Lipids

Lipids

Lipids are organic compounds formed from alcohol and fatty acids combined by ester linkage.

Roles in body:

- Energy reserves (particularly fatty acids, lipids with long hydrocarbon chains) There is a large energy yield upon oxidation of these highly reduced hydrocarbons.
- As **lipid bilayers**, main components of biological membranes.
- Intra- and intercellular signaling.
- Etc...

CLASSIFICATION OF LIPIDS

BASED ON COMPOSITION

SIMPLE LIPIDS

- Fats
- Waxes

COMPLEX LIPIDS

- Phospholipids
- Non-Phosphorylated lipids
- Lipoproteins
- Sulfolipids

DERIVED LIPIDS

- Isoprenoids
- Fat soluble vitamins
- Steroids
- Ketone bodies
- Fatty acids

BASED ON FUNCTIONS

STORAGE LIPIDS

- Fats
- Oils

STRUCTURAL LIPIDS

- Phospholipids
- Non-Phosphorylated lipids

LIPIDS AS SIGNALS, COFACTORS AND PIGMENTS

- Phosphatidylinositol
- Eicosanoids
- · Steroid hormones
- Fat soluble vitamins
- Lipid quinines
- Dolichols

CLASSIFICATION OF LIPIDS

Classification Of Lipids

Simple Lipids

Fats and oils (Triglycerides)

- **❖**They are called neutral fats and are the most abundant lipids in nature.
- **❖**They are esters of glycerol with various fatty acids.
- *****Esterification of glycerol with one and 2 molecules of fatty acid gives monoglyceride and diglyceride, respectively.

2-Compound Lipids/ Conjugated Lipids

They are lipids that contain sulfur, phosphorus, amino group, carbohydrate, or proteins beside fatty acid and alcohol.

Derived Lipids

- These are the derivatives obtained on the hydrolysis of simple and compound lipids which possess the characteristics of lipids.
- These include glycerol and other alcohol, fatty acids, mono- and diacylglycerols, fat soluble vitamins, steroid hormones.

Lipids

- Lipids are composed of C, H, O
 - long hydrocarbon chains (H-C)
- "Family groups"
 - fats
 - phospholipids
 - steroids
- Do not form polymers
 - <u>big molecules</u> made of smaller subunits
 - not a continuing chain

Fats

- Structure:
 - glycerol (3C alcohol) + fatty acid
 - fatty acid = long HC "tail" with carboxyl (COOH) group "head"

Building Fats

- Triacylglycerol
 - 3 fatty acids linked to glycerol
 - <u>ester linkage</u> = between OH & COOH

(b) Fat molecule (triacylglycerol)

Fats store energy

- Long HC chain
 - polar or non-polar?
 - hydrophilic or hydrophobic?
- Function:
 - energy storage
 - concentrated
 - all H-C!
 - 2x carbohydrates
 - cushion organs
 - insulates body
 - think whale blubber!

Saturated fats

- All C bonded to H
- No C=C double bonds
 - long, straight chain
 - most animal fats
 - solid at room temp.
 - contributes to cardiovascular disease (atherosclerosis)
 plaque deposits

Unsaturated fats

- C=C double bonds in the fatty acids
 - plant & fish fats
 - vegetable oils
 - <u>liquid at room temperature</u>
 - the kinks made by double bonded C prevent the molecules from packing tightly together

Saturated vs. unsaturated

saturated

unsaturated

Phospholipids

- Structure:
 - glycerol + 2 fatty acids + PO₄
 - PO₄ = negatively charged

It's just like a penguin...

A head at one end & a tail at the other!

Soaps and Detergents

- •Hydrolysis of fats with alkali such as NaOH or KOH yields soaps (saponification), salts of ionized fatty acids.
- Synthetic detergents:

Sodium dodecyl sulfate
$$-0.80$$
 (CH₂)₁₁CH₃ + Na⁺

Triton X-100 $H(OCH_2CH_2)_n - O - CH_3 - CH_2 - CH_3$

Phospholipids

- Hydrophobic or hydrophilic?
 - fatty acid tails =
 - PO_4 head =
 - split "personality"

hydrophobic

hydrophillic

Come here, No, go away! Come here, No, go away!

interaction with H₂O is complex & very important!

Phospholipids in water

- Hydrophilic heads "attracted" to H₂O
- Hydrophobic tails "hide" from H₂O
 - can self-assemble into "bubbles"
 - bubble = "micelle"
 - can also form a phospholipid bilayer
 - early evolutionary stage of cell?

Why is this important?

- Phospholipids create a barrier in water
 - define outside vs. inside
 - they make <u>cell membranes!</u>

Sphingolipids: Another Major Class of Lipids Found in Biological Membranes

<u>Sphingosine</u> = amino alcohol with a long hydrocarbon chain.

<u>Ceramide</u> = sphingosine with a fatty acid linked by an amide bond to the amine to form an *N*-acyl chain.

<u>Sphingomyelin</u> = ceramides with a phosphocholine head group.

The myelin sheath that surrounds and electrically insulates many nerve cell axo is rich in sphingomyelin.

Glycosphingolipids

 $\begin{vmatrix} 3 \\ \uparrow \\ \alpha 2 \end{vmatrix}$

<u>Cerebrosides</u> = ceramides with a single sugar residue as head group.

$$\frac{\text{Gangliosides}}{\text{Gangliosaccharide as head group containing at least one sialic acid residue.}} (R)$$

Gangliosides

Gangliosides constitute a significant fraction (\sim 6%) of brain lipids. The ABO blood group antigens are also examples of gangliosides.

Steroids

- Structure:
 - 4 fused C rings + ??
 - different steroids created by attaching different <u>functional groups</u> to rings
 - different structure creates different function
 - <u>examples</u>: <u>cholesterol</u>, <u>sex hormones</u>

Cholesterol

- Important cell component
 - animal cell membranes
 - precursor of all other steroids
 - including vertebrate sex hormones
 - high levels in blood may contribute to cardiovascular disease

Cholesterol

Important component of cell membrane

helps keep cell membranes fluid & flexible

Prostaglandin

From Cholesterol → Sex Hormones

What a big difference a few atoms can make!

Vitamins

Vitamin A

Vitamin D

Vitamin E

Vitamin K

A child who began life in a closet

Retinal Comes from Carotene

Isoprene Vitamins

$$\begin{array}{c} \text{CH}_{3} \\ \text{HO} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{2} \\ \text{CH}_{3} \\ \text{CH}_{3} \\ \text{CH}_{4} \\ \text{CH}_{5} \\ \text{C$$

(a)

Vitamin E: an antioxidant

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_2 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_5 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8

(b)

(c) Warfarin: a blood anticoagulant

Vitamin K₁: a blood-clotting cofactor (phylloquinone)

Miscellaneous Lipids

- This include a large number of compounds possessing the characteristics of lipids
- ❖ Eg. Carotenoids, Squalene, terpenes, Waxes etc.

Carotenoids

Waxes

- •Formed through esterification of fatty acid and long-chain alcohol
- Completely water-insoluble
- •Water-repellent protective coating in some animals and plants
- •Energy storage in some microorganisms

Copyright © 2000 Benjamin/Cummings, an imprint of Addison Wesley Longman, Inc.

Wax $CH_3(CH_2)_{14}$ — C — CH_2 — CH_2 — CH_3

Palmitic acid 1-Triacontanol

Ear Wax (Cerumen) is Not Wax

The primary components of ear wax are shed layers of skin:

60% of the earwax consisting of keratin

12–20% saturated and unsaturated long-chain fatty acids, alcohols and squalene,

6–9% cholesterol

