

 28.8 Nucleic Acids and Nucleotides Nucleic acids are the third class of biopolymers (polysaccl and proteins being the others) Two major classes of nucleic acids deoxyribonucleic acid (DNA): carrier of genetic information ucleic acid (RNA): an intermediate in the expression of genetic information and other diverse role The Central Dogma (F. Crick): 	narides ormation ession s	
DNA \longrightarrow mRNA \longrightarrow Protein (genome) (proteome)		
 The monomeric units for nucleic acids are nucleotides Nucleotides are made up of three structural subunits 1. Sugar: ribose in RNA, 2-deoxyribose in DNA 2. Heterocyclic base 3. Phosphate 		
	419	

DNA sequences are written from left to right from the 5' to 3' 5'-ATCGCAT-3' 5'-d(ATCGCAT)-3' or 28.10 Base Pairing in DNA: The Watson–Crick Model Chargaff's Rule: the number of A = T and G = C in DNA Two polynucleotide strands, running in opposite directions (anti-parallel) and coiled around each other in a double helix. The strands are held together by complementary hydrogenbonding between specific pairs of bases. "Molecular Structure of Nucleic Acids" Watson J. D.; Crick, F. H. C. Nature 1953, 171, 737-738 "Molecular Structure of Deoxypentose Nucleic Acids" Wilkins, M. H. F.; Stokes A.R.; Wilson, H. R. Nature 1953, 171, 738-740. "Molecular Configuration in Sodium Thymonucleate," Franklin, R.; Gosling, R. G. Nature 1953, 171, 740-741 1962 Nobel Prize in Medicine: F. H. C. Crick, J. D. Watson, Maurice F. H. Wilkins, "for their discoveries concerning the molecular structure of nucleic acids and its 424 significance for information transfer in living material."

<i>"It has not escaped our attention that the specific pairing we have postulated suggests a possible copying mechanism for the genetic material."</i> Watson &	immediately Crick
28.11 Nucleic Acids and Heredity The Central Dogma (F. Crick):	
DNA <u>replication</u> DNA <u>transcription</u> mRNA <u>translation</u> (genome)	Protein (proteome)
 Expression and transfer of genetic information: Replication: process by which DNA is copied high fidelity. Transcription: process by which the DNA ge is read and transferred to messenger F This is an intermediate step in protein e Translation: The process by which the genet converted to a protein, the end product expression. The DNA sequence codes for the mRNA sequence, codes for the protein sequence 	with very netic code NA (mRNA). expression ic code is of gene which

28.12 Replication of DNA: DNA is replicated by the coordinated efforts of a number of proteins and enzymes.
Each cell contains about two meters of DNA. The DNA must be "packaged" into the cell nucleus by super-coiling and knotting.
For replication, DNA must be unknotted, uncoiled and the double helix unwound.
Topoisomerase: Enzyme that unknots and uncoils DNA *Helicase*: Protein that unwinds the DNA double helix.
DNA polymerase: Enzyme replicates DNA using each strand as a template for the newly synthesized strand.
DNA replication is *semi-conservative*: Each new strand of DNA contains one parental (old, template) strand and one daughter (newly synthesized) strand

