration
• The LAN iteratively copies the memory of the virtual machine to the

destination without stopping its execution.

• Implement system:
 Novell's SUSE Linux Enterprise 10
 Red Hat's RHEL 5
 Sun Microsystems' Solaris

Para-virtualization in Xen

• Xen extensions to x86 arch
 Like x86, but Xen invoked for privileged instructions
 Avoids binary rewriting
 Minimize number of privilege transitions into Xen
 Modifications relatively simple and self-contained

• Modify kernel to understand virtualized environment
 Wall-clock time vs. virtual processor time

• Desire both types of alarm timer
 Expose real resource availability

• Enables OS to optimize its own behaviour

Original Xen Architecture

Hardware Assistance in Xen

• Hardware assistance :
 CPU provides VM Exitfor certain privileged instructions
 Extend page tables used to virtualize memory

• Xen features :
 Enable Guest OS to be run without modification

• For example, legacy Linux and Windows
 Provide simple platform emulation

• BIOS, apic, iopaic, rtc, Net (pcnet32), IDE emulation
 Install para-virtualized drivers after booting for high-performance IO
 Possibility for CPU and memory para-virtualization

• Non-invasive hypervisor hints from OS

New Xen Architecture

KVM

• KVM (Kernel-based Virtual Machine)
 Linux host OS

• The kernel component of KVM is included in mainline Linux, as of 2.6.20.

 Full-virtualization
• KVM is a full virtualization solution for Linux on x86 hardware containing

virtualization extensions (Intel VT or AMD-V).
• Using KVM, one can run multiple virtual machines running unmodified

Linux or Windows images.

 IO device model in KVM :
• KVM requires a modified QEMU for IO virtualization framework.
• Improve IO performance by virtio para-virtualization framework.

KVM Full Virtualization
• It consists of a loadable kernel module

 kvm .ko
• provides the core virtualization infrastructure

 kvm -intel.ko/ kvm -am d.ko
• processor specific modules

IO Device Model in KVM

• Original approach with full-virtualization
 Guest hardware accesses are

intercepted by KVM
 QEMU emulates hardware behavior

of common devices
• RTL 8139
• PIIX4 IDE
• Cirrus Logic VGA

IO Device Model in KVM

• New approach with para-virtualization

IO Device Model in KVM

• virtio architecture

OTHER ISSUES

Live migration
Cloud properties

Other Issues
• Essential technique of cloud properties implementation

 Live migration of virtual machines
• Migrate a virtual machine from one physical machine to another in the

run time with a small amount of performance down grade.

• Virtualization enabled cloud properties :
 Scalability

• Virtual machine system automatic scale up

 Availability
• Fault tolerant of hardware and software

 Manageability
• Automatic physical to virtual system transformation

 Performance
• Dynamically virtual machine level load balancing

Live Migration Technique

• Pre-assumption :
 We assume that all storage resources are

separated from computing resources.
 Storage devices of VMs are attached from

network :
• NAS: NFS, CIFS
• SAN: Fibre Channel
• iSCSI, network block device
• drdb network RAID

 Require high quality network connection
• Common L2 network (LAN)
• L3 re-routing

VM 1 VM 2

VM 1
Disk

VM 2
Disk

Live Migration Technique

• Challenges of live migration :
 VMs have lots of state in memory
 Some VMs have soft real-time

requirements :
• For examples, web servers,

databases and game servers, ...etc.
• Need to minimize down-time

• Relocation strategy :
1. Pre-migration process
2. Reservation process
3. Iterative pre-copy
4. Stop and copy
5. Commitment

Live Migration Technique

Pre-migration process

Reservation process

Iterative pre-copy

Stop and copy

Commitment

• VM active on host A
• Destination host selected

(Block devices mirrored)
• Initialize container on target host• Copy dirty pages in successive

rounds

• Suspend VM on host A
• Redirect network traffic
• Synch remaining state

• Activate on host B
• VM state on host A released

Live Migration Technique
• Live migration process :

Host A Host B

Live Migration Technique
• Live migration process :

Host A Host B

Live Migration Technique
• Live migration process :

Host A Host B

Scalability in Virtualization

• Scalability implement by
VMware:
 VMware VMotion, makes it

possible to move Virtual
Machines, without interrupting
the applications running inside.

 Dynamically scale up virtual
machine system among
physical servers.

Availability in Virtualization

• Fault tolerance system :
 VMware makes all Servers

and Applications protected
against component and
complete system failure.

 When system failure occurs,
virtual machines will be
automatic restarted on other
physical servers. X

Availability in Virtualization

• Disaster recovery :
 VMware Site Recovery Manager

enables an easy transition from a
production site to a Disaster
Recovery site.

 Easy Execution for real Disaster
 Easy Testing for good night sleep

Availability in Virtualization

X
Application protection against hardware

failures, with NO down time that is Application
and Operating System Independent.

• Fail over technique Backup VM

Backup VM

Manageability in Virtualization

• Provide physical to virtual
translation :
 Consolidation Management

with the VMware Infrastructure
software will automate the
migration from physical to
virtual machines.

Performance in Virtualization

• Dynamic load balancing :
 VMware Distributed Resource

Scheduler automatically
balances the Workloads
according to set limits and
guarantees.

 Removing the need to predict
resource assignment.

Performance in Virtualization

• Optimize network access :
 VMware and Cisco are

collaborating to enhance
workload mobility and
simpler management with
virtualization-aware
networks.

Nexus 1000V

Security in Virtualization

• Enhance virtual machine
security protection :
 The Application vService

VMSafe allows security
vendors to add superior
security solutions inside the
VMware Infrastructure.

Summary
• Server virtualization technique :

 CPU virtualization
• Ring compression, Intel VT-x, …etc

 Memory virtualization
• Shadow page table, Intel EPT, …etc

 IO virtualization
• Device model, Intel VT-d, PCIe SR-IOV, …etc

• Ecosystem :
 VMware implements both type-1 & type-2 virtualization
 Xen implements both para and full virtualization
 KVM implements in Linux mainstream kernel

• Cloud properties :
 Enabled by live migration technique
 Scalability, Availability, Manageability and Performance

References

• Books :
 James E. Smith & Ravi Nair, Virtual Machines, Elsevier Inc., 2005
 英特爾開源軟件技術中心 & 復旦大學並行處理研究所, 系統虛擬化– 原理與實現, 北京 :清華大學出版社, 2009.03

• Web resources :
 Xen project http://www.xen.org
 KVM project http://www.linux-kvm.org/page/Main_Page
 IBM VirtIO survey https://www.ibm.com/developerworks/linux/library/l-virtio
 PCI-SIG IO virtualization specification http://www.pcisig.com/specifications/iov

• Other resources :
 Lecture slides of “Virtual Machine” course (5200) in NCTU
 Vmware Overview Openline presentation slides http://www.openline.nl

 Xen presentation http://www.cl.cam.ac.uk/research/srg/netos/papers/2006-xen-
fosdem.ppt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114

