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Proofs

* The truth value of some statements about the world are obvious
and easy to assess

» The truth of other statements may not be obvious, ...

.... But it may still follow (be derived) from known facts about
the world

Proof: shows that the truth value of such a statement follows from
(or can be inferred) from the truth value of other statements

Important questions:
— When is the argument correct?
— How to construct a correct argument, what method to use?
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Theorems

e Theorem: a statement that can be shown to be true.
— Typically the theorem looks like this:
(PLAP2AP3A...APN) —>(
— ¥

Premises conclusion

» Example:
Fermat’s Little theorem:

@nme and a is an integer not dlv@
then: @
conclusion

Premises (hypotheses)
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Formal proofs

Allow us to infer from new True statements from known True
statements

\
premises
lusi
+ conclusion
axioms >  e—0 00 0—e
+
proved
theorems S
True ?

True
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Formal proofs

\

premises

+ conclusion

axioms >  o—0 0—0 0—e

+
proved
theorems /

True ?

True

Steps of the proof for statements in the propositional logic are
argued using:

» Equivalence rules

* Rules of inference (e.g. modus ponens)
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Proofs using rules of inference

Translations:

e Assumptions: = pAQ, r—>p, °r—s, s>t
* We want to show: t

Proof:

* 1.-pAqg Hypothesis

e 2.4p Simplification

* 3.r—>p  Hypothesis

o 4, ~r Modus tollens (step 2 and 3)

e 5. =r—s Hypothesis

e 6.5 Modus ponens (steps 4 and 5)
e 7.5t Hypothesis

e« 8.t Modus ponens (steps 6 and 7)

 end of proof
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Informal proofs

Proving theorems in practice:

» The steps of the proofs are not expressed in any formal language
as e.g. propositional logic

» Steps are argued less formally using English, mathematical
formulas and so on

* One must always watch the consistency of the argument made,
logic and its rules can often help us to decide the soundness of the
argument if it is in question

* We use (informal) proofs to illustrate different methods of
proving theorems
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Methods of proving theorems

Basic methods to prove the theorems:
» Direct proof
— p — qis proved by showing that if p is true then q follows
 Indirect proof
— Show the contrapositive -q — —p. If =q holds then —p follows
Proof by contradiction
— Show that (p A = q) contradicts the assumptions
Proof by cases

 Proofs of equivalence
— p <> q is replaced with (p — q) A ( — p)

Sometimes one method of proof does not go through as nicely as the
other method. You may need to try more than one approach.
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Direct proof

* p — qisproved by showing that if p is true then q follows

e Example: Prove that “If n is odd, then n? is odd.”

Proof:
» Assume the hypothesis is true, i.e. suppose n is odd.
e Thenn =2k + 1, where k is an integer.

n2=(2k + 1)
=4k? + 4k + 1
= 2(2k2+2k) + 1
* Therefore, n? is odd. O
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Indirect proof

* To show p — g prove its contrapositive -q — —p
« Why? p—>qand-q— -p are equivalent !!!
* Assume —q is true, show that —p is true.

Example: Prove If 3n + 2 is odd then n is odd.

Proof:
» Assume n is even, that is n = 2k, where k is an integer.
» Then: 3n+2=23(2k) + 2

=6k+2

= 2(3k+1)

e Therefore 3n + 2 is even.

* We proved - “nisodd” = - “3n+ 2isodd”. This is
equivalent to “3n + 2 is odd” - “nis odd”. 0
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Proof by contradiction
* We want to prove p —

» The only way to reject (or disprove) p — q is to show that (p A
—(q ) can be true

» However, if we manage to prove that either g or = p is True
then we contradict (p A Q)

— and subsequently p — g must be true

* Proof by contradiction. Show that the assumption (p A =q )
leads either to q or = p which generates a contradiction.
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Proof by contradiction

* We wantto prove p — q
» Toreject p — g show that (p A =q) can be true

* Toreject (p A =g ) show that either g or = pis True

Example: Prove If 3n + 2 is odd then n is odd.
Proof:

e Assume 3n + 2 is odd and n is even, that is n = 2k, where k an
integer.
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Proof by contradiction

* We want to prove p —
» Toreject p — g show that (p A =q) can be true
» Toreject (p A—Q) show that either q or - pis True

Example: Prove If 3n + 2 is odd then n is odd.
Proof:

* Assume 3n + 2 is odd and n is even, that is n = 2k, where k an
integer.

e Then: 3n + 2=3(2k) + 2
=6k +2
=2(3k + 1)
e Thus 3n + 2 is even. This is a contradiction with the assumption
that 3n + 2 is odd. Thereforenisodd. O
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Vacuous proof

We want to show p —q

» Suppose p (the hypothesis) is always false

* Then p — qis always true.

Reason:

» F—q isalways T, whether qis True or False

Example:

e LetP(n) denotes “if n>1then n2>n” is TRUE.

» Show that P(0).

Proof:

» For n=0 the premise is False. Thus P(0) is always true.
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Trivial proofs

We want to show p —q

» Suppose the conclusion q is always true

» Then the implication p — q is trivially true.

» Reason:

* p— Tisalways T, whether p is True or False

Example:
* LetP(n) is “ifa>=b thena">=h"”
» Show that P(0)
Proof:
a®>=h0 is 1=1 trivially true.
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Proof by cases

* We want toshow plvp2v...vpn —(
* Note that this is equivalent to

—Pl>g9A(P2—>9 A...A(pn —Q)

 Why?

e plvp2v..vpn —>q <=> (useful)

e a(plvp2v...vpn) v gq<=> (De Morgan)
e (plA=pP2A...A=PN) v g<=> (distributive)

o (Aplv QA(P2V Q) A ...A(mpnv q) <=> (useful)
s PlogAr(P2>A...A(pn —Q)
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Proof by cases

We want to show pl v p2v...vpn —(

Equivalentto (pl > g)A(P2—>g) A ...A(pn — Q)

Prove individual cases as before. All of them must be true.

Example: Show that |x||y[=|xy].
Proof:

4 cases:

x >=0, y>=0
x>=0,y<0
x<0,y>=0 |
x<0, ,y <0 |
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Proof by cases

We want to show pl v p2v...vpn —(

Equivalentto (pl > g)A(P2—>g) A ...A(pn —Q)

Prove individual cases as before. All of them must be true.

Example: Show that |x||y|=|xy].
Proof:

4 cases:

x >=0, y>=0 xy >0 and |xy|=xy=|x||y|
x>=0,y<0 xy<0and |xy|=-xy =x (-y)=[X||y|
x<0,y>=0 xy < 0and |xy|=-xy =(-X) y=|||y|
x<0, ,y <0 xy >0and |xy|= (-x)(-y) =[x|ly|
All cases proved.
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Proof of equivalences

We want to prove p <> q

» Statements: p if and only if g.

* Notethatp <> g isequivalentto [(p—>qg)A(@—p)]
* Both implications must hold.

Example:

* Integer is odd if and only if n2 is odd.

Proofof (p > q):

* (p—>q) Ifnisodd thenn™2is odd

» we use a direct proof

» Suppose nisodd. Then n =2k + 1,where K is an integer.

o NM2=02k+1)"2 = 4k"2 + 4k + 1 = 2(2k"2+2k) + 1
* Therefore, "2 is odd.
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Proof of equivalences

We want to prove p & q
* Notethatp <> q isequivalentto [p—>g)A(@—p)]
» Both implications must hold.

* Integer is odd if and only if n"2 is odd.

Proof of (Q — p):

(g — p): ifn”2is odd then nis odd

we use an indirect proof (-p — —qQ) is a contrapositive

n is even that is n = 2Kk,

then n"2 = 4k"2=2(2k"2)

Therefore n"2 is even. Done proving the contrapositive.

Since both (p —» ) and (g — p) are true the equivalence is true
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Proofs with quantifiers

» Existence proof — sentences expressed with an existential
guantifiers

— Constructive

* Find an example (through search) that shows the
statement holds.
— Nonconstructive
» Show the statement holds for one example but we do not
have the witness example. Typically relies on the proof by
contradiction — negate the existentially quantified
statement and show that it implies a contradiction.
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Proofs with quantifiers

» Universally quantified statements

— Prove the property holds for all examples
— can be tricky

— proof by cases to divides the proof to the different
subgroups may help

— Counterexamples:
* use to disprove universal statements
« Similar to constructive proofs for existentially
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