
G
lo

b
a

l 
ed

it
io

n
Finite Elem

ent A
nalysis

Theory and Application w
ith AN

SYS
M

oaveni
fo

u
rt

h
 

ed
it

io
n

Global 
edition

Finite Element Analysis
Theory and Application  
with ANSYS
fourth edition

Saeed Moaveni

This is a special edition of an established 
title widely used by colleges and universities 
throughout the world. Pearson published this 
exclusive edition for the benefit of students 
outside the United States and Canada. If you 
purchased this book within the United States 
or Canada you should be aware that it has 
been imported without the approval of the 
Publisher or Author.

Pearson Global Edition

Global 
edition

For these Global Editions, the editorial team at Pearson has 
collaborated with educators across the world to address a 
wide range of subjects and requirements, equipping students 
with the best possible learning tools. This Global Edition 
preserves the cutting-edge approach and pedagogy of the 
original, but also features alterations, customization, and 
adaptation from the North American version.

Moaveni_0273774301_mech.indd   1 26/11/14   2:48 pm

www.FreeEngineeringbooksPdf.com



Finite Element Analysis

A01_MOAV4303_04_GE_FM.INDD   1 27/11/14   8:07 AM

www.FreeEngineeringbooksPdf.com



A01_MOAV4303_04_GE_FM.INDD   2 27/11/14   8:07 AM

www.FreeEngineeringbooksPdf.com



Finite Element Analysis
Theory and Application with ANSYS

Fourth Edition

Global Edition

Saeed Moaveni
Minnesota State University, Mankato

Boston  Columbus  Indianapolis  New York  San Francisco  Hoboken

Amsterdam  Cape Town  Dubai  London  Madrid  Milan  Munich  Paris  Montreal  Toronto

Delhi  Mexico City  São Paulo  Sydney  Hong Kong  Seoul  Singapore  Taipei  Tokyo

A01_MOAV4303_04_GE_FM.INDD   3 27/11/14   8:07 AM

www.FreeEngineeringbooksPdf.com



Vice President and Editorial Director, ECS:  
  Marcia J. Horton
Acquisitions Editor: Norrin Dias
Marketing Assistant: Jon Bryant
Senior Managing Editor: Scott Disanno
Production Program Manager: Clare Romeo
Production Project Manager: Jennifer Sargunar
Director of Operations: Nick Sklitsis
Operations Specialist: Linda Sager
Cover Designer: Lumina Datamatics Ltd.
Cover Photo: George Spade/123RF

Manager, Rights and Permissions: Rachel Youdelman
Photo Permission Coordinator: Rachel Youdelman
Image Permission Coordinator: Paul Sarkis
Full-Service Project Management: Jouve India
Head of Learning Asset Acquisition, Global Edition:  
  Laura Dent
Senior Manufacturing Controller, Global Edition: Trudy  
  Kimber
Senior Acquisitions Editor, Global Edition: Priyanka  
  Ahuja
Project Editor, Global Edition: Aaditya Bugga

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where 
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been 
printed in initial caps or all caps.

MATLAB® is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited, 2015

The right of Saeed Moaveni to be identified as the author of this work has been asserted by him in accordance with 
the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Finite Element Analysis: Theory and Application with 
ANSYS, 4th edition, ISBN 978-0-13-384080-3, by Saeed Moaveni, published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any 
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written 
permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright 
Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not 
vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trade-
marks imply any affiliation with or endorsement of this book by such owners.

ISBN 10: 0-273-77430-1
ISBN 13: 978-0-273-77430-3

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1
19 18 17 16 15

Typeset in 10 Times Ten LT Std by Jouve India.

Printed in Great Britain by CPI Group (UK) Ltd, Croydon, CRO 4YY

A01_MOAV4303_04_GE_FM.INDD   4 27/11/14   8:07 AM

www.FreeEngineeringbooksPdf.com



To memories of my mother and father

A01_MOAV4303_04_GE_FM.INDD   5 27/11/14   8:07 AM

www.FreeEngineeringbooksPdf.com



A01_MOAV4303_04_GE_FM.INDD   6 27/11/14   8:07 AM

www.FreeEngineeringbooksPdf.com



Contents

Preface  13

Acknowledgments  17

	1	I ntroduction  21

	 1.1	 Engineering Problems  22
	 1.2	 Numerical Methods  25
	 1.3	 A Brief History of the Finite Element Method and Ansys  26
	 1.4	 Basic Steps in the Finite Element Method  26
	 1.5	 Direct Formulation  28
	 1.6	 Minimum Total Potential Energy Formulation  57
	 1.7	 Weighted Residual Formulations  63
	 1.8	 Verification of Results  68
	 1.9	 Understanding the Problem  69
		  Summary  74
		  References  74
		  Problems  74

	2	M atrix Algebra  86

	 2.1	 Basic Definitions  86
	 2.2	 Matrix Addition or Subtraction  89
	 2.3	 Matrix Multiplication  89
	 2.4	 Partitioning of a Matrix  93
	 2.5	 Transpose of a Matrix  97
	 2.6	 Determinant of a Matrix  101
	 2.7	 Solutions of Simultaneous Linear Equations  106
	 2.8	 Inverse of a Matrix  114
	 2.9	 Eigenvalues and Eigenvectors  118
	 2.10	 Using Matlab to Manipulate Matrices  122
	 2.11	 Using Excel to Manipulate Matrices  126
		  Summary  140
		  References  141
		  Problems  141

	3	T russes  145

	 3.1	 Definition of a Truss  145
	 3.2	 Finite Element Formulation  146
	 3.3	 Space Trusses  171

7

A01_MOAV4303_04_GE_FM.INDD   7 27/11/14   8:07 AM

www.FreeEngineeringbooksPdf.com



	 3.4	 Overview of the Ansys Program  173
	 3.5	 Examples Using Ansys  181
	 3.6	 Verification of Results  213
		  Summary  215
		  References  215
		  Problems  215

	4	 Axial Members, Beams, and Frames  225

	 4.1	 Members Under Axial Loading  225
	 4.2	 Beams  233
	 4.3	 Finite Element Formulation of Beams  238
	 4.4	 Finite Element Formulation of Frames  254
	 4.5	 Three-​Dimensional Beam Element  260
	 4.6	 An Example Using Ansys  262
	 4.7	 Verification of Results  287
		  Summary  289
		  References  290
		  Problems  291

	5	 One-​Dimensional Elements  303

	 5.1	 Linear Elements  303
	 5.2	 Quadratic Elements  307
	 5.3	 Cubic Elements  309
	 5.4	 Global, Local, and Natural Coordinates  312
	 5.5	 Isoparametric Elements  314
	 5.6	 Numerical Integration: Gauss–Legendre Quadrature  316
	 5.7	 Examples of One-​Dimensional Elements in Ansys  321
		  Summary  321
		  References  321
		  Problems  321

	6	 Analysis of One-​Dimensional Problems  328

	 6.1	 Heat Transfer Problems  328
	 6.2	 A Fluid Mechanics Problem  347
	 6.3	 An Example Using Ansys  351
	 6.4	 Verification of Results  366
		  Summary  367
		  References  367
		  Problems  368

	7	T wo-​Dimensional Elements  371

	 7.1	 Rectangular Elements  371
	 7.2	 Quadratic Quadrilateral Elements  375

8    Contents

A01_MOAV4303_04_GE_FM.INDD   8 27/11/14   8:07 AM

www.FreeEngineeringbooksPdf.com



	 7.3	 Linear Triangular Elements  380
	 7.4	 Quadratic Triangular Elements  385
	 7.5	 Axisymmetric Elements  389
	 7.6	 Isoparametric Elements  394
	 7.7	 Two-​Dimensional Integrals: Gauss–Legendre Quadrature  397
	 7.8	 Examples of Two-​Dimensional Elements in Ansys  398
		  Summary  399
		  References  399
		  Problems  400

	8	M ore Ansys  407

	 8.1	 Ansys Program  407
	 8.2	 Ansys Database and Files  408
	 8.3	 Creating a Finite Element Model with Ansys: Preprocessing  410
	 8.4	 h-​Method Versus p-​Method  424
	 8.5	 Applying Boundary Conditions, Loads, and the Solution  424
	 8.6	 Results of Your Finite Element Model: Postprocessing  427
	 8.7	 Selection Options  432
	 8.8	 Graphics Capabilities  433
	 8.9	 Error-​Estimation Procedures  435
	 8.10	 An Example Problem  437
		  Summary  451
		  References  452

	9	 Analysis of Two-​Dimensional Heat Transfer Problems  453

	 9.1	 General Conduction Problems  453
	 9.2	 Formulation with Rectangular Elements  460
	 9.3	 Formulation with Triangular Elements  471
	 9.4	 Axisymmetric Formulation of Three-​Dimensional Problems  490
	 9.5	 Unsteady Heat Transfer  497
	 9.6	 Conduction Elements Used by Ansys  507
	 9.7	 Examples Using Ansys  508
	 9.8	 Verification of Results  548
		  Summary  548
		  References  550
		  Problems  550

	10	 Analysis of Two-​Dimensional Solid Mechanics Problems  562

	 10.1	 Torsion of Members with Arbitrary Cross-​Section Shape  562
	 10.2	 Plane-​Stress Formulation  578
	 10.3	 Isoparametric Formulation: Using a Quadrilateral Element  586
	 10.4	 Axisymmetric Formulation  593
	 10.5	 Basic Failure Theories  595

Contents    9

A01_MOAV4303_04_GE_FM.INDD   9 27/11/14   8:07 AM

www.FreeEngineeringbooksPdf.com



	 10.6	 Examples Using Ansys  596
	 10.7	 Verification of Results  618
		  Summary  618
		  References  620
		  Problems  620

	11	 Dynamic Problems  629

	 11.1	 Review of Dynamics  629
	 11.2	 Review of Vibration of Mechanical and Structural Systems  643
	 11.3	 Lagrange’s Equations  660
	 11.4	 Finite Element Formulation of Axial Members  662
	 11.5	 Finite Element Formulation of Beams and Frames  671
	 11.6	 Examples Using Ansys  685
		  Summary  704
		  References  704
		  Problems  704

	12	 Analysis of Fluid Mechanics Problems  711

	 12.1	 Direct Formulation of Flow Through Pipes  711
	 12.2	 Ideal Fluid Flow  723
	 12.3	 Groundwater Flow  729
	 12.4	 Examples Using Ansys  732
	 12.5	 Verification of Results  753
		  Summary  754
		  References  755
		  Problems  756

	13	T hree-​Dimensional Elements  761

	 13.1	 The Four-​Node Tetrahedral Element  761
	 13.2	 �Analysis of Three-​Dimensional Solid Problems Using Four-​Node  

Tetrahedral Elements  764
	 13.3	 The Eight-​Node Brick Element  769
	 13.4	 The Ten-​Node Tetrahedral Element  771
	 13.5	 The Twenty-​Node Brick Element  772
	 13.6	 Examples of Three-​Dimensional Elements in Ansys  774
	 13.7	 Basic Solid-​Modeling Ideas  778
	 13.8	 A Thermal Example Using Ansys  789
	 13.9	 A Structural Example Using Ansys  806
		  Summary  819
		  References  819
		  Problems  819

10    Contents

A01_MOAV4303_04_GE_FM.INDD   10 27/11/14   8:07 AM

www.FreeEngineeringbooksPdf.com



	14	 Design and Material Selection  828

	 14.1	 Engineering Design Process  829
	 14.2	 Material Selection  832
	 14.3	 Electrical, Mechanical, and Thermophysical Properties of Materials  833
	 14.4	 Common Solid Engineering Materials  835
	 14.5	 Some Common Fluid Materials  842
		  Summary  844
		  References  844
		  Problems  844

	15	 Design Optimization  846

	 15.1	 Introduction to Design Optimization  846
	 15.2	 The Parametric Design Language of Ansys  850
	 15.3	 Examples of Batch Files  852
		  Summary  863
		  References  864
		  Problems  864

Appendix A	M echanical Properties of Some Materials  865

Appendix B	T hermophysical Properties of Some Materials  869

Appendix C	 Properties of Common Line and Area Shapes  871

Appendix D	 Geometrical Properties of Structural Steel Shapes  875

Appendix E	 Conversion Factors  879

Appendix F	 An Introduction to MATLAB  881

Index  915

Contents    11

A01_MOAV4303_04_GE_FM.INDD   11 27/11/14   8:07 AM

www.FreeEngineeringbooksPdf.com



A01_MOAV4303_04_GE_FM.INDD   12 27/11/14   8:07 AM

www.FreeEngineeringbooksPdf.com



Preface

Changes in the Fourth Edition

The fourth edition, consisting of 15 chapters, includes a number of new additions and 
changes that were incorporated in response to ANSYS revisions and suggestions and 
requests made by professors, students, and professionals using the third edition of the 
book. The major changes include:

	 •	 Explanation of the changes that were made in the ANSYS’s newest release 
(Chapters 3 and  8)

	 •	 Explanation of new element type capabilities (Chapters 3, 4, 6, 8 through  
13, and 15)

	 •	 A new comprehensive example problem that demonstrates the use of 
BEAM188 element in modeling beam and frame problems (Chapter 4)

	 •	 Modification of twenty example problems to incorporate new ANSYS element 
types (Chapters 3, 4, 6, 8 through 13, and 15)

	 •	 Eight new comprehensive example problems that show in great detail how 
to use Excel to solve different types of finite element problems (Chapters 2 
through 6 and 9 through 12)

	 •	 More detail on theory and expanded derivations
	 •	 Explanation of new MATLAB revisions in Appendix F

Organization

There are many good textbooks already in existence that cover the theory of finite 
element methods for advanced students. However, none of these books incorporate 
ANSYS as an integral part of their materials to introduce finite element modeling 
to undergraduate students and newcomers. In recent years, the use of finite element 
analysis (FEA) as a design tool has grown rapidly. Easy-​to-​use, comprehensive pack-
ages such as ANSYS, a general-​purpose finite element computer program, have 
become common tools in the hands of design engineers. Unfortunately, many engi-
neers who lack the proper training or understanding of the underlying concepts have 
been using these tools. This introductory book is written to assist engineering students 
and practicing engineers new to the field of finite element modeling to gain a clear 
understanding of the basic concepts. The text offers insight into the theoretical aspects 
of FEA and also covers some practical aspects of modeling. Great care has been exer-
cised to avoid overwhelming students with theory, yet enough theoretical background 
is offered to allow individuals to use ANSYS intelligently and effectively. ANSYS is an 

13
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integral part of this text. In each chapter, the relevant basic theory is discussed first and 
demonstrated using simple problems with hand calculations. These problems are fol-
lowed by examples that are solved using ANSYS. Exercises in the text are also presented 
in this manner. Some exercises require manual calculations, while others, more complex 
in nature, require the use of ANSYS. The simpler hand-​calculation problems will en-
hance students’ understanding of the concepts by encouraging them to go through the 
necessary steps in a FEA. Design problems are also included at the end of Chapters 3, 
4, 6, and 9 through 14.

Various sources of error that can contribute to incorrect results are discussed. 
A good engineer must always find ways to check the results. While experimental test-
ing of models may be the best way, such testing may be expensive or time consuming. 
Therefore, whenever possible, throughout this text emphasis is placed on doing a “sanity 
check” to verify one’s FEA. A section at the end of each appropriate chapter is devoted 
to possible approaches for verifying ANSYS results.

Another unique feature of this book is that the last two chapters are devoted to 
the introduction of design, material selection, optimization, and parametric program-
ming with ANSYS.

The book is organized into 15 chapters. Chapter 1 reviews basic ideas in finite 
element analysis. Common formulations, such as direct, potential energy, and weighted 
residual methods, are discussed. Chapter 2 provides a comprehensive review of matrix 
algebra. Chapter 3 deals with the analysis of trusses, because trusses offer economi-
cal solutions to many engineering structural problems. An overview of the ANSYS 
program is given in Chapter 3 so that students can begin to use ANSYS right away. 
Finite element formulation of members under axial loading, beams, and frames are 
introduced in Chapter 4. Chapter 5 lays the foundation for analysis of one-​dimensional 
problems by introducing one-​dimensional linear, quadratic, and cubic elements. 
Global, local, and natural coordinate systems are also discussed in detail in Chapter 5. 
An introduction to isoparametric formulation and numerical integration by Gauss–
Legendre formulae is also presented in Chapter 5. Chapter 6 considers Galerkin for-
mulation of one-dimensional heat transfer and fluid problems. Two-​dimensional linear 
and higher order elements are introduced in Chapter 7. Gauss–Legendre formulae 
for two-​dimensional integrals are also presented in Chapter 7. In Chapter 8 the essen-
tial capabilities and the organization of the ANSYS program are covered. The basic 
steps in creating and analyzing a model with ANSYS is discussed in detail. Chapter 9 
includes the analysis of two-​dimensional heat transfer problems with a section devoted 
to unsteady situations. Chapter 10 provides an analysis of torsion of noncircular shafts 
and plane stress problems. Dynamic problems are explored in Chapter 11. Review of 
dynamics and vibrations of mechanical and structural systems are also given in this 
chapter. In Chapter 12, two-​dimensional, ideal fluid-​mechanics problems are analyzed. 
Direct formulation of the piping network problems and underground seepage flow are 
also discussed. Chapter 13 provides a discussion on three-​dimensional elements and 
formulations. This chapter also presents basic ideas regarding top-​down and bottom-​up 
solid modeling methods. The last two chapters of the book are devoted to design and 

14    Preface
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optimization ideas. Design process and material selection are explained in Chapter 14. 
Design optimization ideas and parametric programming are discussed in Chapter 15. 
Examples of ANSYS batch files are also given in Chapter 15. Each chapter begins by 
stating the objectives and concludes by summarizing what the reader should have gained 
from studying that chapter.

The examples that are solved using ANSYS show in great detail how to use ANSYS 
to model and analyze a variety of engineering problems. Chapter 8 is also written such 
that it can be taught right away if the instructor sees the need to start with ANSYS.

A brief review of appropriate fundamental principles in solid mechanics, heat trans-
fer, dynamics, and fluid mechanics is also provided throughout the book. Additionally, 
when appropriate, students are warned about becoming too quick to generate finite ele-
ment models for problems for which there exist simple analytical solutions. Mechanical 
and thermophysical properties of some common materials used in engineering are given 
in Appendices A and B. Appendices C and D give properties of common area shapes 
and properties of structural steel shapes, respectively. A comprehensive introduction to 
MATLAB is given in Appendix F.

Finally, a Web site at http://www.pearsonglobaleditions.com/moaveni will be main-
tained for the following purposes: (1) to share any changes in the upcoming versions of 
ANSYS; (2) to share additional information on upcoming text revisions; (3) to provide 
additional homework problems and design problems; and (4) although I have done my 
best to eliminate errors and mistakes, as is with most books, some errors may still exist. 
I will post the corrections that are brought to my attention at the site. The Web site will 
be accessible to all instructors and students.

Thank you for considering this book and I hope you enjoy the fourth edition.

Saeed Moaveni

Preface    15
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C h a p t e r  1

Introduction

The finite element method is a numerical procedure that can be used to obtain solutions 
to a large class of engineering problems involving stress analysis, heat transfer, electro-
magnetism, and fluid flow. This book was written to help you gain a clear understanding 
of the fundamental concepts of finite element modeling. Having a clear understanding 
of the basic concepts will enable you to use a general-purpose finite element software, 
such as ANSYS, effectively. ANSYS is an integral part of this text. In each chapter, the 
relevant basic theory behind each respective concept is discussed first. This discussion 
is followed by examples that are solved using ANSYS. Throughout this text, empha-
sis is placed on methods by which you may verify your findings from finite element 
analysis (FEA). In addition, at the end of particular chapters, a section is devoted to the 
approaches you should consider to verify results generated by using ANSYS.

Some of the exercises provided in this text require manual calculations. The pur-
pose of these exercises is to enhance your understanding of the concepts by encouraging 
you to go through the necessary steps of FEA. This book can also serve as a reference 
text for readers who may already be design engineers who are beginning to get involved 
in finite element modeling and need to know the underlying concepts of FEA.

The objective of this chapter is to introduce you to basic concepts in finite element 
formulation, including direct formulation, the minimum potential energy theorem, and 
the weighted residual methods. The main topics of Chapter 1 include the following:

	 1.1	 Engineering Problems

	 1.2	 Numerical Methods

	 1.3	 A Brief History of the Finite Element Method and ANSYS

	 1.4	 Basic Steps in the Finite Element Method

	 1.5	 Direct Formulation

	 1.6	 Minimum Total Potential Energy Formulation

	 1.7	 Weighted Residual Formulations

	 1.8	 Verification of Results

	 1.9	 Understanding the Problem
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22    Chapter 1    Introduction

1.1 E ngineering Problems

In general, engineering problems are mathematical models of physical situations. 
Mathematical models of many engineering problems are differential equations with 
a set of corresponding boundary and/or initial conditions. The differential equations 
are derived by applying the fundamental laws and principles of nature to a system or a 
control volume. These governing equations represent balance of mass, force, or energy. 
When possible, the exact solution of these equations renders detailed behavior of a 
system under a given set of conditions, as shown by some examples in Table 1.1. The 
analytical solutions are composed of two parts: (1) a homogenous part and (2) a par-
ticular part. In any given engineering problem, there are two sets of design parameters 
that influence the way in which a system behaves. First, there are those parameters that 

Table 1.1  Examples of governing differential equations, boundary conditions, initial conditions, and exact  
solutions for some engineering problems

Problem Type

Governing Equation,  
Boundary Conditions, or  

Initial Conditions Solution

A beam:

X

Y

L

w

E, I

EI 
d2Y

dX 2
=

wX(L - X)

2
Boundary conditions:

at X = 0, Y = 0 and 

at X = L, Y = 0

Deflection of the beam Y as the 
function of distance X:

Y =
w

24EI
 (-X 4 + 2LX3 - L3X)

An elastic system:

k

m

y0 y

d2y

dt2
+ vn

2y = 0

where vn
2 =

k
m

Initial conditions:

at time t = 0, y = y0 and

at time t = 0, 
dy

dt
= 0

The position of the mass y as the  
function of time:

y(t) = y0 cos vnt

A fin:

Tbase AC

T   , h

P = Perimeter
X

L

q

d2T

dX2
-

hp

kAc
(T - T∞) = 0

Boundary conditions: 

at X = 0, T = Tbase 

as L S ∞, T = T∞

Temperature distribution along  
the fin as the function of X:

T = T∞ + (Tbase - T∞)e-2 hp

kAc
X
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Section 1.1  E  ngineering Problems    23

provide information regarding the natural behavior of a given system. These parameters 
include material and geometric properties such as modulus of elasticity, thermal conduc-
tivity, viscosity, and area, and second moment of area. Table 1.2 summarizes the physical 
properties that define the natural characteristics of various problems.

Table 1.2  Physical properties characterizing various engineering systems

Problem Type Examples of Parameters That Characterize a System

Solid Mechanics Examples

G,J

Torque

E, A

Load

E Load

E,I

Load

A truss

An elastic plate

A beam

A shaft

Modulus of elasticity, E; member length, L;  
cross-sectional area, A

Modulus of elasticity, E; length, L; cross-sectional 
area, A

Modulus of elasticity, E; member length, L; second 
moment of area, I

Modulus of rigidity, G; member length, L; polar 
moment of inertia of the area, J

Heat Transfer Examples

High
temperature

Heat �ow

A wall

Low
temperature

K

Thermal conductivity, K; thickness, L; area, A

continued
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24    Chapter 1    Introduction

Problem Type Examples of Parameters That Characterize a System

K

Fins
Thermal conductivity, K; perimeter, P; cross-
sectional area, A

Fluid Flow Examples

High
pressure

Low
pressure

L
D

Pipe networks
Fluid viscosity, m; pipe roughness, e; pipe diameter, 
D; pipe length, L

Water Water

Porous medium

A concrete dam

Concrete dam

k

Soil permeability, k

Electrical and Magnetism Problems

R2R1

+

-

Voltage

Electrical network Resistance, R

Stator

Rotor

Magnetic �eld of an electric motor Permeability, m

Table 1.2  Continued
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Section 1.2    Numerical Methods    25

On the other hand, there are parameters that produce disturbances in a system. 
These types of parameters are summarized in Table 1.3. Examples of these parameters 
include external forces, moments, temperature difference across a medium, and pressure 
difference in fluid flow.

The system characteristics as shown in Table 1.2 dictate the natural behavior of a 
system, and they always appear in the homogenous part of the solution of a governing 
differential equation. In contrast, the parameters that cause the disturbances appear 
in the particular solution. It is important to understand the role of these parameters in 
finite element modeling in terms of their respective appearances in stiffness or conduc-
tance matrices and load or forcing matrices. The system characteristics will always show 
up in the stiffness matrix, conductance matrix, or resistance matrix, whereas the distur-
bance parameters will always appear in the load matrix. We will explain the concepts of 
stiffness, conductance, and load matrices in Section 1.5.

1.2 N umerical Methods

There are many practical engineering problems for which we cannot obtain exact solu-
tions. This inability to obtain an exact solution may be attributed to either the complex 
nature of governing differential equations or the difficulties that arise from dealing with 
the boundary and initial conditions. To deal with such problems, we resort to numerical 
approximations. In contrast to analytical solutions, which show the exact behavior of 
a system at any point within the system, numerical solutions approximate exact solu-
tions only at discrete points, called nodes. The first step of any numerical procedure 
is discretization. This process divides the medium of interest into a number of small 
subregions (elements) and nodes. There are two common classes of numerical meth-
ods: (1) finite difference methods and (2) finite element methods. With finite difference 
methods, the differential equation is written for each node, and the derivatives are 
replaced by difference equations. This approach results in a set of simultaneous linear 
equations. Although finite difference methods are easy to understand and employ in 
simple problems, they become difficult to apply to problems with complex geometries 
or complex boundary conditions. This situation is also true for problems with noniso-
tropic material properties.

In contrast, the finite element method uses integral formulations rather than differ-
ence equations to create a system of algebraic equations. Moreover, a continuous func-
tion is assumed to represent the approximate solution for each element. The complete 
solution is then generated by connecting or assembling the individual solutions, allowing 
for continuity at the interelemental boundaries.

Table 1.3  Parameters causing disturbances in various engineering systems�

Problem Type Examples of Parameters that Produce Disturbances in a System

Solid Mechanics External forces and moments; support excitation

Heat Transfer Temperature difference; heat input

Fluid Flow and Pipe Networks Pressure difference; rate of flow

Electrical Network Voltage difference
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1.3 �A  Brief History* of the Finite Element 
Method and ANSYS

The finite element method is a numerical procedure that can be applied to obtain solu-
tions to a variety of problems in engineering. Steady, transient, linear, or nonlinear prob-
lems in stress analysis, heat transfer, fluid flow, and electromagnetism problems may be 
analyzed with finite element methods. The origin of the modern finite element method 
may be traced back to the early 1900s when some investigators approximated and mod-
eled elastic continua using discrete equivalent elastic bars. However, Courant (1943) 
has been credited with being the first person to develop the finite element method. In 
a paper published in the early 1940s, Courant used piecewise polynomial interpolation 
over triangular subregions to investigate torsion problems.

The next significant step in the utilization of finite element methods was taken by 
Boeing in the 1950s when Boeing, followed by others, used triangular stress elements to 
model airplane wings. Yet, it was not until 1960 that Clough made the term finite element 
popular. During the 1960s, investigators began to apply the finite element method to 
other areas of engineering, such as heat transfer and seepage flow problems. Zienkiewicz 
and Cheung (1967) wrote the first book entirely devoted to the finite element method 
in 1967. In 1971, ANSYS was released for the first time.

ANSYS is a comprehensive general-purpose finite element computer program 
that contains more than 100,000 lines of code. ANSYS is capable of performing static, 
dynamic, heat transfer, fluid flow, and electromagnetism analyses. ANSYS has been a 
leading FEA program for over 40 years. The current version of ANSYS has a completely 
new look, with multiple windows incorporating a graphical user interface (GUI), pull-
down menus, dialog boxes, and a tool bar. Today, you will find ANSYS in use in many 
engineering fields, including aerospace, automotive, electronics, and nuclear. In order 
to use ANSYS or any other “canned” FEA computer program intelligently, it is impera-
tive that one first fully understands the underlying basic concepts and limitations of the 
finite element methods.

ANSYS is a very powerful and impressive engineering tool that may be used to solve 
a variety of problems (see Table 1.4). However, a user without a basic understanding of 
the finite element methods will find himself or herself in the same predicament as a com-
puter technician with access to many impressive instruments and tools, but who cannot 
fix a computer because he or she does not understand the inner workings of a computer!

1.4 B asic Steps in the Finite Element Method

The basic steps involved in any finite element analysis consist of the following:

Preprocessing Phase

	 1.	 Create and discretize the solution domain into finite elements; that is, subdivide 
the problem into nodes and elements.

*See Cook et al. (1989) for more detail.
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Table 1.4  Examples of the capabilities of ANSYS*

A V6 engine used in front-wheel-drive automobiles 
analyses were conducted by Analysis & Design Appl.  
Co. Ltd. (ADAPCO) on behalf of a major U.S. 
automobile manufacturer to improve product 
performance. Contours of thermal stress in the engine 
block are shown in the figure above.

Large deflection capabilities of ANSYS were utilized 
by engineers at Today’s Kids, a toy manufacturer, to 
confirm failure locations on the company’s play slide, 
shown in the figure above, when the slide is subjected to 
overload. This nonlinear analysis capability is required 
to detect these stresses because of the product’s 
structural behavior.

Electromagnetic capabilities of ANSYS, which include 
the use of both vector and scalar potentials interfaced 
through a specialized element, as well as a three-
dimensional graphics representation of far-field decay 
through infinite boundary elements, are depicted in 
this analysis of a bath plate, shown in the figure above. 
Isocontours are used to depict the intensity of the H-field.

Structural Analysis Engineering Corporation used 
ANSYS to determine the natural frequency of a rotor 
in a disk-brake assembly. In this analysis, 50 modes of 
vibration, which are considered to contribute to brake 
squeal, were found to exist in the light-truck brake rotor.

*Photographs courtesy of ANSYS, Inc., Canonsburg, PA.
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	 2.	 Assume a shape function to represent the physical behavior of an element; that is, 
a continuous function is assumed to represent the approximate behavior (solution) 
of an element.

	 3.	 Develop equations for an element.
	 4.	 Assemble the elements to present the entire problem. Construct the global stiff-

ness matrix.
	 5.	 Apply boundary conditions, initial conditions, and loading.

Solution Phase

	 6.	 Solve a set of linear or nonlinear algebraic equations simultaneously to obtain 
nodal results, such as displacement values at different nodes or temperature values 
at different nodes in a heat transfer problem.

Postprocessing Phase

	 7.	 Obtain other important information. At this point, you may be interested in values 
of principal stresses, heat fluxes, and so on.

In general, there are several approaches to formulating finite element prob-
lems: (1) direct formulation, (2) the minimum total potential energy formulation, and 
(3) weighted residual formulations. Again, it is important to note that the basic steps 
involved in any finite element analysis, regardless of how we generate the finite element 
model, will be the same as those listed above.

1.5 Di rect Formulation

The following problem illustrates the steps and the procedure involved in direct 
formulation.

Example 1.1

Consider a bar with a variable cross section supporting a load P, as shown in Figure 1.1. 
The bar is fixed at one end and carries the load P at the other end. Let us designate 
the width of the bar at the top by w1, at the bottom by w2, its thickness by t, and its 
length by L. The bar’s modulus of elasticity will be denoted by E. We are interested in 
approximating how much the bar will deflect at various points along its length when it 
is subjected to the load P. We will neglect the weight of the bar in the following analysis, 
assuming that the applied load is considerably larger than the weight of the bar:

Preprocessing Phase

	 1.	 Discretize the solution domain into finite elements.
We begin by subdividing the problem into nodes and elements. In order to high-
light the basic steps in a finite element analysis, we will keep this problem simple 
and thus represent it by a model that has five nodes and four elements, as shown 
in Figure 1.2. However, note that we can increase the accuracy of our results by 
generating a model with additional nodes and elements. This task is left as an exer-
cise for you to complete. (See Problem 1 at the end of this chapter.) The given bar 
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is modeled using four individual segments (elements), with each segment having 
a uniform cross section. The cross-sectional area of each element is represented 
by an average area of the cross sections at the nodes that make up (define) the 
element. This model is shown in Figure 1.2.

	 2.	 Assume a solution that approximates the behavior of an element.
In order to study the behavior of a typical element, let’s consider the deflection of 
a solid member with a uniform cross section A that has a length / when subjected 
to a force F, as shown in Figure 1.3.

The average stress s in the member is given by

	 s =
F
A

	 (1.1)

The average normal strain e of the member is defined as the change in length 
∆/ per unit original length / of the member:

	 e =
∆/
/

	 (1.2)

Figure 1.1  A bar under axial loading.

L

P

y

w1

w2

A1

A2

A3

A4

2

3

4

5

Element 1

Element 2

Element 3

Element 4

u1

u2

u3

u4

u5

1

L

5

P P P

/1

/2

/3

/4

1

2

3

4

Figure 1.2  Subdividing the bar into elements and nodes.
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Over the elastic region, the stress and strain are related by Hooke’s law, 
according to the equation

	 s = Ee	 (1.3)

where E is the modulus of elasticity of the material. Combining Eqs. (1.1), (1.2), 
and (1.3) and simplifying, we have

	 F = ¢AE
/

≤∆/	 (1.4)

Note that Eq. (1.4) is similar to the equation for a linear spring, F = kx. 
Therefore, a centrally loaded member of uniform cross section may be modeled 
as a spring with an equivalent stiffness of

	 keq =
AE

/
	 (1.5)

Turning our attention to Example 1.1, we note once again that the bar’s cross sec-
tion varies in the y-direction. As a first approximation, we model the bar as a series 
of centrally loaded members with different cross sections, as shown in Figure 1.2. 
Thus, the bar is represented by a model consisting of four elastic springs (elements) 
in series, and the elastic behavior of an element with nodes i and i + 1 is modeled 
by an equivalent linear spring according to the equation

	 f = keq(ui + 1 - ui) =
AavgE

/
 (ui + 1 - ui) =

(Ai + 1 + Ai)E

2/
 (ui + 1 - ui)	 (1.6)

where ui + 1 and ui are the deflections at nodes i + 1 and i, and the equivalent ele-
ment stiffness is given by

	 keq =
(Ai + 1 + Ai)E

2/
	 (1.7)

Ai and Ai + 1 are the cross-sectional areas of the member at nodes i and i + 1 
respectively, and / is the length of the element. Employing the above model, let us 
consider the forces acting on each node. The free-body diagram of nodes, which 
shows the forces acting on nodes 1 through 5 of this model, is depicted in Figure 1.4.

Figure 1.3  A solid member of uniform 
cross section subjected to a force F.

/

∆/ x

F F

kequivalent
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Static equilibrium requires that the sum of the forces acting on each node be 
zero. This requirement creates the following five equations:

	  node 1: R1 - k1(u2 - u1) = 0 	 (1.8)

	  node 2: k1(u2 - u1) - k2(u3 - u2) = 0	

	  node 3: k2(u3 - u2) - k3(u4 - u3) = 0	

	  node 4: k3(u4 - u3) - k4(u5 - u4) = 0	

	  node 5: k4(u5 - u4) - P = 0 	

Rearranging the equilibrium equations given by Eq. (1.8) by separating the 
reaction force R1 and the applied external force P from the internal forces, we 
have

  k1u1 -k1u2 = -R1

-k1u1 +k1u2 +k2u2 -k2u3 = 0
-k2u2 +k2u3 +k3u3 -k3u4 = 0

       -k3u3 +k3u4 +k4u4 -k4u5 = 0
-k4u4 +k4u5 = P

	(1.9)

Node 1:

Node 2:

Node 3:

Node 4:

Node 5:

P

R1

k1(u2 – u1)

k1(u2 – u1)

k2(u3 – u2)

k2(u3 – u2)

k3(u4 – u3)

k3(u4 – u3)

k4(u5 – u4)

k4(u5 – u4)

Figure 1.4  Free body diagram of the 
nodes in Example 1.1.
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Presenting the equilibrium equations of Eq. (1.9) in a matrix form, we have

	 E k1 -k1 0 0 0
-k1 k1 + k2 -k2 0 0
0  -k2 k2 + k3 -k3 0
0 0  -k3 k3 + k4 -k4

0 0 0  -k4 k4

U e u1

u2

u3

u4

u5

u = e -R1

0
0
0
P

u 	 (1.10)

It is also important to distinguish between the reaction forces and the 
applied loads in the load matrix. To do so, the matrix relation of Eq. (1.10) is 
written ase -R1

0
0
0
0

u = E k1 -k1 0 0 0
-k1 k1 + k2 -k2 0 0
0  -k2 k2 + k3 -k3 0
0 0  -k3 k3 + k4 -k4

0 0 0  -k4 k4

U e u1

u2

u3

u4

u5

u - e 0
0
0
0
P

u 	 (1.11)

We can readily show that under additional nodal loads and other fixed bound-
ary conditions, the relationship given by Eq. (1.11) can be put into the general 
form

	 5R6 = [K]5u6 - 5F6 	 (1.12)

which stands for

5reaction matrix6 = [stiffness matrix]{displacement matrix} - 5 load matrix6

Note the difference between applied load matrix 5F6  and the reaction force 
matrix 5R6 .

Turning our attention to Example 1.1 again, we find that because the bar 
is fixed at the top, the displacement of node 1 is zero. Hence, there are only 
four unknown nodal displacement values, u2, u3, u4, and u5. The reaction force 
at node 1, R1, is also unknown—all together, there are five unknowns. Because 
there are five equilibrium equations, as given by Eq. (1.11), we should be able to 
solve for all of the unknowns. However, it is important to note that even though 
the number of unknowns match the number of equations, the system of equa-
tions contains two different types of unknowns—displacement and reaction 
force. In order to eliminate the need to consider the unknown reaction force 
simultaneously and focus first on unknown displacements, we make use of the 
known boundary condition and replace the first row of Eq. (1.10) with a row 
that reads u1 = 0. The application of the boundary condition u1 = 0 eliminates 
the need to consider the unknown reaction force in our system of equations 
and creates a set of equations with the displacements being the only unknowns. 
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Thus, application of the boundary condition leads to the following matrix  
equation:

	 E 1 0 0 0 0
-k1 k1 + k2 -k2 0 0
0  -k2 k2 + k3 -k3 0
0 0  -k3 k3 + k4 -k4

0 0 0  -k4 k4

U e u1

u2

u3

u4

u5

u = e 0
0
0
0
P

u 	 (1.13)

The solution of the above matrix yields the nodal displacement values. It should be 
clear from the above explanation and examining Eq. (1.13) that for solid mechanics 
problems, the application of boundary conditions to the finite element formulations 
transforms the system of equations as given by Eq. (1.11) to a new general form 
that is made up of only the stiffness matrix, the displacement matrix, and the load 
matrix:

[stiffness matrix]5displacement matrix6 = 5 load matrix6
After we solve for the nodal displacement values, from the above relationship, we 
use Eq. (1.12) to solve for the reaction force(s). In the next section, we will develop 
the general elemental stiffness matrix and discuss the construction of the global 
stiffness matrix by inspection.

	 3.	 Develop equations for an element.
Because each of the elements in Example 1.1 has two nodes, and with each node 
we have associated a displacement, we need to create two equations for each 
element. These equations must involve nodal displacements and the element’s 
stiffness. Consider the internally transmitted forces fi and fi + 1 and the end displace-
ments ui and ui + 1 of an element, which are shown in Figure 1.5.

Static equilibrium conditions require that the sum of fi and fi + 1 be zero. Note 
that the sum of fi and fi + 1 is zero regardless of which representation of Figure 1.5 
is selected. However, for the sake of consistency in the forthcoming derivation, we 
will use the representation given by Figure 1.5(b), so that fi and fi + 1 are given in 

Node i

Node i + 1

OR

(a)

y

fi = keq(ui+1 - ui)

fi+1 = keq(ui+1 - ui)
ui+1

ui
Node i

Node i + 1

(b)

fi = keq(ui - ui+1)

fi+1 = keq(ui+1 - ui)
ui+1

ui

Figure 1.5  Internally transmitted forces through an arbitrary element.
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the positive y-direction. Thus, we write the transmitted forces at nodes i and i + 1 
according to the following equations:

	  fi = keq(ui - ui + 1)	

	  fi + 1 = keq(ui + 1 - ui)	 (1.14)

Equation (1.14) can be expressed in a matrix form by

	 b fi

fi + 1
r = J keq -keq

-keq keq
R b ui

ui + 1
r 	 (1.15)

	 4.	 Assemble the elements to present the entire problem.
Applying the elemental description given by Eq. (1.15) to all elements and assem-
bling them (putting them together) will lead to the formation of the global stiffness 
matrix. The stiffness matrix for element (1) is given by

[K](1) = J k1 -k1

-k1 k1
R

and its position in the global stiffness matrix is given by

[K](1G) = E k1 -k1 0 0 0
-k1 k1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

U  

u1

u2

u3

u4

u5

The nodal displacement matrix is shown alongside the position of element 1 
in the global stiffness matrix to aid us to observe the contribution of a node to its 
neighboring elements. Similarly, for elements (2), (3), and (4), we have

[K](2) = J k2 -k2

-k2 k2
R

and its position in the global matrix

 [K](2G) = E0 0 0 0 0
0 k2 -k2 0 0
0  -k2 k2 0 0
0 0 0 0 0
0 0 0 0 0

U  

u1

u2

u3

u4

u5

 [K](3) = J k3 -k3

-k3 k3
R

and its position in the global matrix

[K](3G) = E0 0 0 0 0
0 0 0 0 0
0 0 k3 -k3 0
0 0  -k3 k3 0
0 0 0 0 0

U  

u1

u2

u3

u4

u5
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and

[K](4) = J k4 -k4

-k4 k4
R

and its position in the global matrix

[K](4G) = E0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 k4 -k4

0 0 0  -k4 k4

U  

u1

u2

u3

u4

u5

The final global stiffness matrix is obtained by assembling, or adding together, each 
element’s position in the global stiffness matrix:

	  [K](G) = [K](1G) + [K](2G) + [K](3G) + [K](4G) 	

	  [K](G) = E k1 -k1 0 0 0
-k1 k1 + k2 -k2 0 0
0  -k2 k2 + k3 -k3 0
0 0  -k3 k3 + k4 -k4

0 0 0  -k4 k4

U 	 (1.16)

Note that the global stiffness matrix obtained using elemental description, as given 
by Eq. (1.16), is identical to the global stiffness matrix we obtained earlier from 
the analysis of the free-body diagrams of the nodes, as given by the left-hand side 
of Eq. (1.10).

	 5.	 Apply boundary conditions and loads.
The bar is fixed at the top, which leads to the boundary condition u1 = 0. The 
external load P is applied at node 5. Applying these conditions results in the fol-
lowing set of linear equations.

	 E 1 0 0 0 0
-k1 k1 + k2 -k2 0 0
0  -k2 k2 + k3 -k3 0
0 0  -k3 k3 + k4 -k4

0 0 0  -k4 k4

U  e u1

u2

u3

u4

u5

u = e 0
0
0
0
P

u 	 (1.17)

Again, note that the first row of the matrix in Eq. (1.17) must contain a 1 followed 
by four 0s to read u1 = 0, the given boundary condition. As explained earlier, also 
note that in solid mechanics problems, the finite element formulation will always 
lead to the following general form:

[stiffness matrix]5displacement matrix6 = 5 load matrix6
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Solution Phase

	 6.	 Solve a system of algebraic equations simultaneously.
In order to obtain numerical values of the nodal displacements, let us assume that 
E = 10.4 * 106 lb/in2 (aluminum), w1 = 2 in, w2 = 1 in, t = 0.125 in, L = 10 in, 
and P = 1000 lb. You may consult Table 1.5 while working toward the solution.

Table 1.5  Properties of the elements in Example 1.1

Element Nodes

Average  
Cross-Sectional 

Area (in2) Length (in)

Modulus of 
Elasticity  
(lb/in2)

Element’s Stiffness 
Coefficient  

(lb/in)

1 1  2 0.234375 2.5 10.4 * 106 975 * 103

2 2  3 0.203125 2.5 10.4 * 106 845 * 103

3 3  4 0.171875 2.5 10.4 * 106 715 * 103

4 4  5 0.140625 2.5 10.4 * 106 585 * 103

The variation of the cross-sectional area of the bar in the y-direction can be 
expressed by:

A(y) = ¢w1 + ¢w2 - w1

L
≤y≤t = ¢2 +

(1 - 2)

10
y≤(0.125) = 0.25 - 0.0125y	 (1.18)

Using Eq. (1.18), we can compute the cross-sectional areas at each node:

A1 = 0.25 in2 A2 = 0.25 - 0.0125(2.5) = 0.21875 in2

A3 = 0.25 - 0.0125(5.0) = 0.1875 in2 A4 = 0.25 - 0.0125(7.5) = 0.15625 in2

A5 = 0.125 in2

Next, the equivalent stiffness coefficient for each element is computed from the 
equations

 keq =
(Ai + 1 + Ai)E

2/

 k1 =
(0.21875 + 0.25)(10.4 * 106)

2(2.5)
= 975 * 103  

lb
in

 k2 =
(0.1875 + 0.21875)(10.4 * 106)

2(2.5)
= 845 * 103  

lb
in

 k3 =
(0.15625 + 0.1875)(10.4 * 106)

2(2.5)
= 715 * 103  

lb
in

 k4 =
(0.125 + 0.15625)(10.4 * 106)

2(2.5)
= 585 * 103  

lb
in
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and the elemental matrices are

[K](1) = J k1 -k1

-k1 k1
R = 103J 975  -975

-975 975
R

[K](2) = J k2 -k2

-k2 k2
R = 103J 845  -845

-845 845
R

[K](3) = J k3 -k3

-k3 k3
R = 103J 715  -715

-715 715
R

[K](4) = J k4 -k4

-k4 k4
R = 103J 585  -585

-585 585
R

Assembling the elemental matrices leads to the generation of the global stiffness 
matrix:

[K](G) = 103E 975  -975 0 0 0
-975 975 + 845  -845 0 0

0  -845 845 + 715  -715 0
0 0  -715 715 + 585  -585
0 0 0  -585 585

U
Applying the boundary condition u1 = 0 and the load P = 1000 lb, we get

103E 1 0 0 0 0
-975 1820  -845 0 0

0  -845 1560  -715 0
0 0  -715 1300  -585
0 0 0  -585 585

U  e u1

u2

u3

u4

u5

u = e 0
0
0
0

103

u
Because in the second row, the -975 coefficient gets multiplied by u1 = 0, we 
need only to solve the following 4 * 4 matrix:

103D 1820  -845 0 0
-845 1560  -715 0

0  -715 1300  -585
0 0  -585 585

T  d u2

u3

u4

u5

t = d 0
0
0

103

t
The displacement solution is u1 = 0, u2 = 0.001026 in, u3 = 0.002210 in, 
u4 = 0.003608 in, and u5 = 0.005317 in.

Postprocessing Phase

	 7.	 Obtain other information.
For Example 1.1, we may be interested in obtaining other information, such as the 
average normal stresses in each element. These values can be determined from 
the equation

	 s =
f

Aavg
=

keq(ui + 1 - ui)

Aavg
=

AavgE

/
 (ui + 1 - ui)

Aavg
= E¢ui + 1 - ui

/
≤	 (1.19)
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f = P

f = P

L

P

y

P P= 1000 lb

Figure 1.6  The internal forces in Example 1.1.

Since the displacements of different nodes are known, Eq. (1.19) could have been 
obtained directly from the relationship between the stresses and strains,

	 s = Ee = E¢ui + 1 - ui

/
≤	 (1.20)

Employing Eq. (1.20) in Example 1.1, we compute the average normal stress for 
each element as

 s(1) = E¢u2 - u1

/
≤ =

(10.4 * 106)(0.001026 - 0)

2.5
= 4268  

lb
in2

 s(2) = E¢u3 - u2

/
≤ =

(10.4 * 106)(0.002210 - 0.001026)

2.5
= 4925  

lb
in2

 s(3) = E¢u4 - u3

/
≤ =

(10.4 * 106)(0.003608 - 0.002210)

2.5
= 5816  

lb
in2

 s(4) = E¢u5 - u4

/
≤ =

(10.4 * 106)(0.005317 - 0.003608)

2.5
= 7109  

lb
in2

In Figure 1.6, we note that for the given problem, regardless of where we cut a 
section through the bar, the internal force at the section is equal to 1000 lb. So,

s(1) =
f

Aavg
=

1000
0.234375

= 4267 
lb
in2

s(2) =
f

Aavg
=

1000
0.203125

= 4923 
lb
in2

s(3) =
f

Aavg
=

1000
0.171875

= 5818 
lb
in2

s(4) =
f

Aavg
=

1000
0.140625

= 7111 
lb
in2
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Ignoring the errors we get from rounding off our answers, we find that these 
results are identical to the element stresses computed from the displacement 
information. This comparison tells us that our displacement calculations are good 
for this problem.

Reaction Forces  For Example 1.1, the reaction force may be computed in a num-
ber of ways. First, referring to Figure 1.4, we note that the statics equilibrium at 
node 1 requires

R1 = k1(u2 - u1) = 975 * 103(0.001026 - 0) = 1000 lb

The statics equilibrium for the entire bar also requires that

R1 = P = 1000 lb

As you may recall, we can also compute the reaction forces from the general reac-
tion equation

5R6 = [K]5u6 - 5F6
or

5reaction matrix6 = [stiffness matrix]5displacement matrix6 - 5 load matrix6
Because Example 1.1 is a simple problem, we do not actually need to go through 
the matrix operations in the aforementioned general equation to compute the 
reaction forces. However, as a demonstration, the procedure is shown here. From 
the general equation, we gete R1

R2

R3

R4

R5

u = 103E 975  -975 0 0 0
-975 1820  -845 0 0

0  -845 1560  -715 0
0 0  -715 1300  -585
0 0 0  -585 585

U  e 0
0.001026
0.002210
0.003608
0.005317

u - e 0
0
0
0

103

u
where R1, R2, R3, R4, and R5 represent the reactions forces at nodes 1 through 5 
respectively. Performing the matrix operation, we havee R1

R2

R3

R4

R5

u = e -1000
0
0
0
0

u
The negative value of R1 simply means that the direction of the reaction force is 
up (because we assumed that the positive y-direction points down). Of course, 
as expected, the outcome is the same as in our earlier calculations because the 
rows of the above matrix represent the static equilibrium conditions at each 
node. When solving for reaction forces, it is important to note that you must use 
the complete stiffness matrix, without the influence of boundary conditions, as 
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shown in Equations (1.11) and (1.12). Next, we will consider finite element for-
mulation of a heat transfer problem. Example 1.1 also is solved using Excel. See 
Section 2.11. 

Example 1.2

A typical exterior frame wall (made up of 2 * 4 studs) of a house contains the materi-
als shown in the table below. Let us assume an inside room temperature of 70°F and an 
outside air temperature of 20°F, with an exposed area of 150 ft2. We are interested in 
determining the temperature distribution through the wall.

Items
Resistance  

hr # ft2 # °F/Btu
U-factor  

Btu/hr # ft2 # °F

1. �Outside film resistance (winter,  
  15-mph wind)

    0.17 5.88

2. �Siding, wood (1/2 * 8 lapped)     0.81   1.23

3. Sheathing (1/2 in regular)     1.32 0.76

4. Insulation batt (3 - 3½ in) 11.0   0.091

5. Gypsum wall board (1/2 in)     0.45 2.22

6. Inside film resistance (winter)     0.68   1.47	
1

2
3

4
5

6

Preprocessing Phase

	 1.	 Discretize the solution domain into finite elements.
We will represent this problem by a model that has seven nodes and six elements, 
as shown in Figure 1.7.

	 2.	 Assume a solution that approximates the behavior of an element.
For Example 1.2, there are two modes of heat transfer (conduction and convec-
tion) that we must first understand before we can proceed with formulating the 
conductance matrix and the thermal load matrix. The steady-state thermal behav-
ior of the elements (2), (3), (4), and (5) may be modeled using Fourier’s law. When 
there exists a temperature gradient in a medium, conduction heat transfer occurs, 
as shown in Figure 1.8. The energy is transported from the high-temperature region 

T1 = 205F T7 = 705F

1 (1) (2) (3) (4) (5) (6)2 3 4 5 6 7

Siding

Element 2

Sheathing

Element 3

Insulation
Batt

Element4

Gypsum
Board

Element 5

Figure 1.7  Finite element model of Example 1.2.

M01_MOAV4303_04_GE_C01.INDD   40 27/11/14   9:33 AM

www.FreeEngineeringbooksPdf.com



Section 1.5    Direct Formulation    41

Ti

Ti+1

qX

X

k

/

to the low-temperature region by molecular activities. The heat transfer rate is 
given by Fourier’s law:

	 qX = -kA 
0T
0X

	 (1.21)

qX is the X-component of the heat transfer rate, k is the thermal conductivity of 

the medium, A is the area normal to heat flow, and 
0T
0X

 is the temperature gradient. 

The minus sign in Eq. (1.21) is due to the fact that heat flows in the direction of 
decreasing temperature. Equation (1.21) can be written in a difference form in 
terms of the spacing between the nodes (length of the element) / and the respec-
tive temperatures of the nodes i and i + 1, Ti and Ti + 1, according to the equation

	 q =
kA(Ti + 1 - Ti)

/
	 (1.22)

In the field of heat transfer, it is also common to write Eq. (1.22) in terms 
of the thermal transmittance coefficient U, or, as it is often called, the U-factor 
(U = k

/). The U-factor represents thermal transmission through a unit area 
and has the units of Btu/hr #  ft2 #  °F. It is the reciprocal of thermal resistance. So, 
Equation (1.22) becomes

	 q = UA(Ti + 1 - Ti)	 (1.23)

The steady-state thermal behavior of elements (1) and (6) may be modeled 
using Newton’s law of cooling. Convection heat transfer occurs when a fluid in 
motion comes into contact with a surface whose temperature differs from the 
moving fluid. The overall heat transfer rate between the fluid and the surface is 
governed by Newton’s law of cooling, according to the equation

	 q = hA(Ts - Tf)	 (1.24)

Figure 1.8  Heat transfer in a medium 
by conduction.
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where h is the heat transfer coefficient, Ts is the surface temperature, and Tf  
represents the temperature of the moving fluid. Newton’s law of cooling can also 
be written in terms of the U-factor, such that

	 q = UA(Ts - Tf)	 (1.25)

where U = h, and it represents the reciprocal of thermal resistance due to con-
vection boundary conditions. Under steady-state conduction, the application of 
energy balance to a surface, with a convective heat transfer, requires that the 
energy transferred to this surface via conduction must be equal to the energy 
transfer by convection. This principle,

	 -kA
0T
0X

= hA[Ts - Tf]	 (1.26)

is depicted in Figure 1.9.
Now that we understand the two modes of heat transfer involved in this 

problem, we can apply the energy balance to the various surfaces of the wall, 
starting with the wall’s exterior surface located at node 2. The heat loss through 
the wall due to conduction must equal the heat loss to the surrounding cold air 
by convection. That is,

U2A(T3 - T2) = U1A(T2 - T1)

The application of energy balance to surfaces located at nodes 3, 4, and 5 yields 
the equations

U3A(T4 - T3) = U2A(T3 - T2)

U4A(T5 - T4) = U3A(T4 - T3)

U5A(T6 - T5) = U4A(T5 - T4)

For the interior surface of the wall, located at node 6, the heat loss by convection 
of warm air is equal to the heat transfer by conduction through the gypsum board, 
according to the equation

U6A(T7 - T6) = U5A(T6 - T5)

k

qconduction =-kA 0X
0T

qconvection = hA[Ts - Tf

Tf , h

Ti = Ts

]

Ti+1

X

/

Figure 1.9  Energy balance at a surface 
with a convective heat transfer.
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Separating the known temperatures from the unknown temperatures, we have

+(U1 + U2)AT2 -U2AT3 = U1AT1

-U2AT2 +(U2 + U3)AT3 -U3AT4 = 0
-U3AT3 +(U3 + U4)AT4 -U4AT5 = 0

-U4AT4 +(U4 + U5)AT5 -U5AT6 = 0
-U5AT5 +(U5 + U6)AT6 = U6AT7

The above relationships can be represented in matrix form as

AEU1 + U2 -U2 0 0 0
-U2 U2 + U3 -U3 0 0

0  -U3 U3 + U4 -U4 0
0 0  -U4 U4 + U5 -U5

0 0 0  -U5 U5 + U6

U e T2

T3

T4

T5

T6

u = e U1AT1

0
0
0

U6AT7

u 	 (1.27)

Note that the relationship given by Eq. (1.27) was developed by applying the con-
servation of energy to the surfaces located at nodes 2, 3, 4, 5, and 6. Next, we will 
consider the elemental formulation of this problem, which will lead to the same 
results.

	 3.	 Develop equations for an element.
In general, for conduction problems, the heat transfer rates qi and qi + 1 and the 
nodal temperatures Ti and Ti + 1 for an element are related according to the 
equations

	  qi =
kA
/

(Ti - Ti + 1)	

	  qi + 1 =
kA
/

(Ti + 1 - Ti)	 (1.28)

The heat flow through nodes i and i + 1 is depicted in Figure 1.10.
Because each of the elements in Example 1.2 has two nodes, and we have 

associated a temperature with each node, we want to create two equations for 
each element. These equations must involve nodal temperatures and the element’s 
thermal conductivity or U-factor, based on Fourier’s law. Under steady-state con-
ditions, the application of the conservation of energy requires that the sum of qi 
and qi + 1 into an element be zero; that is, the energy flowing into node i + 1 must 
be equal to the energy flowing out of node i. Note that the sum of qi and qi + 1 is 
zero regardless of which representation of Figure 1.10 is selected. However, for the 
sake of consistency in the forthcoming derivation, we will use the representation 
given by Figure 1.10(b). Elemental description given by Eq. (1.28) can be expressed 
in matrix form by

	 b qi

qi + 1
r =

kA
/

J 1  -1
-1 1

R b Ti

Ti + 1
r 	 (1.29)
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The thermal conductance matrix for an element is

	 [K](e) =
kA
/

J 1  -1
-1 1

R 	 (1.30)

The conductance matrix can also be written in terms of the U-factor ¢U =
k
/
≤:

	 [K](e) = UAJ 1  -1
-1 1

R 	 (1.31)

Similarly, under steady-state conditions, the application of the conservation of 
energy to the nodes of a convective element gives

	 qi  = hA(Ti - Ti + 1)	

	 qi + 1 = hA(Ti + 1 - Ti)	 (1.32)

Equation (1.32) expressed in a matrix form isb qi

qi + 1
r = hAJ 1  -1

- 1 1
R  b Ti

Ti + 1
r

The thermal conductance matrix for a convective element then becomes

	 [K](e) = hAJ 1  -1
-1 1

R 	 (1.33)

Equation (1.33) can also be written in terms of the U-factor (U = h):

	 [K](e) = UAJ 1  -1
-1 1

R 	 (1.34)

Ti+1 Ti+1

TiTi

k k

kA

XX

(b)(a)

/
qi = (Ti – Ti+1)

kA
/

qi+1 = (Ti+1 – Ti)
kA
/

qi+1 = (Ti+1 – Ti)

kA
/

qi = (Ti+1 – Ti)

/ /

Figure 1.10  Heat flow through nodes i and i + 1.
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	 4.	 Assemble the elements to present the entire problem.
Applying the elemental description given by Eqs. (1.31) and (1.34) to all of the 
elements in Example 1.2 and assembling leads to the formation of the global stiff-
ness matrix. So,

[K](1) = AJ U1 -U1

-U1 U1
R

and its position in the global matrix is

[K](1G) = AG U1 -U1 0 0 0 0 0
-U1 U1 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

W  

T1

T2

T3

T4

T5

T6

T7

The nodal temperature matrix is shown along with the global thermal conductance 
matrix to help you observe the contribution of a node to its neighboring elements:

[K](2) = AJ U2 -U2

-U2 U2
R  and [K](2G) = AG0 0 0 0 0 0 0

0 U2 -U2 0 0 0 0
0  -U2 U2 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

W  

T1

T2

T3

T4

T5

T6

T7

[K](3) = AJ U3 -U3

-U3 U3
R  and [K](3G) = AG0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 U3 -U3 0 0 0
0 0  -U3 U3 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

W  

T1

T2

T3

T4

T5

T6

T7

[K](4) = AJ U4 -U4

-U4 U4
R  and [K](4G) = AG0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 U4 -U4 0 0
0 0 0  -U4 U4 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

W  

T1

T2

T3

T4

T5

T6

T7
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[K](5) = AJ U5 -U5

-U5 U5
R  and [K](5G) = AG0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 U5 -U5 0
0 0 0 0  -U5 U5 0
0 0 0 0 0 0 0

W  

T1

T2

T3

T4

T5

T6

T7

[K](6) = AJ U6 -U6

-U6 U6
R  and [K](6G) = AG0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 U6 -U6

0 0 0 0 0  -U6 U6

W  

T1

T2

T3

T4

T5

T6

T7

The global conductance matrix is

[K](G) = [K](1G) + [K](2G) + [K](3G) + [K](4G) + [K](5G) + [K](6G)

[K](G) = AG U1 -U1 0 0 0 0 0
-U1 U1 + U2 -U2 0 0 0 0

0  -U2 U2 + U3 -U3 0 0 0
0 0  -U3 U3 + U4 -U4 0 0
0 0 0  -U4 U4 + U5 -U5 0
0 0 0 0  -U5 U5 + U6 -U6

0 0 0 0 0  -U6 U6

W 	 (1.35)

	 5.	 Apply boundary conditions and thermal loads.
For the given problem, the exterior of the wall is exposed to a known air tempera-
ture T1, and the room temperature, T7, is also known. Thus, we want the first row 
to read T1 = 20°F and the last row to read T7 = 70°F. So, we have

AG 1�A 0 0 0 0 0 0
-U1 U1 + U2 -U2 0 0 0 0

0  -U2 U2 + U3 -U3 0 0 0
0 0  -U3 U3 + U4 -U4 0 0
0 0 0  -U4 U4 + U5 -U5 0
0 0 0 0  -U5 U5 + U6 -U6

0 0 0 0 0 0 1/A

W  g T1

T2

T3

T4

T5

T6

T7

w = g 20°F
0
0
0
0
0

70°F

w 	 (1.36)
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Note that the finite element formulation of heat transfer problems will always lead 
to an equation of the form

[K]5T6 = 5q6
[conductance matrix]5 temperature matrix6 = 5heat flow matrix6

Also note that for Example 1.2, the heat transfer rate through each element was 
caused by temperature differences across the nodes of a given element. Thus, the 
external nodal heat flow values are zero in the heat flow matrix. An example 
of a situation in which external nodal heat values are not zero is a heating strip 
attached to a solid surface (e.g., the base of a pressing iron); for such a situation, 
the external nodal heat value is equal to the amount of heat being generated by 
the heating strip over the surface. Turning our attention to the matrices given by 
Eq. (1.36) and incorporating the known boundary conditions into rows 2 and 6 of 
the conductance matrix, we can reduce Eq. (1.36) to

AEU1 + U2 -U2 0 0 0
-U2 U2 + U3 -U3 0 0

0  -U3 U3 + U4 -U4 0
0 0  -U4 U4 + U5 -U5

0 0 0  -U5 U5 + U6

U  e T2

T3

T4

T5

T6

u = e U1AT1

0
0
0

U6AT7

u
Keep in mind that the above matrix was obtained by assembling the elemental 
description and applying the boundary conditions. Moreover, the results of this 
approach are identical to the relations we obtained earlier by balancing the heat 
flows at the nodes, as given by Eq. (1.27). This equality in the outcome is expected 
because the elemental formulations are based on the application of energy bal-
ance as well.

Referring to the original global matrix, substituting for the U-values and 
employing the given boundary conditions, we have

150I 1
150

0 0 0 0 0 0

-5.885.88 + 1.23  -1.23 0 0 0 0
0  -1.23 1.23 + 0.76  -0.76 0 0 0
0 0  -0.76 0.76 + 0.091  -0.091 0 0
0 0 0  -0.091 0.091 + 2.22  -2.22 0
0 0 0 0  -2.22 2.22 + 1.47 -1.47

0 0 0 0 0 0
1

150

Y  g T1

T2

T3

T4

T5

T6

T7

w = g 20°F
0
0
0
0
0

70°F

w
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Simplifying, we obtainE 7.11  -1.23 0 0 0
-1.23 1.99  -0.76 0 0

0  -0.76 0.851  -0.091 0
0 0  -0.091 2.311  -2.22
0 0 0  -2.22 3.69

U  e T2

T3

T4

T5

T6

u = e (5.88)(20)
0
0
0

(1.47)(70)

u
Solution Phase

	 6.	 Solve a system of algebraic equations simultaneously.
Solving the previous matrix yields the temperature distribution along the wall:

g T1

T2

T3

T4

T5

T6

T7

w = g 20.00
20.59
23.41
27.97
66.08
67.64
70.00

w °C

For problems similar to the type discussed here, the knowledge of temperature 
distribution within the wall is important in determining where condensation may 
occur in the wall and thus where one should place a vapor barrier to avoid mois-
ture condensation. To demonstrate this concept, let us assume that moisture can 
diffuse through the gypsum board and that the inside air has a relative humid-
ity of 40%. With the help of a psychometric chart, using a dry bulb temperature 
of  70°F and the value f = 40,, we identify the condensation temperature to 
be 44°F. Therefore, the water vapor in the air at any surface whose temperature 
is 44°F or below will condense. In the absence of a vapor barrier, the water vapor 
in the air will condense somewhere between surface 5 and 4 for the assumed con-
ditions in this problem.

Postprocessing Phase

	 7.	 Obtain other information.
For this example, we may be interested in obtaining other information, such as 
heat loss through the wall. Such information is important in computing the heat 
load for a building. Because we have assumed steady-state conditions, the heat 
loss through the wall should be equal to the heat transfer through each element. 
This value can be determined from the equation

	 q = UA(Ti + 1 - Ti)	 (1.37)
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The heat transfer through each element is

 q = UA(Ti + 1 - Ti) = (1.47)(150)(70 - 67.64) = (2.22)(150)(67.64 - 66.08) = g

 = (5.88)(150)(20.59 - 20) = 520 
Btu
hr

We also could have calculated the heat loss through the wall using the over-
all U‑factor in the following manner:

 q = Uoverall A(Tinside - Toutside) =
1

Σ Resistance
 A(Tinside - Toutside)

 = (0.0693)(150)(70 - 20) = 520 
Btu
hr

This problem is just another example of how we can generate finite element 
models using the direct method.

A Torsional Problem: Direct Formulation 

Example 1.3

Consider the torsion of a circular shaft, shown in Figure 1.11. Recall from your previous 
study of the mechanics of materials that the angle of twist u for a shaft with a constant 
cross-sectional area with a polar moment of inertia J and length /, made of homogenous 
material with a shear modulus of elasticity G, subject to a torque T is given by

u =
T/
JG

Using direct formulation, equilibrium conditions, and

u =
T/
JG

we can show that for an element comprising two nodes, the stiffness matrix, the angle 
of twists, and the torques are related according to the equation

	
JG
/

J 1  -1
-1 1

R  b u1

u2
r = bT1

T2
r 	 (1.38)

/

T1

T2

Figure 1.11  A torsion of circular shaft.
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We will discuss torsional problems in much more detail in Chapter 10. For now, let 
us consider a shaft that is made of two parts, as shown in Figure 1.12. Part AB is made 
of material with a shear modulus of elasticity of GAB = 3.9 * 106 lb/in2 and has a dia
meter of 1.5 in. Segment BC is made of slightly different material with a shear modulus 
of elasticity of GBC = 4.0 * 106 lb/in2 and with a diameter of 1 in. The shaft is fixed at 
both ends. A torque of 200 lb # ft is applied at D. Using three elements, let us determine 
the angle of twist at D and B, and the torsional reactions at the boundaries.

We will represent this problem by a model that has four nodes at A, B, C, and D, 
respectively, and three elements (AD, DB, BC).

The polar moment of inertia for each element is given by

 J1 = J2 =
1
2

 pr4 =
1
2

 p¢ 1.5
2

 in≤4

= 0.497 in4

 J3 =
1
2

 pr4 =
1
2

 p¢ 1.0
2

 in≤4

= 0.0982 in4

The stiffness matrix for each element is computed from Eq. (1.38) as

[K](e) =
JG
/

J 1  -1
-1 1

R
So, for element (1), the stiffness matrix is

[K](1) =
(0.497 in4)(3.9 * 106 lb/in2)

(12 * 2.5) in
 J 1  -1

-1 1
R = J 64610  -64610

-64610 64610
R  lb # in

and its position in the global stiffness matrix is

[K](1G) = D 64610  -64610 0 0
-64610 64610 0 0

0 0 0 0
0 0 0 0

T  

u1

u2

u3

u4

C
B

A

2.5 ft 2 ft1 ft

1.5 in

1 in

T = 200 lb ? ft

D

Figure 1.12  A schematic of the shaft in Example 1.3.
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Similarly, for elements (2) and (3), their respective stiffness matrices and positions in 
the global stiffness matrix are as follows:

 [K](2) =
(3.9 * 106 lb/in2)(0.497 in4)

(12 * 1.0) in
 J 1  -1

-1 1
R = J 161525  -161525

-161525 161525
R  lb # in

 [K](2G) = D0 0 0 0
0 161525  -161525 0
0  -161525 161525 0
0 0 0 0

T  

u1

u2

u3

u4

 [K](3) =
(4.0 * 106 lb/in2)(0.0982 in4)

(12 * 2.0) in
 J 1  -1

-1 1
R = J 16367  -16367

-16367 16367
R  lb # in

 [K](3G) = D0 0 0 0
0 0 0 0
0 0 16367  -16367
0 0  -16367 16367

T  

u1

u2

u3

u4

The final global matrix is obtained simply by assembling, or adding, elemental 
descriptions:

 [K](G) = [K](1G) + [K](2G) + [K](3G)

 [K](G) = D 64610  -64610 0 0
-64610 64610 + 161525  -161525 0

0  -161525 161525 + 16367  -16367
0 0  -16367 16367

T
Applying the fixed boundary conditions at points A and C and applying the external 
torque, we haveD 1 0 0 0

-64610 226135  -161525 0
0  -161525 177892  -16367
0 0 0 1

T  d u1

u2

u3

u4

t = d 0
-(200 * 12) lb # in

0
0

t
Solving the above set of equations, we obtaind u1

u2

u3

u4

t = d 0
-0.03020 rad
-0.02742 rad

0

t
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The reaction moments at boundaries A and C can be determined as follows:

 5R6 = [K]5U6 - 5T6

 d RA

RD

RB

RC

t = D 64610  -64610 0 0
-64610 226135  -161525 0

0  -161525 177892  -16367
0 0  -16367 16367

T  d 0
-0.03020 rad
-0.02742 rad

0

t - d 0
-(200 * 12) lb # in

0
0

t
 d RA

RD

RB

RC

t = d 1951 lb # in
0
0

449 lb # in

t
Note that the sum of RA and RC is equal to the applied torque of 2400 lb #in. Also note 
that the change in the diameter of the shafts will give rise to stress concentrations that 
are not accounted for by the model we used here.

Example 1.4

A steel plate is subjected to an axial load, as shown in Figure 1.13. Approximate the 
deflections and average stresses along the plate. The plate is 1/16 in thick and has a 
modulus of elasticity E = 29 * 106 lb/in2.

We may model this problem using four nodes and four elements, as shown in 
Figure 1.13. Next, we compute the equivalent stiffness coefficient for each element:

 k1 =
A1E

/1
=

(5)(0.0625)(29 * 106)

1
= 9,062,500 lb/in

 k2 = k3 =
A2E

/2
=

(2)(0.0625)(29 * 106)

4
= 906,250 lb/in

 k4 =
A4E

/4
=

(5)(0.0625)(29 * 106)

2
= 4,531,250 lb/in

The stiffness matrix for element (1) is

[K](1) = J k1 -k1

-k1 k1
R

and its position in the global stiffness matrix is

[K](1G) = D k1 -k1 0 0
-k1 k1 0 0
0 0 0 0
0 0 0 0

T  

u1

u2

u3

u4
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Similarly, the respective stiffness matrices and positions in the global stiffness matrix for 
elements (2), (3), and (4) are

[K](2) = J k2 -k2

-k2 k2
R  [K](2G) = D0 0 0 0

0 k2 -k2 0
0  -k2 k2 0
0 0 0 0

T  

u1

u2

u3

u4

[K](3) = J k3 -k3

-k3 k3
R  [K](3G) = D0 0 0 0

0 k3 -k3 0
0  -k3 k3 0
0 0 0 0

T  

u1

u2

u3

u4

[K](4) = J k4 -k4

-k4 k4
R  [K](4G) = D0 0 0 0

0 0 0 0
0 0 k4 -k4

0 0  -k4 k4

T  

u1

u2

u3

u4

800 lb(1)

1 2 3 4

(2)

(3)

(4)

k1

k2

k3

k4

800 lb

800 lb1"

2"4"1"

2"

2"

Figure 1.13  A schematic of the steel  
plate in Example 1.4.
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The final global matrix is obtained simply by assembling, or adding, the individual 
elemental matrices:

 [K](G) = [K](1G) + [K](2G) + [K](3G) + [K](4G)

 [K](G) = D k1 -k1 0 0
-k1 k1 + k2 + k3 -k2 -k3 0
0  -k2 -k3 k2 + k3 + k4 -k4

0 0  -k4 k4

T
Substituting for the elements’ respective stiffness coefficients, the global stiffness matrix 
becomes

[K](G) = D 9,062,500  -9,062,500 0 0
-9,062,500 10,875,000  -1,812,500 0

0  -1,812,500 6,343,750  -4,531,250
0 0  -4,531,250 4,531,250

T
Applying the boundary condition u1 = 0 and the load to node 4, we obtainD 1 0 0 0

-9,062,500 10,875,000  -1,812,500 0
0  -1,812,500 6,343,750  -4,531,250
0 0  -4,531,250 4,531,250

T  d u1

u2

u3

u4

t = d 0
0
0

800

t
Solving the system of equations yields the displacement solution asd u1

u2

u3

u4

t = d 0
8.827 * 10-5

5.296 * 10-4

7.062 * 10-4

t  in

and the stresses in each element are

 s(1) = E¢u2 - u1

/
≤ =

(29 * 106)(8.827 * 10-5 - 0)

1
= 2560 

lb
in2

 s(2) = s(3) = E¢u3 - u2

/
≤ =

(29 * 106)(5.296 * 10-4 - 8,827 * 10-5)

4
= 3200 

lb
in2

 s(4) = E¢u4 - u3

/
≤ =

(29 * 106)(7.062 * 10-4 - 5.296 * 10-4)

2
= 2560 

lb
in2

Note that the model used to analyze this problem consisted of springs in parallel as 
well as in series. The two springs in parallel could have been combined and represented 
by a single spring having a stiffness equal to k2 + k3 (see Problem 25). Also note that 
because of the hole, the abrupt changes in the cross section of the strip will give rise to 
stress concentrations with values exceeding those average values we computed here. 
After you study plane-stress finite element formulation (discussed in Chapter 10), you 
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will revisit this problem (see Problem 10.13) and be asked to solve it using ANSYS. 
Furthermore, you will be asked to plot the components of the stress distributions in the 
plate and thus identify the location and magnitude of maximum stresses.

To give you just a taste of what is to come in Chapter 10 and also to shed more light 
on our discussion about the stress concentration regions, we have solved Example 1.4 
using ANSYS and have determined the x-component of the stress distribution in the 
plate, as shown in Figure 1.14. In the results shown in Figure 1.14, the load was applied 
as a pressure over the entire right surface of the bar. Note the variation of the stresses at 
section A–A from approximately 3000 psi to 3500 psi. At section B–B, the x-component 
of the stresses varies from approximately 2300 psi to 2600 psi. These values are not that 
far off from the average stress values obtained using the direct model. Also note that 
the maximum and minimum stress values given by ANSYS could change, depending 
upon how we apply the load to the bar, especially in the regions near the point of load 
application and the regions near the hole. Keeping in mind Example 1.4 and Figure 1.13, 
remember that in a real situation, the load would be applied over an area, not at a single 
point. Thus, remember that how you apply the external load to your finite element model 
will influence the stress distribution results, particularly in the region near where the load 
is applied. This principle is especially true in Example 1.4 because it deals with a short 
plate with a hole.

For the sake of convenience, the results of Section 1.5 is summarized in Table 1.6. 
In the table, carefully examine what constitutes an element, its degrees of freedom, and 
the physical balance requirements.

Figure 1.14  The x-component of stress distribution for the plate in Example 1.4,  
as computed by ANSYS.
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fi = k(ui - ui+1)
fi+1 = k(ui+1 - ui)

Ti =
JG
/

 (ui - ui + 1)

Ti + 1 =
JG
/

 (ui + 1 - ui)

qi =
kA
/

 (Ti - Ti+1)

qi + 1 =
kA
/

 (Ti+1 - Ti)

Qi = C(Pi - Pi + 1)
Qi+1 = C(Pi+1 - Pi)

Ii =
1
R

 (Vi - Vi+1)

Ii + 1 =
1
R

 (Vi+1 - Vi)

Table 1.6  Examples of elements and nodes

Element Degrees of Freedom
Physical Balance  

Requirement

Linear Elastic Element (linear spring)

ui+1

ui

fi+1

i + 1

i

k

fi

Nodal displacements: 
ui, ui + 1

Force balance: 
fi + fi+1 = 0

Torsional Elastic Element (torsional spring)

/

Ti

ui

i

i  + 1

Ti+1
ui+1

J, G
Nodal angle of twist: 

ui, ui + 1

Torque balance: 
Ti + Ti+1 = 0

Conduction Element

/

k
Ti Ti+1

qi+1qi
i + 1i

Nodal temperatures: 
Ti, Ti + 1

Energy balance: 
qi + qi+1 = 0

Laminar Pipe Flow Element (See Section 12.1)

Pi+1 Qi+1

Pi

Qi

i

i + 1
Nodal pressures: 

Pi, Pi + 1

Flow balance: 
Qi + Qi+1 = 0

Electrical Resistance Element

Vi+1

i + 1

Ii+1

Ii

Vi
R

i

Nodal  
voltages: 
Vi, Vi + 1

Electric current 
balance: 

Ii + Ii+1 = 0
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1.6 Mi nimum Total Potential Energy Formulation

The minimum total potential energy formulation is a common approach in generating 
finite element models in solid mechanics. External loads applied to a body will cause 
the body to deform. During the deformation, the work done by the external forces is 
stored in the material in the form of elastic energy, called strain energy. Let us consider 
the strain energy in a solid member when it is subjected to a central force F, as shown 
in Figure 1.15.

Also shown in Figure 1.15 is a piece of material from the member in the form of 
differential volume and the normal stresses acting on the surfaces of this volume. Earlier, 
it was shown that the elastic behavior of the member may be modeled as a linear spring. 
In Figure 1.15 note that y′ is a variable measuring deformation of the member and its 
value varies from 0 to ∆/. When the member is stretched by a differential amount dy′, 
the stored energy in the material is

	 Λ = L
y′

0

Fdy′ = L
y′

0

ky′dy′ =
1
2

 ky′2 = ¢ 1
2

  ky′≤y′	 (1.39)

x

y

z

sy

sy

dy

dz

dx

y

y'

/

F F

Unstretched length (no load)

y'

F = _ _AE / = ky'
/

dy'

/

Figure 1.15  The elastic behavior of a member subjected to a central load.
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k

F x

We can write Eq. (1.39)—for a piece of material from the member in the form of 
differential volume—in terms of the normal stress (s) and strain (e):

dΛ =
1
2

 
elastic force

(ky′)
$%&

dy′ =
1
2

 
elastic force

(sydxdz)
$+%1&

 
dy′

edy
$%& =

1
2

 se dV

Therefore, for a member or an element under axial loading, the strain energy Λ(e) is 
obtained by adding up the stored energy in all pieces (differential volumes) making up 
the member:

	 Λ(e) = LdΛ = LV

se

2
 dV = LV

Ee2

2
 dV	 (1.40)

where V is the volume of the member and s = Ee. The total potential energy Π for a 
body consisting of n elements and m nodes is the difference between the total strain 
energy and the work done by the external forces:

	 Π = a
n

e = 1
Λ(e) - a

m

i = 1
Fiui	 (1.41)

The minimum total potential energy principle simply states that for a stable sys-
tem, the displacement at the equilibrium position occurs such that the value of the 
system’s total potential energy is a minimum.

	
0Π
0ui

=
0

0ui
 a

n

e = 1
Λ(e) -

0
0ui

 a
m

i = 1
Fiui = 0 for i = 1, 2, 3, c, n	 (1.42)

The following examples offer insight into the physical meaning of Eq. (1.42).

Example 1.5

Consider the following situations: (a) We have applied a force F to a linear spring 
as shown in Figure 1.16. Depending on the stiffness value of the spring, the spring 
stretches by a certain amount x. The static equilibrium requires that the applied force 
F be equal to the internal force in the spring kx.

F = kx or x =
F
k

Now, let us consider the total potential energy of the system as defined by Eq. (1.41). 
The stored elastic energy in the spring is Λ = 1

2 kx2 and the work done by the external 
force F is Fx (force times displacement). Thus, the total potential energy of the system is

Π =
1
2

 kx2 - Fx

Figure 1.16  A linear spring subjected 
to a force F.
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P = 12 N

GA C
Rx

Ry
W = 8 N

FS

2 cm3 cm5 cm

B
xG x xc

Figure 1.18  The free-body diagram of the rod in Example 1.5.

Minimizing Π with respect to x, we have

dΠ
dx

=
d
dx

¢ 1
2

 kx2 - Fx≤ = kx - F = 0

which results in x =
F
k

.

(b) The slender rod shown in Figure 1.17 weighs 8 N and is supported by a spring 
with a stiffness k = 20 N/cm. A force P = 12 N is applied to the end of the rod at 
point C. We are interested in determining the deflection of the spring.

First, we solve this problem by applying the static equilibrium conditions and 
then apply the minimum total potential energy concept. Static equilibrium requires 
that sum of the moments of the forces acting on the rod about point A be zero. 
Considering the free-body diagram of the rod shown in Figure 1.18, we find

 ⤿+ aMA = 0  -(8N)(5 cm) + Fs (8 cm) - (12 N)(10 cm) = 0

 Fs = 20 N and kx = (20 N/cm)(x) = 20 N

 x = 1 cm

Now, we solve the problem using the minimum total potential energy approach. 
We note that elastic energy stored in the system is predominantly due to elastic energy 
of the spring and is given by

Λ =
1
2

 kx2 =
1
2

 (20 N/cm)(x2) = 10x2

The work done by the external forces is calculated by multiplying the weight of the rod 
by the displacement of point G, and force P by the displacement of endpoint C. Through 

20 N/cmk

G B CA

8 cm 2 cm

=

P 12 N=

Figure 1.17  The rod of Example 1.5.
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Figure 1.19  Total potential energy versus displacement x.

similar triangles, we can relate the displacements of points G and C to the displacement 
of the spring (point B) according to

x
8

 =
xG

5
 or xG =

5
8

x

x
8

 =
xC

10
 or xC =

5
4

x

Thus, the work done by the external forces is given by

aFiui = (8 N)a5
8

xb + (12 N)a5
4

xb = 5x + 15x = 20x

The total potential energy of the system is

Π = aΛ - aFiui = 10x2 - 20x

and

dΠ
dx

=
d
dx

¢10x2 - 20x≤ = 20x - 20 = 0

Solving the above equation for x, we find x = 1 cm. Because there is only one 
unknown displacement, note that when we employed Eqs. (1.41) and (1.42),  
we replaced the displacement ui with x and the partial derivative symbol with the 
ordinary symbol. We have plotted the total potential energy Π = 10x2 - 20x as a 
function of displacement x in Figure 1.19. It is clear from examining Figure 1.19 that 
the minimum total potential energy occurs at x = 1 cm.

Now, let us turn our attention back to Example 1.1. The strain energy for an arbi-
trary element (e) can be determined from Eq. (1.40) as

	 Λ(e) = L
V

Ee2

2
 dV =

AavgE

2/
 (ui + 1

2 + ui
2 - 2ui + 1 ui)	 (1.43)
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where e = (ui + 1 - ui)//, and V = Aavg/ were substituted for the axial strain and volume 
respectively. Minimizing the strain energy with respect to ui and ui + 1 leads to

	  
0Λ(e)

0ui
=

AavgE

/
 (ui - ui + 1)	 (1.44)

	
0Λ(e)

0ui + 1
 =

AavgE

/
 (ui + 1 - ui)	

and, in matrix form,

	 d 0Λ(e)

0ui

0Λ(e)

0ui + 1

t = J keq -keq

-keq keq
R  b ui

ui + 1
r 	 (1.45)

where keq = (AavgE)//. Minimizing the work done by the external forces at nodes i and 
i + 1 of an arbitrary element (e), we get

	  
0

0ui
 (Fiui) = Fi 	

	  
0

0ui + 1
 (Fi + 1ui + 1) = Fi + 1	

(1.46)

For Example 1.1, the minimum total potential energy formulation leads to a global stiff-
ness matrix that is identical to the one obtained from direct formulation:

[K](G) = E k1 -k1 0 0 0
-k1 k1 + k2 -k2 0 0
0  -k2 k2 + k3 -k3 0
0 0  -k3 k3 + k4 -k4

0 0 0  -k4 k4

U
Furthermore, application of the boundary condition and the load results in

	 E 1 0 0 0 0
-k1 k1 + k2 -k2 0 0
0  -k2 k2 + k3 -k3 0
0 0  -k3 k3 + k4 -k4

0 0 0  -k4 k4

U  e u1

u2

u3

u4

u5

u = e 0
0
0
0
P

u 	 (1.47)

The displacement results will be identical to the ones obtained earlier from the direct 
method, as given by Eq. (1.17). The concepts of strain energy and minimum total poten-
tial energy will be used to formulate solid mechanics problems in Chapters 4, 10, and 13. 
Therefore, spending a little extra time now to understand the basic ideas will benefit 
you enormously later.
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dy
du

(savg) A(y)L

P

y

P

w1

w2

Figure 1.20  The relationship between the external force P and the average stresses for the bar in 
Example 1.1.

Example 1.1: Exact Solution*

In this section, we will derive the exact solution to Example 1.1 and compare the finite 
element formulation displacement results for this problem to the exact displacement 
solutions. As shown in Figure 1.20, the statics equilibrium requires the sum of the forces 
in the y-direction to be zero. This requirement leads to the relation

	 P - (savg)A(y) = 0	 (1.48)

Once again, using Hooke’s law (s = Ee) and substituting for the average stress in terms 
of the strain, we have

	 P - Ee A(y) = 0	 (1.49)

Recall that the average normal strain is the change in length du per unit original length 
of the differential segment dy. So,

e =
du
dy

If we substitute this relationship into Eq. (1.49), we now have

	 P - EA(y) 
du
dy

= 0	 (1.50)

Rearranging Eq. (1.50), we get

	 du =
Pdy

EA(y)
	 (1.51)

*The contribution of shear stresses is neglected.
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The exact solution is then obtained by integrating Eq. (1.51) over the length of the bar

	  L
u

0
du = L

L

0

Pdy

EA(y)
	

	  u(y) = L
y

0

Pdy

EA(y)
= L

y

0

Pdy

E¢w1 + ¢w2 - w1

L
≤y≤t

	 (1.52)

where the area is

A(y) = ¢w1 + ¢w2 - w1

L
≤  y≤t

The deflection profile along the bar is obtained by integrating Eq. (1.52), resulting in

	 u(y) =
PL

Et(w2 - w1)
J ln¢w1 + ¢w2 - w1

L
≤y≤ - ln w1 R 	 (1.53)

Equation (1.53) can be used to generate displacement values at various points along the 
bar. It is now appropriate to examine the accuracy of the direct and potential energy 
methods by comparing their displacement results with the values. Table 1.7 shows nodal 
displacements computed using direct and energy methods.

It is clear from examination of Table 1.7 that all of the results are in agreement 
with each other.

1.7  Weighted Residual Formulations

The weighted residual methods are based on assuming an approximate solution for 
the governing differential equation. The assumed solution must satisfy the initial and 
boundary conditions of the given problem. Because the assumed solution is not exact, 
substitution of the solution into the differential equation will lead to some residuals 
or errors. Simply stated, each residual method requires the error to vanish over some 
selected intervals or at some points. To demonstrate this concept, let’s turn our attention 

Table 1.7  Comparison of displacement results

Location of a  
Point Along  
the Bar (in)

Results from the  
Exact Displacement  

Method (in)  
Eq. (1.53)

Results from the  
Direct Method  

(in)

Results from the 
Energy Method  

(in)

y =  0 0 0 0

y =  2.5 0.001027 0.001026 0.001026

y =  5.0 0.002213 0.002210 0.002210

y =  7.5 0.003615 0.003608 0.003608

y = 10 0.005333 0.005317 0.005317
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to Example 1.1. The governing differential equation and the corresponding boundary 
condition for this problem are as follows:

	 A(y)E 
du
dy

- P = 0 subject to the boundary condition u(0) = 0	 (1.54)

Next, we need to assume an approximate solution. Again, keep in mind that the 
assumed solution must satisfy the boundary condition. We choose

	 u(y) = c1y + c2y
2 + c3y

3	 (1.55)

where c1, c2, and c3 are unknown coefficients. Equation (1.55) certainly satisfies the 
fixed boundary condition represented by u(0) = 0. Substitution of the assumed solu-
tion, Eq. (1.55), into the governing differential equation, Eq. (1.54), yields the error 
function ℛ:

	
A(y)¢w1 + ¢w2 - w1

L
≤  y≤t

$++++%+++&

 E

du
dy

(c1 + 2c2y + 3c3y
2)

$+++%+++&
- P = ℛ

	 (1.56)

Substituting for values of w1, w2, L, t, and E in Example 1.1 and simplifying, we get

ℛ/E = (0.25 - 0.0125y)(c1 + 2c2y + 3c3 y
2) - 96.154 * 10-6

Collocation Method

In the collocation method the error, or residual function ℛ is forced to be zero at as 
many points as there are unknown coefficients. Because the assumed solution in this 
example has three unknown coefficients, we will force the error function to equal zero at 
three points. We choose the error function to vanish at y = L/3, y = 2L/3, and y = L:

 ℛ(c, y) 2
y =

L
3

= 0

 ℛ = ¢0.25 - 0.0125¢10
3
≤ ≤ ¢c1 + 2c2¢ 10

3
≤ + 3c3¢ 10

3
≤2≤ - 96.154 * 10-6 = 0

 ℛ(c, y) 2
y =

2L
3

= 0

 ℛ = ¢0.25 - 0.0125¢20
3
≤ ≤ ¢c1 + 2c2¢ 20

3
≤ + 3c3¢ 20

3
≤2≤ - 96.154 * 10-6 = 0

 ℛ(c, y) 2
y = L

= 0

 ℛ = (0.25 - 0.0125(10))(c1 + 2c2(10) + 3c3(10)2) - 96.154 * 10-6 = 0
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This procedure creates three linear equations that we can solve to obtain the unknown 
coefficients c1, c2, and c3:

c1 +
20
3

 c2 +
100
3

 c3 = 461.539 * 10-6

c1 +
40
3

 c2 +
400
3

 c3 = 576.924 * 10-6

c1 + 20c2 + 300c3 = 769.232 * 10-6

Solving the above equations yields c1 = 423.0776 * 10-6, c2 = 21.65 * 10-15, and 
c3 = 1.153848 * 10-6. Substitution of the c-coefficients into Eq. (1.55) yields the 
approximate displacement profile:

	 u(y) = 423.0776 * 10-6y + 21.65 * 10-15y2 + 1.153848 * 10-6y3	 (1.57)

In order to get an idea of how accurate the collocation approximate results are, we will 
compare them to the exact results later in this chapter.

Subdomain Method

In the subdomain method, the integral of the error function over some selected sub-
intervals is forced to be zero. The number of subintervals chosen must equal the 
number of unknown coefficients. Thus, for our assumed solution, we will have three 
integrals:

	  L
L
3

0
  ℛ dy = 0 	 (1.58)

	  L
L
3

0
  [(0.25 - 0.0125y)(c1 + 2c2y + 3c3y

2) - 96.154 * 10-6]dy = 0 	

	  L
2L
3

L
3

  ℛ dy = 0 	

	  L
2L
3

L
3

  [(0.25 - 0.0125y)(c1 + 2c2y + 3c3y
2) - 96.154 * 10-6]dy = 0	

	  L
L

2L
3

  ℛ dy = 0 	

	  L
L

2L
3

  [(0.25 - 0.0125y)(c1 + 2c2y + 3c3y
2) - 96.154 * 10-6]dy = 0 	

Integration of equations given by Eq. (1.58) results in three linear equations that we can 
solve to obtain the unknown coefficients c1, c2, and c3:

 763.88889 * 10- 3c1 + 2.4691358c2 + 8.1018519c3 = 320.513333 * 10-6

 0.625c1 + 6.1728395c2 + 47.4537041c3 = 3.2051333 * 10-4

 0.4861111c1 + 8.0246917c2 + 100.694444c3 = 3.2051333 * 10-4
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Solving the above equations yields c1 = 391.35088 * 10-6, c2 = 6.075 * 10-6, and 
c3 = 809.61092 * 10-9. Substitution of the c-coefficients into Eq. (1.55) yields the 
approximate displacement profile:

	 u(y) = 391.35088 * 10-6y + 6.075 * 10-6y2 + 809.61092 * 10-9y3	 (1.59)

We will compare the displacement results obtained from the subdomain method to the 
exact results later in this chapter.

Galerkin Method

The Galerkin method requires the error to be orthogonal to some weighting functions 
Φi, according to the integral

	 L
b

a
Φiℛ dy = 0  i = 1, 2,c, N	 (1.60)

The weighting functions are chosen to be members of the approximate solution. 
Because there are three unknowns in the assumed approximate solution for 
Example 1.1, we need to generate three equations. Recall that the assumed solu-
tion is u(y) = c1y + c2y

2 + c3y
3; thus, the weighting functions are selected to be 

Φ1 = y, Φ2 = y2, and Φ3 = y3. This selection leads to the following equations:

	  L
L

0

y[(0.25 - 0.0125y)(c1 + 2c2y + 3c3y
2) - 96.154 * 10-6]dy = 0	 (1.61)

	  L
L

0
y2[(0.25 - 0.0125y)(c1 + 2c2y + 3c3y

2) - 96.154 * 10-6]dy = 0	

	  L
L

0
y3[0.25 - 0.0125y)(c1 + 2c2y + 3c3y

2) - 96.154 * 10-6]dy = 0	

Integration of Eq. (1.61) results in three linear equations that we can solve to 
obtain the unknown coefficients c1, c2, and c3:

 8.333333c1 + 104.1666667c2 + 1125c3 = 0.0048077

 52.083333c1 + 750c2 + 8750c3 = 0.0320513333

 375c1 + 5833.3333c2 + 71428.57143c3 = 0.240385

Solving the above equations yields c1 = 400.642 * 10-6, c2 = 4.006 * 10-6, and 
c3 = 0.935 * 10-6. Substitution of the c-coefficients into Eq. (1.55) yields the approximate 
displacement profile:

	 u(y) = 400.642 * 10-6y + 4.006 * 10-6y2 + 0.935 * 10-6y3	 (1.62)

We will compare the displacement results obtained from the Galerkin method to the 
exact results later in this chapter.
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Least-Squares Method

The least-squares method requires the error to be minimized with respect to the unknown 
coefficients in the assumed solution, according to the relationship

Minimize¢Lb

a

ℛ2dy≤
which leads to

	 L
b

a
ℛ 

0ℛ
0ci

 dy = 0  i = 1, 2,c, N	 (1.63)

Because there are three unknowns in the approximate solution of Example 1.1, Eq. (1.63) 
generates three equations. Recall that the error function is

ℛ/E = (0.25 - 0.0125y)(c1 + 2c2y + 3c3y
2) - 96.154 * 10-6

Differentiating the error function with respect to c1, c2, and c3 and substituting into 
Eq. (1.63), we have:

L
10

0

ℛ$+++++++++++++++++%++++++++++++++++++&
[(0.25 - 0.0125y)(c1 + 2c2y + 3c3y

2) - 96.154 * 10-6]
 

0ℛ
0c1$++1++%1++++&

(0.25 - 0.0125y) dy = 0

L
10

0

ℛ$+++++++++++++++++%++++++++++++++++++&
[(0.25 - 0.0125y)(c1 + 2c2y + 3c3y

2) - 96.154 * 10-6]
 

0ℛ
0c2$++1+++%1+++++&

(0.25 - 0.0125y)2y dy = 0

L
10

0

ℛ$+++++++++++++++++%++++++++++++++++++&
[(0.25 - 0.0125y)(c1 + 2c2y + 3c3y

2) - 96.154 * 10-6]
 

0ℛ
0c3$++1+++%1+++++&

(0.25 - 0.0125y)3y2 dy = 0

Integration of the above equations results in three linear equations that we can solve to 
obtain the unknown coefficients c1, c2, and c3:

 0.364583333c1 + 2.864583333c2 + 25c3 = 0.000180289

 2.864583333c1 + 33.333333c2 + 343.75c3 = 0.001602567

 25c1 + 343.75c2 + 3883.928571c3 = 0.015024063

Solving the set of equations simultaneously yields c1 = 389.773 * 10-6, 
c2 = 6.442 * 10-6, and c3 = 0.789 * 10-6. Substitution of the c-coefficients into 
Eq. (1.55) yields the approximate displacement profile:

	 u(y) = 389.733 * 10-6y + 6.442 * 10-6y2 + 0.789 * 10-6y3	 (1.64)

Next, we will compare the displacement results obtained from the least-squares method 
and the other weighted residual methods to the exact results.
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Comparison of Weighted Residual Solutions

Now we will examine the accuracy of weighted residual methods by comparing their dis-
placement results with the exact values. Table 1.8 shows nodal displacements computed 
using the exact, collocation, subdomain, Galerkin, and least-squares methods.

It is clear from an examination of Table 1.8 that the results are in agreement with 
each other. It is also important to note here that the primary purpose of Section 1.7 was 
to introduce you to the general concepts of weighted residual methods and the basic 
procedures in the simplest possible way. Because the Galerkin method is one of the most 
commonly used procedures in finite element formulations, more detail and an in-depth 
view of the Galerkin method will be offered later in Chapters 6 and 9. We will employ 
the Galerkin method to formulate one- and two-dimensional problems once you have 
become familiar with the ideas of one- and two-dimensional elements. Also note that in 
the above examples of the use of weighted residual methods, we assumed a solution that 
was to provide an approximate solution over the entire domain of the given problem. As 
you will see later, we will use piecewise solutions with the Galerkin method. That is to 
say, we will assume linear or nonlinear solutions that are valid only over each element 
and then combine, or assemble, the elemental solutions.

1.8  Verification of Results

In recent years, the use of finite element analysis as a design tool has grown rapidly. 
Easy-to-use, comprehensive packages such as ANSYS have become a common tool in 
the hands of design engineers. Unfortunately, many engineers without the proper train-
ing or a solid understanding of the underlying concepts have been using finite element 
analysis. Engineers who use finite element analysis must understand the limitations of 
the finite element procedures. There are various sources of error that can contribute to 
incorrect results. They include

	 1.	 Wrong input data, such as physical properties and dimensions
		  This mistake can be corrected by simply listing and verifying physical properties 

and coordinates of nodes or keypoints (points defining the vertices of an object; 

Table 1.8  Comparison of weighted residual results

Location  
of a  

Point  
Along  

the Bar  
(in)

Displacement 
Results from the 

Exact  
Solution  

Eq. (1.53)  
(in)

Displacement 
Results from the 

Collocation  
Method  

Eq. (1.57)  
(in)

Displacement 
Results from the 

Subdomain  
Method  

Eq. (1.59)  
(in)

Displacement 
Results from the 

Galerkin  
Method  

Eq. (1.62)  
(in)

Displacement 
Results from the 

Least-Squares 
Method  

Eq. (1.64)  
(in)

y =  0 0 0 0 0 0

y =  2.5 0.001027 0.001076 0.001029 0.001041 0.001027

y =  5.0 0.002213 0.002259 0.002209 0.002220 0.002208

y =  7.5 0.003615 0.003660 0.003618 0.003624 0.003618

y = 10 0.005333 0.005384 0.005330 0.005342 0.005331
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they are covered in more detail in Chapters 8 and 13) before proceeding any fur-
ther with the analysis.

	 2.	 Selecting inappropriate types of elements
		  Understanding the underlying theory will benefit you the most in this respect. You 

need to fully grasp the limitations of a given type of element and understand to 
which type of problems it applies.

	 3.	 Poor element shape and size after meshing
		  This area is a very important part of any finite element analysis. Inappropriate 

element shape and size will influence the accuracy of your results. It is important 
that the user understands the difference between free meshing (using mixed-area 
element shapes) and mapped meshing (using all quadrilateral area elements or 
all hexahedral volume elements) and the limitations associated with them. These 
concepts will be explained in more detail in Chapters 8 and 13.

	 4.	 Applying wrong boundary conditions and loads
		  This step is usually the most difficult aspect of modeling. It involves taking an actual 

problem and estimating the loading and the appropriate boundary conditions for a 
finite element model. This step requires good judgment and some experience.

You must always find ways to check your results. While experimental testing of your 
model may be the best way to do so, it may be expensive or time consuming. You should 
always start by applying equilibrium conditions and energy balance to different por-
tions of a model to ensure that the physical laws are not violated. For example, for static 
models, the sum of the forces acting on a free-body diagram of your model must be zero. 
This concept will allow you to check for the accuracy of computed reaction forces. You 
may want to consider defining and mapping stresses along an arbitrary cross section and 
integrating this information. The resultant internal forces computed in this manner must 
balance against external forces. In a heat transfer problem under steady-state conditions, 
apply conservation of energy to a control volume surrounding an arbitrary node. Are the 
energies flowing into and out of a node balanced? At the end of particular chapters in 
this text, a section is devoted to verifying the results of your models. In these sections, 
problems will be solved using ANSYS, and the steps for verifying results will be shown.

1.9 U nderstanding the Problem

You can save lots of time and money if you first spend a little time with a piece of paper 
and a pencil to try to understand the problem you are planning to analyze. Before initi-
ating numerical modeling on the computer and generating a finite element model, it is 
imperative that you develop a sense of or a feel for the problem. There are many ques-
tions that a good engineer will ask before proceeding with the modeling process: Is the 
material under axial loading? Is the body under bending moments or twisting moments 
or a combination of the two? Do we need to worry about buckling? Can we approximate 
the behavior of the material with a two-dimensional model? Does heat transfer play 
a significant role in the problem? Which modes of heat transfer are influential? If you 
choose to employ FEA, “back-of-the-envelope” calculations will greatly enhance your 
understanding of the problem, in turn helping you to develop a good, reasonable finite 
element model, particularly in terms of your selection of element types. Some practicing 
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engineers still use finite element analysis to solve a problem that could have been solved 
more easily by hand by someone with a good grasp of the fundamental concepts of the 
mechanics of materials and heat transfer. To shed more light on this very important 
point, consider the following examples.

Example 1.6

Imagine that by mistake, an empty coffee pot has been left on a heating element. 
Assuming that the heater puts approximately 20 Watts (typically, a heater creates a 
lower wattage) into the bottom of the pot, determine the temperature distribution within 
the glass if the surrounding air is at 25°C, with a corresponding heat transfer coefficient 
h = 15 W/m2 # K. The pot is cylindrical in shape, with a diameter of 14 cm and height of 
14 cm, and the glass is 3 mm thick.

Heating plate

This problem is first analyzed using a finite element model. After you study three-
dimensional thermal-solid elements (discussed in Chapter 13), you will revisit this prob-
lem (see Problem 13.11) and be asked to solve it using ANSYS. As you will learn later, a 
solid model of the pot is created and meshed and the appropriate boundary conditions 
are applied and the temperature solutions is then obtained. The results of this analysis 
is shown in Figure 1.21.

From the results of finite element analysis we find that the maximum temperature 
of 113.18°C occurs at the bottom of the pot in the center location, as shown in Figure 1.21. 
This is a good example of a problem that could have been solved more easily by hand 
by someone with a good grasp of the fundamental concepts of heat transfer. We can 
approximate the temperature of the glass by applying the energy balance to the bottom 
of the pot and assuming a one-dimensional model. Because the pot is made of thin glass, 
we can neglect the spatial temperature variation within the glass. Under steady-state 
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Figure 1.21  The temperature distribution in the pot of Example 1.6.

conditions, the heat flux added into the bottom of the glass is approximately equal to the 
rate of energy convected away by air. Thus, we employ Newton’s law of cooling

	 q″ = h(Ts - Tf)	 (1.65)

where

 q″ = heat flux, W/m2

 h = heat transfer coefficient, W/m2 # °C (W/m2 # K)

 Ts = surface temperature of the coffee pot,°C
 Tf = surrounding air temperature,°C

We can estimate the heat flux into the bottom of the pot:

q″ =
20 W

 
p

4
(0.14 m)2

= 1299 W/m2

and substituting for heat flux, h, and Tf  into Eq. (1.65), and solving for Ts,

1299 W/m2 = (15 W/m # °C)(Ts - 25)  S Ts = 111.6°C
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As you can see, the temperature result obtained by hand calculation (Ts = 111.6°C) 
is very close to the result of our finite element model (Tmax = 113.18°C). Thus, there was 
no need to resort to finite element formulation to solve the above problem.

Example 1.7

Consider the torsion of a steel bar (G = 11 * 103 ksi) having a rectangular cross sec-
tion, as shown in the accompanying figure. Under the loading shown, the angle of twist 
is measured to be u = 0.0005 rad/in. We are interested in determining the location(s) 
and magnitude of the maximum shear stress.

Steel bar
G = 11 * 103 ksi

P

P

0.5 in
1 in

1 in

Again, we have analyzed this problem using a finite element model. All of the steps 
leading to the ANSYS solution are given in Example 10.1 (revisited). The results of this 
analysis are shown in Figure 1.22.

The results of finite element analysis show that the maximum shear stress of 
2558 lb/in2 occurs at the midsection of the rectangle. This is another example of a prob-
lem that could have been solved more easily by hand by someone with a good grasp of 
the fundamental concepts of mechanics of materials.

As you will learn in Chapter 10, Section 10.1, there are analytical solutions that 
we could employ to solve problems dealing with torsion of members with rectangular 
cross-sectional area. When a torque is applied to a straight bar with a rectangular cross-
sectional area, within the elastic region of the material, the maximum shearing stress 
and an angle of twist caused by the torque are given by

tmax =
T

c1wh2

where

 tmax = maximum shear stress, lb/in2

 T = applied torque, lb # in
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Figure 1.22  The shear stress distribution for the steel bar of Example 1.7.

 w = width of the rectangular cross@section, in

 h = height of the rectangular cross@section, in

 c1 = a constant coefficient that depends on aspect ratio of the cross section,
 0.246; see Table 10.1

and

 u =
TL

c2 Gwh3

 L = length of the bar, in

 G = shear modulus or modulus of rigidity of material, lb/in2

 c2 = a constant coefficient that depends on aspect ratio of the cross section, 0.229;
see Table 10.1

Substituting into the above equations appropriate values, we get

 u =
TL

c2 Gwh3 = 0.0005 rad/in =
T(1 in)

0.229(11 * 106 lb/in2)(1 in)(0.5 in)3 1 T = 157.5 lb # in

 tmax =
T

c1 wh2 =
157.5 lb # in

0.246(1 in)(0.5 in)2 = 2560 lb/in2

When comparing 2560 lb/in2 to the FEA results of 2558 lb/in2, you see that we could 
have saved lots of time by calculating the maximum shear stress using the analytical 
solution and avoided generating a finite element model.
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Summary

At this point you should

	 1.	 have a good understanding of the physical properties and the parameters that 
characterize the behavior of an engineering system. Examples of these properties 
and design parameters are given in Tables 1.2 and 1.3.

	 2.	 realize that a good understanding of the fundamental concepts of the finite ele-
ment method will benefit you by enabling you to use ANSYS more effectively.

	 3.	 know the seven basic steps involved in any finite element analysis, as discussed in 
Section 1.4.

	 4.	 understand the differences among direct formulation, minimum total potential 
energy formulation, and the weighted residual methods (particularly the Galerkin 
formulation).

	 5.	 know that it is wise to spend some time to gain a full understanding of a problem 
before initiating a finite element model of the problem. There may even exist a 
reasonable closed-form solution to the problem, and thus you can save lots of time 
and money.

	 6.	 realize that you must always find a way to verify your FEA results.

References

ASHRAE Handbook, Fundamental Volume, American Society of Heating, Refrigerating, and 
Air-Conditioning Engineers, Atlanta, 1993.

Bickford, B. W., A First Course in the Finite Element Method, Richard D. Irwin, Burr Ridge, 1989.
Clough, R. W., “The Finite Element Method in Plane Stress Analysis, Proceedings of American 

Society of Civil Engineers, 2nd Conference on Electronic Computations,” Vol. 23, 1960, 
pp. 345–378.

Cook, R. D., Malkus, D. S., and Plesha, M. E., Concepts and Applications of Finite Element Analysis, 
3rd. ed., New York, John Wiley and Sons, 1989.

Courant, R., “Variational Methods for the Solution of Problems of Equilibrium and Vibrations,” 
Bulletin of the American Mathematical Society, Vol. 49, 1943, pp. 1–23.

Hrennikoff, A., “Solution of Problems in Elasticity by the Framework Method,” J. Appl. Mech., 
Vol. 8, No. 4, 1941, pp. A169–A175.

Levy, S., “Structural Analysis and Influence Coefficients for Delta Wings,” Journal of the 
Aeronautical Sciences, Vol. 20, No. 7, 1953, pp. 449–454.

Patankar, S. V., Numerical Heat Transfer and Fluid Flow, New York, McGraw-Hill, 1991.
Zienkiewicz, O. C., and Cheung, Y. K. K., The Finite Element Method in Structural and Continuum 

Mechanics, London, McGraw-Hill, 1967.
Zienkiewicz, O. C., The Finite Element Method, 3d. ed., London, McGraw-Hill, 1979.

Problems

	 1.	 Solve Example 1.1 using: (a) two elements, and (b) eight elements. Compare your results to 
the exact values.

	 2.	 A concrete table column-support with the profile shown in the accompanying figure is 
to carry a load of approximately 500 lb. Using the direct method discussed in Section 1.5, 
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determine the deflection and average normal stresses along the column. Divide the column 
into five elements. (E = 3.27 * 103 ksi)

1 ft

3 in.

28 in.

500 lb

4 in.
9 in.

	 3.	 An aluminum strap with a thickness of 5 mm and the profile shown in the accompanying 
figure is to carry a load of 2000 N. Using the direct method discussed in Section 1.5, determine 
the deflection and the average normal stress along the strap. Divide the strap into three ele-
ments. This problem may be revisited again in Chapter 10, where a more in-depth analysis 
may be sought. (E = 70 GPa)

1.5 cm

2000 N

3 cm

3 cm

 

10 cm

12 cm
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	 4.	 A thin steel plate with the profile shown in the accompanying figure is subjected to an 
axial load. Approximate the deflection and the average normal stresses along the plate using 
the model shown in the figure. The plate has a thickness of 0.125 in and a modulus of elas-
ticity E = 28 * 103 ksi. You will be asked to use ANSYS to analyze this problem again in 
Chapter 10.

500 lb 500 lb

k1

k6

k2 k3 k4 k5

– in1
2

– in1
2

– in1
2

2 in

2 in

12 in

4 in

	 5.	 Apply the statics equilibrium conditions directly to each node of the thin steel plate (using 
a finite element model) in Problem 4.

	 6.	 For the spring system shown in the accompanying figure, determine the displacement of each 
node. Start by identifying the size of the global matrix. Write down elemental stiffness matri-
ces, and show the position of each elemental matrix in the global matrix. Apply the boundary 
conditions and loads. Solve the set of linear equations. Also compute the reaction forces.

k1 = 5 lb—in

k3 = 5 lb—in

k2 = 9 lb—in

k5 = 10 lb—in

k4 = 20 lb—in

k6 = 20 lb—in

20 lb

20 lb
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	 7.	 A typical exterior masonry wall of a house, shown in the accompanying figure, consists of 
the items in the accompanying table. Assume an inside room temperature of 68°F and an 
outside air temperature of 10°F, with an exposed area of 150 ft2. Determine the temperature 
distribution through the wall. Also calculate the heat loss through the wall.

Items
Resistance  

hr # ft2 # °F/Btu
U-factor  

Btu/hr # ft2 # °F

1. � Outside film resistance  
(winter, 15-mph wind) 0.17 5.88

2.  Face brick (4 in) 0.44 2.27

3.  Cement mortar (1/2 in) 0.1 10.0

4.  Cinder block (8 in) 1.72 0.581

5.  Air space (3/4 in) 1.28 0.781

6.  Gypsum board (1/2 in) 0.45 2.22

7.  Inside film resistance (winter) 0.68 1.47

	 8.	 In order to increase the thermal resistance of a typical exterior frame wall, such as the one 
in Example 1.2, it is customary to use 2 * 6 studs instead of 2 * 4 studs to allow for place-
ment of more insulation within the wall cavity. A typical exterior (2 * 6) frame wall of a 
house consists of the materials shown in the accompanying figure. Assume an inside room 
temperature of 68°F and an outside air temperature of 20°F, with an exposed area of 150 ft2. 
Determine the temperature distribution through the wall.

Items
Resistance 

hr # ft2 # °F/Btu
U-factor 

Btu/hr # ft2 # °F

1. � Outside film resistance  
(winter, 15-mph wind) 0.17 5.88

2.  Siding, wood (1/2 * 8 lapped) 0.81 1.23

3.  Sheathing (1/2 in regular) 1.32 0.76

4.  Insulation batt (51
2 in) 19.0 0.053

5.  Gypsum wall board (1/2 in) 0.45 2.22

6.  Inside film resistance (winter) 0.68 1.47

	 9.	 Assuming the moisture can diffuse through the gypsum board in Problem 8, where should 
you place a vapor barrier to avoid moisture condensation? Assume an indoor air temperature 
of 68°F with relative humidity of 40%.

	 10.	 A typical ceiling of a house consists of the items in the accompanying table. Assume an 
inside room temperature of 755F and an attic air temperature of 255F, with an exposed area 
of 1000 ft2. Determine the temperature distribution through the ceiling. Also calculate heat 
loss through the ceiling.

1 2 3 4 5 6 7

1
2

3
4

5
6
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Items
Resistance 

hr # ft2 # °F/Btu
U-factor 

Btu/hr # ft2 # °F

1.  Inside attic film resistance 0.7 1.5

2.  Insulation batt (6 in) 19.0 0.05

3.  Gypsum board (1/2 in) 0.5 2.3

4. � Inside film resistance 
(winter) 0.7 1.5

	 11.	 A typical 13
8@in solid wood core door exposed to winter conditions has the characteristics 

shown in the accompanying table. Assume an inside room temperature of 505F and an outside 
air temperature of 255F, with an exposed area of 25 ft2. (a) Determine the inside and outside 
temperatures of the door’s surface. (b) Determine heat loss through the door.

Items
Resistance 

hr # ft2 # °F/Btu
U-factor 

Btu/hr # ft2 # °F

1. � Outside film resistance 
(winter, 15-mph wind) 0.15 6

2.  13
8@in solid wood core 0.4 2.5

3. � Inside film resistance 
(winter) 0.68 1.5

	 12.	 The concrete table column-support in Problem 2 is reinforced with three 1
2@in steel rods, 

as shown in the accompanying figure. Determine the deflection and average normal 
stresses along the column under a load of 1000 lb. Divide the column into five elements. 
(EC = 3.27 * 103 ksi; Es = 29 * 103 ksi)

1 ft

3 in

28 in

1000 lb

4 in
9 in

3 in

12 in

1 in

6 in

1 in

	 13.	 Compute the total strain energy for the concrete table column-support in Problem 12.
	 14.	 A 10-in slender rod weighing 10 lb is supported by a spring with a stiffness k = 50 lb/in. 

A force P = 50 lb is applied to the rod at the location shown in the accompanying figure. 
Determine the deflection of the spring (a) by drawing a free-body diagram of the rod and 

1

2

3

4
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applying the statics equilibrium conditions, and (b) by applying the minimum total potential 
energy concept.

k = 50 lb—
in

P = 50 lb

W = 10 lb

6 in
2 in

	 15.	 In a DC electrical circuit, Ohm’s law relates the voltage drop V2 - V1 across a resistor to 
a current I flowing through the element and the resistance R according to the equation 
V2 - V1 = RI.

R

I

V2 V1

Using direct formulation, show that for a resistance element comprising two nodes, the con-
ductance matrix, the voltage drop, and the currents are related according to the equation

1
R

 J 1  -1
-1 1

R  bV1

V2
r = b I1

I2
r

	 16.	 Use the results of Problem 15 to set up and solve for the voltage drop in each branch of the 
circuit shown in the accompanying figure.

6 

12 

2 

18 Æ 20 mA Æ

Æ
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	 17.	 The deformation of a simply supported beam under a distributed load, shown in the accom-
panying figure, is governed by the relationship

d2Y

dX 2 =
M(X)

EI

where M(X) is the internal bending moment and is given by

M(X) =
wX(L - X)

2

w

L

X

Y

Derive the equation for the exact deflection. Assume an approximate deflection solution of 
the form

Y(X) = c1J ¢X
L
≤2

- ¢X
L
≤ R

Use the following methods to evaluate c1: (a) the collocation method and (b) the subdomain 
method. Also, using the approximate solutions, determine the maximum deflection of the 
beam if a W27 * 84 (wide flange shape) with a span of L = 22 ft supports a distributed 
load of w = 6 kips/ft.

	 18.	 For the example problem used throughout Section 1.7, assume an approximate solution of 
the form u(y) = c1y + c2y

2 + c3y
3 + c4y

4. Using the collocation, subdomain, Galerkin, and 
least-squares methods, determine the unknown coefficients c1, c2, c3, and c4. Compare your 
results to those obtained in Section 1.7.

	 19.	 The leakage flow of hydraulic fluid through the gap between a piston–cylinder arrangement 
may be modeled as laminar flow of fluid between infinite parallel plates, as shown in the 
accompanying figure. This model offers reasonable results for relatively small gaps. The dif-
ferential equation governing the flow is

m
d2u

dy2 =
dp

dx

y

u

x

H

M01_MOAV4303_04_GE_C01.INDD   80 27/11/14   9:33 AM

www.FreeEngineeringbooksPdf.com



where m is the dynamic viscosity of the hydraulic fluid, u is the fluid velocity, and 
dp

dx
 is the 

pressure drop and is constant. Derive the equation for the exact fluid velocities. Assume an 

approximate fluid velocity solution of the form u(y) = c1Jsin¢py

H
≤ R . Use the following 

		  methods to evaluate c1: (a) the collocation method and (b) the subdomain method. Compare 
the approximate results to the exact solution.

	 20.	 Use the Galerkin and least-squares methods to solve Problem 19. Compare the approximate 
results to the exact solution.

	 21.	 For the cantilever beam shown in the accompanying figure, the deformation of the beam 
under a load P is governed by the relationship

d2Y

dX 2 =
M(X)

EI

		  where M(X) is the internal bending moment and is

M(X) = -PX

L

x

Y

P

X

Derive the equation for the exact deflection. Assume an appropriate form of a polynomial 
function. Keep in mind that the assumed solution must satisfy the given boundary conditions. 
Use the subdomain method and the Galerkin method to solve for the unknown coefficients 
of the assumed solution.

	 22.	 A shaft is made of three parts, as shown in the accompanying figure. Parts AB and CD 
are made of the same material with a modulus of rigidity of G = 9.8 * 103 ksi, and each 
has a diameter of 1.5 in. Segment BC is made of a material with a modulus of rigidity of 
G = 11.2 * 103 ksi and has a diameter of 1 in. The shaft is fixed at both ends. A torque of 
2400 lb # in is applied at C. Using three elements, determine the angle of twist at B and C 
and the torsional reactions at the boundaries.

A B C D

1.5 ft2 ft 2 ft
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	 23.	 For the shaft in Problem 22, replace the torque at C by two equal torques of 1500 lb # in 
at B  and C. Compute the angle of twist at B and C and the torsional reactions at the 
boundaries.

	 24.	 Consider a plate with a variable cross section supporting a load of 1500 lb, as shown in the 
accompanying figure. Using direct formulation, determine the deflection of the bar at loca-
tions y = 2.5 in, y = 7.5 in, and y = 10 in. The plate is made of a material with a modulus 
of elasticity E = 10.6 * 103 ksi.

thickness = 0.125 in

1500 lb

in–1
2

2 in

5 in

2.5 in

10 in

4 in

	 25.	 Consider the springs in parallel and in series, as shown in the accompanying figure. Realizing 
that deformation of each spring in parallel is the same, and the applied force must equal the 
sum of forces in individual springs, show that for the springs in parallel the equivalent spring 
constant ke is

ke = k1 + k2 + k3

For the springs in series, realizing that the total deformation of the springs is the sum of the 
deformations of the individual springs, and the force in each spring equals the applied force, 
show that for the springs in series, the equivalent spring constant is

ke =
1

1
k1

+
1
k2

+
1
k3
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k1 k2

F

k3 k1

F

k2

k3

	 26.	 Use the results of Problem 25 and determine the equivalent spring constant for the system 
of the springs shown in the accompanying figure.

2k

F

3k

3k

2k 3k

k

	 27.	 Determine the equivalent spring constant for the cantilever beam shown in the accompanying 
figure.

F

E, I

L

x
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	 28.	 Use the results of Problem 27 and Eq. (1.5) to determine the equivalent spring constant for 
the system shown in the accompanying figure.

L2

L3

L1

F

E2, A2

E3, A3

E1, I1

	 29.	 Determine the equivalent spring constant for the system shown. Determine the deflection 
of point A, using the minimum total potential energy concept.

L3

L2E2, A2

E3, A3

E1, I1F

L1

2

L1

2

A
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	 30.	 Neglect the mass of the connecting rod and determine the deflection of each spring for the 
system shown in the accompanying figure (a) by applying the statics equilibrium conditions, 
and (b) by applying the minimum total potential energy concept.

2k

k

L

L

L

F
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C h a p t e r  2

Matrix Algebra

In Chapter 1 we discussed the basic steps involved in any finite element analysis. These 
steps include discretizing the problem into elements and nodes, assuming a function 
that represents behavior of an element, developing a set of equations for an element, 
assembling the elemental formulations to present the entire problem, and applying the 
boundary conditions and loading. These steps lead to a set of linear (nonlinear for some 
problems) algebraic equations that must be solved simultaneously. A good understand-
ing of matrix algebra is essential in formulation and solution of finite element models. 
As is the case with any topic, matrix algebra has its own terminology and follows a set of 
rules. We provide an overview of matrix terminology and matrix algebra in this chapter. 
The main topics discussed in Chapter 2 include

	 2.1	 Basic Definitions

	 2.2	 Matrix Addition or Subtraction

	 2.3	 Matrix Multiplication

	 2.4	 Partitioning of a Matrix

	 2.5	 Transpose of a Matrix

	 2.6	 Determinant of a Matrix

	 2.7	 Solutions of Simultaneous Linear Equations

	 2.8	 Inverse of a Matrix

	 2.9	 Eigenvalues and Eigenvectors

	 2.10	 Using MATLAB to Manipulate Matrices

	 2.11	 Using Excel to Manipulate Matrices

2.1  Basic Definitions

A matrix is an array of numbers or mathematical terms. The numbers or the mathemati-
cal terms that make up the matrix are called the elements of matrix. The size of a matrix 
is defined by its number of rows and columns. A matrix may consist of m rows and n 
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columns. For example,

 [N ] = C 6 5 9
1 26 14

-5 8 0
S [T] = D cos u -sin u 0 0

sin u cos u 0 0
0 0 cos u -sin u
0 0 sin u cos u

T
 5L6 = f 0f (x, y, z)

0x
0f (x, y, z)

0y
0f (x, y, z)

0z

v [I] = F L
L

0

x dx L
W

0

y dy

L
L

0

x2

L
 dx L

W

0

y2

L
 dy

V
Matrix [N] is a 3 by 3 (or 3 * 3) matrix whose elements are numbers, [T] is a 4 * 4 
that has sine and cosine terms as its elements, 5L6  is a 3 * 1 matrix with its elements 
representing partial derivatives, and [I] is a 2 * 2 matrix with integrals for its elements. 
The [N], [T], and [I] are square matrices. A square matrix has the same number of rows 
and columns. The element of a matrix is denoted by its location. For example, the ele-
ment in the first row and the third column of a matrix [B] is denoted by b13, and an 
element occurring in matrix [A] in row 2 and column 3 is denoted by the term a23. In 
this book, we denote the matrix by a bold-face letter in brackets [] and 5 6 , for example: 
[K], [T], 5F6 , and the elements of matrices are represented by regular lowercase let-
ters. The 5 6  is used to distinguish a column matrix.

Column Matrix and Row Matrix

A column matrix is defined as a matrix that has one column but could have many rows. 
On the other hand, a row matrix is a matrix that has one row but could have many col-
umns. Examples of column and row matrices follow.

5A6 = d 1
5

-2
3

t , 5X 6 = c x1

x2

x3

s , and 5L6 = f 0f (x, y, z)

0x
0f (x, y, z)

0y
0f (x, y, z)

0z

v  are examples of column matrices,

whereas [C] = [5 0 2 -3] and [Y] = [y1 y2 y3] are examples of row matrices.

Diagonal, Unit, and Band (Banded) Matrix

A diagonal matrix is one that has elements only along its principal diagonal; the ele-
ments are zero everywhere else (aij = 0 when i ≠ j). An example of a 4 * 4 diagonal 
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matrix follows:

[A] = Da1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

T
The diagonal along which a1, a2, a3, and a4 lies is called the principal diagonal. An identity 
or unit matrix is a diagonal matrix whose elements consist of a value 1. An example of 
an identity matrix follows:

[I] = G1 0 0 . . 0 0
0 1 0 . . 0 0
0 0 1 . . 0 0
. . . . . . .
. . . . . . .
0 0 0 . . 1 0
0 0 0 . . 0 1

W
A banded matrix is a matrix that has a band of nonzero elements parallel to its principal 
diagonal. As shown in the example that follows, all other elements outside the band are zero.

[B] = Gb11 b12 0 0 0 0 0
b21 b22 b23 0 0 0 0
0 b32 b33 b34 0 0 0
0 0 b43 b44 b45 0 0
0 0 0 b54 b55 b56 0
0 0 0 0 b65 b66 b67

0 0 0 0 0 b76 b77

W
Upper and Lower Triangular Matrix

An upper triangular matrix is one that has zero elements below the principal diagonal 
(uij = 0 when i 7 j), and the lower triangular matrix is one that has zero elements above 
the principal diagonal (lij = 0 when i 6 j). Examples of upper triangular and lower 
triangular matrices are shown below.

[U] = Du11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44

T   [L] = D l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

T
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2.2  Matrix Addition or Subtraction

Two matrices can be added together or subtracted from each other provided that 
they are of the same size—each matrix must have the same number of rows and 
columns. We can add matrix [A]m * n of dimension m by n to matrix [B]m * n of the same 
dimension by adding the like elements. Matrix subtraction follows a similar rule, as 
shown.

 [A] { [B] = E a11 a12 . . a1n

a21 a22 . . a2n

. . . . .

. . . . .
am1 am2 . . amn

U { E b11 b12 . . b1n

b21 b22 . . b2n

. . . . .

. . . . .
bm1 bm2 . . bmn

U
 = E (a11 { b11) (a12 { b12) . . (a1n { b1n)

(a21 { b21) (a22 { b22) . . (a2n { b2n)
. . . . .
. . . . .

(am1 { bm1) (am2 { bm2) . . (amn { bmn)

U
The rule for matrix addition or subtraction can be generalized in the following 

manner. Let us denote the elements of matrix [A] by aij and the elements of matrix [B] 
by bij, where the number of rows i varies from 1 to m and the number of columns j varies 
from 1 to n. If we were to add matrix [A] to matrix [B] and denote the resulting matrix 
by [C], it follows that

[A] + [B] = [C]

and

	 cij = aij + bij for i = 1, 2, c, m and j = 1, 2, c, n	 (2.1)

2.3  Matrix Multiplication

In this section we discuss the rules for multiplying a matrix by a scalar quantity and by 
another matrix.

Multiplying a Matrix by a Scalar Quantity

When a matrix [A] of size m * n is multiplied by a scalar quantity such as b, the opera-
tion results in a matrix of the same size m * n, whose elements are the product of 
elements in the original matrix and the scalar quantity. For example, when we multiply 
matrix [A] of size m * n by a scalar quantity b, this operation results in another matrix 
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of size m * n, whose elements are computed by multiplying each element of matrix 
[A] by b, as shown below.

	 b[A] = b E a11 a12 . . a1n

a21 a22 . . a2n

. . . . .

. . . . .
am1 am2 . . amn

U = E ba11 ba12 . . ba1n

ba21 ba22 . . ba2n

. . . . .

. . . . .
bam1 bam2 . . bamn

U 	 (2.2)

Multiplying a Matrix by Another Matrix

Whereas any size matrix can be multiplied by a scalar quantity, matrix multiplication can 
be performed only when the number of columns in the premultiplier matrix is equal to 
the number of rows in the postmultiplier matrix. For example, matrix [A] of size m * n 
can be premultiplied by matrix [B] of size n * p because the number of columns n in 
matrix [A] is equal to number of rows n in matrix [B]. Moreover, the multiplication 
results in another matrix, say [C], of size m * p. Matrix multiplication is carried out 
according to the following rule:

[A]m * n[B]n * p = [C]m * p

must match

[A][B] = E a11 a12 . . a1n

a21 a22 . . a2n

. . . . .

. . . . .
am1 am2 . . amn

U Eb11 b12 . . b1p

b21 b22 . . b2p

. . . . .

. . . . .
bn1 bn2 . . bnp

U = E c11 c12 . . c1p

c21 c22 . . c2p

. . . . .

. . . . .
cm1 cm2 . . cmp

U
where the elements in the first column of the [C] matrix are computed from

 c11 = a11b11 + a12b21 + c + a1nbn1

 c21 = a21b11 + a22b21 + c + a2nbn1
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 cm1 = am1b11 + am2b21 + c + amnbn1

and the elements in the second column of the [C] matrix are

 c12 = a11b12 + a12b22 + c + a1nbn2 

 c22 = a21b12 + a22b22 + c + a2nbn2
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 cm2 = am1b12 + am2b22 + c + amnbn2

and similarly, the elements in the other columns are computed, leading to the last col-
umn of the [C] matrix

 c1p = a11b1p + a12b2p + c + a1nbnp

 c2p = a21b1p + a22b2p + c + a2nbnp
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
 cmp = am1b1p + am2b2p + c + amnbnp
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The multiplication procedure that leads to the values of the elements in the [C] matrix 
may be represented in a compact summation form by

	 cmp = a
n

k = 1
amkbkp	 (2.3)

When multiplying matrices, keep in mind the following rules. Matrix multiplication 
is not commutative except for very special cases.

	 [A][B] ≠ [B][A]	 (2.4)

Matrix multiplication is associative; that is

	 [A]([B][C]) = ([A][B])[C]	 (2.5)

The distributive law holds true for matrix multiplication; that is

	 ([A] + [B])[C] = [A][C] + [B][C]	 (2.6)

or

	 [A]([B] + [C]) = [A][B] + [A][C]	 (2.7)

For a square matrix, the matrix may be raised to an integer power n in the following 
manner:

	 [A]n = [A][A]c[A]
6n times

	 (2.8)

This may be a good place to point out that if [I] is an identity matrix and [A] is a 
square matrix of matching size, then it can be readily shown that the product of 
[I ][ A] = [ A][ I ] = [ A]. See Example 2.1 for the proof.

Example 2.1

Given matrices

[A] = C 0 5 0
8 3 7
9  -2 9

S , [B] = C4 6  -2
7 2 3
1 3  -4

S , and 5C6 = c -1
2
5

s
perform the following operations:

	 a.	 [A] + [B] = ?
	 b.	 [A] - [B] = ?
	 c.	 3[A] = ?
	 d.	 [A][B] = ?
	 e.	 [A]5C6 = ?
	 f.	 [A]2 = ?
	 g.	 Show that [I ][A] = [A][I ] = [A]
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We will use the operation rules discussed in the preceding sections to answer these 
questions.

	 a.	 [A] + [B] = ?

 [A] + [B] = C0 5 0
8 3 7
9  -2 9

S + C4 6  -2
7 2 3
1 3  -4

S
 = C (0 + 4) (5 + 6) (0 + (-2))

(8 + 7) (3 + 2) (7 + 3)
(9 + 1) (-2 + 3) (9 + (-4))

S = C 4 11 -2
15 5 10
10 1 5

S
	 b.	 [A] - [B] = ?

 [A] - [B] = C0 5 0
8 3 7
9 -2 9

S - C4 6 -2
7 2 3
1 3 -4

S
 = C (0-4) (5-6) (0-(-2))

(8-7) (3-2) (7-3)
(9-1) (-2-3) (9-(-4))

S = C -4 -1 2
1 1 4
8 -5 13

S
	 c.	 3[A] = ?

3[A] = 3C0 5 0
8 3 7
9 -2 9

S = C 0 (3) (5) 0
(3) (8) (3) (3) (3) (7)
(3) (9) (3) (-2) (3) (9)

S = C 0 15 0
24 9 21
27 -6 27

S
	 d.	 [A][B] = ?

[A][B] = C0 5 0
8 3 7
9 -2 9

S C4 6 -2
7 2 3
1 3 -4

S =C (0)(4) + (5)(7) + (0)(1) (0)(6) + (5)(2) + (0)(3) (0)(-2) + (5)(3) + (0)(-4)
(8)(4) + (3)(7) + (7)(1) (8)(6) + (3)(2) + (7)(3) (8)(-2) + (3)(3) + (7)(-4)

(9)(4) + (-2)(7) + (9)(1) (9)(6) + (-2)(2) + (9)(3) (9)(-2) + (-2)(3) + (9)(-4)
S

	 = C35 10 15
60 75 -35
31 77 -60

S
	 e.	 [A]5C6 = ?

[A]5C6 = C0 5 0
8 3 7
9 -2 9

S c -1
2
5

s = c (0) (-1) + (5) (2) + (0) (5)
(8) (-1) + (3) (2) + (7) (5)

(9) (-1) + (-2) (2) + (9) (5)
s = c 10

33
32

s
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	 f.	 [A]2 = ?

[A]2 = [A][A] = C0 5 0
8 3 7
9 -2 9

S C0 5 0
8 3 7
9 -2 9

S = C40 15 35
87 35 84
65 21 67

S
	 g.	 Show that [I ][A] = [A][I ] = [A]

	  [I ][A] = C1 0 0
0 1 0
0 0 1

S C0 5 0
8 3 7
9 -2 9

S = C0 5 0
8 3 7
9 -2 9

S  and

	  [A][I ] = C0 5 0
8 3 7
9 -2 9

S C1 0 0
0 1 0
0 0 1

S = C0 5 0
8 3 7
9 -2 9

S
2.4 P artitioning of a Matrix

Finite element formulation of complex problems typically involves relatively large sized 
matrices. For these situations, when performing numerical analysis dealing with matrix 
operations, it may be advantageous to partition the matrix and deal with a subset of 
elements. The partitioned matrices require less computer memory to perform the opera-
tions. Traditionally, dashed horizontal and vertical lines are used to show how a matrix 
is partitioned. For example, we may partition matrix [A] into four smaller matrices in 
the following manner:

[A] = Ea11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

U
and in terms of submatrices [A] = JA11 A12

A21 A22
R ,

where

 [A11] = Ja11 a12 a13

a21 a22 a23
R  [A12] = Ja14 a15 a16

a24 a25 a26
R

 [A21] = Ca31 a32 a33

a41 a42 a43

a51 a52 a53

S  [A22] = Ca34 a35 a36

a44 a45 a46

a54 a55 a56

S
It is important to note that matrix [A] could have been partitioned in a number 

of other ways, and the way a matrix is partitioned would define the size of submatrices.
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Addition and Subtraction Operations  
Using Partitioned Matrices

Now let us turn our attention to matrix operations dealing with addition, subtraction, 
or multiplication of two matrices that are partitioned. Consider matrix [B] having the 
same size (5 * 6) as matrix [A]. If we partition matrix [B] in exactly the same way we 
partitioned [A] previously, then we can add the submatrices in the following manner:

[B] = Eb11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

b41 b42 b43 b44 b45 b46

b51 b52 b53 b54 b55 b56

U
where

 [B11] = Jb11 b12 b13

b21 b22 b23
R  [B12] = Jb14 b15 b16

b24 b25 b26
R

 [B21] = Cb31 b32 b33

b41 b42 b43

b51 b52 b53

S  [B22] = Cb34 b35 b36

b44 b45 b46

b54 b55 b56

S
Then, using submatrices we can write

[A] + [B] = JA11 + B11 A12 + B12

A21 + B21 A22 + B22
R

Matrix Multiplication Using Partitioned Matrices

As mentioned earlier, matrix multiplication can be performed only when the number of 
columns in the premultiplier matrix is equal to the number of rows in the postmultiplier 
matrix. Referring to [A] and [B] matrices of the preceding section, because the number 
of columns in matrix [A] does not match the number of rows of matrix [B], then matrix 
[B] cannot be premultiplied by matrix [A]. To demonstrate matrix multiplication using 
submatrices, consider matrix [C] of size 6 * 3, which is partitioned in the manner shown 
below.

 [C] = F c11 c12 c13

c21 c22 c23

c31 c32 c33

c41 c42 c43

c51 c52 c53

c61 c62 c63

V
 [C] = JC11 C12

C21 C22
R
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where

 [C11] = C c11 c12

c21 c22

c31 c32

S  and 5C126 = c c13

c23

c33

s
 [C21] = C c41 c42

c51 c52

c61 c62

S  and 5C226 = c c43

c53

c63

s
Next, consider premultiplying matrix [C] by matrix [A]. Let us refer to the 

results of this multiplication by matrix [D] of size 5 * 3. In addition to paying atten-
tion to the size requirement for matrix multiplication, to carry out the multiplication 
using partitioned matrices, the premultiplying and postmultiplying matrices must be 
partitioned in such a way that the resulting submatrices conform to the multiplication 
rule. That is, if we partition matrix [A] between the third and the fourth columns, then 
matrix [C] must be partitioned between the third and the fourth rows. However, the 
column partitioning of matrix [C] may be done arbitrarily, because regardless of how 
the columns are partitioned, the resulting submatrices will still conform to the mul-
tiplication rule. In other words, instead of partitioning matrix [C] between columns 
two and three, we could have partitioned the matrix between columns one and two 
and still carried out the multiplication using the resulting submatrices.

 [A][C] = [D] = JA11 A12

A21 A22
R JC11 C12

C21 C22
R = JA11C11 + A12C21 A11C12 + A12C22

A21C11 + A22C21 A21C12 + A22C22
R

 = JD11 D12

D21 D22
R

where

 [D11] = [A11][C11] + [A12][C21] and [D12] = [A11]5C126 + [A12]5C226
 [D21] = [A21][C11] + [A22][C21]  [D22] = [A21]5C126 + [A22]5C226

Example 2.2

Given the following partitioned matrices, calculate the product of [A][B] = [C] using 
the submatrices shown.

 [A] = E5 7 2 0 3 5
3 8 -3 -5 0 8
1 4 0 7 15 9
0 10 5 12 3 -1
2 -5 9 2 18 -10

U  and  [B] = F 2 10 0
8 7 5

-5 2 -4
4 8 13
3 12 0
1 5 7

V
 [A] = JA11 A12

A21 A22
R

M02_MOAV4303_04_GE_C02.INDD   95 27/11/14   9:19 AM

www.FreeEngineeringbooksPdf.com



96    Chapter 2    Matrix Algebra

where

 [A11] = J5 7 2
3 8 -3

R [A12] = J 0 3 5
-5 0 8

R
 [A21] = C1 4 0

0 10 5
2 -5 9

S [A22] = C 7 15 9
12 3 -1
2 18 -10

S
and

[B] = JB11 B12

B21 B22
R

where

 [B11] = C 2 10
8 7

-5 2
S  and 5B126 = c 0

5
-4

s
 [B21] = C4 8

3 12
1 5

S and 5B226 = c 13
0
7
s

[A][B] = [C] = JA11 A12

A21 A22
R JB11 B12

B21 B22
R = JA11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22
R = JC11 C12

C21 C22
R

where

 [C11] = [A11][B11] + [A12][B21] = J5 7 2
3 8 -3

R C 2 10
8 7

-5 2
S

+ J 0 3 5
-5 0 8

R C4 8
3 12
1 5

S = J70 164
73 80

R
 [C12] = [A11]5B126 + [A12]5B226 = J5 7 2

3 8 -3
R c 0

5
-4

s
+ J 0 3 5

-5 0 8
R c 13

0
7
s = b62

43
r

 [C21] = [A21][B11] + [A22][B21] = C1 4 0
0 10 5
2 -5 9

S C 2 10
8 7

-5 2
S

 + C 7 15 9
12 3 -1
2 18 -10

S C4 8
3 12
1 5

S = C 116 319
111 207
-29 185

S
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 [C22] = [A21]5B126 + [A22]5B226 = C1 4 0
0 10 5
2 -5 9

S c 0
5

-4
s

 + C 7 15 9
12 3 -1
2 18 -10

S c 13
0
7
s = c 174

179
-105

s
The final result is given by

[A][B] = [C] = JA11 A12

A21 A22
R JB11 B12

B21 B22
R = JC11 C12

C21 C22
R = E 70 164 62

73 80 43
116 319 174
111 207 179
-29 185 -105

U
As explained earlier, the column partitioning of matrix [B] may be done arbitrarily 
because the resulting submatrices still conform to the multiplication rule. It is left as an 
exercise for you (see Problem 3 at the end of this chapter) to show that we could have 
partitioned matrix [B] between columns one and two and used the resulting submatrices 
to compute [A][B] = [C].

2.5 T ranspose of a Matrix

As you will see in the following chapters, the finite element formulation lends itself 
to situations wherein it is desirable to rearrange the rows of a matrix into the col-
umns of another matrix. To demonstrate this idea, let us go back and consider step 4 
in Example 1.1. In step 4 we assembled the elemental stiffness matrices to obtain the 
global stiffness matrix. You will recall that we constructed the stiffness matrix for each 
element with its position in the global stiffness matrix by inspection. Let’s recall the 
stiffness matrix for element (1), which is shown here again for the sake of continuity 
and convenience.

 [K](1) = J k1 -k1

-k1 k1
R  and its position in the global matrix

 [K](1G) = E k1 -k1 0 0 0
-k1 k1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

U
Instead of putting together [K](1G) by inspection as we did, we could obtain [K](1G) using 
the following procedure:

	 [K](1G) = [A1]
T[K](1)[A1]	 (2.9)
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where

[A1] = J1 0 0 0 0
0 1 0 0 0

R
and

[A1]
T = E1 0

0 1
0 0
0 0
0 0

U
[A1]

T, called the transpose of [A1], is obtained by taking the first and the second rows of 
[A1] and making them into the first and the second columns of the transpose matrix. It 
is easily verified that by carrying out the multiplication given by Eq. (2.9), we will arrive 
at the same result that was obtained by inspection.

[K](1G) = E1 0
0 1
0 0
0 0
0 0

U J k1 -k1

-k1 k1
R J1 0 0 0 0

0 1 0 0 0
R = E k1 -k1 0 0 0

-k1 k1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

U
Similarly, we could have performed the following operation to obtain [K](2G):

[K](2G) = [A2]
T[K](2)[A2]

where

[A2] = J0 1 0 0 0
0 0 1 0 0

R
and

[A2]
T = E0 0

1 0
0 1
0 0
0 0

U
and

[K](2G) = E0 0
1 0
0 1
0 0
0 0

U J k2 -k2

-k2 k2
R J0 1 0 0 0

0 0 1 0 0
R = E0 0 0 0 0

0 k2 -k2 0 0
0 -k2 k2 0 0
0 0 0 0 0
0 0 0 0 0

U
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As you have seen from the previous examples, we can use a positioning matrix, 
such as [A] and its transpose, and methodically create the global stiffness matrix for 
finite element models.

In general, to obtain the transpose of a matrix [B] of size m * n, the first row of 
the given matrix becomes the first column of the [B]T, the second row of [B] becomes 
the second column of [B]T, and so on, leading to the mth row of [B] becoming the mth 
column of the [B]T, resulting in a matrix with the size of n * m. Clearly, if you take the 
transpose of [B]T, you will end up with [B]. That is,

	 ([B]T)T = [B]	 (2.10)

As you will see in succeeding chapters, in order to save space, we write the solu-
tion matrices, which are column matrices, as row matrices using the transpose of the 
solution—another use for transpose of a matrix. For example, we represent the displace-
ment solution

5U6 = e U1

U2

U3#
Un

u  by [U ]T = [U1 U2 U3
# Un]

When performing matrix operations dealing with transpose of matrices, the fol-
lowing identities are true:

	  ([A] + [B] + c + [N ])T = [A]T + [B]T + c + [N ]T	 (2.11)

	  ([A][B]c[N ])T = [N ]Tc[B]T[A]T 	 (2.12)

In Eq. (2.12), note the change in the order of multiplication.
This is a good place to define a symmetric matrix. A symmetric matrix is a square 

matrix whose elements are symmetrical with respect to its principal diagonal. An example  
of a symmetric matrix follows:

[A] = D 1 4 2 -5
4 5 15 20
2 15 -3 8

-5 20 8 0

T
Note that for a symmetric matrix, element amn is equal to anm. That is, amn = anm for all 
values of n and m. Therefore, for a symmetric matrix, [A] = [A]T.

Example 2.3

Given the following matrices:

[A] = C0 5 0
8 3 7
9 -2 9

S  and [B] = C4 6 -2
7 2 3
1 3 -4

S
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perform the following operations:

	 a.	 [A]T = ? and [B]T = ?
	 b.	 verify that ([A] + [B])T = [A]T + [B]T

	 c.	 verify that ([A][B])T = [B]T[A]T

	 a.	 [A]T = ? and [B]T = ?
As explained earlier, the first, second, third, . . . , and the mth rows of a matrix 
become the first, second, third, . . . , and the mth columns of the transpose matrix 
respectively.

[A]T = C0 8 9
5 3 -2
0 7 9

S
Similarly,

[B]T = C 4 7 1
6 2 3

-2 3 -4
S

	 b.	 Verify that ([A] + [B])T = [A]T + [B]T.

 [A] + [B] = C 4 11 -2
15 5 10
10 1 5

S  and ([A] + [B])T = C 4 15 10
11 5 1
-2 10 5

S
 [A]T + [B]T = C0 8 9

5 3 -2
0 7 9

S + C 4 7 1
6 2 3

-2 3 -4
S = C 4 15 10

11 5 1
-2 10 5

S
Comparing results, it is clear that the given identity is true.

	 c.	 Verify that ([A][B])T = [B]T[A]T.
In Example 2.2 we computed the product of [A][B]:

 [A][B] = C 0 5 0
8 3 7
9 -2 9

S C4 6 -2
7 2 3
1 3 -4

S = C35 10 15
60 75 -35
31 77 -60

S
and using the results we get

 ([A][B])T = C 35 60 31
10 75 77
15 -35 -60

S
Alternatively,

[B]T[A]T = C 4 7 1
6 2 3

-2 3 -4
S C0 8 9

5 3 -2
0 7 9

S = C35 60 31
10 75 77
15 -35 -60

S
Again, by comparing results we can see that the given identity is true.
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2.6  Determinant of a Matrix

Up to this point we have defined essential matrix terminology and discussed basic 
matrix operations. In this section we define what is meant by a determinant of a matrix. 
As you will see in the succeeding sections, determinant of a matrix is used in solving a 
set of simultaneous equations, obtaining the inverse of a matrix, and forming the char-
acteristic equations for a dynamic problem (eigenvalue problem).

Let us consider the solution to the following set of simultaneous equations:

	  a11x1 + a12x2 = b1	 (2.13a)

	  a21x1 + a22x2 = b2	 (2.13b)

We can represent Eqs. (2.13a) and (2.13b) in a matrix form by

	 Ja11 a12

a21 a22
R bx1

x2
r = bb1

b2
r 	 (2.14)

or in a compact form by

[A]5X6 = 5B6
To solve for the unknowns x1 and x2, we may first solve for x2 in terms of x1, using 
Eq. (2.13b), and then substitute that relationship into Eq. (2.13a). These steps are shown 
next.

x2 =
b2 - a21x1

a22
 1 a11x1 + a12¢b2 - a21x1

a22
≤ = b1

Solving for x1

	 x1 =
b1a22 - a12b2

a11a22 - a12a21
	 (2.15a)

After we substitute for x1 in either Eq. (2.13a) or (2.13b), we get

	 x2 =
a11b2 - b1a21

a11a22 - a12a21
	 (2.15b)

Referring to the solutions given by Eqs. (2.15a) and (2.15b), we see that the denomina-
tors in these equations represent the product of coefficients in the main diagonal minus 
the product of the coefficient in the other diagonal of the [A] matrix.

The a11a22 - a12a21 is the determinant of the 2 * 2 [A] matrix and is represented 
in one of following ways:

	 Det[A] or det[A] or 2 a11 a12

a21 a22

2 = a11a22 - a12a21	 (2.16)

Only the determinant of a square matrix is defined. Moreover, keep in mind that the 
determinant of the [A] matrix is a single number. That is, after we substitute for the 
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values of a11, a22, a12, and a21 into a11a22 - a12a21, we get a single number. In general, 
the determinant of a matrix is a single value. However, as you will see later, for dynamic 
problems the determinant of a matrix resulting from equations of motions is a polyno-
mial expression.

Cramer’s rule is a numerical technique that can be used to obtain solutions to a 
relatively small set of equations similar to the previous example. Using Cramer’s rule 
we can represent the solutions to the set of simultaneous equations given by Eqs. (2.13a) 
and (2.13b) with the following determinants:

	 x1 =

2 b1 a12

b2 a22

22 a11 a12

a21 a22

2 and x2 =

2 a11 b1

a21 b2

22 a11 a12

a21 a22

2 	 (2.17)

Let us now consider the determinant of a 3 * 3 matrix such as

[C] = C c11 c12 c13

c21 c22 c23

c31 c32 c33

S
which is computed in the following manner:

	 3 c11 c12 c13

c21 c22 c23

c31 c32 c33

3 =
c11c22c33 + c12c23c31 + c13c21c32 - c13c22c31

- c11c23c32 - c12c21c33
	 (2.18)

There is a simple procedure called direct expansion, which you can use to obtain 
the results given by Eq. (2.18). Direct expansion proceeds in the following manner. First, 
we repeat and place the first and the second columns of the matrix [C] next to the third 
column, as shown in Figure 2.1. Then we add the products of the diagonal elements lying 
on the solid arrows and subtract them from the products of the diagonal elements lying 
on the dashed arrows. This procedure, shown in Figure 2.1, results in the determinant 
value given by Eq. (2.18).

The direct expansion procedure cannot be used to obtain higher order determi-
nants. Instead, we resort to a method that first reduces the order of the determinant—to 
what is called a minor—and then evaluates the lower order determinants. To demon-
strate this method, let’s consider the right-hand side of Eq. (2.18) and factor out c11,-c12, 
and c13 from it. This operation is shown below.

 c11c22c33 + c12c23c31 + c13c21c32 - c13c22c31 - c11c23c32 - c12c21c33

 =  c11(c22c33 - c23c32) - c12(c21c33 - c23c31) + c13(c21c32 - c22c31)

As you can see, the expressions in the parentheses represent the determinants of 
reduced 2 * 2 matrices. Thus, we can express the determinant of the given 3 * 3 matrix 
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in terms of the determinants of the reduced 2 * 2 matrices (minors) in the following 
manner: 3 c11 c12 c13

c21 c22 c23

c31 c32 c33

3 = c11
2 c22 c23

c32 c33

2 - c12
2 c21 c23

c31 c33

2 + c13
2 c21 c22

c31 c32

2
A simple way to visualize this reduction of a third-order determinant into three 

second-order minors is to draw a line through the first row, first column, second col-
umn, and third column. Note that the elements shown in the box—the common ele-
ment contained in elimination rows and columns—are factors that get multiplied by 
the lower order minors. The plus and the minus signs before these factors are assigned 
based on the following procedure. We add the row and the column number of the fac-
tor, and if the sum is an even number, we assign a positive sign, and if the sum is an 
odd number we assign a negative sign to the factor. For example, when deleting the 
first row and the second column (1 + 2), a negative sign should then appear before 
the c12 factor.

c11 c12 c13

c21 c22 c23

c31 c32 c33

   

c11 c12 c13

c21 c22 c23

c31 c32 c33

   

c11 c12 c13

c21 c22 c23

c31 c32 c33

It is important to note that alternatively to compute the determinant of [A] we 
could have eliminated the second or the third row—instead of the first row—to reduce 
the given determinant into three other second-order minors. This point is demonstrated 
in Example 2.4.

Our previous discussion demonstrates that the order of a determinant may be 
reduced into other lower order minors, and the lower order determinants may be used 
to evaluate the value of the higher order determinant.

Here are two useful properties of determinants: (1) The determinant of a matrix 
[A] is equal to the determinant of its transpose [A]T. This property may be readily 
verified (see Example 2.4). (2) If you multiply the elements of a row or a column 
of a matrix by a scalar quantity, then its determinant gets multiplied by that quantity 
as well.

a11

a21

a12

a22

c31 c32

c12

c31

c11

c32c33

c21 c22 c21 c22c23

c13

(a) (b)

c12c11

Figure 2.1  Direct expansion procedure 
for computing the determinant of (a) 2 * 2 
matrix, and (b) 3 * 3 matrix.
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Example 2.4

Given the following matrix:

[A] = C1 5 0
8 3 7
6 -2 9

S
calculate

	 a.	 determinant of [A]
	 b.	 determinant of [A]T

	 a.	 For this example, we use both the direct expansion and the minor methods to 
compute the determinant of [A]. As explained earlier, using the direct expan-
sion method, we repeat and place the first and the second columns of the matrix 
next to the third column as shown, and compute the products of the elements 
along the solid arrows, then subtract them from the products of elements along 
the dashed arrow.

 
1 5 0 1 5
8 3 7 8 3
6 -2 9 6 -2

 3 1 5 0
8 3 7
6 -2 9

3 =
(1)(3)(9) + (5)(7)(6) + (0)(8)(-2) - (5)(8)(9)
-  (1)(7)(-2) - (0)(3)(6) = -109

Next, we use the minor to compute the determinant of [A]. For this example, 
we eliminate the elements in the first row and in first, second, and third columns, 
as shown.

 
1 5 0
8 3 7
6 -2 9

  

 1 5 0
 8 3 7
 6 -2 9

  

 1 5 0
 8 3 7
 6 -2 9

 3 1 5 0
8 3 7
6 -2 9

3 = 1 2 3 7
-2 9

2 -5 2 8 7
6 9

2 + 0 2 8 3
6 -2

2
 = (1)[(3)(9)-(7)(-2)]-(5)[(8)(9)-(7)(6)] = -109

Alternatively, to compute the determinant of the [A] matrix, we can eliminate the 
elements in the second row, and first, second, and third column as shown:

1 5 0
8 3 7
6 -2 9

  

 1 5 0
 8 3 7
 6 -2 9

  

 1 5 0
 8 3 7
 6 -2 9
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 3 1 5 0
8 3 7
6 -2 9

3 = -8 2 5 0
-2 9

2 + 3 2 1 0
6 9

2 - 7 2 1 5
6 -2

2
 = -(8)[(5)(9)-(0)(-2)]+(3)[(1)(9)-(0)(6)]-(7)[(1)(-2)-(5)(6)] = -109

	 b.	 As already mentioned, the determinant of [A]T is equal to the determinant of [A]. 
Therefore, there is no need to perform any additional calculations. However, as 
a means of verifying this identity, we will compute and compare determinant of 
[A]T to the determinant of [A]. Recall that [A]T is obtained by interchanging the 
first, second, and third rows of [A] into the first, second, and third columns of the

[A]T, leading to [A]T = C1 8 6
5 3 -2
0 7 9

S . Using minors, we get

 
1 8 6
5 3 -2
0 7 9

  

 1 8 6
 5 3 -2
 0 7 9

  

 1 8 6
 5 3 -2
 0 7 9

 

 3 1 8 6
5 3 -2
0 7 9

3 = 1 2 3 -2
7 9

2 - 8 2 5 -2
0 9

2 + 6 2 5 3
0 7

2
 = (1)[(3)(9)-(-2)(7)]-(8)[(5)(9)-(-2)(0)] + (6)[(5)(7)-(3)(0)] = -109

When the determinant of a matrix is zero, the matrix is called a singular. A singular 
matrix results when the elements in two or more rows of a given matrix are identical. 
For example, consider the following matrix:

[A] = C2 1 4
2 1 4
1 3 5

S
whose rows one and two are identical. As shown below, the determinant of [A] is zero.3 2 1 4

2 1 4
1 3 5

3 =
(2)(1)(5) + (1)(4)(1) + (4)(2)(3) - (1)(2)(5)
- (2)(4)(3) - (4)(1)(1) = 0

Matrix singularity can also occur when the elements in two or more rows of a matrix 
are linearly dependent. For example, if we multiply the elements of the second row of 
matrix [A] by a scalar factor such as 7, then the resulting matrix,

[A] = C 2 1 4
14 7 28
1 3 5

S
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is singular because rows one and two are now linearly dependent. As shown below, the 
determinant of the new [A] matrix is zero.3 2 1 4

14 7 28
1 3 5

3 =
 (2)(7)(5) + (1)(28)(1) + (4)(14)(3) - (1)(14)(5)
- (2)(28)(3) - (4)(7)(1) = 0

2.7 S olutions of Simultaneous Linear Equations

As you saw in Chapter 1, the finite element formulation leads to a system of algebraic 
equations. Recall that for Example 1.1, the bar with a variable cross section supporting 
a load, the finite element approximation and the application of the boundary condition 
and the load resulted in a set of four linear equations:

103D 1820 -845 0 0
-845 1560 -715 0

0 -715 1300 -585
0 0 -585 585

T d u2

u3

u4

u5

t = d 0
0
0

103

t
In the sections that follow we discuss two methods that you can use to obtain solu-

tions to a set of linear equations.

Gauss Elimination Method

We begin our discussion by demonstrating the Gauss elimination method using an 
example. Consider the following three linear equations with three unknowns, x1, x2, 
and x3.

	  2x1 + x2 + x3 = 13	 (2.19a)

	  3x1 + 2x2 + 4x3 = 32	 (2.19b)

	  5x1 - x2 + 3x3 = 17	 (2.19c)

	 1.	 We begin by dividing the first equation, Eq. (2.19a), by 2, the coefficient of x1 term. 
This operation leads to

	 x1 +
1
2

 x2 +
1
2

 x3 =
13
2

	 (2.20)

	 2.	 We multiply Eq. (2.20) by 3, the coefficient of x1 in Eq. (2.19b).

	 3x1 +
3
2

 x2 +
3
2

 x3 =
39
2

	 (2.21)
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		  We then subtract Eq. (2.21) from Eq. (2.19b). This step eliminates x1 from 
Eq. (2.19b). This operation leads to

	  3x1 + 2x2 + 4x3 = 32 	

	  

- ¢3x1 +
3
2

 x2 +
3
2

 x3 =
39
2
≤

	

	  
1
2

 x2 +
5
2

 x3 =
25
2

	 (2.22)

	 3.	 Similarly, to eliminate x1 from Eq. (2.19c), we multiply Eq. (2.20) by 5, the coefficient 
of x1 in Eq. (2.19c)

	 5x1 +
5
2

 x2 +
5
2

 x3 =
65
2

	 (2.23)

We then subtract the above equation from Eq. (2.19c), which eliminates x1 from 
Eq. (2.19c). This operation leads to

	  5x1 - x2 + 3x3 = 17 	

	  

- ¢5x1 +
5
2

 x2 +
5
2

 x3 =
65
2
≤

	

	  -
7
2

x2 +
1
2

x3 = -
31
2

	 (2.24)

Let us summarize the results of the operations performed during steps 1 through 3. 
These operations eliminated the x1 from Eqs. (2.19b) and (2.19c).

	  x1 +
1
2

 x2 +
1
2

 x3 =
13
2

	 (2.25a)

	    
1
2

 x2 +
5
2

 x3 =
25
2

	 (2.25b)

	    -
7
2

 x2 +
1
2

 x3 = -
31
2

	 (2.25c)

	 4.	 To eliminate x2 from Eq. (2.25c), first we divide Eq. (2.25b) by 1/2, the coefficient 
of x2.

	 x2 + 5x3 = 25	 (2.26)

Then we multiply Eq. (2.26) by -7/2, the coefficient of x2 in Eq. (2.25c), and sub-
tract that equation from Eq. (2.25c). These operations lead to

	  -
7
2

 x2 +
1
2

 x3 = -
31
2

	

	  

- ¢ -
7
2

 x2 -
35
2

 x3 = -
175
2

≤
	

	  18x3 = 72 	 (2.27)
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		  Dividing both sides of Eq. (2.27) by 18, we get

x3 = 4

		  Summarizing the results of the previous steps, we have

	  x1 +
1
2

 x2 +
1
2

 x3 =
13
2

	 (2.28)

	  x2 + 5x3 = 25	 (2.29)

	  x3 = 4 	 (2.30)

		  Note Eqs. (2.28) and (2.29) are the same as Eqs. (2.25a) and (2.26), which are 
renumbered for convenience. Now we can use back substitution to compute the 
values of x2 and x1. We substitute for x3 in Eq. (2.29) and solve for x2.

x2 + 5(4) = 25 S x2 = 5

Next, we substitute for x3 and x2 in Eq. (2.28) and solve for x1.

x1 +
1
2

(5) +
1
2

(4) =
13
2
 S x1 = 2

The Lower Triangular, Upper Triangular (LU)  
Decomposition Method

When designing structures, it is often necessary to change the load and consequently 
the load matrix to determine its effect on the resulting displacements and stresses. 
Some heat transfer analysis also requires experimenting with the heat load in reach-
ing the desirable temperature distribution within the medium. The Gauss elimination 
method requires full implementation of the coefficient matrix (the stiffness or the 
conductance matrix) and the right-hand side matrix (load matrix) in order to solve 
for the unknown displacements (or temperatures). When using Gauss elimination, 
the entire process must be repeated each time a change in the load matrix is made. 
Whereas the Gauss elimination is not well suited for such situations, the LU method 
handles any changes in the load matrix much more efficiently. The LU method con-
sists of two major parts: a decomposition part and a solution part. We explain the LU 
method using the following three equations

	 a11x1 + a12x2 + a13x3 = b1	 (2.31)

	 a21x1 + a22x2 + a23x3 = b2	 (2.32)

	 a31x1 + a32x2 + a33x3 = b3	 (2.33)

or in a matrix form,

	 Ca11 a12 a13

a21 a22 a23

a31 a32 a33

S c x1

x2

x3

s = c b1

b2

b3

s  or [A]5x6 = 5b6 	 (2.34)
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Decomposition Part  The main idea behind the LU method is first to decom-

pose the coefficient matrix [A] into lower [L] = C 1 0 0
l21 1 0
l31 l32 1

S  and upper triangular 

[U] = Cu11 u12 u13

0 u22 u23

0 0 u33

S  matrices so that

	 Ca11 a12 a13

a21 a22 a23

a31 a32 a33

S = C 1 0 0
l21 1 0
l31 l32 1

S Cu11 u12 u13

0 u22 u23

0 0 u33

S 	 (2.35)

Carrying out the multiplication operation, we get

	  Ca11 a12 a13

a21 a22 a23

a31 a32 a33

S = C 1 0 0
l21 1 0
l31 l32 1

S Cu11 u12 u13

0 u22 u23

0 0 u33

S 	

	  = C u11 u12 u13

l21u11 l21u12 + u22 l21u13 + u23

l31u11 l31u12 + l32u22 l31u13 + l32u23 + u33

S 	

(2.36)

Now let us compare the elements in the first row of [A] matrix in Eq. (2.36) to the 
elements in the first row of the [L][U] multiplication results. From this comparison we 
can see the following relationships:

u11 = a11 and u12 = a12 and u13 = a13

Now, by comparing the elements in the first column of [A] matrix in Eq. (2.36) to 
the elements in the first column of the [L][U] product, we can obtain the values of l21 
and l31:

	 l21u11 = a21 S l21 =
a21

u11
=

a21

a11
	 (2.37)

	 l31u11 = a31 S l31 =
a31

u11
=

a31

a11
	 (2.38)

Note the value of u11 was determined in the previous step. That is, u11 = a11. We can 
obtain the values of u22 and u23 by comparing the elements in the second rows of the 
matrices in Eq. (2.36).

	 l21u12 + u22 = a22 S u22 = a22 - l21u12	 (2.39)

	 l21u13 + u23 = a23 S u23 = a23 - l21u13	 (2.40)

When examining Eqs. (2.39) and (2.40) remember that the values of l21, u12, and u13 are 
known from previous steps. Now we compare the elements in the second columns of 
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Eq. (2.36). This comparison leads to the value of l32. Note, we already know values of 
u12, l21, u22, and l31 from previous steps.

	 l31u12 + l32u22 = a32 S l32 =
a32 - l31u12

u22
	 (2.41)

Finally, the comparison of elements in the third rows leads to the value of u33.

	 l31u13 + l32u23 + u33 = a33 S u33 = a33 - l31u13 - l32u23	 (2.42)

We used a simple 3 * 3 matrix to show how the LU decomposition is performed. 
We can now generalize the scheme for a square matrix of any size n in the following 
manner:

Step 1.	 The values of the elements in the first row of the [U] matrix are obtained from

	 u1j = a1j  for j = 1 to n	 (2.43)

Step 2.	 The unknown values of the elements in the first column of the [L] matrix are 
obtained from

	 li1 =
ai1

u11
  for i = 2 to n	 (2.44)

Step 3.	 The unknown values of the elements in the second row of the [U] matrix are 
computed from

	 u2j = a2j - l21u1j  for j = 2 to n	 (2.45)

Step 4.	 The values of the elements in the second column of [L] matrix are calculated from

	 li2 =
ai2 - li1u12

u22
  for i = 3 to n	 (2.46)

Next, we determine the unknown values of the elements in the third row of the [U] 
matrix and the third column of [L]. By now you should see a clear pattern. We evaluate 
the values of the elements in a row first and then switch to a column. This procedure is 
repeated until all the unknown elements are computed. We can generalize the above 
steps in the following way. To obtain the values of the elements in the kth row of [U] 
matrix, we use

	 ukj = akj - a
k - 1

p = 1
lkpupj   for j = k to n	 (2.47)

We will then switch to the kth column of [L] and determine the unknown values in that 
column.

	 lik =
aik - a

k - 1

p = 1
lipupk

ukk
   for i = k + 1 to n	 (2.48)

Solution Part  So far you have seen how to decompose a square coefficient matrix 
[A] into lower and upper triangular [L] and [U] matrices. Next, we use the [L] and the 
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[U] matrices to solve a set of linear equations. Let’s turn our attention back to the three 
equations and three unknowns example and replace the coefficient matrix [A] with the 
[L] and [U] matrices:

	  [A]5x6 = 5b6 	 (2.49)

	  [L][U]5x6 = 5b6 	 (2.50)

We now replace the product of [U ]5x6by a column matrix5z6such that

	  [U]5x6 = 5z6 	 (2.51)

	 [L][U]5x6 = 5b6 S [L]5z6 = 5b6 	 (2.52)

Because [L] is a lower triangular matrix, we can easily solve for the values of the 
elements in the5z6matrix, and then use the known values of the5z6matrix to solve 
for the unknowns in the5x6 from the relationship [U]5x6 = 5z6 . These steps are dem-
onstrated next.

	 C 1 0 0
l21 1 0
l31 l32 1

S c z1

z2

z3

s = c b1

b2

b3

s 	 (2.53)

From Eq. (2.53), it is clear that

	  z1 = b1 	 (2.54)

	  z2 = b2 - l21z1 	 (2.55)

	  z3 = b3 - l31z1 - l32z2	 (2.56)

Now that the values of the elements in the5z6matrix are known, we can solve for 
the unknown matrix5x6using

	  Cu11 u12 u13

0 u22 u23

0 0 u33

S c x1

x2

x3

s = c z1

z2

z3

s 	 (2.57)

	  x3 =
z3

u33
	 (2.58)

	  x2 =
z2 - u23x3

u22
	 (2.59)

	  x1 =
z1 - u12x2 - u13x3

u11
	 (2.60)

Here we used a simple three equations and three unknowns to demonstrate how 
best to proceed to obtain solutions; we can now generalize the scheme to obtain the 
solutions for a set of n equations and n unknown.

2
{z}
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	  z1 = b1 and zi = bi - a
i - 1

j = 1
lijzj  for i = 2, 3, 4, . . . , n	 (2.61)

 xn =
zn

unn
  and  xi =

zi - a
n

j = i + 1
uijxj

uii
  for i = n - 1, n - 2, n - 3, c, 3, 2, 1	 (2.62)

Next, we apply the LU method to the set of equations that we used to demonstrate 
the Gauss elimination method.

Example 2.5

Apply the LU decomposition method to the following three equations and three 
unknowns set of equations:

 2x1 + x2 + x3 = 13

 3x1 + 2x2 + 4x3 = 32

 5x1 - x2 + 3x3 = 17

 [A] = C2 1 1
3 2 4
5 -1 3

S  and 5b6 = c 13
32
17

s
Note that for the given problem, n = 3.

Decomposition Part 
Step 1.	 The values of the elements in the first row of the [U] matrix are obtained from

 u1j = a1j  for j = 1 to n

 u11 = a11 = 2  u12 = a12 = 1  u13 = a13 = 1

Step 2.	 The unknown values of the elements in the first column of the [L] matrix are 
obtained from

 li1 =
ai1

u11
    for i = 2 to n

 l21 =
a21

u11
=

3
2
  l31 =

a31

u11
=

5
2

Step 3.	 The unknown values of the elements in the second row of the [U] matrix are 
computed from

 u2j = a2j - l21u1j  for j = 2 to n

 u22 = a22 - l21u12 = 2 - ¢ 3
2
≤(1) =

1
2

 u23 = a23 - l21u13 = 4 - ¢ 3
2
≤(1) =

5
2
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Step 4.	 The unknown values of the elements in the second column of the [L] matrix 
are determined from

 li2 =
ai2 - li1u12

u22
  for i = 3 to n

 l32 =
a32 - l31u12

u22
=

-1- ¢ 5
2
≤(1)

1
2

= -7

Step 5.	 Compute the remaining unknown elements in the [U] and [L] matrices.

 ukj = akj - a
k - 1

p = 1
lkpupj  for j = k to n

 u33 = a33 - (l31u13 + l32u23) = 3 - ¢¢ 5
2
≤(1) + (-7)¢ 5

2
≤ ≤ = 18

Because of the size of this problem (n = 3) and the fact that the elements along 
the main diagonal of the [L] matrix have values of 1, that is, l33 = 1, we do not need to 
proceed any further. Therefore, the application of the last step

lik =
aik - a

k - 1

p = 1
lipupk

ukk
   for i = k + 1 to n

is omitted. We have now decomposed the coefficient matrix [A] into the following lower 
and upper triangular [L] and [U] matrices:C2 1 1

3 2 4
5 -1 3

S = E 1 0 0
3
2

1 0

5
2

-7 1

U D2 1 1

0
1
2

5
2

0 0 18

T
When performing this method by hand, here is a good place to check the decom-

position results by premultiplying the [L] matrix by the [U] matrix to see if the [A] 
matrix is recovered.

We now proceed with the solution phase of the LU method, Eq. (2.61).

Solution Part

 z1 = b1 and zi = bi - a
i - 1

j = 1
lijzj for i = 2 to n

 z1 = 13   z2 = b2 - l21z1 = 32 - ¢ 3
2
≤(13) =

25
2

 z3 = b3 - (l31z1 + l32z2) = 17 - ¢¢ 5
2
≤(13) + (-7)¢ 25

2
≤ ≤ = 72
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The solution is obtained from Eq. (2.62).

 xn =
zn

unn
  and  xi =

zi - a
n

j = i + 1
uijxj

uii
  for i = n - 1, n - 2, n - 3, c, 3, 2, 1

Note for this problem n = 3, therefore i = 2, 1.

 x3 =
z3

u33
=

72
18

= 4

 x2 =
z2 - u23x3

u22
=

25
2

- ¢ 5
2
≤(4)

1
2

= 5

 x1 =
z1 - u12x2 - u13x3

u11
=

13 - ((1)(5) + (1)(4))

2
= 2

2.8 I nverse of a Matrix

In the previous sections we discussed matrix addition, subtraction, and multiplication, 
but you may have noticed that we did not say anything about matrix division. That is 
because such an operation is not formally defined. Instead, we define an inverse of a 
matrix in such a way that when it is multiplied by the original matrix, the identity matrix 
is obtained.

	 [A]-1[A] = [A][A]-1 = [I]	 (2.63)

In Eq. (2.63), [A]-1 is called the inverse of [A]. Only a square and nonsingular matrix 
has an inverse. In Section 2.7 we explained the Gauss elimination and the LU methods 
that you can use to obtain solutions to a set of linear equations. Matrix inversion allows 
for yet another way of solving for the solutions of a set of linear equations. Once again, 
recall from our discussion in Chapter 1 that the finite element formulation of an engi-
neering problem leads to a set of linear equations, and the solution of these equations 
render the nodal values. For instance, formulation of the problem in Example 1.1 led to 
the set of linear equations given by

	 [K]5u6 = 5F6 	 (2.64)

To obtain the nodal displacement values5u6, we premultiply Eq. (2.64) by [K]-1, 
which leads to

	 [K]-1[K]5u6 = [K]-15F6 	 (2.65)

	  [I ]5u6 = [K]-15F6 	 (2.66)

and noting that [I ]5u6 = 5u6  and simplifying,

	 5u6 = [K]-15F6 	 (2.67)

2
[I]
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From the matrix relationship given by Eq. (2.67), you can see that the nodal solu-
tions can be easily obtained, provided the value of [K]-1 is known. This example shows 
the important role of the inverse of a matrix in obtaining the solution to a set of linear 
equations. Now that you see why the inverse of a matrix is important, the next question 
is, How do we compute the inverse of a square and nonsingular matrix? There are a 
number of established methods that we can use to determine the inverse of a matrix. 
Here we discuss a procedure based on the LU decomposition method. Let us refer back 
to the relationship given by Eq. (2.63), and decompose matrix [A] into lower and upper 
triangular [L] and [U] matrices.

	 [L][U] [A]-1 = [I]	 (2.68)

Next, we represent the product of [U][A]-1 by another matrix, say matrix [Y]:

	 [U][A]-1 = [Y]	 (2.69)

and substitute for [U ][A]-1 in terms of [Y] in Eq. (2.68), which leads to

	 [L][Y] = [I ]	 (2.70)

We then use the relationships given by Eq. (2.70) to solve for the unknown values of 
elements in matrix [Y], and then use Eq. (2.69) to solve for the values of the elements 
in matrix [A]-1. These steps are demonstrated using Example 2.6.

Example 2.6

Given [A] = C2 1 1
3 2 4
5 -1 3

S , compute [A]-1.

Step 1.	 Decompose the given matrix into lower and upper triangular matrices. In 
Example 2.5 we showed the procedure for decomposing the [A] matrix into 
lower and upper triangular [L] and [U] matrices.

[L] = E 1 0 0
3
2

1 0

5
2

-7 1

U  and [U ] = D2 1 1

0
1
2

5
2

0 0 18

T
Step 2.	 Use Eq. (2.70) to determine the unknown values of the elements in the [Y] matrix.

E 1 0 0
3
2

1 0

5
2

-7 1

U Cy11 y12 y13

y21 y22 y23

y31 y32 y33

S = C1 0 0
0 1 0
0 0 1

S

2
[A]

6[L]

6[Y]

M02_MOAV4303_04_GE_C02.INDD   115 27/11/14   9:19 AM

www.FreeEngineeringbooksPdf.com



116    Chapter 2    Matrix Algebra

First, let us consider the multiplication results pertaining to the first column of the [Y] 
matrix, as shown. E 1 0 0

3
2

1 0

5
2

-7 1

U c y11

y21

y31

s = c 1
0
0
s

The solution of this system of equations leads to

y11 = 1  y21 = -
3
2
  y31 = -13

Next, consider the multiplication results pertaining to the second column of [Y]:E 1 0 0
3
2

1 0

5
2

-7 1

U c y12

y22

y32

s = c 0
1
0
s

The solution of this system of equation yields

y12 = 0  y22 = 1  y32 = 7

Similarly, solve for the unknown values of the elements in the remaining column 
of the [Y] matrix: E 1 0 0

3
2

1 0

5
2

-7 1

U c y13

y23

y33

s = c 0
0
1
s

 y13 = 0  y23 = 0  y33 = 1

Now that the values of elements of the [Y ] are known, we can proceed with calculation 
of the values of the elements comprising the [A]-1, denoted by x11, x12, . . . , and so on, 
as shown. Using the relationship given by Eq. (2.69), we have

 [U][A]-1 = [Y]

 D2 1 1

0
1
2

5
2

0 0 18

T Cx11 x12 x13

x21 x22 x23

x31 x32 x33

S = D 1 0 0

-
3
2

1 0

-13 7 1

T
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Again, we consider multiplication results pertaining to one column at a time. Considering 
the first column of the [x] matrix,

 D2 1 1

0
1
2

5
2

0 0 18

T c x11

x21

x31

s = d 1

-
3
2

-13

t
 x31 = -

13
18
  x21 =

11
18
  x11 =

10
18

Multiplication results for the second column render

 D2 1 1

0
1
2

5
2

0 0 18

T c x12

x22

x32

s = c 0
1
7
s

 x32 =
7
18
  x22 =

1
18
  x12 = -

4
18

The multiplication results of the third column yield

 D2 1 1

0
1
2

5
2

0 0 18

T c x13

x23

x33

s = c 0
0
1
s

 x33 =
1
18
  x23 = -

5
18
  x13 =

2
18

Therefore, the inverse of the [A] matrix is

[A]-1 =
1
18

C 10 -4 2
11 1 -5

-13 7 1
S

We can check the result of our calculations by verifying that [A][A]-1 = [I ].

1
18

C2 1 1
3 2 4
5 -1 3

S C 10 -4 2
11 1 -5

-13 7 1
S = C1 0 0

0 1 0
0 0 1

S  Q.E.D. 

Finally, it is worth noting that the inversion of a diagonal matrix is computed simply by 
inversing its elements. That is, the inverse of a diagonal matrix is also a diagonal matrix 
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with its elements being the inverse of the elements of the original matrix. For example, 
the inverse of the 4 * 4 diagonal matrix

[A] = Da1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

T  is [A]-1 = H 1
a1

0 0 0

0
1
a2

0 0

0 0
1
a3

0

0 0 0
1
a4

X
This property of a diagonal matrix should be obvious because [A]-1[A] = [I ].

[A]-1[A] = H 1
a1

0 0 0

0
1
a2

0 0

0 0
1
a3

0

0 0 0
1
a4

X Da1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

T = D1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

T
2.9 E igenvalues and Eigenvectors

Up to this point we have discussed some of the methods that you can use to solve a set 
of linear equations of the form

	 [A]5x6 = 5b6 	 (2.71)

For the set of linear equations that we have considered so far, the values of the elements 
of the 5b6  matrix were typically nonzero. This type of system of linear equations is com-
monly referred to as nonhomogenous. For a nonhomogenous system, unique solutions 
exist as long as the determinant of the coefficient matrix [A] is nonzero. We now discuss 
the type of problems that render a set of linear equations of the form

	 [A]5X6 - l5X6 = 0	 (2.72)

This type of problem, called an eigenvalue problem, occurs in analysis of buckling 
problems, vibration of elastic structures, and electrical systems. In general, this class of 
problems has nonunique solutions. That is, we can establish relationships among the 
unknowns, and many values can satisfy these relationships. It is common practice to 
write Eq. (2.72) as

	 [[A] - l[I ]]5X6 = 0	 (2.73)

where [I] is the identity matrix having the same dimension as the [A] matrix. In Eq. (2.73), 
the unknown matrix 5X6  is called the eigenvector. We demonstrate how to obtain the 
eigenvectors using the following vibration example.
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Example 2.7

Consider the two degrees of freedom system shown in Figure 2.2. We are interested in 
determining the natural frequencies of the system shown. We will discuss in detail the 
formulation and analysis of multiple degrees of freedom systems in Chapter 11. For the 
sake of presentation continuity, the derivation of the set of linear equations are shown 
here as well.

Using the free-body diagrams shown, the equations of motion

	 m1x1
$ + 2kx1 - kx2 = 0	 (2.74)

	 m2x2
$ - kx1 + 2kx2 = 0	 (2.75)

or in a matrix form,Jm1 0
0 m2

R b x1
$

x2
$ r + J 2k -k

-k 2k
R bx1

x2
r = b0

0
r

Note that Eqs. (2.74) and (2.75) are second-order homogenous differential equa-
tions. Also note that these equations are coupled, because both x1 and x2 appear in each 
equation. This type of system is called elastically coupled and may be represented in the 
general matrix form by

	 [M]5x$6 + [K]5x6 = 0	 (2.76)

where [M] and [K] are the mass and the stiffness matrices respectively. We can simplify 
Eqs. (2.74) and (2.75) by dividing both sides of each equation by the values of the respec-
tive masses:

	  x1
$ +

2k
m1

x1 -
k

m1
x2 = 0	 (2.77)

	  x2
$ -

k
m2

x1 +
2k
m2

x2 = 0	 (2.78)

k

m1

x1

k

k

m1

Assuming x2 7 x1

m2

x2
kx2

kx1

k(x2 - x1)

k(x2 - x1)

-kx1 + k(x2 - x1) = m1 x1
..

-k(x2 - x1) - kx2 = m2 x2
..

m2

Figure 2.2  A schematic diagram of an elastic system with two degrees of freedom.
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Using matrix notation, we premultiply the matrix form of the equations of motion by 
the inverse of the mass matrix [M]-1, which leads to

5x
$6 + [M]-1[K]5x6 = 0

As a next step, we assume a harmonic solution of the form x1(t) = X1 sin(vt + f) and 
x2(t) = X2 sin(vt + f)—or in matrix form,5x6 = 5X6sin(vt + f)—and substitute 
the assumed solutions into the differential equations of motion, Eqs. (2.77) and (2.78), 
to create a set of linear algebraic equations.

This step leads to

 -v2X1sin(vt + f) +
2k
m1

X1 sin(vt + f) -
k

m1
X2sin(vt + f) = 0

 -v2X2sin(vt + f) -
k

m2
X1 sin(vt + f) +

2k
m2

X2 sin(vt + f) = 0

After simplifying the sin(vt + f) terms,

	 -v2bX1

X2
r + D 2k

m1
-

k
m1

-
k

m2

2k
m2

T bX1

X2
r = b0

0
r 	 (2.79)

or in a general matrix form,

	 -v25X6 + [M]-1[K]5X6 = 0	 (2.80)

Note that5x6 = bx1(t)
x2(t)

r  represents the position of each mass as the function of time, 

the 5X6 = bX1

X2
r  matrix denotes the amplitudes of each vibrating mass, and f is the

phase angle. Equation (2.79) may be written as

	 -v2J1 0
0 1

R bX1

X2
r + D 1

m1
0

0
1

m2

T J 2k -k
-k 2k

R bX1

X2
r = 0	 (2.81)

or by

	 D D 2k
m1

-
k

m1

-
k

m2

2k
m2

T - v2J1 0
0 1

R T bX1

X2
r = b0

0
r 	 (2.82)

Comparing Eq. (2.82) to Eq. (2.73), [[A] - l[I]]5X6 = 0 we note that v2 = l. 
Simplifying Eq. (2.82) further, we have
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	 D -v2 +
2k
m1

-
k

m1

-
k

m2
-v2 +

2k
m2

T bX1

X2
r = 0	 (2.83)

Problems with governing equations of the type (2.73) or (2.83) have nontrivial 
solutions only when the determinant of the coefficient matrix is zero. Let’s assign some 
numerical values to the above example problem and proceed with the solution. Let 
m1 = m2 = 0.1 kg and k = 100 N/m. Forming the determinant of the coefficient matrix 
and setting it equal to zero, we get

	  2 -v2 + 2000 -1000
-1000 -v2 + 2000

2 = 0	 (2.84)

	  (-v2 + 2000)(-v2 + 2000) - (-1000)(-1000) = 0	 (2.85)

Simplifying Eq. (2.85), we have

	 v4-4000v2 + 3,000,000 = 0	 (2.86)

Equation (2.86) is called the characteristic equation, and its roots are the natural fre-
quencies of the system.

v1
2 = l1 = 1000 (rad/s)2 and v1 = 31.62 rad/s

v2
2 = l2 = 3000 (rad/s)2 and v2 = 54.77 rad/s

Once the v2 values are known, they can be substituted back into Eq. (2.83) to solve for 
the relationship between X1 and X2. The relationship between the amplitudes of mass 
oscillating at natural frequencies is called natural modes. We can use either relationship 
(rows) in Eq. (2.83).

 (-v2 + 2000)X1 - 1000X2 = 0  and substituting for v1
2 = 1000

 (-1000 + 2000)X1 - 1000X2 = 0  S  
X2

X1
= 1

Or using the second row,

 -1000X1 + (-v2 + 2000)X2 = 0 and substituting for v1
2 = 1000

 -1000X1 + (-1000 + 2000)X2 = 0  S  
X2

X1
= 1

As expected, the results are identical. The second mode is obtained in a similar manner 
by substituting for v2

2 = 3000 in Eq. (2.83).

 (-v2 + 2000)X1 - 1000X2 = 0 and substituting for v1
2 = 3000

 (-3000 + 2000)X1 - 1000X2 = 0  S  
X2

X1
= -1

It is important to note again that the solution of the eigenvalue problems leads to estab-
lishing a relationship among the unknowns, not specific values.
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2.10  Using Matlab to Manipulate Matrices

MATLAB is mathematical software available in most university computational labs today. 
MATLAB is a very powerful tool for manipulating matrices; in fact, it was originally 
designed for that purpose. There are many good textbooks that discuss the capabilities of 
MATLAB to solve a full range of problems. Here, we introduce only some basic ideas so 
that you can perform essential matrix operations. For more detail see Appendix F.

Once in a MATLAB environment, you can assign values to a variable or define 
elements of a matrix. For example, to assign a value 5 to the variable x, you simply type

x = 5

or to define the element of the matrix [A] = C1 5 0
8 3 7
6 -2 9

S , you type

A = [1 5 0; 8 3 7; 6 -2 9]

Note that the elements of the matrix are enclosed in brackets and are separated 
by blank space, and the elements of each row are separated by a semicolon. The basic 
scalar operations are shown in Table 2.1.

MATLAB offers many tools for matrix operations and manipulations. Table 2.2 
shows examples of these capabilities. Next, we demonstrate a few MATLAB commands 
with the aid of some examples.

Table 2.1  MATLAB’s basic scalar operators

Operation Symbol Example: x = 5 and y = 3 Result

Addition + x + y 8

Subtraction - x - y 2

Multiplication * x * y 15

Division / (x + y)>2 4

Raised to a power ¿ x¿2 25

Table 2.2  Examples of MATLAB’s matrix operations

Operation
Symbols  

or Commands
Example: A and B are matrices 

that you have defined

Addition + A + B

Subtraction - A - B

Multiplication * A*B

Transpose matrix name′ A′
Inverse inv(matrix name) inv(A)

Determinant det(matrix name) det(A)

Eigenvalues eig(matrix name) eig(A)

Matrix left division (uses Gauss elimination to 
  solve a set of linear equations)

\ see Example 2.8
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Example 2.1 R evisited

Given the following matrices:

[A] = C0 5 0
8 3 7
9 -2 9

S , [B] = C4 6 -2
7 2 3
1 3 -4

S , and [C] = c -1
2
5

s
using MATLAB, perform the following operations:

 a. [A] + [B] = ?, b. [A] - [B] = ?, c. 3[A] = ?, d. [A][B] = ?, e. [A]5C6 = ?

 f. [A]2 = ?

Also compute [A]T and the determinant of [A].
A MATLAB session is shown in Figure 2.3. When studying MATLAB exam-

ples, note that the response given by MATLAB is shown in boldface. Information 
that the user must type is shown in regular print. Hit the Enter key after you finish 
typing data. The MATLAB’s prompt for input is W .

Figure 2.3  Example of a MATLAB session.

W A= [0 5 0;8 3 7;9 @2 9]

A =

0 5 0
8 3 7
9 @2 9

W B= [4 6 @2;7 2 3;1 3 @4]

B =

4 6 @2
7 2 3
1 3 @4

W C = [@1;2;5]

C =

@1
2
5

W A + B
ans =

 4 11 @2
15  5 10
10  1  5
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Figure 2.3  (Continued)

W A@B
ans =
@4 @1  °2
1 1  °4
8 5 13

W3*A
ans =

 0 15  °0
24  °9 21
27  °6 27

W A*B
ans =

35 10 15
60 75 @35
31 77 @60

W A*C
ans =

10
33
32

W A¿2
ans =

40 15 35
87 35 84
65 21 67

W A′
ans =

0 8 9
5 3 @2
0 7 9

W det(A)
ans =

-45
W
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EXAMPLE 2.8

Solve the following set of equations using the Gauss elimination and by inverting the 
[A] matrix and multiplying it by the5b6matrix.

 2x1 + x2 + x3 = 13

 3x1 + 2x2 + 4x3 = 32

 5x1 - x2 + 3x3 = 17

 [A] = C2 1 1
3 2 4
5 -1 3

S  and 5b6 = c 13
32
17

s
We first use the MATLAB matrix left division operator \ to solve this problem. The \ 
operator solves the problem using Gauss elimination. We then solve the problem using 
the inv command.

WA=[2 1 1;3 2 4;5 @1 3]

A =

2 1 1
3 2 4
5 @1 3
W b=[13;32;17]

b =

13
32
17
W x=A\b

x =

2.0000
5.0000
4.0000
W x = inv(A)*b

x =

2.0000
5.0000
4.0000
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2.11  Using Excel to Manipulate Matrices

Using the following two examples (Example 2.1 (revisited) and Example 2.8 (revisited)), 
we will show how to use Excel to perform matrix operations.

Example 2.1 R evisited

Given matrices: [A] = C0 5 0
8 3 7
9 -2 9

S , [B] = C4 6 -2
7 2 3
1 3 -4

S ,
 
 and {C} = •

-1
2
5
¶ , Using 

Excel perform the following operations.

	 a.	 [A] + [B] = ?  b. [A] - [B] = ?  c. [A][B] = ?  d. [A]{C} = ?

	 1.	 In the cells shown in Figure 2.4 type the appropriate characters and values. Use 
the Format Cells and Font option to create the bold variables as shown. Note that 
you do not have to create the characters ([A]= , [B]= , and so on) and format 
them to carry out the matrix operations. This is done merely as a visual aide for 
presentation purposes.

	 2.	 In cell A10 type [A]+[B]= , and then using the left mouse button pick cells B9 
through D11, as shown in Figure 2.5.

	 3.	 Next, in the formula bar type =B3:D5+G3:I5 and while holding down the Ctrl 
and the Shift keys press the Enter key. Note that you could also pick the range 
B3:D5 or G3:I5, instead of typing them. This sequence of operations will create the 
result shown in Figure 2.6. You can follow similar procedure as outlined in step 2 
to perform [A]−[B], except in the formula bar type =B3:D5−G3:I5.

Figure 2.4  Example 2.1 Revisited with Excel (step 1).
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Figure 2.5  Example 2.1 Revisited with Excel (step 2).

Figure 2.6  Example 2.1 Revisited with Excel (step 3).
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	 4.	 To carry out the matrix multiplication, first type [A][B]=  in cell A18, as shown in 
Figure 2.7. Then pick cells B17 through D19.

	 5.	 In the formula bar type =MMULT(B3:D5,G3:I5), and while holding down the 
Ctrl and the Shift keys press the Enter key. Similarly you can perform the matrix 
operation [A] {C}. First you pick cells B21 through B23 and in the formula bar 
type =MMULT(B3:D5, L3:L5), and while holding down the Ctrl and the Shift 
keys press the Enter key. This sequence of operations will create the result shown 
in Figure 2.8.

Figure 2.7  Example 2.1 Revisited with Excel (step 4).

M02_MOAV4303_04_GE_C02.INDD   128 27/11/14   9:19 AM

www.FreeEngineeringbooksPdf.com



Section 2.11    Using Excel to Manipulate Matrices    129

Figure 2.8  Example 2.1 Revisited with Excel (step 5).

Example 2.8 R evisited

Consider the following 3 linear equations with three unknowns, x1, x2, and x3. Our intent 
here is to show you how to use Excel to solve a set of linear equations.

 2x1 + x2 + x3 = 13

 3x1 + 2x2 + 4x3 = 32

 5x1 - x2 + 3x3 = 17

	 1.	 In the cells shown in Figure 2.9 type the appropriate characters and values. Use 
the Format Cells and Font option of create the bold and subscript variables.

	 2.	 In cell A10 type [A]-1 =  and then using the left mouse button pick cells B9 
through D11 as shown in Figure 2.10.

	 3.	 Next, in the formula bar type =MINVERSE(B3:D5) and while holding down the 
Ctrl and the Shift keys press the Enter key. This sequence of operations will create 
the result shown in Figure 2.11. The inverse of matrix [A] is now computed.
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Figure 2.10  Example 2.8 Revisited with Excel (step 2).

Figure 2.9  Example 2.8 Revisited with Excel (step 1).
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Figure 2.11  Example 2.8 Revisited with Excel (step 3).

Figure 2.12  Example 2.8 Revisited with Excel (step 4).
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	 4.	 Type the information shown in cells A14, B13 through B15, C14, D14, and E14 as 
shown in Figure 2.12.

	 5.	 Then pick cells F13 through F15 and in the formula bar type = MMULT 
(B9:D11,K3:K5), and while holding down the Ctrl and the Shift keys press the 
Enter key. This sequence of operations will create the result shown in Figure 2.13. 
The values of x1, x2, and x3 are now calculated.

Example 2.9

Using Example 1.1, we will show how to use Excel to set up and solve a finite element 
problem. Pay close attention to the way cells and a range of cells are named and used 
in the formulas. When formatting, analyzing, plotting data, or using formulas it is often 
convenient to select a number of cells simultaneously. The cells that are selected simul-
taneously are called a range. To define a range, begin with the first cell that you want 
included in the range and then drag the mouse (while pressing down the left button) to 
the last cell that should be included in the range. Note that in spreadsheet language, a 
range is defined by the cell address of the top-left selected cell in the range followed by 
a colon, :, and ends with the address of the bottom-right cell in the range. For example, 
to select cells A3 through B10, we first select A3 and then drag the mouse diagonally to 
B10. In spreadsheet language, this range is specified in the following manner—A3:B10. 
There are situations where you may want to select a number of cells that are not side 
by side. In such cases, you must first select the contiguous cells, and then while hold-
ing (pressing) the Ctrl key select the other noncontiguous cells by dragging the mouse 
button.

Figure 2.13  Example 2.8 Revisited with Excel (step 5).
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Excel allows the user to assign a name to a cell or a range (selected cells). To name 
a cell or a range, first select the cell or the range as just described, and then click on the 
Name box in the Formula bar and type in the name you want to assign to the range. 
You can use upper- or lowercase letters along with numbers, but no spaces are allowed 
between the characters or the numbers.

Let us now turn our attention to Example 1.1.

	 1.	 In cell A1 type Example 1.1, and in cells A3 and A4 type E=  and L=  as shown. 
After inputting value of E in cell B3, select B3 and in the “Name Box” type E and 
press the Return key. Similarly, after inputting value of L in cell B4, select B4 and 
in the “Name Box” type L and press the Return key.

	 2.	 Create the tables shown, excluding the values of the area. In cell E7, type  
=0.25−(0.0125 ,2)*(I7+I6) 

		  Copy the formula in cells E8 through E10. Next, name the values in cells E7:E10 
as Area1, Area2, Area3, and Area4, respectively.
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	 3.	 Type in the information in rows 12 through 16 as shown. Select cells G15:H16 and 
type = (Area1*E>L)*D15:E16 and while holding the Ctrl and Shift keys, press 
the Return key. Name the values in G15:H16 as Kelement1.

	 4.	 In a similar way create Kelement2, Kelement3, and Kelement4 as shown. You may 
copy [K1], rows 15 and 16 into rows 18 and 19; 21 and 22; and 24 and 25 and then 
modify them accordingly.
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	 5.	 Next, create [A1], [A2], [A3], and [A4] matrices and name them Aelement1, 
Aelement2, Aelment3, and Aelement4, as shown. See Section 2.5, Equation 2.9. 
First create [A1] and then to create [A2], [A3], and [A4], copy [A1], rows 27 
through 29 into rows 31 through 33; 35 through 37; and 39 through 41 and modify 
them accordingly. The nodal displacement U1, U2, U3, U4, U5, and Ui and Uj are 
shown alongside the [A1], [A2], [A3], and [A4] matrices to aid us observe the 
contribution of node to its neighboring elements.
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	 6.	 Next, create the stiffness matrix for each element (with their proper positions in the 
global matrix) and name them K1G, K2G, K3G, and K4G. See Equation 2.9. For 
example, to create [K]1G, select B43:F47 and type = MMULT(TRANSPOSE 
(Aelement1),MMULT(Kelement1,Aelement1)) and while holding down the Ctrl 
and Shift keys, press the Return key. In a similar way, create [K]2G, [K]3G, and 
[K]4G as shown.

	 7.	 The final global matrix is created next. Select the range B67:F71 and type  
=K1G+K2G+K3G+K4G and while holding down the Ctrl and Shift keys, press 
the Return key. Name the range B67:F71, KG.
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	 8.	 Create the load matrix as shown and name it FG.

	 9.	 Apply the boundary conditions. Copy the appropriate portion of the KG matrix 
and paste it in the range C79:F82 as values only. Name the range KwithappliedBC. 
Similarly, create the corresponding load matrix in the range C84:C87 and name it 
FwithappliedBC.
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	 10.	 Select the range C89:C92 and type =MMULT(MINVERSE(KwithappliedBC), 
FwithappliedBC) and while holding down the Ctrl and Shift keys press the Return 
key.

	 11.	 As shown, select cells C94:C98, and copy the values of U partial and add the 
U1 = 0. Name this matrix, UG.
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	 12.	 Calculate the reaction forces. Select the range C100:C104 and type  
= (MMULT(KG,UG)-FG) and while pressing the Ctrl and Shift keys press the 
Return key.

The complete Excel sheet is shown next.
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Summary

At this point you should

	 1.	 know the essential matrix terminology and the basic matrix operations.
	 2.	 know how to construct the transpose of a matrix.
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	 3.	 know how to evaluate the determinant of a matrix.
	 4.	 know how to use Cramer’s rule, Gauss elimination, and the LU decomposition 

methods to solve a set of linear equations.
	 5.	 know how to compute the inverse of a matrix.
	 6.	 be familiar with the solution of an eigenvalue problem.
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Problems

	 1.	 Identify the size and the type of the given matrices. Denote whether the matrix is a square, 
column, diagonal, row, unit (identity), triangular, banded, or symmetric.

 a. C1 3 0
3 7 8
0 8 3

S  b. d p
p2

p3

p4

t  c. J2 0
0 4

R  d. [1 p p2 p3]

 e. C1 0 0
0 1 0
0 0 1

S  f. E2 1 0 0 0
4 0 5 0 0
0 3 1 3 0
0 0 8 2 4
0 0 0 8 7

U  g. D1 4 4 4
0 1 2 2
0 0 1 3
0 0 0 1

T
 h. Dp1 0 0 0

0 p2 0 0
0 0 p3 0
0 0 0 p4

T
	 2.	 Given matrices

[A] = C4 2 1
7 0 -7
1 -5 3

S , [B] = C1 2 -1
5 3 3
4 5 -7

S , and {C } = c 1
-2
4

s
perform the following operations:

	 a.	 [A] + [B] = ?
	 b.	 [A] - [B] = ?
	 c.	 3[A] = ?
	 d.	 [A][B] = ?
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	 e.	 [A]{C } = ?
	 f.	 [A]2 = ?
	 g.	 Show that [I][A] = [A][I] = [A]
	 3.	 Given the following partitioned matrices, calculate the product of [A][B] = [C ] using the 

submatrices given.

[A] = E5 7 2 0 3 5
3 8 -3 -5 0 8
1 4 0 7 15 9
0 10 5 12 3 -1
2 -5 9 2 18 -10

U  and [B] = F 2 10 0
8 7 5

-5 2 -4
4 8 13
3 12 0
1 5 7

V
	 4.	 Given the matrices

[A] = C1 5 0
3 9 6
0 8 -3

S  and [B] = C 0 6 -1
-4 7 5
1 2 -2

S
perform the following operations:

	 a.	 [A]T = ? and [B]T = ?
	 b.	 verify that ([A] + [B])T = [A]T + [B]T

	 c.	 verify that ([A][B])T = [B]T[A]T

	 5.	 Given the following matrices

[A] = C 2 10 0
16 6 14
12 -4 18

S , [B] = C 2 10 0
4 20 0
12 -4 18

S
calculate

	 a.	 determinant of [A] and [B] by direct expansion and by minor lower order determinants 
methods.

	 b.	 determinant of [A]T

	 c.	 determinant of 5[A]
Which matrix is singular?

	 6.	 Given the following matrix:

[A] = C0 5 0
3 9 6
3 -8 3

S
calculate determinant of [A] and determinant of [A]T.

	 7.	 Solve the following set of equations using the Gauss elimination method, and compare your 
answer to the results of Example 1.4.C 10875000 -1812500 0

-1812500 6343750 -4531250
0 -4531250 4531250

S c u2

u3

u4

s = c 0
0

800
s
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	 8.	 Decompose the coefficient matrix in problem 6 into lower and upper triangular matrices.

	 9.	 Solve the following set of equations using the LU method, and compare your answer to the 
results of Example 1.4.C 10875000 -1812500 0

-1812500 6343750 -4531250
0 -4531250 4531250

S c u2

u3

u4

s = c 0
0

800
s

	 10.	 Solve the following set of equations by finding the inverse of the coefficient matrix first. 
Compare your answer to the results of Example 1.4.C 10875000 -1812500 0

-1812500 6343750 -4531250
0 -4531250 4531250

S c u2

u3

u4

s = c 0
0

800
s

	 11.	 Solve the following set of equations (a) using the Gaussian method, (b) using the LU decom-
position method, and (c) by finding the inverse of the coefficient matrix.C 1 1 1

2 5 1
-3 1 5

S c x1

x2

x3

s = c 6
15
14

s
	 12.	 Determine the inverse of the following matrices:

[A] = D2 1 1 -2
4 0 2 1
3 2 2 0
1 3 2 -1

T [B] = C 2 2 2
3 8 1

-8 4 5
S [C ] = Jk11 k12

k21 k22
R

	 13.	 Show that if we multiply the elements of a 4 * 4 matrix by a scalar quantity a, then the value 
of the determinant of the original matrix gets multiplied by a4. That is:

det§aDa11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

T ¥ = a4 4 a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

4
Also, show that if we multiply the elements of a 3 * 3 matrix by the same scalar quantity a, 
then the value of the determinant of the original matrix gets multiplied by a3? How would 
you generalize the results of this example?

	 14.	 Determine the natural frequencies and the natural modes for the example problem in Section 
2.9 for m1 = 0.1 kg, m2 = 0.2 kg, k = 100 N/m.

	 15.	 Solve Problem 2 using MATLAB and Excel.

	 16.	 Solve Problem 4 using MATLAB and Excel.

	 17.	 Solve Problem 5 using MATLAB.

	 18.	 Solve Problem 6 using MATLAB.

	 19.	 Solve Problem 7 using MATLAB.

	 20.	 Solve Problem 8 using MATLAB.

Chapter 2    Problems    143
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144    Chapter 2    Matrix Algebra

	 21.	 Solve Problem 9 using MATLAB.

	 22.	 Solve Problem 10 using MATLAB and Excel.

	 23.	 Solve Problem 11 using MATLAB.

	 24.	 Solve Problem 13 using MATLAB.

	 25.	 Solve the following set of equations, resulting from a model of composite wall, using 
MATLAB by employing the matrix left division command:E 7.11 -1.23 0 0 0

-1.23 1.99 -0.76 0 0
0 -0.76 0.851 -0.091 0
0 0 -0.091 2.31 -2.22
0 0 0 -2.22 3.69

U e T2

T3

T4

T5

T6

u = e (5.88)(20)
0
0
0

(1.47)(70)

u
and compare your solution to the results of Example 1.2.

	 26.	 Using MATLAB, solve Problem 25 by first finding the inverse of the coefficient matrix and 
carrying out the necessary operations afterward.

	 27.	 Using MATLAB, solve Problem 25 by first decomposing the coefficient matrix into lower 
and upper triangular matrices and carrying out the necessary operations afterward.

	 28.	 Solve the following set of equations, resulting from a model of a fin, using MATLAB:E 1 0 0 0 0
-0.04 0.09 -0.04 0 0

0 -0.04 0.09 -0.04 0
0 0 -0.04 0.09 -0.04
0 0 0 -0.04 0.045

U e T1

T2

T3

T4

T5

u = e 200
0.15
0.15
0.15
0.08

u
	 29.	 Solve the following set of equations, resulting from a model of a truss, using MATLAB, and 

compare your solution to the results of Example 3.1:

105F 7.2 0 0 0 -1.49 -1.49
0 7.2 0 -4.22 -1.49 -1.49
0 0 8.44 0 -4.22 0
0 -4.22 0 4.22 0 0

-1.49 -1.49 -4.22 0 5.71 1.49
-1.49 -1.49 0 0 1.49 1.49

V f U2X

U2Y

U4X

U4Y

U5X

U5Y

v = f 0
0
0

-500
0

-500

v
	 30.	 Solve Problem 14 using MATLAB.

	 31.	 Solve Problem 25 using Excel.

	 32.	 Solve Problem 28 using Excel.

	 33.	 Solve Problem 29 using Excel.

	 34.	 Use Excel and the method shown in Example 2.9 to setup and solve Example 1.2.

	 35.	 Use Excel and the method shown in Example 2.9 to setup and solve Example 1.3.

	 36.	 Use Excel and the method shown in Example 2.9 to setup and solve Example 1.4.
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C h a p t e r  3

Trusses

The objectives of this chapter are to introduce the basic concepts in finite element 
formulation of trusses and to provide an overview of the ANSYS program. A major 
section of this chapter is devoted to the Launcher, the Graphical User Interface, and 
the organization of the ANSYS program. The main topics discussed in Chapter 3 include 
the following:

	 3.1	 Definition of a Truss

	 3.2	 Finite Element Formulation

	 3.3	 Space Trusses

	 3.4	 Overview of the ANSYS Program

	 3.5	 Examples Using ANSYS

	 3.6	 Verification of Results

3.1  Definition of a Truss

A truss is an engineering structure consisting of straight members connected at their 
ends by means of bolts, rivets, pins, or welding. The members found in trusses may con-
sist of steel or aluminum tubes, wooden struts, metal bars, angles, and channels. Trusses 
offer practical solutions to many structural problems in engineering, such as power 
transmission towers, bridges, and roofs of buildings. A plane truss is defined as a truss 
whose members lie in a single plane. The forces acting on such a truss must also lie in 
this plane. Members of a truss are generally considered to be two-force members. This 
term means that internal forces act in equal and opposite directions along the members, 
as shown in Figure 3.1.

In the analysis that follows, it is assumed that the members are connected by 
smooth pins and by a ball-and-socket joint in three-dimensional trusses. Moreover, it 
can be shown that as long as the center lines of the joining members intersect at a com-
mon point, trusses with bolted or welded joints may be treated as having smooth pins 
(no bending). Another important assumption deals with the way loads are applied. All 
loads must be applied at the joints. This assumption is true for most situations because 
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146    Chapter 3    Trusses

trusses are designed so that the majority of the load is applied at the joints. Usually, the 
weights of members are negligible compared to those of the applied loads. However, if 
the weights of the members are to be considered, then half of the weight of each member 
is applied to the connecting joints. Statically determinate truss problems are covered in 
many elementary mechanics text. This class of problems is analyzed by the methods of 
joints or sections. These methods do not provide information on deflection of the joints 
because the truss members are treated as rigid bodies. Because the truss members are 
assumed to be rigid bodies, statically indeterminate problems are impossible to analyze. 
The finite element method allows us to remove the rigid body restriction and solve this 
class of problems. Figure 3.2 depicts examples of statically determinate and statically 
indeterminate problems.

3.2 F inite Element Formulation

Let us consider the deflection of a single member when it is subjected to force F, as 
shown in Figure 3.3. The forthcoming derivation of the stiffness coefficient is identical to 
the analysis of a centrally loaded member that was presented in Chapter 1, Section 1.5.  
As a review and for the sake of continuity and convenience, the steps to derive the ele-
ments’ equivalent stiffness coefficients are presented here again. Recall that the average 
stresses in any two-force member are given by

	 s =
F
A

	 (3.1)

The average strain of the member can be expressed by

	 e =
∆L
L

	 (3.2)

Over the elastic region, the stress and strain are related by Hooke’s law,

	 s = Ee	 (3.3)

Compression

1 2Tension

Two-force members

3 3

1 2
1 2

3

Load

Figure 3.1  A simple truss subjected to a load.
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Y

3 unknown reactions

3 equilibrium equations

 ©FX = 0

 ©FY = 0

 ©M = 0

4 unknown reactions

3 equilibrium equations

 ©FX = 0

 ©FY = 0

 ©M = 0

R1X

R1Y R2Y

X

Statically Determinate Statically Indeterminate

1 2

3

Load

1 2

3

Load

1 2

3

Load

R1X

R1Y R2Y

R2X

1 2

3

Load

Figure 3.2  Examples of statically determinate and statically indeterminate problems.

F

L

∆L

Figure 3.3  A two-force member sub
jected to a force F.

M03_MOAV4303_04_GE_C03.INDD   147 27/11/14   9:38 AM

www.FreeEngineeringbooksPdf.com



148    Chapter 3    Trusses

Combining Eqs. (3.1), (3.2), and (3.3) and simplifying, we have

	 F = ¢AE
L

≤∆L	 (3.4)

Note that Eq. (3.4) is similar to the equation of a linear spring, F = kx. Therefore, 
a centrally loaded member of uniform cross section may be modeled as a spring with 
an equivalent stiffness of

	 keq =
AE
L

	 (3.5)

A relatively small balcony truss with five nodes and six elements is shown in 
Figure 3.4. From this truss, consider isolating a member with an arbitrary orientation. 
Let us select element (5).

In general, two frames of reference are required to describe truss problems: 
a global coordinate system and a local frame of reference. We choose a fixed global 
coordinate system, XY (1) to represent the location of each joint (node) and to keep 
track of the orientation of each member (element), using angles such as u; (2) to 
apply the constraints and the applied loads in terms of their respective global com-
ponents; and (3) to represent the solution—that is, the displacement of each joint in 
global directions. We will also need a local, or an elemental, coordinate system xy, 
to describe the two-force member behavior of individual members (elements). The 
relationship between the local (element) descriptions and the global descriptions is 
shown in Figure 3.5.

The global displacements (UiX, UiY at node i and UjX, UjY at node j) are related 
to the local displacements (uix, uiy at node i and ujx, ujy at node j) according to the 
equations

	 UiX = uix cos u - uiy sin u	 (3.6)

	 UiY = uix sin u + uiy cos u	

	 UjX = ujx cos u - ujy sin u	

	 UjY = ujx sin u + ujy cos u	

u

1 2

3 4 5

(1)

(3) (6)

(2) (4) (5)

Load Load

Figure 3.4  A balcony truss.
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If we write Eqs. (3.6) in matrix form, we have

	 5U6 = [T]5u6 	 (3.7)

where

5U6 = d  

UiX

UiY

UjX

UjY

 t , [T] = D  

 cos u -sin u 0 0
 sin u cos u 0 0

0 0 cos u -sin u
0 0 sin u cos u

 T , and 5u6 = d  

uix

uiy

ujx

ujy

 t
5U6 and5u6represent the displacements of nodes i and j with respect to the global XY 
and the local xy frame of references, respectively. [T] is the transformation matrix that 
allows for the transfer of local deformations to their respective global values. In a similar 
way, the local and global forces may be related according to the equations

	  FiX = fix cos u - fiy sin u	

	  FiY = fix sin u + fiy cos u	 (3.8)

	  FjX = fjx cos u - fjy sin u	

	  FjY = fjx sin u + fjy cos u	

xy

UiX

UiY

UjX

UjY

uix
uiy

ujxujy

i

j

Y

X

xy

FiX

FiY

FjX

FjY

fix
fiy

fjxfjy

i

j

u

u

Global coordinate 
system

Local coordinate 
system

Figure 3.5  Relationship between local and global coordinates. Note that local coordinate 
x points from node i toward j.
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150    Chapter 3    Trusses

or, in matrix form,

	 5F6 = [T]5 f6 	 (3.9)

where

5F6 = d  

FiX

FiY

FjX

FjY

 t
are components of forces acting at nodes i and j with respect to global coordinates,  
and

5 f6 = d  

fix

fiy

fjx

fjy

 t
represent the local components of the forces at nodes i and j.

A general relationship between the local and the global properties was derived 
in the preceding steps. However, we need to keep in mind that for a given member the 
forces in the local y-direction are zero. This fact is simply because under the two-force 
assumption, a member can only be stretched or shortened along its longitudinal axis 
(local x-axis). In other words, the internal forces act only in the local x-direction as 
shown in Figure 3.6. We do not initially set these terms equal to zero in order to maintain 
a general matrix description that will make the derivation of the element stiffness matrix 
easier. This process will become clear when we set the y-components of the displace-
ments and forces equal to zero. The local internal forces and displacements are related 
through the stiffness matrix

	 d  

fix

fiy

fjx

fjy

 t = D  

k 0 -k 0
0 0 0 0

-k 0 k 0
0 0 0 0

 T d  

uix

uiy

ujx

ujy

 t 	 (3.10)

where k = keq =
AE
L

, and using matrix form we can write

	 5 f6 = [k]5u6 	 (3.11)

After substituting for5 f6and5u6 in terms of5F6and5U6, we have

	
5f6$+%+&

[T]-15F6 = [k]

5u6$+%+&
[T]-15U6

	 (3.12)

M03_MOAV4303_04_GE_C03.INDD   150 27/11/14   9:38 AM

www.FreeEngineeringbooksPdf.com



Section 3.2    Finite Element Formulation    151

where [T]-1 is the inverse of the transformation matrix [T] and is

	 [T]-1 = D  

 cos u sin u 0 0
-sin u cos u 0 0

0 0 cos u sin u
0 0 -sin u cos u

 T 	 (3.13)

Multiplying both sides of Eq. (3.12) by [T] and simplifying, we obtain

	 5F6 = [T][k][T]-15U6 	 (3.14)

Substituting for values of the [T], [k], [T]-1, and 5U6  matrices in Eq. (3.14) and multi-
plying, we are left withd  

FiX

FiY

FjX

FjY

 t = kD  

cos2 u sin u cos u -cos2 u -sin u cos u
 sin u cos u sin2 u -sin u cos u -sin2 u

-cos2 u -sin u cos u cos2 u sin u cos u
-sin u cos u -sin2 u sin u cos u sin2 u

 T  d  

UiX

UiY

UjX

UjY

 t 	 (3.15)

y
x

u ix

f ix
 = k(u ix

 - u jx
)

f jx
 = k(u jx

 - u ix
)

i

j

u jx

u ix

f ix
 = k(u ix

 - u jx
)

f jx
 = k(u ix

 - u jx
)

i

j

u jx

or

fix = k(uix - ujx)

fiy = 0

fjx = k(ujx - uix) = -k(uix - ujx) or in a matrix form

fjy = 0

fix

fiy

fjx

fjy

k

0

-k
=

0

0

0

0

0

-k

0

k

0

0

0

0

0

uix

uiy

ujx

ujy

Figure 3.6  Internal forces for an arbitrary truss element. Note that the static equilibrium conditions 
require that the sum of fix and fjx be zero. Also note that the sum of fix and fjx is zero regardless of which 
representation is selected.

M03_MOAV4303_04_GE_C03.INDD   151 27/11/14   9:38 AM

www.FreeEngineeringbooksPdf.com



152    Chapter 3    Trusses

Equations (3.15) express the relationship between the applied forces, the element stiff-
ness matrix [K](e), and the global deflection of the nodes of an arbitrary element. The 
stiffness matrix [K](e) for any member (element) of the truss is

	 [K](e) = kD  

cos2 u sin u cos u -cos2 u -sin u cos u
sin u cos u sin2 u -sin u cos u -sin2 u

-cos2 u -sin u cos u cos2 u sin u cos u
-sin u cos u -sin2 u sin u cos u sin2 u

 T 	 (3.16)

The next few steps involve assembling, or connecting, the elemental stiffness matri-
ces, applying boundary conditions and loads, solving for displacements, and obtaining 
other information, such as normal stresses. These steps are best illustrated through an 
example problem.

Example 3.1

Consider the balcony truss in Figure 3.4, shown here with dimensions. We are inter-
ested in determining the deflection of each joint under the loading shown in the figure.  
All members are made from Douglas-fir wood with a modulus of elasticity of 
E = 1.90 * 106 lb/in2 and a cross-sectional area of 8 in2. We are also interested in cal-
culating average stresses in each member. First, we will solve this problem manually. 
Later, once we learn how to use ANSYS, we will revisit this problem and solve it using 
ANSYS.

1 2

3 4 5

(1)

(3) (6)

(2) (4) (5)

500 lb 500 lb

3 ft 3 ft

3 ft

As discussed in Chapter 1, Section 1.4, there are seven steps involved in any finite 
element analysis. Here, these steps are discussed again to emphasize the three phases 
(preprocessing, solution, and postprocessing) associated with the analysis of truss 
problems.

Preprocessing Phase

	 1.	 Discretize the problem into nodes and elements.
Each truss member is considered an element, and each joint connecting members 
is a node. Therefore, the given truss can be modeled with five nodes and six ele-
ments. Consult Table 3.1 while following the solution.
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	 2.	 Assume a solution that approximates the behavior of an element.
As discussed in Section 3.2, we will model the elastic behavior of each element as 
a spring with an equivalent stiffness of k as given by Eq. (3.5). Since elements (1), 
(3), (4), and (6) have the same length, cross-sectional area, and modulus of elastic-
ity, the equivalent stiffness constant for these elements (members) is

k =
AE
L

=
(8 in2)¢1.90 * 106 

lb
in2 ≤

36 in
= 4.22 * 105 lb/in.

The stiffness constant for elements (2) and (5) is

k =
AE
L

=
(8 in2)¢1.90 * 106 

lb
in2 ≤

50.9 in
= 2.98 * 105 lb/in.

	 3.	 Develop equations for elements.
For elements (1), (3), and (6), the local and the global coordinate systems are 
aligned, which means that u = 0. This relationship is shown in Figure 3.7. Using 
Eq. (3.16), we find that the stiffness matrices are

[K](e) = kD  

cos2 u sin u cos u -cos2 u -sin u cos u
 sin u cos u sin2 u -sin u cos u -sin2 u

-cos2 u -sin u cos u cos2 u sin u cos u
-sin u cos u -sin2 u sin u cos u sin2 u

 T
[K](1) = 4.22 * 105D  

cos2(0) sin(0) cos(0) -cos2(0) -sin(0) cos(0)
sin(0) cos(0) sin2(0) -sin(0) cos(0) -sin2(0)

-cos2(0) -sin(0) cos(0) cos2(0) sin(0) cos(0)
-sin(0) cos(0) -sin2(0) sin(0) cos(0) sin2(0)

 T
[K](1) = 4.22 * 105D  

1 0 -1 0
0 0 0 0

-1 0 1 0
0 0 0 0

 T  

U1X

U1Y

U2X

U2Y

Table 3.1  The relationship between the elements and their corresponding nodes

Element Node i Node j u See Figures 3.7–3.10

(1) 1 2 0

(2) 2 3 135

(3) 3 4 0

(4) 2 4 90

(5) 2 5 45

(6) 4 5 0
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and the position of element (1)’s stiffness matrix in the global matrix is

[K](1G) = 105I 4.22 0  -4.22 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

-4.22 0 4.22 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 Y  

U1X

U1Y

U2X

U2Y

U3X

U3Y

U4X

U4Y

U5X

U5Y

Note that the nodal displacement matrix is shown alongside element (1)’s position 
in the global matrix to aid us in observing the location of element (1)’s stiffness 
matrix in the global matrix. Similarly, the stiffness matrix for element (3) is

[K](3) = 4.22 * 105D  

1 0  -1 0
0 0 0 0

-1 0 1 0
0 0 0 0

 T  

U3X

U3Y

U4X

U4Y

and its position in the global matrix is

[K](3G) = 105I  

 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 4.22 0  -4.22 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0  -4.22 0 4.22 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Y U1X

U1Y

U2X

U2Y

U3X

U3Y

U4X

U4Y

U5X

U5Y

i = 1 Element (1)
or

Element (3)
or

Element (6)

3

4

j = 2

4

5

x

y
Y

X

Figure 3.7  The orientation of the local 
coordinates with respect to the global 
coordinates for elements (1), (3), and (6).
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The stiffness matrix for element (6) is

[K](6) = 4.22 * 105D  

1 0  -1 0
0 0 0 0

-1 0 1 0
0 0 0 0

 T  

U4X

U4Y

U5X

U5Y

and its position in the global matrix is

[K](6G) = 105I  

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 4.22 0  -4.22 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -4.22 0 4.22 0
0 0 0 0 0 0 0 0 0 0

 Y  

U1X

U1Y

U2X

U2Y

U3X

U3Y

U4X

U4Y

U5X

U5Y

For element (4), the orientation of the local coordinate system with respect 
to the global coordinates is shown in Figure 3.8. Thus, for element (4), u = 90, 
which leads to the stiffness matrix

[K](4) = 4.22 * 105 D 

cos2(90) sin(90) cos(90) -cos2(90) -sin(90) cos(90)
sin(90) cos(90) sin2(90) -sin(90) cos(90) -sin2(90)

-cos2(90) -sin(90) cos(90) cos2(90) sin(90) cos(90)
-sin(90) cos(90) -sin2(90) sin(90) cos(90) sin2(90)

 T
[K](4) = 4.22 * 105D  

0 0 0 0
0 1 0  -1
0 0 0 0
0  -1 0 1

 TU2X

U2Y

U4X

U4Y

and its global position

[K](4G) = 105I 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 4.22 0 0 0  -4.22 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0  -4.22 0 0 0 4.22 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 Y U1X

U1Y

U2X

U2Y

U3X

U3Y

U4X

U4Y

U5X

U5Y
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For element (2), the orientation of the local coordinate system with respect 
to the global coordinates is shown in Figure 3.9. Thus, for element (2), yielding the 
stiffness matrix

[K](2) = 2.98 * 105D  

cos2(135) sin(135) cos(135)
sin(135) cos(135) sin2(135)

-cos2(135) -sin(135) cos(135)
-sin(135) cos(135) -sin2(135)

 

-cos2(135) -sin(135) cos(135)
-sin(135) cos(135) -sin2(135)

cos2(135) sin(135) cos(135)
sin(135) cos(135) sin2(135)

 T
[K](2) = 2.98 * 105D  

.5  - .5  - .5 .5
- .5 .5 .5  - .5
- .5 .5 .5  - .5
.5  - .5  - .5 .5

 T  

U2X

U2Y

U3X

U3Y

2

4

Element (4)

x

y

Y

X

Figure 3.8  The orientation of the local 
coordinates with respect to the global 
coordinates for element (4).

2

3

Element (2)

x

y

Y

X

y

x
1355

Figure 3.9  The orientation of the local 
coordinates with respect to the global 
coordinates for element (2).
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Simplifying, we get

[K](2) = 1.49 * 105D  

1  -1  -1 1
-1 1 1  -1
-1 1 1 -1
1 -1 -1 1

 T  

U2X

U2Y

U3X

U3Y

and its position in the global matrix is

[K](2G) =  105I 

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1.49 -1.49 -1.49 1.49 0 0 0 0
0 0 -1.49 1.49 1.49 -1.49 0 0 0 0
0 0 -1.49 1.49 1.49 -1.49 0 0 0 0
0 0 1.49 -1.49 -1.49 1.49 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

 Y 

U1X

U1Y

U2X

U2Y

U3X

U3Y

U4X

U4Y

U5X

U5Y

For element (5), the orientation of the local coordinate system with respect 
to the global coordinates is shown in Figure 3.10. Thus, for element (5), u = 45, 
yielding the stiffness matrix

[K](5) = 2.98 * 105D cos2(45) sin(45) cos(45) -cos2(45) -sin(45) cos(45)
sin(45) cos(45) sin2(45) -sin(45) cos(45) -sin2(45)

-cos2(45) -sin(45) cos(45) cos2(45) sin(45) cos(45)
-sin(45) cos(45) -sin2(45) sin(45) cos(45) sin2(45)

T
[K](5) = 2.98 * 105D  

.5 .5 - .5 - .5

.5 .5 - .5 - .5
- .5 - .5 .5 .5
- .5 - .5 .5 .5

 T  

U2X

U2Y

U5X

U5Y

and its position in the global stiffness matrix is

2

5

Element (5)

x
y

Y

X

y x

455

Figure 3.10  The orientation of the local 
coordinates with respect to the global 
coordinates for element (5).
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[K](5G) =  105I  

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1.49 1.49 0 0 0 0 -1.49 -1.49
0 0 1.49 1.49 0 0 0 0 -1.49 -1.49
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 -1.49 -1.49 0 0 0 0 1.49 1.49
0 0 -1.49 -1.49 0 0 0 0 1.49 1.49

 Y  

U1X

U1Y

U2X

U2Y

U3X

U3Y

U4X

U4Y

U5X

U5Y

It is worth noting again that the nodal displacements associated with each 
element are shown next to each element’s stiffness matrix. This practice makes it 
easier to connect (assemble) the individual stiffness matrices into the global stiff-
ness matrix for the truss.

	 4.	 Assemble elements.
The global stiffness matrix is obtained by assembling, or adding together, the indi-
vidual elements’ matrices:

[K](G) = [K](1G) + [K](2G) + [K](3G) + [K](4G) + [K](5G) + [K](6G)

[K](G) = 105I  

4.22 0 -4.22 0 0
0 0 0 0 0

-4.22 0 4.22 + 1.49 + 1.49 -1.49 + 1.49 -1.49
0 0 1.49-1.49 4.22 + 1.49 + 1.49 1.49
0 0 -1.49 1.49 4.22 + 1.49
0 0 1.49 -1.49 -1.49
0 0 0 0 -4.22
0 0 0 -4.22 0
0 0 -1.49 -1.49 0
0 0 -1.49 -1.49 0

 

0 0 0 0 0
0 0 0 0 0

1.49 0 0 -1.49 -1.49
-1.49 0 -4.22 -1.49 -1.49
-1.49 -4.22 0 0 0
1.49 0 0 0 0

0 4.22 + 4.22 0 -4.22 0
0 0 4.22 0 0
0 -4.22 0 4.22 + 1.49 1.49
0 0 0 1.49 1.49

 Y U1X

U1Y

U2X

U2Y

U3X

U3Y

U4X

U4Y

U5X

U5Y
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Simplifying, we get

[K](G) = 105  

4.22 0 -4.22 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

-4.22 0 7.2 0 -1.49 1.49 0 0 -1.49 -1.49
0 0 0 7.2 1.49 -1.49 0 -4.22 -1.49 -1.49
0 0 -1.49 1.49 5.71 -1.49 -4.22 0 0 0
0 0 1.49 -1.49 -1.49 1.49 0 0 0 0
0 0 0 0 -4.22 0 8.44 0 -4.22 0
0 0 0 -4.22 0 0 0 4.22 0 0
0 0 -1.49 -1.49 0 0 -4.22 0 5.71 1.49
0 0 -1.49 -1.49 0 0 0 0 1.49 1.49

	 5.	 Apply the boundary conditions and loads.
The following boundary conditions apply to this problem: nodes 1 and 3 are fixed, 
which implies that U1X = 0, U1Y = 0, U3X = 0, and U3Y = 0. Incorporating these 
conditions into the global stiffness matrix and applying the external loads at  
nodes 4 and 5 such that F4Y = -500 lb and F5Y = -500 lb results in a set of linear 
equations that must be solved simultaneously:

105I  

   1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

-4.22 0 7.2 0 -1.49 1.49 0 0 -1.49 -1.49
0 0 0 7.2 1.49 -1.49 0 -4.22 -1.49 -1.49
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 -4.22 0 8.44 0 -4.22 0
0 0 0 -4.22 0 0 0 4.22 0 0
0 0 -1.49 -1.49 0 0 -4.22 0 5.71 1.49
0 0 -1.49 -1.49 0 0 0 0 1.49 1.49

 Y  	i  

U1X

U1Y

U2X

U2Y

U3X

U3Y

U4X

U4Y

U5X

U5Y

 y = i  

0
0
0
0
0
0
0

-500
0

-500

 y
Because U1X = 0, U1Y = 0, U3X = 0, and U3Y = 0, we can eliminate the first, sec-
ond, fifth, and sixth rows and columns from our calculation such that we need only 
solve a 6 * 6 matrix:

I 	 Y
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105F  

7.2 0 0 0 -1.49 -1.49
0 7.2 0 -4.22 -1.49 -1.49
0 0 8.44 0 -4.22 0
0 -4.22 0 4.22 0 0

-1.49 -1.49 -4.22 0 5.71 1.49
-1.49 -1.49 0 0 1.49 1.49

 V  f  

U2X

U2Y

U4X

U4Y

U5X

U5Y

 v = f  

0
0
0

-500
0

-500

 v
Solution Phase

	 6.	 Solve a system of algebraic equations simultaneously.
Solving the above matrix for the unknown displacements yields U2X = -0.00355 
in, U2Y = -0.01026 in, U4X = 0.00118 in, U4Y = -0.0114 in, U5X = 0.00240 in, 
and U5Y = -0.0195 in. Thus, the global displacement matrix is

i  

U1X

U1Y

U2X

U2Y

U3X

U3Y

U4X

U4Y

U5X

U5Y

 y = i  

0
0

-0.00355
-0.01026

0
0

0.00118
-0.0114
0.00240
-0.0195

 y  in.

It is important to recognize that the displacements of the nodes are given with 
respect to the global coordinate system.

Postprocessing Phase

	 7.	 Obtain other information.

Reaction Forces  As discussed in Chapter 1, the reaction forces can be computed 
from

5R6 = [K](G)5U6 - 5F6

such that
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i  

R1X

R1Y

R2X

R2Y

R3X

R3Y

R4X

R4Y

R5X

R5Y

y  = 105	

4.22 0 -4.22 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

-4.22 0 7.2 0 -1.49 1.49 0 0 -1.49 -1.49
0 0 0 7.2 1.49 -1.49 0 -4.22 -1.49 -1.49
0 0 -1.49 1.49 5.71 -1.49 -4.22 0 0 0
0 0 1.49 -1.49 -1.49 1.49 0 0 0 0
0 0 0 0 -4.22 0 8.44 0 -4.22 0
0 0 0 -4.22 0 0 0 4.22 0 0
0 0 -1.49 -1.49 0 0 -4.22 0 5.71 1.49
0 0 -1.49 -1.49 0 0 0 0 1.49 1.49

i  

0
0

-0.00355
-0.01026

0
0

0.00118
-0.0114
0.00240
-0.0195

y-i 0
0
0
0
0
0
0

-500
0

-500

 y
Note that the entire stiffness, displacement, and load matrices are used. 

Performing matrix operations yields the reaction results

i  

R1X

R1Y

R2X

R2Y

R3X

R3Y

R4X

R4Y

R5X

R5Y

 y = i  

1500
0
0
0

-1500
1000

0
0
0
0

 y  lb

Internal Forces and Normal Stresses  Now let us compute internal forces 
and the average normal stresses in each member. The member internal forces fix 
and fjx, which are equal and opposite in direction, are

I 	 Y
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	  fix = k(uix - ujx)	 (3.17)

	  fjx = k(ujx - uix)	

Note that the sum of fix and fjx is zero regardless of which representation of 
Figure 3.11 we select. However, for the sake of consistency in the forthcoming 
derivation, we will use the second representation so that fix and fjx are given in 
the positive local x-direction. In order to use Eq. (3.17) to compute the internal 
force in a given element, we must know the displacements of the element’s 
end nodes, uix and ujx, with respect to the local coordinate system, x, y. Recall 
that the global displacements are related to the local displacements through a 
transformation matrix, according to Eq. (3.7), repeated here for convenience,

5U6 = [T]5u6
and the local displacements in terms of the global displacements:

5u6 = [T]-15U6d  

uix

uiy

ujx

ujy

 t = D  

cos u sin u 0 0
-sin u cos u 0 0

0 0 cos u sin u
0 0 -sin u cos u

 T  D  

UiX

UiY

UjX

UjY

 T
Once the internal force in each member is computed, the normal stress in 

each member can be determined from the equation

s =
internal force

area
=

f

A

or alternatively, we can compute the normal stresses from

	 s =
f

A
=

k(uix - ujx)

A
=

AE
L

(uix - ujx)

A
= E¢uix - ujx

L
≤	 (3.18)

i

j

or

x

uix

y

Y

X

ujx
fjx = k(uix - ujx)

fix = k(uix - ujx)

i

j
x

uix

y

ujx
fjx = k(ujx – uix)

fix = k(uix - ujx)

Figure 3.11  Internal forces in a truss member.
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As an example, let us compute the internal force and the normal stress in element (5). 
For element (5), u = 45, U2X = -0.00355 in, U2Y = -0.01026 in, U5X = 0.0024 in,  
and U5Y = -0.0195 in. First, we solve for local displacements of nodes 2 and 5 from 
the relationd  

u2x

u2y

u5x

u5y

 t = D  

cos 45 sin 45 0 0
-sin 45 cos 45 0 0

0 0 cos 45 sin 45
0 0 -sin 45 cos 45

 T  d  

-0.00355
-0.01026
0.00240

-0.01950

 t
which reveals that u2x = -0.00976 in and u5x = -0.01209 in. Upon substitution of these 
values into Eqs. (3.17) and (3.18), the internal force and the normal stress in element (5) 
are 696 lb and 87 lb/in2, respectively. Similarly, the internal forces and stresses can be 
obtained for other elements.

This problem will be revisited later in this chapter and solved using ANSYS. The 
verification of these results will also be discussed in detail later in Section 3.6.

Example 3.1  Revisited

We will now show how to use Excel to set up and solve Example 3.1.

	 1.	 In cell A1 type Example 3.1, and in cells A3 and A4 type E= and  A= as  shown. 
After inputting the value of E in cell B3, select B3 and in the “Name Box” type E 
and hit the Return key. Similarly, after inputting the value of A in cell B4, select 
B4 and in the “Name Box” type A and hit the Return key.

	 2.	 Create the table shown with element and node numbers, length, area, and modulus 
of elasticity for each member. In cells G7:G12 input Θ for each element and name 
them Theta1, Theta2, Theta3, Theta4, Theta5, and Theta6, respectively. Also, name 
the values in D7:D12, Length1, Length2, Length3, Length4, Length5, and Length6.
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	 3.	 Next compute the Cosine and Sine terms for [K1] as shown and name the selected 
range CSelement1.

	 4.	 In a similar way, create the Cosine and Sine terms for [K2], [K3], [K4], [K5], 
and [K6] and name the selected ranges CSelement2, CSelement3, CSelement4, 
CSelement5, and CSelement6.

	 5.	 Next, create the [A1] matrix and name it Aelement1, as shown. If you have for-
gotten what the A matrices represents, see Section 2.5, Equation (2.9). The nodal 
displacement U1X, U1Y, U2X, U2Y, U3X, U3Y, U4X, U4Y, U5X, U5Y, and UiX, 
UiY, UjX, and UjY are shown alongside the [A1] matrix to aid us observe the 
contribution of node to its neighboring elements.
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	 6.	 Next, create the [A2], [A3], [A4], [A5], and [A6] matrices and name them 
Aelement2, Aelement3, Aelement4, Aelement5, and Aelement6, as shown.

	 7.	 We now create the stiffness matrix for each element (with their proper positions 
in the global matrix) and name them K1G, K2G, K3G, K4G, K5G, and K6G. See 
Equation (2.9). For example, to create [K]1G, select B80:K89 and type

		  =MMULT (TRANSPOSE(Aelement1),MMULT(((A*E/Length1)*CSelement1),
Aelement1)) 

		  and while holding down the Ctrl and Shift keys hit the Return key. In a similar way, 
create [K]2G, [K]3G, [K]4G, [K]5G, and [K]6G as shown.
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	 8.	 The final global matrix is created next. Select the range B146:K155 and 
type=K1G+K2G+K3G+K4G+K5G+K6G

		  and while holding down the Ctrl and Shift keys hit the Return key. Name the range 
B146:K155, KG. In a similar way, create the global load matrix.

	 9.	 Apply the boundary conditions. Copy the appropriate portion of the KG matrix and 
paste it in the range C168:H173 as values only. Name the range KwithappliedBC. 
Similarly, create the corresponding load matrix in the range C175:C180 and name 
it FwithappliedBC.
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	 10.	 Select the range C182:C187 and type

=MMULT(MINVERSE(KwithappliedBC),FwithappliedBC)

and while holding down the Ctrl and Shift keys hit the Return key. Moreover, 
as shown, select C189:C198, and copy the values of U partial and add the 
U1X=0, U1Y=0, U3X=0, and  U3Y=0. Name this matrix, UG.

	 11.	 Calculate the reaction forces, next. Select the range C200:C209 and type

=(MMULT(KG,UG)@FG)

and while holding down the Ctrl and Shift keys, hit the Return key.
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The complete Excel sheet is shown next.
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3.3 S pace Trusses

A three-dimensional truss is often called a space truss. A simple space truss has six 
members joined together at their ends to form a tetrahedron, as shown in Figure 3.12. 
We can create more complex structures by adding three new members to a simple 
truss. This addition should be done in a manner where one end of each new member 
is connected to a separate existing joint, attaching the other ends of the new members 
together to form a new joint. This structure is shown in Figure 3.13. As mentioned earlier, 
members of a truss are generally considered to be two-force members. In the analysis 
of space trusses, it is assumed that the members are connected together by ball-and-
socket joints. It can be shown that as long as the center lines of the adjacent bolted 
members intersect at a common point, trusses with bolted or welded joints may also be 

A

B

C

D

Figure 3.12  A simple truss.

E

A

B

C

D

Figure 3.13  Addition of new elements to a simple truss to 
form complex structures.
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treated under the ball-and-socket joints assumption (negligible bending moments at the 
joints). Another restriction deals with the assumption that all loads must be applied at 
the joints. This assumption is true for most situations. As stated earlier, the weights of 
members are usually negligible compared to the applied loads. However, if the weights 
of the members are to be considered, then half of the weight of each member is applied 
to the connecting joints.

Finite element formulation of space trusses is an extension of the analysis of plane 
trusses. In a space truss, the global displacement of an element is represented by six 
unknowns, UiX, UiY, UiZ, UjX, UjY, and UjZ, because each node (joint) can move in three 
directions. Moreover, the angles uX, uY, and uZ define the orientation of a member with 
respect to the global coordinate system, as shown in Figure 3.14.

The directional cosines can be written in terms of the difference between the 
coordinates of nodes j and i of a member and the member’s length according to the 
relationships

	 cos uX =
Xj - Xi

L
	 (3.19)

	 cos uY =
Yj - Yi

L
	 (3.20)

	 cos uZ =
Zj - Zi

L
	 (3.21)

j

X

Y

i

Z

uZ

uY

uX

Figure 3.14  The angles formed by a 
member with the X-, Y-, and Z-axis.
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where L is the length of the member and is given by

	 L = 2(Xj - Xi)
2 + (Yj - Yi)

2 + (Zj - Zi)
2	 (3.22)

The procedure for obtaining the element stiffness matrix for a space-truss member 
is identical to the one we followed to derive the two-dimensional truss element stiffness. 
We start the procedure by relating the global displacements and forces to local displace-
ments and forces through a transformation matrix. We then make use of the two-force-
member property of a member. We use a matrix relationship similar to the one given by 
Eq. (3.14). This relationship leads to the stiffness matrix [K](e) for an element. However, 
it is important to realize that the elemental stiffness matrix for a space-truss element is 
a 6 * 6 matrix rather than the 4 * 4 matrix that we obtained for the twodimensional 
truss element. For a space-truss member, the elemental stiffness matrix is

[K](e) = k F cos2 uX cos uX cos uY cos uX cos uZ

cos uX cos uY cos2 uY cos uY cos uZ

cos uX cos uZ cos uY cos uZ cos2 uZ

-cos2 uX -cos uX cos uY -cos uX cos uZ

-cos uX cos uY -cos2 uY -cos uY cos uZ

-cos uX cos uZ -cos uY cos uZ -cos2 uZ

	

-cos2 uX -cos uX cos uY -cos uX cos uZ

-cos uX cos uY -cos2 uY -cos uY cos uZ

-cos uX cos uZ -cos uY cos uZ -cos2 uZ

cos2 uX cos uX cos uY cos uX cos uZ

cos uX cos uY cos2 uY cos uY cos uZ

cos uX cos uZ  cos uY cos uZ cos2 uZ

V 	 (3.23)

The procedure for the assembly of individual elemental matrices for a space-
truss member—applying boundary conditions, loads, and solving for displacements—is 
exactly identical to the one we followed for a two-dimensional truss.

3.4 O verview of the ANSYS* Program

Entering ANSYS

This section provides a brief overview of the ANSYS program. More detailed infor-
mation about how you should go about using ANSYS to model a physical problem is 
provided in Chapter 8. But for now, enough information will be provided to get you 
started. One way to enter the ANSYS program is through the ANSYS Launcher, shown 
in Figure 3.15. The Launcher has a menu that provides the choices you need to run the 
ANSYS program and other auxiliary programs.

*Materials were adapted with permission from ANSYS documents.
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When using the Launcher to enter ANSYS, follow these basic steps:

	 1.	 Activate the Launcher by issuing the proper command at the system prompt if 
you are running ANSYS on a UNIX Platform. On a PC platform, go to: Start S
Programs S ANSYS 15.0 S ANSYS Product Launcher®.

	 2.	 Select the ANSYS option from the Launcher menu by positioning the cursor of 
the mouse over it and clicking the left mouse button. This command brings up a 
dialog box containing interactive entry options.

	 a.	 Working directory: This directory is the one in which the ANSYS run will be 
executed. If the directory displayed is not the one you want to work in, pick 
the Browse button to the right of the directory name and specify the desired 
directory.

	 b.	 Jobname: This jobname is the one that will be used as the prefix of the file 
name for all files generated by the ANSYS run. Type the desired jobname in 
this field of the dialog box.

Figure 3.15  The ANSYS Product Launcher for a PC version.
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	 3.	 Move the mouse cursor over the Run button at the bottom of the window and 
press it. The Graphical User Interface (GUI) will then be activated, and you are 
ready to begin.

Program Organization

Before introducing the GUI, we will discuss some basic concepts of the ANSYS 
program. The ANSYS program is organized into two levels: (1) the Begin level and 
(2) the Processor level. When you first enter the program, you are at the Begin level. 
From this level, you can enter the ANSYS processors, as shown in Figure 3.16.

You may have more or fewer processors available to you than the ones shown in 
Figure 3.16. The actual processors available depend on the particular ANSYS product 
you have. The Begin level acts as a gateway into and out of the ANSYS program. It is 
also used to access certain global program controls. At the Processor level, several rou-
tines (processors) are available; each accomplishes a specific task. Most of your analysis 
will be done at the Processor level. A typical analysis in ANSYS involves three distinct 
steps:

	 1.	 Preprocessing: Using the PREP7 processor, you provide data such as the geometry, 
materials, and element type to the program.

	 2.	 Solution: Using the Solution processor, you define the type of analysis, set bound-
ary conditions, apply loads, and initiate finite element solutions.

	 3.	 Postprocessing: Using POST1 (for static or steady-state problems) or POST26 
(for transient problems), you review the results of your analysis through graphical 
displays and tabular listings.

You enter a processor by selecting it from the ANSYS main menu in the GUI. You can 
move from one processor to another by simply choosing the processor you want from 
the ANSYS main menu. The next section presents a brief overview of the GUI.

Enter ANSYS

PREP7
General

Preprocessor

POST1
General

Postprocessor

POST26
Time–History
Postprocessor

Etc.
SOLUTION

Processor

Exit ANSYS

BEGIN LEVEL

PROCESSOR LEVEL

Figure 3.16  The organization of ANSYS.

Section 3.4    Overview of the ANSYS Program    175

M03_MOAV4303_04_GE_C03.INDD   175 27/11/14   9:38 AM

www.FreeEngineeringbooksPdf.com



176    Chapter 3    Trusses

The Graphical User Interface (GUI)

The simplest way to communicate with ANSYS is by using the ANSYS menu system, 
called the Graphical User Interface. The GUI provides an interface between you and 
the ANSYS program. The program is internally driven by ANSYS commands. However, 
by using the GUI, you can perform an analysis with little or no knowledge of ANSYS 
commands. This process works because each GUI function ultimately produces one or 
more ANSYS commands that are automatically executed by the program.

Layout of the GUI  The ANSYS GUI consists of six main regions, or windows, 
as shown in Figure 3.17.

A Utility Menu: Contains utility functions that are available throughout the 
ANSYS session, such as file controls, selecting, and graphics controls. You 
also exit the ANSYS program through this menu.

B Main Menu: Contains the primary ANSYS functions, organized by pro-
cessors. These functions include preprocessor, solution, general postproc-
essor, Design Xplorer, and so on.

A

C

B

E

D

Figure 3.17  The ANSYS GUI.
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C Toolbar: Contains push buttons that execute commonly used ANSYS 
commands and functions. You may add your own push buttons by defining 
abbreviations.

D Input Window: Allows you to type in commands directly. All previously 
typed-in commands also appear in this window for easy reference and 
access.

E Graphics Window: A window where graphics displays are drawn.

Output Window: Receives text output from the program. It is usually 
positioned behind the other windows and can be brought to the front 
when necessary.

The ANSYS main menu and the ANSYS utility menu, both of which you will use most 
often, are discussed next.

The Main Menu

The main menu, shown in Figure 3.18(a), contains main ANSYS functions such as pre-
processing, solution, and postprocessing.

Each menu topic on the main menu either brings up a submenu or performs an 
action. The ANSYS main menu has a tree structure. Each menu topic can be expanded 
to reveal other menu options. The expansion of menu options is indicated by + . You 
click on the + or the topic name until you reach the desired action. As you reveal other 
subtopics, the + will turn into - , as shown in Figure 3.18(b). For example, to create a 
rectangle, you click on Preprocessor, then on Modeling, Create, Areas, and Rectangle. 
As you can see from Figure 3.18(b), you now have three options to create the rectangle: 
By 2 Corners, or By Centr&Cornr, or By Dimensions. Note that each time you revealed 
another subtopic, the + turned into - .

The left mouse button is used to select a topic from the main menu. The submenus 
in the main menu stay in place until you choose a different menu topic higher up in the 
hierarchy.

The Utility Menu

The utility menu, shown in Figure 3.19, contains ANSYS utility functions such as  
file controls, selecting, and graphic controls. Most of these functions are modeless; that 
is, they can be executed at any time during the ANSYS session. The modeless nature 
of the utility menu greatly enhances the productivity and user friendliness of the GUI.

Each menu topic on the utility menu activates a pull-down menu of subtopics, 
which in turn will either cascade to a submenu, indicated by a ▶ after the topic, or per-
form an action. The symbol to the right of the topic indicates the action:

no symbol for immediate execution of the function

c  for a dialog box

+ for a picking menu.
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Clicking the left mouse button on a menu topic on the utility menu is used to “pull 
down” the menu topic. Dragging the cursor of the mouse allows you to move the cursor 
to the desired subtopic. The menus will disappear when you click on an action subtopic 
or elsewhere in the GUI.

Figure 3.19  The utility menu.

(a)

(b)

Figure 3.18  The main menu.
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Graphical Picking

In order to use the GUI effectively, it is important to understand graphical picking. 
You can use the mouse to identify model entities and coordinate locations. There are 
two types of graphical-picking operations: locational picking, where you locate the 
coordinates of a new point, and retrieval picking, where you identify existing entities. 
For example, creating key points by picking their locations on the working plane is a 
locational-picking operation, whereas picking already-existing key points to apply a load 
on them is a retrieval-picking operation.

Whenever you use graphical picking, the GUI brings up a picking menu. Figure 3.20 
shows the picking menus for locational and retrieval picking. The features of the picking 
menu that are used most frequently in upcoming examples are described in detail below.

B Picking Mode: Allows you to pick or unpick a location or entity. You 
can use either these toggle buttons or the right mouse button to switch 
between pick and unpick modes. The mouse pointer is an up arrow for 
picking and a down arrow for unpicking. For retrieval picking, you also 
have the option to choose from single pick, box, circle, and polygon mode.

A

B

E

F

D

C

A

D

F

B

C

E

A

B

C

D

E

F

Function Title

Picking Mode

Picking Status

Picked Data

Keyboard 
Entry Options

Action Buttons

Figure 3.20  Picking menu for locational and retrieval picking.
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D Picked Data: Shows information about the item being picked. For 
locational picking, the working plane and global Cartesian coordinates of 
the point are shown. For retrieval picking, this area shows the entity num-
ber. You can see this data by pressing the mouse button and dragging the 
cursor of the mouse into the graphics area. This procedure allows you to 
preview the information before releasing the mouse button and picking 
the item.

F Action Buttons: This area of the menu contains buttons that take certain 
actions on the picked entities, as follows:

OK: Applies the picked items to execute the function and closes the pick-
ing menu.

Apply: Applies the picked items to execute the function.

Reset: Unpicks all picked entities.

Cancel: Cancels the function and closes the picking menu.

Pick All: Picks all entities available for retrieval picking only.

Help: Brings up help information for the function being performed.

Mouse-Button Assignments for Picking  A summary of the mouse-button assign-
ments used during a picking operation is given below:

The left button picks or unpicks the entity or location closest to the cursor 
of the mouse. Pressing the left mouse button and dragging the cursor of the 
mouse allows you to preview the items being picked or unpicked.

The middle button applies the picked items to execute the function. Its func-
tion is the same as that of the Apply button on the picking menu.

The right button toggles between pick and unpick mode. Its function is the 
same as that of the toggle buttons on the picking menu.

The Help System

The ANSYS help system gives you information for virtually any component in the GUI 
and any ANSYS command or concept. It can be accessed within the GUI via the help 
topic on the utility menu or by pressing the help button from within a dialog box. You 
can access a help topic by choosing from a manual’s table of contents or index. Other 
features of the help system include hypertext links, word search, and the ability to print 
out help topics. An in-depth explanation of the capabilities and the organization of the 
ANSYS program is offered in Chapter 8.
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3.5 E xamples Using ANSYS

In this section, ANSYS is used to solve truss problems. To analyze truss problems, 
ANSYS offers a three-dimensional spar element. This element, denoted by LINK180, 
offers three degrees of freedom (UX, UY, UZ) at each node. Input data must include 
node locations, crosssectional area of the member, and modulus of elasticity. If a 
member is prestressed, then the initial strain should be included in the input data as 
well. As we learned previously in our discussion on the theory of truss element, we 
cannot apply surface loads to this element; thus, all loads must be applied directly 
at the nodes. To get additional information about these elements, run the ANSYS 
online help menu.

Example 3.2  Revisited

Consider the balcony truss from Example 3.1, as shown in the accompanying figure. We 
are interested in determining the deflection of each joint under the loading shown in 
the figure. All members are made from Douglas-fir wood with a modulus of elasticity 
of E = 1.90 * 106 lb/in2 and a cross-sectional area of 8 in2. We can now analyze this 
problem using ANSYS.

1 2

3 4 5

(1)

(3) (6)

(2) (4) (5)

500 lb 500 lb

3 ft 3 ft

3 ft

The following steps demonstrate how to create the truss geometry, choose 
the  appropriate element type, apply boundary conditions and loads, and obtain  
results:

Enter the ANSYS program by using the Launcher.

Type Truss (or a file name of your choice) in the Jobname entry field of the dialog 
box.
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Pick Run to start the GUI. Create a title for the problem. This title will appear on 
ANSYS display windows to provide a simple way of identifying the displays. To 
create a title, issue the command

utility menu: File S ChangeTitlec
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Define the element type and material properties:

main menu: Preprocessor S Element type S Add/Edit/Delete

M03_MOAV4303_04_GE_C03.INDD   183 27/11/14   9:38 AM

www.FreeEngineeringbooksPdf.com



184    Chapter 3    Trusses

Assign the cross-sectional area of the truss members:

main menu: Preprocessor S Real Constants S Add/Edit/Delete

Assign the value of the modulus of elasticity:

main menu: Preprocessor S Material Props S Material Models S  
� Structural S Linear S Elastic S Isotropic

Note: Double-click on Structural and then on Linear, Elastic, and Isotropic.

M03_MOAV4303_04_GE_C03.INDD   184 27/11/14   9:38 AM

www.FreeEngineeringbooksPdf.com



Section 3.5    Examples Using ANSYS    185

Note:
EX: Modulus of Elasticity
PRXY: Poisson’s Ratio

Poisson’s Ratio may be omitted for link 
elements.

Close the Define Material Model Behavior window.
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Save the input data:

ANSYS Toolbar: SAVE_DB

Set up the graphics area (i.e., workplane, zoom, etc.):

utility menu: WorkPlane S WP Settings c

Toggle on the workplane by the following sequence:

utility menu: Workplane S Display Working Plane

Bring the workplane to view using the following sequence:

utility menu: PlotCtrls S Pan, Zoom, Rotatec
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Click on the small circle until you bring the workplane to view. You can also use 
the arrow buttons to move the workplane in a desired direction. Then, create nodes 
by picking points on the workplane:

main menu: Preprocessor S Modeling S Create S Nodes S
On Working Plane

On the workplane, pick the location of joints (nodes) and apply them:
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	 [WP = 0,0]

	 [WP = 36,0]

	 [WP = 0,36]

	 [WP = 36,36]

	 [WP = 72,36]

		  OK

You may want to turn off the workplane now and turn on node numbering instead:

utility menu: Workplane S Display Working Plane

utility menu: PlotCtrls S Numberingc
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You may want to list nodes at this point in order to check your work:

utility menu: List S Nodes c

Close

ANSYS Toolbar: SAVE_DB

Define elements by picking nodes:

main menu: Preprocessor S Modeling S Create S Elements S
AutoNumbered S Thru Nodes
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	 [node 1 and then node 2]

	 [use the middle button anywhere in the ANSYS graphics window to apply]

	 [node 2 and then node 3]

	 [anywhere in the ANSYS graphics window]

	 [node 3 and then node 4]

	 [anywhere in the ANSYS graphics window]

	 [node 2 and then node 4]

	 [anywhere in the ANSYS graphics window]

	 [node 2 and then node 5]

	 [anywhere in the ANSYS graphics window]

	 [node 4 and then node 5]

	 [anywhere in the ANSYS graphics window]

	 OK
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ANSYS Toolbar: SAVE_DB

Apply boundary conditions and loads:

main menu: Solution S Define Loads S Apply S Structural S
Displacement S On Nodes

	 [node 1]

	 [node 3]

	 [anywhere in the ANSYS graphics window]
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main menu: Solution S Define Loads S Apply S Structural S  
� Force/Moment S On Nodes

	 [node 4]

	 [node 5]

	 [anywhere in the ANSYS graphics window]

ANSYS Toolbar: SAVE_DB
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Solve the problem:

main menu: Solution S Solve S Current LS

Close (the solution is done!) window.

Close (the /STAT Command) window.

For the postprocessing phase, first plot the deformed shape:

main menu: General Postproc S Plot Results S Deformed Shape
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main menu: General Postproc S List Results S Nodal Solution

Close
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To review other results, such as axial forces and axial stresses, we must copy these 
results into element tables. These items are obtained using item label and sequence 
numbers, as given in the ANSYS elements manual. For truss elements, the values of 
internal forces and stresses, which ANSYS computes from the nodal displacement 
results, may be looked up and assigned to user-defined labels. For Example 3.1, we 
have assigned the internal force, as computed by ANSYS, in each member to a user 
defined label “Axforce.” However, note that ANSYS allows up to eight characters 
to define such labels. Similarly, the axial stress result for each member is assigned 
to the label “Axstress.” We now run the following sequence:

main menu: General Postproc S Element Table S Define Table
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main menu: General Postproc S Element Table S Plot Element Table

or

main menu: General Postproc S Element Table S List Element Table
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Close

List reaction solutions:

main menu: General Postproc S List Results S Reaction Solu

M03_MOAV4303_04_GE_C03.INDD   197 27/11/14   9:38 AM

www.FreeEngineeringbooksPdf.com



198    Chapter 3    Trusses

Exit ANSYS and save everything, including element tables and reaction forces:

ANSYS Toolbar: QUIT

If, for any reason, you need to modify a model, first launch ANSYS and then type 
the file name of the model in the Jobname entry field of the Launcher dialog box. 
Then press Run. From the File menu, choose Resume Jobname.DB. Now you 
have complete access to your model. You can plot nodes, elements, and so on to 
make certain that you have chosen the right problem.

Example 3.3

Consider the three-dimensional truss shown in the accompanying figure. We are inter-
ested in determining the deflection of joint 2 under the loading shown in the figure. 
The Cartesian coordinates of the joints with respect to the coordinate system shown in 
the figure are given in feet. All members are made from aluminum with a modulus of 
elasticity of E = 10.6 * 106 lb/in2 and a cross-sectional area of 1.56 in2.

2

Y

Z

X

1
200 lb(0, 0, 3')

(0, 0, -3')

(6', 0, 0)

(0, 6', 0)

UX = 0
UY = 0

UX = 0

UX = 0
UY = 0
UZ = 0

3

4
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To solve this problem using ANSYS, we employ the following steps:

Enter the ANSYS program by using the Launcher.

Type Truss3D (or a file name of your choice) in the Jobname entry field of the 
dialog box.

Pick Run to start the GUI.

Create a title for the problem. This title will appear on ANSYS display windows 
to provide a simple way of identifying the displays:

utility menu: File S Change Titlec

Define the element type and material properties:

main menu: Preprocessor S Element Type S Add/Edit/Delete
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Assign the cross-sectional area of the truss members:

main menu: Preprocessor S Real Constant S Add/Edit/Delete
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Assign the value of the modulus of elasticity:

main menu: Preprocessor S Material Props S Material Models S
Structural S Linear S Elastic S Isotropic

Close the Define Material Model Behavior window.

ANSYS Toolbar: SAVE_DB

Create nodes in active coordinate system:

main menu: Preprocessor S Modeling S Create S Nodes S In Active CS
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You may want to turn on node numbering:

utility menu: PlotCtrls S Numberingc
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You may want to list nodes at this point in order to check your work:

utility menu: List S Nodes c
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Close

ANSYS Toolbar: SAVE_DB

Define elements by picking nodes. But first set the view angle:

utility menu: PlotCtrls S Pan,  Zoom,  Rotatec

Select the oblique (Obliq) or isometric (Iso) viewing.

main menu: Preprocessor S Modeling S Create S Elements S
Auto Numbered S Thru Nodes

	 [node 1 and then node 2]

	 [use the middle button anywhere in the ANSYS graphics window to apply]

	 [node 1 and then node 3]

	 [anywhere in the ANSYS graphics window]

	 [node 1 and then node 4]

	 [anywhere in the ANSYS graphics window]
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	 [node 2 and then node 3]

	 [anywhere in the ANSYS graphics window]

	 [node 2 and then node 4]

	 [anywhere in the ANSYS graphics window]

	 [node 3 and then node 4]

	 [anywhere in the ANSYS graphics window]

	 OK

ANSYS Toolbar: SAVE_DB

Apply boundary conditions and loads:

main menu: Solution S Define Loads S Apply S Structural S
Displacement S On Nodes

	 [node 1]

	 [node 3]

	 [node 4]

	 [anywhere in the ANSYS graphics window]
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main menu: Solution S Define Loads S Apply S Structural S
Displacement S On Nodes

	 [node 1]

	 [anywhere in the ANSYS graphics window]
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main menu: Solution S Define Loads S Apply S Structural S
Displacement S On Nodes

	 [node 1]

	 [node 4]

	 [anywhere in the ANSYS graphics window]

main menu: Solution S Define Loads S Apply S Structural S
Force/Moment S On Nodes

	 [node 2]

	 [anywhere in the ANSYS graphics window]

ANSYS Toolbar: SAVE_DB
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Solve the problem:

main menu: Solution S Solve S Current LS

OK

Close (the solution is done!) window.

Close (the /STAT Command) window.

Now we run the postprocessing phase by listing nodal solutions (displacements):

main menu: General Postproc S List Results S Nodal Solution
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To review other results, such as axial forces and axial stresses, we must copy 
these results into element tables. These items are obtained using item label and 
sequence numbers, as given in the ANSYS elements manual. So, we run the fol-
lowing sequence:

main menu: General Postproc S Element Table S Define Table
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main menu: General Postproc S Element Table S List Element Table

Close

List reaction solutions:

main menu: General Postproc S List Results S Reaction Solu
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Close

Exit ANSYS and save everything, including element tables and reaction forces:

ANSYS Toolbar: QUIT
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3.6 V erification of Results

There are various ways to verify your findings.

	 1.	 Check the reaction forces.
We can use the computed reaction forces and the external forces to check for 
statics equilibrium:

Σ FX = 0

Σ FY = 0
and

Σ Mnode = 0

The reaction forces computed by ANSYS are F1X = 1500 lb; F1Y = 0; 
F3X = -1500 lb; and F3Y = 1000 lb. Using the free-body diagram shown in the 
accompanying figure and applying the static equilibrium equations, we have:

 
+S Σ FX = 0 1500-1500 = 0

 + c Σ FY = 0  1000-500-500 = 0

 ⤿+ Σ Mnode1 = 0  (1500) (3) - (500) (3) - (500) (6) = 0

1500 lb

1500 lb
1 2

3 4 5

(1)

(3) (6)

(2) (4) (5)

500 lb

1000 lb

500 lb

3 ft 3 ft

3 ft

Now consider the internal forces of Example 3.1 as computed by ANSYS, shown 
in Table 3.2.

Table 3.2  Internal forces in each element  
as computed by ANSYS

Element Number Internal Forces (lb)

1 -1500

2 1414

3 500

4 -500

5 -707

6 500
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	 2.	 The sum of the forces at each node should be zero.
Choose an arbitrary node and apply the equilibrium conditions. As an example, 
let us choose node 5. Using the free-body diagram shown in the accompanying 
figure, we have

+
   S Σ FX = 0 -500 + 707 cos 45 = 0

  + c Σ FY = 0  -500 + 707 sin 45 = 0

500 lb

500 lb

707 lb

455

5

	 3.	 Pass an arbitrary section through the truss.
Another way of checking for the validity of your FEA findings is by arbitrarily 
cutting a section through the truss and applying the statics equilibrium conditions. 
For example, consider cutting a section through elements (1), (2), and (3), as shown 
in the accompanying figure.

500 lb

1414 lb

1500 lb
2

4 5

(1)

(3) (6)

(2)
(4) (5)

500 lb 500 lb

3 ft

3 ft

 +
 S Σ FX = 0   -500 + 1500 - 1414 cos 45 = 0

 + c Σ FY = 0   -500 - 500 + 1414 cos 45 = 0

 ⤿+ Σ Mnode2 = 0   -(500) (3) + (500) (3) = 0

Again, the validity of the computed internal forces is verified. Moreover, it is 
important to realize that when you analyze statics problems, statics equilibrium 
conditions must always be satisfied.
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Summary

At this point you should

	 1.	 have a good understanding of the underlying assumptions in truss analysis.
	 2.	 understand the significance of using global and local coordinate systems in 

describing a problem. You should also have a clear understanding of their role in 
describing nodal displacements and how information presented with respect to 
each frame of reference is related through the transformation matrix.

	 3.	 know the difference between the elemental stiffness matrix and the global stiffness 
matrix and know how to assemble elemental stiffness matrices to obtain a truss’s 
global stiffness matrix.

	 4.	 know how to apply the boundary conditions and loads to a global matrix to obtain 
the nodal displacement solution.

	 5.	 know how to obtain internal forces and stresses in each member from displacement 
results.

	 6.	 have a good grasp of the basic concepts and commands of ANSYS. You should 
realize that a typical analysis using ANSYS involves the preprocessing phase, where 
you provide data such as geometry, materials, and element type to the program; the 
solution phase, where you apply boundary conditions, apply loads, and initiate a 
finite element solution; and the postprocessing phase, where you review the results 
of the analysis through graphics displays, tabular listings, or both.

	 7.	 know how to verify the results of your truss analysis.

References

ANSYS User’s Manual: Procedures, Vol. I, Swanson Analysis Systems, Inc.
ANSYS User’s Manual: Commands, Vol. II, Swanson Analysis Systems, Inc.
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McGraw-Hill, 1988.
Segrlind, L., Applied Finite Element Analysis, 2nd ed., New York, John Wiley and Sons, 1984.

Problems

	 1.	 Starting with the transformation matrix, show that the inverse of the transformation matrix 
is its transpose. That is, show that

[T]-1 = D  

 cos u sin u 0 0
-sin u cos u 0 0

0 0 cos u sin u
0 0 -sin u cos u

 T
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	 2.	 Starting with Eq. (3.14), 5F6 = [T][K][T]-15U6 , and substituting for values of the 
[T], [K], [T]-1, and 5U6  matrices in Eq. (3.14), verify the elemental relationshipd  

FiX

FiY

FjX

FjY

 t = kD  

cos2 u sin u cos u -cos2 u -sin u cos u
sin u cos u sin2 u -sin u cos u -sin2 u

-cos2 u -sin u cos u cos2 u sin u cos u
-sin u cos u -sin2 u sin u cos u sin2 u

 T  d  

UiX

UiY

UjX

UjY

 t
	 3.	 The members of the truss shown in the accompanying figure have a cross-sectional area of 

2.5 in2 and are made of aluminum alloy (E = 10.0 * 106 lb/in2). Using hand calculations, 
determine the deflection of joint A, the stress in each member, and the reaction forces. Verify 
your results.

605

200 lb

A
4 

ft

605

	 4.	 The members of the truss shown in the accompanying figure have a cross-sectional area of 
10 cm2 and are made of steel (E = 200 GPa). Using hand calculations, determine the deflec-
tion of each joint, the stress in each member, and the reaction forces. Verify your results.

1 2 3

4

1 m

1.25 m

1 m

155

4 kN

155

4 kN
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	 5.	 The members of the truss shown in the accompanying figure have a cross-sectional area of 
20 cm2 and are made of aluminum alloy (E = 70 GPa). Using hand calculations, determine 
the deflection of each joint, the stress in each member, and the reaction forces. Verify your 
results.

2

1

3 4

1 m

1.5 m

10,000 N

	 6.	 The members of the truss shown in the accompanying figure have a cross-sectional area of 
3 in2 and are made of structural steel (E = 30.0 * 106 lb/in2). Using hand calculations, deter-
mine the deflection of each joint, the stress in each member, and the reaction forces. Verify 
your results.

8 ft

5000 lb

1 3
2

4 5

8 ft

8 ft

	 7.	 The members of the three-dimensional truss shown in the accompanying figure have a cross-
sectional area of 1.5 in2 and are made of structural steel (E = 30.0 * 106 lb/in2). Using hand 
calculations, determine the deflection of joint A, the stress in each member, and the reaction 
forces. Verify your results.
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5000 lb

6 ft

6 ft

6 ft
6 ft

Y

Z

A

X

10 ft

	 8.	 The members of the three-dimensional truss shown in the accompanying figure have a cross-
sectional area of 15 cm2 and are made of aluminum alloy (E = 70 GPa). Using hand calcula-
tions, determine the deflection of joint A, the stress in each member, and the reaction forces. 
Verify your results.

5000 N

Y

Z

X

A

B

C

D

1.5 m1.5 m

1.5 m

2 m
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	 9.	 Consider the power transmission-line tower shown in the accompanying figure. The members 
have a cross-sectional area of 10 in2 and a modulus of elasticity of E = 29 * 106 lb/in2. Using 
ANSYS, determine the deflection of each joint, the stress in each member, and the reaction 
forces at the base. Verify your results.

5 at 10 ft

1000 lb

1 2

3 4

5 6

7
8

9 10

11 12 13 14 15 16

10 ft

10 ft

10 ft

15 ft

15 ft

1000 lb

	 10.	 Consider the staircase truss shown in the accompanying figure. There are 14 steps, each with a 
rise of 8 in and a run of 12 in. The members have a cross-sectional area of 4 in2 and are made 
of steel with a modulus of elasticity of E = 29 * 106 lb/in2. Using ANSYS, determine the 
deflection of each joint, the stress in each member, and the reaction forces. Verify your results.

100 lb

12 in

8 in.

100 lb

200 lb

200 lb

200 lb

200 lb

200 lb
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	 11.	 The members of the roof truss shown in the accompanying figure have a cross-sectional 
area of approximately 25 in2 and are made of Douglas-fir wood with a modulus of elasticity 
of E = 1.9 * 106 lb/in2. Using ANSYS, determine the deflection of each joint, the stresses 
in each member, and the reaction forces. Verify your results. Also, replace one of the fixed 
boundary conditions with rollers and obtain the stresses in each member. Discuss the differ-
ence in results.

8.7 ft

24 ft

500 lb500 lb

500 lb500 lb

4.4 ft

500 lb

	 12.	 The members of the floor truss shown in the accompanying figure have a cross-sectional 
area of approximately 21.5 in2 and are made of Douglas-fir wood with a modulus of elasticity 
of E = 1.9 * 106 lb/in2. Using ANSYS, determine the deflection of each joint, the stresses 
in each member, and the reaction forces. Verify your results. Also, replace one of the fixed 
boundary conditions with rollers and solve the problem again to obtain the stresses in each 
member. Discuss the difference in results.

1 ft

500 lb 500 lb 500 lb 500 lb

30 ft

	 13.	 The three-dimensional truss shown in the accompanying figure is made of aluminum alloy 
(E = 10.9 * 106 psi) and is to support a load of 500 lb. The Cartesian coordinates of the 
joints with respect to the coordinate system shown in the figure are given in feet. The cross-
sectional area of each member is 2.246 in2. Using ANSYS, determine the deflection of each 
joint, the stress in each member, and the reaction forces. Knowing that the second moment 
of area is 4.090 in4, do you think that buckling is a concern for this truss? Verify your results.
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500 lb

1

2

3

4
5

6

7

60

Y

Z

X

3 ft

3 ft

3 ft

4.5 ft

9 ft

3 ft

500 lb

1

2

3

4
5

6

7

605

Y

Z

X

3 ft

3 ft

3 ft

4.5 ft

9 ft

3 ft

	 14.	 The three-dimensional truss shown in the accompanying figure is made of aluminum alloy 
(E = 10.4 * 106 lb/in2) and is to support a sign weighing 1000 lb. The Cartesian coordinates 
of the joints with respect to the coordinate system shown in the figure are given in feet. The 
cross-sectional area of each member is 3.14 in2. Using ANSYS, determine the deflection of 
joint E, the stresses in each member, and the reaction forces. Verify your results.

X

Y

Z

1000 lb

E (1.0, 2.5, 0)

A (0, 0, 0)

B (0, 0, 2)

D (-0.5, 2.0, 2.0)

C (-0.5, 2.0, 0)
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	 15.	 The three-dimensional truss shown in the accompanying figure is made of steel 
(E = 29 * 106 psi) and is to support the load shown in the figure. The Cartesian coordi-
nates of the joints with respect to the system shown in the figure are given in feet. The cross-
sectional area of each member is 3.093 in2. Using ANSYS, determine the deflection of each 
joint, the stresses in each member, and the reaction forces. Verify your results.

150 lb

B (0, 0, –2)

D (0, 4, 0)

C (0, 0, 2)

A (4, 0, 0)

250 lb
250 lb 150 lb

E (0, 0, 0)

Y

Z

X

	 16.	 During a maintenance process on the three-dimensional truss in Problem 15, the AB member 
is replaced with a member with the following properties: E = 28 * 106 psi and A = 2.246 in2. 
Using ANSYS, determine the deflection of each joint and the stresses in each member. Hint: 
you may need to ask your instructor for some help with this problem or you may want to 
study Example 6.2 (revisited) on your own to learn about how to assign different attributes 
to an element in ANSYS.

	 17.	 During a maintenance process on the three-dimensional truss in Problem 13, members 4–5, 
4–6, and 5–6 are replaced with steel members with the following properties: E = 29 * 106 psi 
and A = 1.25 in2. Member 1–5 is also replaced with a steel member with a cross-sectional 
area of 1.35 in2. Using ANSYS, determine the deflection of each joint and the stresses in each 
member. See the hint given for Problem 16.

	 18.	 Derive the transformation matrix for an arbitrary member of a space truss, shown in the 
accompanying figure. The directional cosines, in terms of the difference between the coordi-
nates of nodes j and i of a member and its length, are

cos uX =
Xj - Xi

L
;   cos uY =

Yj - Yi

L
;   cos uZ =

Zj - Zi

L

where L is the length of the member and is

L = 2(Xj - Xi)
2 + (Yj - Yi)

2 + (Zj - Zi)
2
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j

X

Y

i

Z

Z

  Y

  X

w

w

w

	 19.	 The three-dimensional truss shown in the accompanying figure is made of steel 
(E = 29 * 106 psi) and is to support the load shown in the figure. Dimensions are given in 
feet. The cross-sectional area of each member is 3.25 in2. Using ANSYS, determine the deflec-
tion of each joint, the stresses in each member, and the reaction forces. Verify your results.

6

Y

Z

5

7

X

300 lb

100 lb

100 lb
1 4

2

3

3 ft 2 ft

2 ft

2 ft

6 ft

2 ft

M03_MOAV4303_04_GE_C03.INDD   223 27/11/14   9:39 AM

www.FreeEngineeringbooksPdf.com



224    Chapter 3    Trusses

	 20.	 Design Problem Size the cross section of each member for the outdoor truss structure shown 
in the accompanying figure so that the end deflection of the truss is kept under 1 in. Select 
appropriate material and discuss how you arrived at your final design.

Z

Y

X

250 lb

250 lb
2 ft

2 ft

3 ft
3 ft

3 ft
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C h a p t e r  4

Axial Members, Beams, 
and Frames

The objective of this chapter is to introduce you to the analysis of members under axial 
loading, beams, and frames. Structural members and machine components are generally 
subject to a push–pull, bending, or twisting type of loading. We will discuss twisting or 
torsion of structural members and plane stress formulation of machine components in 
Chapter 10. The main topics discussed in this chapter include the following:

	 4.1	 Members Under Axial Loading

	 4.2	 Beams

	 4.3	 Finite Element Formulation of Beams

	 4.4	 Finite Element Formulation of Frames

	 4.5	 Three-Dimensional Beam Element

	 4.6	 An Example Using ANSYS

	 4.7	 Verification of Results

4.1  Members Under Axial Loading

In this section, we use the minimum total potential energy formulation to generate 
finite element models for members under axial loading. However, before we proceed 
with finite element formulation of axial members, we should define what we mean by 
an axial element and corresponding shape functions and their properties.

A Linear Element

The structural example in this section is employed to introduce the basic ideas of one-
dimensional element and shape functions. Steel columns are commonly used to support 
loads from various floors of multistory buildings, as shown in Figure 4.1. The column 
shown in the figure may be divided into four elements and five nodes to generate a 
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finite element model. The loading from the floors causes vertical displacements of 
various points along the column. Assuming axial central loading, we may approximate 
the actual deflection of the column by using a series of linear functions, describing the 
deflection over each element or each section of the column. Note that the deflection 
profile u represents the vertical (not the lateral) displacement of the column at various 
points along the column. The profile is merely plotted as a function of Y. We have mod-
eled the example problem shown in Figure 4.1 by five nodes and four elements. Let us 
focus our attention on a typical element, as shown in Figure 4.2.

Load Load

1

2

3

4

5

(1)

(2)

(3)

(4)

Actual
de�ection
pro�le

Approximate
de�ection
pro�le

Y

u
De�ection value

Figure 4.1  Deflection of a steel column subject to floor loading.

Y

u
ui

Yi

uj

Yj

Figure 4.2  Linear approximation of 
deflection variation for an element.
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The linear deflection distribution for a typical element may be expressed as

	 u(e) = c1 + c2Y	 (4.1)

In order to solve for the unknown coefficients c1 and c2, we make use of the element’s 
end deflection values which are given by the nodal deflections ui and uj, according to 
the conditions

	 u = ui  at  Y = Yi	 (4.2)

	 u = uj  at  Y = Yj	

Substitution of nodal values into Eq. (4.1) results in two equations and two unknowns:

	 ui = c1 + c2Yi	

	 uj = c1 + c2Yj	 (4.3)

Solving for the unknowns c1 and c2, we get

	 c1 =
uiYj - ujYi

Yj - Yi
	 (4.4)

	 c2 =
uj - ui

Yj - Yi
	 (4.5)

The element’s deflection distribution in terms of its nodal values is

	 u(e) =
uiYj - ujYi

Yj - Yi
+

uj - ui

Yj - Yi
 Y	 (4.6)

Grouping the ui terms together and the uj terms together, Eq. (4.6) becomes

	 u(e) = ¢ Yj - Y

Yj - Yi
≤ui + ¢ Y - Yi

Yj - Yi
≤uj	 (4.7)

We now define the shape functions, Si and Sj using the terms in parentheses appearing 
before ui and uj, according to the equations

	 Si =
Yj - Y

Yj - Yi
=

Yj - Y

/
	 (4.8)

	 Sj =
Y - Yi

Yj - Yi
=

Y - Yi

/
	 (4.9)

where / is the length of the element. Thus, the deflection for an element in terms of the 
shape functions and the nodal deflection values can be written as

	 u(e) = Siui + Sjuj	 (4.10)

Equation (4.10) can also be expressed in matrix form as

	 u(e) = [Si Sj]bui

uj
r 	 (4.11)
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It will become clear to you that we can use the same approach to approximate the spatial 
variation of any unknown variable, such as temperature or velocity, in the same manner. 
We will discuss the concept of one-dimensional elements and their properties in more 
detail in Chapter 5.

As we discussed in Chapter 3, in finite element modeling, it is convenient to use 
two frames of references: (1) a global coordinate system to represent the location of 
each node, orientation of each element, and to apply boundary conditions and loads. 
The nodal solutions of finite element models are generally expressed with respect to 
global coordinates as well. On the other hand, we employ (2) a local coordinate system 
to take advantage of the local characteristics of the system behavior.

For the one-dimensional element shown in Figure 4.2, the relationship between a 
global coordinate Y and a local coordinate y is given by Y = Yi + y. This relationship 
is shown in Figure 4.3. Substituting for Y in terms of the local coordinate y in Eqs. (4.8) 
and (4.9), we get

	 Si =
Yj - Y

/
=

Yj - (Yi + y)

/
= 1 -

y

/
	 (4.12)

	 Sj =
Y - Yi

/
=

(Yi + y) - Yi

/
=

y

/
	 (4.13)

where the local coordinate y varies from 0 to /; that is, 0 … y … /.
This is a good place to say a few words about the shape functions Si and Sj. They 

possess unique properties that, once understood, can simplify the derivation of stiff-
ness matrices. We now refer to Eqs. (4.12) and (4.13) and note that Si and Sj each has 
a value of unity at its corresponding node and zero at the other adjacent node. For 
example, if we evaluate Si at node i by substituting y = 0 in Eq. (4.12), we find that 
Si = 1. Similarly, we can show that the value of Sj at node j(y = /) is also 1. The value 
of the shape function Si, Eq. (4.12), at the adjacent node j(y = /) and Sj, Eq. (4.13), at 
its adjacent node i(y = 0) are zero. We discuss the properties of shape functions in more 
detail in Chapter 5.

Y

y

Yi

Yj
j

i

Figure 4.3  The relationship between a global coordinate 
Y and a local coordinate y.
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Example 4.1

Consider a four-story building with steel columns. One column is subjected to the load-
ing shown in Figure 4.4. Under axial loading assumption and using linear elements, the 
vertical displacements of the column at various floor-column connection points were 
determined to be e u1

u2

u3

u4

u5

u = - e 0
0.03283
0.05784
0.07504
0.08442

u in

The modulus of elasticity of E = 29 * 106 lb/in2 and area of A = 39.7 in2 were used 
in the calculations. A detailed analysis of this problem is given in the next section. For 
now, given the nodal displacement values, we are interested in determining the deflec-
tions of points A and B.

	 a.	 Using the global coordinate Y, the displacement of point A is represented by 
element (1):

 u(1) = S 1
(1)u1 + S 2

(1)u2 =
Y2 - Y

/
 u1 +

Y - Y1

/
 u2

 u =
15 - 10

15
 (0) +

10 - 0
15

(-0.03283) = -0.02188 in

1

2

3

4

5

(1)
A

B

(2)

(3)

(4)

Y

30,000 lb 30,000 lb

25,000 lb 25,000 lb

25,000 lb 25,000 lb

25,000 lb 25,000 ft

15 ft

15 ft

15 ft

15 ft

8 ft

10 ft

Figure 4.4  The column in Example 4.1.
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	 b.	 The displacement of point B is represented by element (4):

 u(4) = S 4
(4)u4 + S 5

(4)u5 =
Y5 - Y

/
 u4 +

Y - Y4

/
 u5

 u =
60 - 52

15
(-0.07504) +

52 - 45
15

(-0.08442) = -0.07941 in

Stiffness and Load Matrices

In this section, we use the minimum total potential energy formulation to generate the 
stiffness and load matrices for members under axial loading. Previously, we showed 
that  under axial loading, we can approximate the exact deflection of the column 
shown in Figure 4.1 by a series of linear functions. Moreover, as discussed in Section 1.6, 
applied external loads cause a body to deform. During the deformation, the work 
done by the external forces is stored in the material in the form of elastic energy, called 
strain energy. For a member (element) under axial loading, the strain energy Λ(e) is 
given by

	 Λ(e) = LV

se

2
 dV = LV

Ee2

2
 dV	 (4.14)

The total potential energy Π for a body consisting of n elements and m nodes is the 
difference between the total strain energy and the work done by the external forces:

	 Π = a
n

e = 1
Λ(e) - a

m

i = 1
Fiui	 (4.15)

The minimum total potential energy principle states that for a stable system, the dis-
placement at the equilibrium position occurs such that the value of the system’s total 
potential energy is a minimum. That is,

	
0Π
0ui

=
0

0ui
 a

n

e = 1
Λ(e) -

0
0ui

 a
m

i = 1
Fiui = 0 for i = 1, 2, 3,c, m	 (4.16)

where i takes on different values of node numbers. Recall that the deflection for an 
arbitrary element with nodes i and j in terms of local shape functions is given by

	 u(e) = Siui + Sjuj	 (4.17)

where Si = 1 - y
/ and Sj = y

/ and y is the element’s local coordinate, with its origin at 
node i. The strain in each member can be computed using the relation e = du

dy as

	 e =
du
dy

=
d
dy

 [Siui + Sjuj] =
d
dy

J ¢1 -
y

/
≤ui +

y

/
 ujR =

-ui + uj

/
	 (4.18)
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Incorporating Eq. (4.18) into Eq. (4.14) yields the strain energy for an arbitrary 
element (e):

	 Λ(e) =LV

Ee2

2
 dV =

AE
2/

 (uj
2 + ui

2 - 2ujui)	 (4.19)

Minimizing the strain energy with respect to ui and uj leads to

	
0Λ(e)

0ui
 =

AE
/

 (ui - uj)	

	
0Λ(e)

0uj
 =

AE
/

 (uj - ui)	 (4.20)

or, in matrix form,

	 d 0Λ(e)

0ui

0Λ(e)

0uj

t =
AE

/
 J 1  -1

-1 1
R bui

uj
r = J k -k

-k k
R bui

uj
r 	 (4.21)

where k =
(AE)

/
. Minimizing the work done by external forces, the second term on the 

right-hand side of Eq. (4.16) results in the load matrix

	 5F6 (e) = bFi

Fj
r 	 (4.22)

Computing individual elemental stiffness and load matrices and connecting them leads 
to global stiffness and load matrices. This step is demonstrated by the next example.

Example 4.2  A Column Problem

Consider a four-story building with steel columns. One column is subjected to the load-
ing shown in Figure 4.5. Assuming axial loading, determine (a) vertical displacements 
of the column at various floor-column connection points and (b) the stresses in each 
portion of the column. E = 29 * 106 lb/in2, A = 39.7 in2.

Because all elements have the same length, cross-sectional area, and physical prop-
erties, the elemental stiffness for elements (1),(2),(3), and (4) is given by

[K](e) =
AE

/
 J 1 -1

-1 1
R =

39.7 * 29 * 106

15 * 12
 J 1 -1

-1 1
R = 6.396 * 106 J 1 -1

-1 1
R

[K](1) = [K](2) = [K](3) = [K](4) = 6.396 * 106J 1 -1
-1 1

R  
lb
in
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The global stiffness matrix is obtained by assembling the elemental matrices:

[K](G) = 6.396 * 106E 1 -1 0 0 0
-1 1 + 1 -1 0 0
0 -1 1 + 1 -1 0
0 0 -1 1 + 1 -1
0 0 0 -1 1

U
The global load matrix is obtained from

5F6(G) = b 0Fiui

0ui
r

i = 1,5
= e F1

F2

F3

F4

F5

u = - e 0
50000
50000
50000
60000

u  lb

Note all applied forces act in the negative Y direction. Application of the boundary 
condition, u1 = 0, and loads results in

6.396 * 106E 1 0 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 1

U e u1

u2

u3

u4

u5

u = - e 0
50000
50000
50000
60000

u

1

2

3

4

5

(1)

(2)

(3)

(4)

30,000 lb

25,000 lb

25,000 lb

25,000 lb

15 ft

15 ft

15 ft

15 ftY

Figure 4.5  A schematic of the column 
in Example 4.2.
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Solving for displacements, we havee u1

u2

u3

u4

u5

u = - e 0
0.03283
0.05784
0.07504
0.08442

u  in

The axial stresses in each element are determined from

s(1) =
E(uj - ui)

/
=

29 * 106(-0.03283 - 0)

15 * 12
= -5289 lb/in2

s(2) =
29 * 106(-0.05784 - (-0.03283))

15 * 12
= -4029 lb/in2

s(3) =
29 * 106(-0.07504 - (-0.05784))

15 * 12
= -2771 lb/in2

s(4) =
29 * 106(-0.08442 - (-0.07504))

15 * 12
= -1511 lb/in2

4.2  Beams

Beams play significant roles in many engineering applications, including buildings, 
bridges, automobiles, and airplane structures. A beam is defined as a structural member 
whose cross-sectional dimensions are relatively smaller than its length. Beams are com-
monly subjected to transverse loading, which is a type of loading that creates bending 
in the beam. A beam subjected to a distributed load is shown in Figure 4.6.

In the previous chapter we defined trusses as structures consisting of two-force 
members. Moreover, recall that when using a truss model to analyze a physical problem, 
all loads are assumed to apply at the joints or the nodes of the truss. Therefore, no bend-
ing of the members are allowed. Note that for a structural member that is considered 
as a beam, loads may be applied anywhere along the beam and the loading will create 
bending in the beam. It is important to make these distinctions when modeling a physi-
cal problem.

The deflection of the neutral axis of a beam at any location x is represented by 
the variable v. For small deflections, the relationship between the normal stress s at a 

Load

x

y

Neutral axis
y

Figure 4.6  A beam subjected to a distributed load.
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section, the bending moment at that section M, and the second moment of area I is given 
by the flexure formula. The flexure formula is the equation

	 s = -
My

I
	 (4.23)

where y locates a point in the cross section of the beam and represents the lateral 
distance from the neutral axis to that point. The deflection of the neutral axis v is also 
related to the internal bending moment M(x), the transverse shear V(x), and the load 
w(x) according to the equations

	  EI 
d2

v

dx2 = M(x) 	 (4.24)

	  EI 
d3

v

dx3 =
dM(x)

dx
= V(x)	 (4.25)

	  EI 
d4

v

dx4 =
dV(x)

dx
= w(x) 	 (4.26)

Note that the standard beam sign convention is assumed in the previous equations. The 
positive and negative bending moments and curvatures are shown in Figure 4.7. For 
your reference, the deflections and slopes of beams under some typical loads for simply 
supported and cantilevered supports are summarized in Table 4.1. If you come across 
problems that can be analyzed using equations (4.24), (4.25), and (4.26) and Table 4.1, 
solve them as such.

y
y

x
x

M
M

M

M

Positive bending and
positive curvature

Negative moment 
and negative curvature

Figure 4.7  The positive and negative bending moments and curvature sign convention.

Example 4.3

The cantilevered balcony beam shown in the accompanying figure is a wide-flange 
W18 * 35, with a cross-sectional area of 10.3 in2 and a depth of 17. 7 in. The second moment 
of area is 510 in4. The beam is subjected to a uniformly distributed load of 1000 lb/ft. 
The modulus of elasticity of the beam is E = 29 * 106 lb/in2. Using the review materials 
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presented in this section, we will determine the deflection of the beam at the midpoint 
B and the endpoint C. We will also compute the slope of the beam at point C.

1000 lb/ft

A B C

10 ft

The deflection equation for a cantilever beam is given in Table 4.1.

v =
-wx2

24EI
(x2 - 4Lx + 6L2)

The deflection of the beam at midpoint corresponding to x =
L
2

 is

 vB =
-wx2

24EI
(x2 - 4Lx + 6L2)

 =
-(1000 lb/ft) (5 ft)2

24(29 * 106 lb/in2) (510 in4)
 ((52 - 4(10) (5) + 6(10)2)ft2)¢ 12 in

1 ft
≤3

= -0.052 in

And the deflection of point C is

vc =
-wL4

8EI
=

-(1000 lb/ft) (10 ft)4¢ 12 in
1 ft

≤3

8(29 * 106 lb/in2) (510 in4)
= -0.146 in

The maximum slope occurs at point C.

umax =
-wL3

6EI
=

-(1000 lb/ft) (10 ft)3

6(29 * 106 lb/in2) (510 in4) ¢ 1 ft
12 in

≤2
= -0.00163 rad

Let us also calculate the maximum bending stress in the beam. Because the maximum 
bending moment occurs at point A, the maximum bending stress in the beam will occur 
at point A. The resulting maximum bending stress at outer fiber of the beam at A is

s =
My

I
= -

(1000 lb/ft)(10 ft)(5 ft)¢ 12 in
1 ft

≤ ¢ 17.7
2

 in≤
510 in4 = 10411 lb/in2

7M 2
y

M04_MOAV4303_04_GE_C04.INDD   237 27/11/14   9:42 AM

www.FreeEngineeringbooksPdf.com
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4.3  Finite Element Formulation of Beams

Before we proceed with finite element formulation of beams, we should define what we 
mean by a beam element. A simple beam element consists of two nodes. At each node, 
there are two degrees of freedom, a vertical displacement, and a rotation angle (slope), 
as shown in Figure 4.8.

There are four nodal values associated with a beam element. Therefore, we will use 
a third-order polynomial with four unknown coefficients to represent the displacement 
field. Moreover, we want the first derivatives of the shape functions to be continuous. 
The resulting shape functions are commonly referred to as Hermite shape functions. As 
you will see, they differ in some ways from the linear shape functions you have already 
studied. We start with the third-order polynomial

	 v = c1 + c2x + c3x
2 + c4x

3	 (4.27)

The element’s end conditions are given by the following nodal values:

For node i:  The vertical displacement at x = 0 v = c1 = Ui1

For node i:  The slope at  x = 0 
dv

dx
2
x = 0

= c2 = Ui2

For node j:  The vertical displacement at x = L v = c1 + c2L + c3L
2 + c4L

3 = Uj1

For node j:  The slope at  x = L 
dv

dx
2
x = L

= c2 + 2c3L + 3c4L
2 = Uj2

We now have four equations with four unknowns. Solving for c1, c2, c3, and c4; substitut-
ing into Eq. (4.27); and regrouping the Ui1, Ui2, Uj1, Uj2 terms results in the equation

	 v = Si1Ui1 + Si2Ui2 + Sj1Uj1 + Sj2Uj2	 (4.28)

where the shape functions are given by

	  Si1 = 1 -
3x2

L2 +
2x3

L3 	 (4.29)

	  Si2 = x -
2x2

L
+

x3

L2	 (4.30)

j
i

x

y

Ui2
Uj2

Ui1 Uj1

X

Y

L

Figure 4.8  A beam element.
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	  Sj1 =
3x2

L2 -
2x3

L3 	 (4.31)

	  Sj2 = -
x2

L
+

x3

L2	 (4.32)

It is clear that if we evaluate the shape functions, as given in Eqs. (4.29 through 4.32), at 
node i at x = 0, we find that Si1 = 1 and Si2 = Sj1 = Sj2 = 0. Also, if we evaluate the

slopes of the shape functions at x = 0, we find that 
dSi2

dx
= 1 and 

dSi1

dx
=

dSj1

dx
=

dSj2

dx
= 0.

If we evaluate the shape functions at node j at x = L, we find that Sj1 = 1
and Si1 = Si2 = Sj2 = 0, and if we evaluate the slopes of the shape functions at x = L,

we determine that 
dSj2

dx
= 1 and 

dSi1

dx
=

dSi2

dx
=

dSj1

dx
= 0. These values are the proper-

ties of the Hermite third-order polynomials.
Now that you know what we mean by a beam element, we proceed with deriva-

tion of stiffness matrix. In the following derivation, we neglect the contribution of shear 
stresses to the strain energy. The strain energy for an arbitrary beam element (e) then 
becomes

	 Λ(e) = LV

se

2
 dV = LV

Ee2

2
 dV =

E
2 LV

¢ -y 
d2

v

dx2 ≤2

dV	 (4.33)

	 Λ(e) =
E
2 LV

¢ -y 
d2

v

dx2 ≤2

dV =
E
2 L

L

0
¢d2

v

dx2 ≤2

dxLA
y2  dA 	 (4.34)

Recognizing the integral LA

y2dA as the second moment of the area I, we have

	 Λ(e) =
EI
2 L

L

0

¢d2
v

dx2 ≤2

dx	 (4.35)

Next, we substitute for the displacement field v in terms of the shape functions 
and the nodal values. Let us begin by evaluating the equation

	
d2

v

dx2 =
d2

dx2 [Si1 Si2 Sj1 Sj2] d Ui1

Ui2

Uj1

Uj2

t 	 (4.36)
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To simplify the next few steps of derivation and to avoid unnecessary mathematical 
operations, let us make use of matrix notations. First, let the second derivatives of the 
shape functions be defined in terms of the following relationships:

	 Di1 =
d2Si1

dx2 = -
6

L2 +
12x
L3 	

	 Di2 =
d2Si2

dx2 = -
4
L

+
6x
L2 	

	 Dj1 =
d2Sj1

dx2 =
6

L2 -
12x
L3 	

	 Dj2 =
d2Sj2

dx2 = -
2
L

+
6x
L2 	

(4.36a)

Then, Eq. (4.36) takes on the compact-matrix form of

	
d2

v

dx2 = [D]5U6 	 (4.37)

where [D] = [Di1 Di 2 Dj1 Dj 2] and 5U6 = µ
Ui1

Ui 2

Uj1

Uj 2

∂ .

The ¢d2
v

dx2 ≤2

 term can be represented in terms of the 5U6  and [D] matrices as

	 ¢d2
v

dx2 ≤2

= ([D]5U6)([D]5U6) = 5U6T[D]T[D]5U6 	 (4.38)

In Eq. (4.38), note that [D]5U6 = 5U6T[D]T. The proof of this identity is left as an 
exercise for you to complete. See Problem 26 at the end of this chapter. Thus, using 
Eq. (4.38) the strain energy for an arbitrary beam element is

	 Λ(e) =
EI
2 L

L

0
5U6T[D]T[D]5U6dx	 (4.39)

Recall that the total potential energy Π for a body is the difference between the total 
strain energy and the work done by the external forces:

	 Π = ΣΛ(e) - ΣFU	 (4.40)

Also recall that the minimum total potential energy principle states that for a stable 
system, the displacement at the equilibrium position occurs such that the value of the 
system’s total potential energy is a minimum. Thus, for a beam element, we have

	
0Π
0Uk

=
0

0Uk
ΣΛ(e) -

0
0Uk

ΣFU = 0 for k = 1, 2, 3, 4	 (4.41)

where Uk takes on the values of the nodal degrees of freedom Ui1, Ui2, Uj1, and Uj2. 
Equation (4.40) has two main parts: the strain energy, and the work done by external 
forces. Differentiation of the strain energy with respect to the nodal degrees of freedom 
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leads to the formulation of the beam’s stiffness matrix and differentiation of the work 
done by external forces results in the load matrix. We begin minimizing the strain energy 
with respect to Ui1, Ui2, Uj1, and Uj2 to obtain the stiffness matrix. Starting with the strain 
energy part of the total potential energy, we get

	
0Λ(e)

0Uk
= EIL

L

0

[D]T[D]dx5U6 	 (4.42)

Evaluating Eq. (4.42) leads to the expression

0Λ(e)

0Uk
= EIL

L

0

[D]T[D]dx5U6 =
EI
L3  D 12 6L -12 6L

6L 4L2 -6L 2L2

-12 -6L 12 -6L
6L 2L2 -6L 4L2

T d Ui1

Ui2

Uj1

Uj2

t
The stiffness matrix for a beam element with two degrees of freedom at each node—the 
vertical displacement and rotation—is

	 [K](e) =
EI
L3  D 12 6L -12 6L

6L 4L2 -6L 2L2

-12 -6L 12 -6L
6L 2L2 -6L 4L2

T 	 (4.43)

Starting with Eqs. (4.39) and (4.41), proof of steps leading to Eqs. (4.42) and (4.43) is 
left as an exercise for you to perform. See Problem 27.

Load Matrix

There are two ways in which we can formulate the nodal load matrices: (1) by mini-
mizing the work done by the load as stated above, and (2) alternatively by computing 
the beam’s reaction forces. Consider a uniformly distributed load acting on a beam of 
length L, as shown in Figure 4.9. The reaction forces and moments at the endpoints are 
also shown in the figure.

Using the first approach, we can compute the work done by this type of loading 
from 1L wv dx. The next step involves substituting for the displacement function in 
terms of the shape functions and nodal values, and then integrating and differenti-
ating the work term with respect to the nodal displacements. This approach will be 

w

M1 M2

R1 R2

L

Figure 4.9  A beam element subjected 
to a uniform distributed load.
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demonstrated in detail when we formulate the load matrix for a plane stress situation. 
In order to expose you to as many finite element formulations as possible, let us develop 
the load matrix using the alternate approach, starting with Eq. (4.26):

EI 
d4

v

dx4 =
dV(x)

dx
= w(x)

For a uniformly distributed load, w(x) is constant. Integrating this equation, we get

	 EI 
d3

v

dx3 = -wx + c1	 (4.44)

Applying the boundary condition (at x = 0, V(x) = R1, and using Eq. (4.25)) 

EI 
d3

v

dx3 `
x = 0

= R1, we find that c1 = R1. Substituting for the value of c1 and integrating 

Eq. (4.44) we obtain

	 EI 
d2

v

dx2 = -
wx2

2
+ R1x + c2	 (4.45)

Applying the boundary condition (at x = 0, M(x) = -M1, and using Eq. (4.24)) 

EI 
d2v
dx2 `

x = 0
= -M1, we find that c2 = -M1. Substituting for the value of c2 and integrat-

ing, we obtain

	 EI 
dv

dx
= -

wx3

6
+

R1x
2

2
- M1x + c3	 (4.46)

Applying the boundary condition (zero slope at x = 0) dv

dx 0 x = 0 = 0, we find that c3 = 0. 
Integrating one last time, we have

	 EIv = -
wx4

24
+

R1x
3

6
-

M1x
2

2
+ c4	 (4.47)

Applying the boundary condition (zero deflection at x = 0) v(0) = 0, we deter-
mine that c4 = 0. To obtain the values of R1 and M1, we can apply two additional
boundary conditions to this problem: dv

dx 0 x = L = 0 and v(L) = 0. Applying these condi-
tions, we get

	  
dv

dx
2
x = L = -

wL3

6
+

R1L
2

2
- M1L = 0 	 (4.48)

	  v(L) = -
wL4

24
+

R1L
3

6
-

M1L
2

2
= 0	 (4.49)

Solving these equations simultaneously, we get R1 =
wL

2
 and M1 =

wL2

12
. From the 

symmetry of the problem—that is, applying the statics equilibrium conditions—we find 

that the reactions at the other end of the beam are R2 =
wL

2
 and M2 =

wL2

12
. All of the 

reactions are shown in Figure 4.10.
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If we reverse the signs of the reactions at the endpoints, we can now represent the 
effect of a uniformly distributed load in terms of its equivalent nodal loads. Similarly, 
we can obtain the nodal load matrices for other loading situations. The relationships 
between the actual load and its equivalent nodal loads for some typical loading situa-
tions are summarized in Table 4.2.

M1 = wL2

12
M2 = wL2

12

R1 = wL
2

R2 = wL
2

Figure 4.10  Reaction results for a beam 
subjected to a uniformly distributed load.

Table 4.2  Equivalent nodal loading of beams

Loading Equivalent Nodal Loading

w

w

P
— —

wL
2

wL
2

wL2

12
wL2

12

3wL
20

7wL
20

wL2

30
wL2

20

P
2

P
2

M= PL
8

M= PL
8

L

L

L
2

— L
2

—

Example 4.3  Revisited

Let us consider the cantilevered balcony beam of Example 4.3 again and solve it using 
a single beam element. Recall that the beam is a wide-flange W18 * 35, with a cross-
sectional area of 10.3 in2 and a depth of 17.7 in. The second moment of area is 510 in4. 
The beam is subjected to a uniformly distributed load of 1000 lb/ft. The modulus of 
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elasticity of the beam E = 29 * 106 lb/in2. We are interested in determining the deflec-
tion of the beam at the midpoint B and the endpoint C. Also, we will compute the 
maximum slope that will occur at point C.

1000 lb/ft

A B C

10 ft

Because we are using a single element to model this problem, the elemental stiffness 
and load matrices are the same as the global matrices.

[K](e) = [K](G) =
EI
L3  D 12 6L -12 6L

6L 4L2 -6L 2L2

-12 -6L 12 -6L
6L 2L2 -6L 4L2

T 5F6 (e) = 5F6 (G) = h -
wL

2

-
wL2

12

-
wL

2
wL2

12

x
EI
L3  D 12 6L -12 6L

6L 4L2 -6L 2L2

-12 -6L 12 -6L
6L 2L2 -6L 4L2

T d U11

U12

U21

U22

t = h -
wL

2

-
wL2

12

-
wL

2
wL2

12

x
Applying the boundary conditions U11 = 0 and U12 = 0 at node 1, we have

EI
L3  D 1 0 0 0

0 1 0 0
-12 -6L 12 -6L
6L 2L2 -6L 4L2

T d U11

U12

U21

U22

t = f 0
0

-
wL

2
wL2

12

v
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And simplifying, we get J 12 -6L
-6L 4L2 R bU21

U22
r =

L3

EI
d -

wL
2

wL2

12

t
J 12 -6(10 ft)

-6(10 ft) 4(10 ft)2 R bU21

U22
r =

(10 ft)3

(29 * 106 lb/in2) (510 in4) ¢ 1 ft
12 in.

≤2
 d -

1000(10)

2
(1000) (10)2

12

t
The deflection and the slope at endpoint C is

U21 = -0.01217 ft = -0.146 in and U22 = -0.00163 rad

To determine the deflection at point B, we use the deflection equation for the beam 

element and evaluate the shape functions at x =
L
2

.

 v = S11U11 + S12U12 + S21U21 + S22U22

 = S11(0) + S12(0) + S21(-0.146) + S22(-0.00163)

Computing the values of the shape functions at point B, we have

 S21 =
3x2

L2 -
2x3

L3 =
3

L2 ¢L
2
≤2

-
2

L3 ¢L
2
≤3

=
1
2

 S22 = -
x2

L
+

x3

L2 = -
¢L

2
≤2

L
+

¢L
2
≤3

L2 = -
L
8

 vB = ¢ 1
2
≤  (-0.146 in) + ¢ -

120 in.
8

≤  (-0.00163 rad) = -0.048 in

Comparing results of our finite element model to the exact solutions given in 
Example 4.3, we note that they are in good agreement. We could improve our results 
for the midpoint deflection by using a model that uses two elements. We have left this 
as an exercise for you.

EXAMPLE 4.4

The beam shown in Figure 4.11 is a wide-flange W310 * 52 with a cross-sectional area 
of 6650 mm2 and depth of 317 mm. The second moment of the area is 118.6 * 106 mm4. 
The beam is subjected to a uniformly distributed load of 25,000 N/m. The modulus of 
elasticity of the beam is E = 200 GPa. Determine the vertical displacement at node 3 
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and the rotations at nodes 2 and 3. Also, compute the reaction forces and moment at 
nodes 1 and 2.

Note that this problem is statically indeterminate. We will use two elements to rep-
resent this problem. The stiffness matrices of the elements are computed from Eq. (4.43):

[K](e) =
EI
L3 D 12 6L -12 6L

6L 4L2 -6L 2L2

-12 -6L 12 -6L
6L 2L2 -6L 4L2

T
Substituting appropriate values for element (1), we have

[K](1) =
200 * 109 * 1.186 * 10-4

53  D 12 6(5) -12 6(5)
6(5) 4(5)2 -6(5) 2(5)2

-12 -6(5) 12 -6(5)
6(5) 2(5)2 -6(5) 4(5)2

T
For convenience, the nodal degrees of freedom are shown alongside the stiffness matri-
ces. For element (1), we have

[K](1) = D 2277120 5692800 -2277120 5692800
5692800 18976000 -5692800 9488000

-2277120 -5692800    2277120 -5692800
5692800 9488000 -5692800 18976000

TU11

U12

U21

U22

Computing the stiffness matrix for element (2), we have

[K](2) =
200 * 109 * 1.186 * 10-4

(2.5)3  D 12 6(2.5) -12 6(2.5)
6(2.5) 4(2.5)2 -6(2.5) 2(2.5)2

-12 -6(2.5) 12 -6(2.5)
6(2.5) 2(2.5)2 -6(2.5) 4(2.5)2

T
Showing the nodal degrees of freedom alongside the stiffness matrix for element (2), 
we have

[K](2) = D 18216960 22771200 -18216960 22771200
22771200 37952000 -22771200 18976000

-18216960 -22771200    18216960 -22771200
22771200 18976000 -22771200 37952000

TU21

U22

U31

U32

25,000 N/m

1 2 3

2.5 m5 m Figure 4.11  A schematic of the beam 
in Example 4.4
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Assembling [K](1) and [K](2) to obtain the global stiffness matrix yields

[K](G) = F 2277120 5692800 -2277120 5692800 0 0
5692800 18976000 -5692800 9488000 0 0

-2277120 -5692800 20494080 17078400 -18216960 22771200
5692800 9488000 17078400 56928000 -22771200 18976000

0 0 -18216960 -22771200 18216960 -22771200
0 0 22771200 18976000 -22771200 37952000

V
Referring to Table 4.2, we can compute the load matrix for elements (1) and (2). The 
respective load matrices are

5F6(1) = h -
wL

2

-
wL2

12

-
wL

2
wL2

12

x = h -
25 * 103 * 5

2

-
25 * 103 * 52

12

-
25 * 103 * 5

2
25 * 103 * 52

12

x = d -62500
-52083
-62500
52083

t
5F6(2) = h -

wL
2

-
wL2

12

-
wL

2
wL2

12

x = h -
25 * 103 * 2.5

2

-
25 * 103 * 2.52

12

-
25 * 103 * 2.5

2
25 * 103 * 2.52

12

x = d -31250
-13021
-31250
13021

t
Combining the two load matrices to obtain the global load matrix, we obtain

5F6(G) = f -62500
-52083

-62500 - 31250
52083 - 13021

-31250
13021

v = f -62500
-52083
-93750

39062
-31250

13021

v
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Applying the boundary conditions U11 = U12 = 0 at node 1 and the boundary condition 
U21 = 0 at node 2, we have

F 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

5692800 9488000 17078400 56928000 -22771200 18976000
0 0 -18216960 -22771200 18216960 -22771200
0 0 22771200 18976000 -22771200 37952000

V  f U11

U12

U21

U22

U31

U32

v = f 0
0
0

39062
-31250
13021

v
Considering the applied boundary conditions, we reduce the global stiffness matrix and 
the load matrix toC 56928000 -22771200 18976000

-22771200 18216960 -22771200
18976000 -22771200 37952000

S c U22

U31

U32

s = c 39062
-31250
13021

s
Solving the three equations simultaneously results in the unknown nodal values. The 
displacement result is

[U]T = [0 0 0 -0.0013723(rad) -0.0085772(m) -0.004117(rad)]

We can compute the nodal reaction forces and moments from the relationship

	 5R6 = [K]5U6 - 5F6 	 (4.50)

where 5R6  is the reaction matrix. Substituting for the appropriate values in Eq. (4.50), 
we have

f R1

M1

R2

M2

R3

M3

v = F 2277120 5692800 -2277120 5692800 0 0
5692800 18976000 -5692800 9488000 0 0

-2277120 -5692800 20494080 17078400 -18216960 22771200
5692800 9488000 17078400 56928000 -22771200 18976000

0 0 -18216960 -22771200 18216960 -22771200
0 0 22771200 18976000 -22771200 37952000

V *

f 0
0
0

-0.0013723
-0.0085772
-0.0041170

v - f -62500
-52083
-93750
39062

-31250
13021

v
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Performing the matrix operation results in the following reaction forces and moments 
at each node: f R1

M1

R2

M2

R3

M3

v = f 54687(N)
39062(N # m)

132814(N)
0
0
0

v
Note that by calculating the reaction matrix using the nodal displacement matrix, we 
can check the validity of our results. There is a reaction force and a reaction moment 
at node 1; there is a reaction force at node 2; there is no reaction moment at node 2, 
as expected; and there are no reaction forces or moments at node 3, as expected. The 
accuracy of the results is discussed further in Section 4.7.

Example 4.4  Revisited

We will now show how to use Excel to set up and solve Example 4.4.
	 1.	 In cell A1 type Example 4.4, and in cells A3, A4, and A5 type E= , I= , and w=  

as shown. After inputting the value of E in cell B3, select B3 and in the “Name 
Box” type E and hit the Return key. Similarly, after inputting the values of I and 
w in cells B4 and B5 select B4 and B5 and in the corresponding “Name Box” 
type I and W. Next, create the table shown with the element and node numbers, 
Length, I, and E as shown.

	 2.	 Next compute [K1] and [K2] as shown and name them Kelement1 and Kelement2.
To create [K1], select the range H16: K19 and type

=(E*I>Length1^3)*C16:F19

and while holding down the Ctrl and Shift keys, press the Return key. Create [K2] 
in a similar way.
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	 3.	 Now create the {F1} and {F2} elements and name them Felement1 and Felement2. 
To create {F1}, select cell D26 and type = −w*Length1/2, and in cell D27 type  
= −w*Length1^2/12, and so on.

	 4.	 Next, create the [A1] and [A2] matrices and name them Aelement1 and Aelement2 
as shown. If you have forgotten what the A matrices represent, see Section 2.5, 
Equation (2.9).

	 5.	 We now create the stiffness matrix for each element (with their proper positions 
in the global matrix) and name them K1G and K2G. For example, to create [K]1G, 
select B41:G46 and type 

		  =MMULT(TRANSPOSE(Aelement1),MMULT(Kelement1,Aelement1))

and while holding down the Ctrl and Shift keys, press the Return key. In a similar 
way, create [K]2G, as shown.
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	 6.	 The {F}1G and {F}2G matrices are computed next. To create {F}1G, select the range 
B55:B60 and type

=MMULT(TRANSPOSE(Aelement1),Felement1)

and while holding down the Ctrl and Shift keys, press the Return key. Name this 
range F1G and in a similar way create {F}2G and name it F2G.

	 7.	 Create the final global stiffness and load matrices. Select the range B62:G67 and 
type 

		  =K1G+K2G

and while holding down the Ctrl and Shift keys, hit the Return key. Name this 
range KG. In a similar way, create the global load matrix and name it FG.
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	 8.	 Apply the boundary conditions. Copy the appropriate portion of the KG matrix 
and paste it in the range C76:E78 as values only. Name the range KwithappliedBC. 
Similarly, create the corresponding load matrix in the range C80:C82 and name it 
FwithappliedBC.

	 9.	 Select the range C84:C86 and type

=MMULT(MINVERSE(KwithappliedBC),FwithappliedBC)

and while holding down the Ctrl and Shift keys, press the Return key. Moreover, 
as shown, copy the values of {U partial} and add the boundary conditions U11 = 0, 
U12 = 0, and U21 = 0 into cells C88:C93. Name this matrix, UG.

	 10.	 Calculate the reaction forces and moments. Select the range C95:C100 and type

=(MMULT(KG,UG)-FG)

and while pressing the Ctrl and Shift keys, press the Return key.
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The complete Excel sheet is shown next.
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4.4  Finite Element Formulation of Frames

Frames represent structural members that may be rigidly connected with welded joints 
or bolted joints. For such structures, in addition to rotation and lateral displacement, we 
also need to be concerned about axial deformations. Here, we focus on plane frames. The 
frame element, shown in Figure 4.12, consists of two nodes. At each node, there are three 
degrees of freedom: a longitudinal displacement, a lateral displacement, and a rotation.

Referring to Figure 4.12, note that ui1 represents the longitudinal displacement and ui2 
and ui3 represent the lateral displacement and the rotation at node i, respectively. In the same 
manner, uj1, uj2, and uj3 represent the longitudinal displacement, the lateral displacement, 
and the rotation at node j, respectively. In general, two frames of reference are required 
to describe frame elements: a global coordinate system and a local frame of reference. We 
choose a fixed global coordinate system (X, Y) for several uses: (1) to represent the location of 
each joint (node) and to keep track of the orientation of each element using angles such as u; 
(2) to apply the constraints and the loads in terms of their respective global components; 
and (3) to represent the solution. We also need a local, or elemental, coordinate system to 
describe the axial-load behavior of an element. The relationship between the local coordi-
nate system (x, y) and the global coordinate system (X, Y) is shown in Figure 4.12. Because 
there are three degrees of freedom associated with each node, the stiffness matrix for the 
frame element will be a 6 * 6 matrix. The local degrees of freedom are related to the global 
degrees of freedom through the transformation matrix, according to the relationship

	 [u] = [T][U]	 (4.51)
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where the transformation matrix is

	 [T] = F  cos u sinu 0 0 0 0
-sin u cos u 0 0 0 0

0 0 1 0 0 0
0 0 0 cos u sin u 0
0 0 0 -sin u cos u 0
0 0 0 0 0 1

V 	 (4.52)

In the previous section, we developed the stiffness matrix attributed to bending for a 
beam element. This matrix accounts for lateral displacements and rotations at each node and is

	

 

[K]xy
(e) =

El
L3

 
ui1 ui2 ui3 uj1 uj2 uj3F0 0 0 0 0 0
0 12 6L 0 -12 6L
0 6L 4L2 0 -6L 2L2

0 0 0 0 0 0
0 -12 -6L 0 12 -6L
0 6L 2L2 0 -6L 4L2

V  
 

ui1

ui2

ui3

uj1

uj2

uj3

	

(4.53)

To represent the contribution of each term to nodal degrees of freedom, the degrees of 
freedom are shown above and alongside the stiffness matrix in Eq. (4.53). In Section 4.1 
we derived the stiffness matrix for members under axial loading as

	

[K]axial
(e) = H

ui1 ui2 ui3 uj1 uj2 uj3

AE
L

0 0 -
AE
L

0 0

0 0 0 0 0 0
0 0 0 0 0 0

-
AE
L

0 0
AE
L

0 0

0 0 0 0 0 0
0 0 0 0 0 0

X
 

ui1

ui2

ui3

uj1

uj2

uj3

	

(4.54)

j

x
y

X

Y

ui2

uj2

ui1

uj1

ui3

uj3

i

u

Figure 4.12  A frame element.
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Adding Eqs. (4.53) and (4.54) results in the stiffness matrix for a frame element with 
respect to local coordinate system x, y

	 [K]xy
(e) =

º

∞

∫

AE
L

0 0 -
AE
L

0 0

0
12EI

L3

6EI
L2 0 -

12EI
L3

6EI
L2

0
6EI
L2

4EI
L

0 -
6EI
L2

2EI
L

-
AE
L

0 0
AE
L

0 0

0 -
12EI

L3 -
6EI
L2 0

12EI
L3 -

6EI
L2

0
6EI
L2

2EI
L

0 -
6EI
L2

4EI
L

≠

∞

ª

	 (4.55)

Note that we need to represent Eq. (4.55) with respect to the global coordinate sys-
tem. To perform this task, we must substitute for the local displacements in terms 
of the global displacements in the strain energy equation, using the transformation 
matrix and performing the minimization. (See Problem 4.13.) These steps result in 
the relationship

	 [K](e) = [T]T[K]xy
(e)[T]	 (4.56)

where [K](e) is the stiffness matrix for a frame element expressed in the global coor-
dinate system X, Y. Next, we will demonstrate finite element modeling of frames with 
another example.

EXAMPLE 4.5

Consider the overhang frame shown in Figure 4.13. The frame is made of steel, with 
E = 30 * 106 lb/in2. The cross-sectional areas and the second moment of areas for the 
two members are shown in Figure 4.13. The frame is fixed as shown in the figure, and 
we are interested in determining the deformation of the frame under the given distrib-
uted load.

We model the problem using two elements. For element (1), the relationship 
between the local and the global coordinate systems is shown in Figure 4.14.

Similarly, the relationship between the coordinate systems for element (2) is shown 
in Figure 4.15.

Note that for this problem, the boundary conditions are U11 = U12 = U13 =  
U31 = U32 = U33 = 0. For element (1), the local and the global frames of reference 
are aligned in the same direction; therefore, the stiffness matrix for element (1) can be 
computed from Eq. (4.55) resulting in
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[K](1) = 103F 1912.5 0 0 -1912.5 0 0
0 42.5 2550 0 -42.5 2550
0 2550 204000 0 -2550 102000

-1912.5 0 0 1912.5 0 0
0 -42.5 -2550 0 42.5 -2550
0 2550 102000 0 -2550 204000

V
For element (2), the stiffness matrix represented with respect to the local coordinate system is

[K]xy
(2) = 103F 2125 0 0 -2125 0 0

0 58.299 3148.148 0 -58.299 3148.148
0 3148.148 226666 0 -3148.148 113333

-2125 0 0 2125 0 0
0 -58.299 -3148.148 0 58.299 -3148.148
0 3148.148 113333 0 -3148.148 226666

V

800 lb/ft

10 ft

9 ft

A = 7.65 in2

I  = 204 in4

A = 7.65 in2

I  = 204 in4

Figure 4.13  An overhang frame supporting a distributed load.

2

x

y
u12 u22

u11 u21
u13 u23

1 (1)
X

Y

Figure 4.14  The configuration of element (1).
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For element (2), the transformation matrix is

[T] = F cos(270) sin(270) 0 0 0 0
-sin(270) cos(270) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(270) sin(270) 0
0 0 0 -sin(270) cos(270) 0
0 0 0 0 0 1

V
[T] = F0 -1 0 0 0 0

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 -1 0
0 0 0 1 0 0
0 0 0 0 0 1

V
The transpose of the transformation matrix is

[T]T = F 0 1 0 0 0 0
-1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 -1 0 0
0 0 0 0 0 1

V

3

x

y

u32

u22

u31

u21

u33

u23

2

(2)

X

Y

Figure 4.15  The configuration of element (2).
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Substituting for [T]T, [K]xy
(2), and [T] into Eq. (4.56), we have

[K](2) = 103F 0 1 0 0 0 0
-1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 -1 0 0
0 0 0 0 0 1

V  F 2125 0 0 -2125 0 0
0 58.299 3148.148 0 -58.299 3148.148
0 3148.148 226666 0 -3148.148 113333

-2125 0 0 2125 0 0
0 -58.299 -3148.148 0 58.299 -3148.148
0 3148.148 113333 0 -3148.148 226666

V
 F0 -1 0 0 0 0

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 -1 0
0 0 0 1 0 0
0 0 0 0 0 1

V
and performing the matrix operation, we obtain

[K](2) = 103 F 58.299 0 3148.148 -58.299 0 3148.148
0 2125 0 0 -2125 0

3148.148 0 226666 -3148.148 0 113333
-58.299 0 -3148.148 58.299 0 -3148.1480

0 -2125 0 0 2125 0
3148.148 0 113333 -3148.148 0 226666

V
Constructing the global stiffness matrix by assembling [K](1) and [K](2), we have

[K](G) = 103I 1912.5 0 0 -1912.5 0 0
0 42.5 2550 0 -42.5 2550
0 2550 204000 0 -2550 102000

-1912.5 0 0 1912.5 + 58.299 0 0 + 3148.148
0 -42.5 -2550 0 42.5 + 2125 -2550
0 2550 102000 0 + 3148.148 -2550 204000 + 226666
0 0 0 -58.299 0 -3148.148
0 0 0 0 -2125 0
0 0 0 3148.148 0 113333

0 0 0
0 0 0
0 0 0

-58.299 0 3148.148
0 -2125 0

-3148.148 0 113333
58.299 0 -3148.1480

0 2125 0
-3148.148 0 226666

Y
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The load matrix is

5F6(1) =   

0

-
wL

2

-
wL2

12
0

-
wL

2
wL2

12

  =   

0

-
800 * 10

2

-
800 * 102 * 12

12
0

-
800 * 10

2
800 * 102 * 12

12

  = f 0
-4000
-80000

0
-4000
80000

v
In the load matrix, the force terms have the units of lb, whereas the moment terms 

have the units of lb # in. Application of the boundary conditions (U11 = U12 = U13 =  
U31 = U32 = U33 = 0) reduces the 9 * 9 global stiffness matrix to the following 3 * 3 
matrix:

103C1970.799 0 3148.148
0 2167.5 -2550

3148.148 -2550 430666
S c U21

U22

U23

s = c 0
-4000
80000

s
Solving these equations simultaneously results in the following displacement matrix:

[U]T = [0 0 0 -0.0002845(in) -0.0016359(in) 0.00017815(rad) 0 0 0]

This problem will be revisited later in the chapter and solved with ANSYS.

4.5 T hree-Dimensional Beam Element

ANSYS’s three-dimensional beam elements are suited for situations wherein the beam 
may be subjected to loads that can create tension, compression, bending about different 
axes, and twisting (torsion). At each node, there are six degrees of freedom, displace-
ments in X-, Y-, and Z-directions, and rotation about X-, Y-, and Z-axes. A seventh degree 
of freedom (warping magnitude) is optional. Therefore, absent a seventh degree the 
elemental matrix for a three-dimensional beam element is a 12 * 12 matrix. ANSYS’s 
three-dimensional elastic beam element is shown in Figure 4.16.

The element input data include node locations, the cross-sectional properties, and 
the material properties. Note that BEAM188 element is defined by two or three nodes. 
For user control of the element orientation about the element x-axis use the third node 
option. The third node (K), if used, defines a plane (with I and J) containing the ele-
ment x and z axes (as shown in Figure 4.16). Also see Example 4.6. The input data for 
BEAM188 is summarized below:

Nodes

I, J, K (K orientation node is optional)

i 	 y 	 i 	 y
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Degrees of Freedom

UX, UY, UZ (displacements in X, Y, and Z-directions)

ROTX (rotation about X-axis), ROTY (rotation about Y-axis), ROTZ (rotation 
about Z-axis)

Section Properties

The section properties may be inputted directly or calculated by ANSYS. They 
include: Area of section; Moment of inertia about Y and Z axes; Product of inertia; 
Warping constant; Torsional constant; Y and Z coordinates of centroid; and shear 
deflection constant.

Material Properties

EX (modulus of elasticity), ALPX (Poisson’s ratio), DENS (density), GXY 
(shear modulus), DAMP (damping)

Surface Loads

Pressures

face 1 (I - J) (-Z normal direction)

face 2 (I - J) (-Y normal direction)

face 3 (I - J) (+X tangential direction)

face 4 (I) (+X axial direction)

face 5 (J) (-X axial direction)

(use negative value for opposite loading)

Stresses

As you will see in Example 4.6, to review stresses in beams, you must first copy these 
results into element tables, and then you can list them or plot them. These items are 
obtained using item label and sequence numbers. BEAM188 output includes stress 
values—examples of these stresses are given in Table 4.3.

1
4

2

z

y

x

J

I

K

X

Y

Z

3

5
Figure 4.16  BEAM188 element, the three-
dimensional elastic beam element used by ANSYS.
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Once you decide which stress values you want to look at, you can read them into a 
table using item labels and sequence numbers. Examples of the item labels and sequence 
numbers for BEAM188 are summarized in Table 4.4. See Example 4.6 for details on how 
to read stress values into a table for a beam element.

4.6 A n Example Using ANSYS

ANSYS offers two beam elements that can be used to model structural problems.
BEAM188 is a 3-D element with tension, compression, and bending capabilities. 

The element has six degrees of freedom at each node: translation in the x- and y-directions 
and rotation about the z-axis and rotation about X-, Y-, and Z-axes. The element input 
data include node locations, cross-sectional properties, and the material properties. 
Output data include nodal displacements and additional elemental output. Examples 
of elemental output are given in Table 4.3. BEAM189 is a quadratic three-node element 
in 3-D. It is suited for analyzing slender to stubby/thick beam structures.

Example 4.6

Consider the cantilever beam shown in the accompanying figure. The beam is made of 
an aluminum alloy, with E = 10 * 106 lb/in2. The cross-sectional area and the applied 
loads are also shown in the figure. We will use ANSYS’s Beam188 to solve this problem 
and compare the results with those of beam theory.

Table 4.3  Examples of stresses computed by ANSYS

SDIR Axial direct stress

SBYT Bending stress on the element + Y side of the beam

SBYB Bending stress on the element - Y side of the beam

SBZT Bending stress on the element + Z side of the beam

SBZB Bending stress on the element - Z side of the beam

Table 4.4  Item and sequence numbers for the BEAM188 element

Name Item I J

SDIR SMIC 31 36

SBYT SMIC 32 37

SBYB SMIC 33 38

SBZT SMIC 34 39

SBZB SMIC 35 40
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X

36 in
2 in

PY = 50 lb
PZ = 75 lb

PX = 100 lb

Y

Z

y4 in y

z

z
k

i

1 2

i

(beam orientation node)
3

2 in

4 in

To solve this problem using ANSY, first, we need to make sure that the beam cross-
section is oriented in the way we want. Note that the beam element’s cross-section axes 
(as shown in the accompanying figure) are oriented differently from those of the global 
axes. Pay close attention to the orientation of the element’s cross-section axes, y and z, 
and the orientation of the global Y and Z axes. When analyzing beam problems, using 
ANSYS, it is good practice to make use of the orientation node k to define the orien-
tation of a beam element. The orientation node k defines a plane (with nodes i and j) 
containing the element x and z-axes (see Figure 4.16). If you do not define an orienta-
tion node, the default orientation of the element y-axis is automatically calculated to be 
parallel to the global X-Y plane. For the case where the element is parallel to the global 
Z-axis, the element y-axis is oriented parallel to the global Y-axis.

Enter the ANSY program by using the Launcher.

Type Beam (or a file name of your choice) in the Jobname entry field of the ANSY 
Launcher and Pick Run to start GUI.

utility menu: File S Change Title . . .
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main menu: Preprocessor S Element Type S Add>Edit>Delete

Next, click on the Options . . . button and set K1, K2, . . . . , K15 options, as shown.
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Assign the modulus of elasticity by using the following commands:

main menu: Preprocessor S Material Models S Structural S  
� Linear S Elastic S Isotropic
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Close the “Define Material Model Behavior” window.

main menu: Preprocessor S Sections S Beam S Common Sections

A list of prede�ned shapes

Number of cells along width, default = 2
Number of cells along height, default = 2

You may view the section properties by issuing the following commands:

main menu: Preprocessor S Sections S List Sections
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ANSYS Toolbar: SAVE_DB

main menu: Preprocessor S Modeling S Create S Nodes S In Active CS
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main menu: Preprocessor S Modeling S Create S Elements S  
� Auto Numbered S Thru Nodes

[pick node 1]

[pick node 2]

[pick node 3]

[anywhere in the ANSYS graphics window]

OK

utility menu: Plot S Elements

Toolbar: SAVE_DB

Apply boundary conditions with the following commands:

main menu: Solution S Define Loads S Apply S Structural S
Displacement S On Nodes

[pick node 1]

[apply anywhere in the ANSYS graphics window]
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main menu: Solution S Define Loads S Apply S Structural S
Force/Moment S On Nodes

[pick node 2]

[apply anywhere in the ANSYS graphics window]
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main menu: Solution S Solve S Current LS

OK

Close (the solution is done!) window.

Close (the STAT Command) window.

main menu: General Postproc S List Results S Nodal Solution
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In a similar way, list Rotation vector sum.

main menu: General Postproc S List Results S Reaction Solution
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main menu: General Postproc S Element Table S Define Table

M04_MOAV4303_04_GE_C04.INDD   272 27/11/14   9:43 AM

www.FreeEngineeringbooksPdf.com



Section 4.6    An Example Using ANSYS    273

M04_MOAV4303_04_GE_C04.INDD   273 27/11/14   9:43 AM

www.FreeEngineeringbooksPdf.com



274    Chapter 4    Axial Members, Beams, and Frames

main menu: General Postproc S Element Table S List Element Table
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The results of ANSYS analysis and those from the beam theory are summarized 
in the accompanying table. As you can see the results are in good agreement.

Results using beam theory (see Table 4.1) 	 ANSYS results

vX =
PXL

AE
=

(100)(36)

(8)(10 * 106)
= 0.0000045  in 0.0000045  in

(vY) max =
-PYL3

3EI
=

-(50)(36)3

3(10 * 106)(10.67)
= -0.00729  in -0.00735  in

(vZ) max =
PZL3

3EI
=

(75)(36)3

3(10 * 106)(2.67)
= 0.0437  in 0.0445  in

sxx - axial =
PX

A
=

100
8

= 12.5 
lb

in2
12.5 

lb

in2

(szz - bending) max =
Mzc

I
=

(50)(36)(2)

10.67
= 337.4 

lb

in2
337.5 

lb

in2

(syy - bending) max =
Myc

I
=

(75)(36)(1)

2.67
= 1011 

lb

in2
1012 

lb

in2

(uZ) max =
-PYL2

2EI
=

-(50)(36)2

2(10 * 106)(10.67)
= -0.0003036  rad -0.0003037  rad

(uY) max =
-PZL2

2EI
=

(75)(36)2

2(10 * 106)(2.67)
= -0.00182  rad -0.00182  rad

a
 

Fx = 0; 100 + Rx = 0; Rx = -100 lb; Mx = 0 

 

a
 

Fy = 0; -50 + Ry = 0; Ry = 50 lb; My = (75 lb)(36 in)
                         = 2700 lb # in

 

 

a
 

Fz = 0; 75 + Rz = 0; Rz = -75 lb; Mz = (50 lb)(36 in)
                             = 1800 lb # in

Rx = -100 lb; Mx = 0 

Ry = 50 lb; My = 2700 lb # in

 Rz = -75 lb;
Mz = 1800 lb # in
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Example 4.5  Revisited

Let us consider the overhang frame again in order to solve this problem using ANSYS. 
Recall that the frame is made of steel with E = 30 * 106 lb/in2. The respective cross-
sectional areas and the second moments of areas for the two members are shown in 
Figure 4.13 (repeated in Figure 4.17 for your convenience). The members have a depth 
of 12.22 in. The frame is fixed as shown in the figure. We are interested in determining 
the deflections and the rotation of the frame under the given distributed load. In this 
example, we show you how you may setup beam and frame problems using the user 
defined section, and without using the third node (K) option.

A = 7.65 in2

I  = 204 in4

A = 7.65 in2

I  = 204 in4

800 lb/ft

10 ft

9 ft

Figure 4.17  An overhang frame supporting a distributed load.

Enter the ANSYS program by using the Launcher.

Type Frame2D (or a file name of your choice) in the Jobname entry field of the 
ANSYS Product Launcher and Pick Run to start GUI.

Create a title for the problem. This title will appear on ANSYS display windows to 
provide a simple way to identify the displays. Use the following command sequences:

utility menu: File S  Change Title c
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main menu: Preprocessor S Element Type S Add/Edit/Delete
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Next click on Options . . . button and set K1, K2, . . ., K15 option as shown.

Assign the modulus of elasticity by using the following commands:

main menu: Preprocessor S Material Props S Material Models S
� Structural S Linear S Elastic S Isotropic
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Close the “Define Material Model Behavior” window.

main menu: Preprocessor S Sections S Beam S Common Sections

data

ANSYS Toolbar: SAVE_DB

Set up the graphics area (i.e., work plane, zoom, etc.) with the following commands:

utility menu: Workplane S WP Settings . . .
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utility menu: Workplane S Display Working Plane

Bring the workplane to view by the command

utility menu: PlotCtrls S Pan, Zoom, Rotate  . . .

Click on the small circle until you bring the workplane to view. Then create the 
nodes and elements:

main menu: Preprocessor S Modeling S Create S Nodes
� S On Working Plane

[WP = 0,108]

[WP = 120,108]

[WP = 120,0]

OK

main menu: Preprocessor S Modeling S Create S Elements S
� Auto Numbered S Thru Nodes

[pick node 1]

[pick node 2]

[apply anywhere in the ANSYS graphics window]

[pick node 2]

[pick node 3]
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[anywhere in the ANSYS graphics window]

OK

	 utility menu: Plot S Elements

	 Toolbar: SAVE_DB

Apply boundary conditions with the following commands:

	 main menu: Solution S Define Loads S Apply S Structural S
� Displacement S On Nodes

[pick node 1]

[pick node 3]

[anywhere in the ANSYS graphics window]

main menu: Solution SDefine Loads SApply SStructural S
Pressure S On Beams
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[pick element 1]

[anywhere in the ANSYS graphics window]

To see the applied distributed load and boundary conditions, use the following 
commands:

utility menu: Plot Ctrls S Symbols  c

utility menu: Plot S Elements

ANSYS Toolbar: SAVE_DB
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Solve the problem:

main menu: Solution S Solve S Current LS

OK
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Close (the solution is done!) window.

Close (the/STAT Command) window.

Begin the postprocessing phase and plot the deformed shape with the following 
commands:

main menu: General Postproc S Plot Results S Deformed Shape
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List the nodal displacements with the following commands:

main menu: General Postproc S List Results S Nodal Solution

Also list Rotation vector sum.
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List the reactions with the following commands:

main menu: General Postproc S List Results S Reaction Solution
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Exit ANSYS and save everything:

ANSYS Toolbar: QUIT

4.7  Verification of Results

Refer to Example 4.2. One way of checking for the validity of our FEA findings of 
Example 4.2 is to arbitrarily cut a section through the column and apply the static 
equilibrium conditions. As an example, consider cutting a section through the column 
containing element (2), as shown in the accompanying illustration.

160,000 lb

160,000 lb

(2)

The average normal stress in that section of the column is

s(2) =
finternal

A
=

160,000
39.7

= 4030 lb/in2

In a similar way, the average stress in element (4) can be checked by

s(4) =
finternal

A
=

60,000
39.7

= 1511 lb/in2

The stresses computed in this manner are identical to the results obtained earlier using 
the energy method.
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It is always necessary to compute the reaction forces and moments for beam and 
frame problems. The nodal reaction forces and moments can be computed from the 
relationship

5R6 = [K]5U6 - 5F6
We computed the reaction matrix for Example 4.4, repeated here:f R1

M1

R2

M2

R3

M3

v = f 54687(N)
39062(N ~ m)

132814(N)
0
0
0

v
Earlier, we discussed how to check the validity of results qualitatively. It was mentioned 
that the results indicated that there is a reaction force and a reaction moment at node 1; 
there is a reaction force at node 2; there is no reaction moment at node 2, as expected; 
and there are no reaction forces or moments at node 3, as expected for the given prob-
lem. Let us also perform a quantitative check on the accuracy of the results. We can use 
the computed reaction forces and moments against the external loading to check for 
static equilibrium (see Figure 4.18):

+c ΣFY = 0  13,2814 + 54,687 - (25,000) (7.5) = -1 ≈ 0

and

⤿+ ΣMnode 2 = 0  39,062 - 54,687(5) + (25,000) (7.5) (1.25) = 2 ≈ 0

Similarly, in reference to Example 4.5, we find that the reaction results generated using 
ANSYS are shown in Figure 4.19. Checking for static equilibrium, we find that

  +S ΣFX = 0  534.40 - 534.40 = 0

   c ΣFY = 0  4516.7 + 3483.3 - (800) (10) = 0

  ⤿+ ΣMnode 1 = 0  101,470 + 18,259 + 3483.3(10) (12) - (534.40) (9) (12)

-(800) (10) (5) (12) ≈ 0

39,062 N · m

54,687 N 132,814 N

25,000 N/m

1 2 3

2.5 m5 m

Figure 4.18  The free-body diagram for Example 4.4.
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These simple problems illustrate the importance of checking for equilibrium conditions 
when verifying results.

Summary

At this point you should

	 1.	 know how to formulate stiffness matrix for a member under axial loading.
	 2.	 know that it is wise to use simple analytical solutions rather than finite element 

modeling for a simple problem whenever appropriate. Use finite element model-
ing only when it is necessary to do so.

	 3.	 know that the stiffness matrix for a beam element with two degrees of freedom at 
each node (the vertical displacement and rotation) is

[K](e) =
EI
L3 D 12 6L -12 6L

6L 4L2 -6L 2L2

-12 -6L 12 -6L
6L 2L2 -6L 4L2

T
	 4.	 know how to compute the load matrix for a beam element by consulting Table 4.2 

for equivalent nodal forces.

3483.3 lb

101,470 lb · in

18,259 lb · in

534.40 lb

534.40 lb

800 lb/ft

10 ft

9 ft

4516.7 lb

1

Figure 4.19  The free-body diagram for Example 4.5.
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	 5.	 know that the stiffness matrix for a frame element (with local and global coordi-
nate systems aligned) consisting of two nodes with three degrees of freedom at 
each node (axial displacement, lateral displacement and rotation) is

[K](e) =   

AE
L

0 0 -
AE
L

0 0

0
12EI

L3

6EI
L2 0 -

12EI
L3

6EI
L2

0
6EI
L2

4EI
L

0 -
6EI
L2

2EI
L

-
AE
L

0 0
AE
L

0 0

0 -
12EI

L3 -
6EI
L2 0

12EI
L3 -

6EI
L2

0
6EI
L2

2EI
L

0 -
6EI
L2

4EI
L

Note that for members that are not horizontal, the local degrees of freedom are 
related to the global degrees of freedom through the transformation matrix, 
according to the relationship

5u6 = [T]5U6
where the transformation matrix is

[T] = F  cos u sin u 0 0 0 0
-sin u cos u 0 0 0 0

0 0 1 0 0 0
0 0 0 cos u sin u 0
0 0 0 -sin u cos u 0
0 0 0 0 0 1

V
	 6.	 know how to compute the stiffness matrix for a frame element with an arbitrary 

orientation with respect to the global coordinate system using the relationship.

[K](e) = [T]T[K](e)
xy [T]

	 7.	 know how to compute the load matrix for a frame element by consulting Table 4.2 
for equivalent nodal forces.
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Problems

	 1.	 Determine the deflections of point D and point F and the axial stress in each member of the 
system shown in the accompanying figure. (E = 29 * 106 ksi.)

F
5000 lb

Ac = 1 in2

Ac = 0.5 in2

B

10" 10"

5"
D

5"

	 2.	 Consider a four-story building with steel columns similar to the one presented in 
Example 4.2. The column is subjected to the loading shown in the accompanying figure. 
Assuming axial loading, (a) determine vertical displacements of the column at various floor-
column connection points and (b) determine the stresses in each portion of the column. 
(E = 29 * 106 lb/in2, A = 59.1 in2.)

1

2

3

4

5

(1)

(2)

(3)

(4)

45,000 lb

35,000 lb

35,000 lb

35,000 lb

15 ft

15 ft

15 ft

15 ft
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	 3.	 Determine the deflection of point D and the axial stress in each member in the system shown 
in the accompanying figure. (E = 10.6 * 103 ksi.)

5000 lb 2500 lb C

Ac = 0.75 in2
Ac = 0.5 in2

Ac = 1 in2

D

12" 9" 8"

	 4.	 A 20-ft-tall post is used to support advertisement signs at various locations along its height, 
as shown in the accompanying figure. The post is made of structural steel with a modulus of 
elasticity of E = 29 * 106 lb/in2. Not considering wind loading on the signs, (a) determine 
displacements of the post at the points of load application and (b) determine stresses in the 
post.

5 ft

10 ft

5 ft

100 lb

150 lb

200 lb

Ac = 1 in2

Ac = 2 in2

Ac = 3 in2

	 5.	 Determine the deflections of point D and point F in the system in the accompanying figure. 
Also compute the axial force and stress in each member. (E = 29 * 106 ksi.)
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1000 lb
D

800 lb

800 lb

1000 lb
Ac = 0.3 in2

Ac = 0.2 in2

Ac = 0.15 in2

Ac = 0.2 in2

Ac = 1 in2

F

6" 6"

4"

Ac = 1 in2
F

	 6.	 Determine the deflections of point D and point F in the system in the accompanying figure. 
Also compute the axial force and stress in each member.

25 kN
F

15 cm

E = 69 GPa
E = 73 GPa

E = 101 GPa

E = 101 GPa

Ac = 5 cm2

Ac = 2 cm2

Ac = 5 cm2D

50 cm40 cm50 cm

30 cm

	 7.	 The beam shown in the accompanying figure is a wide-flange W18 * 35, with a cross-sectional 
area of 10.3 in2 and a depth of 17.7 in. The second moment of area is 510 in4. The beam is 
subjected to a uniformly distributed load of 2000 lb/ft. The modulus of elasticity of the beam 
is E = 29 * 106 lb/in2. Using manual calculations, determine the vertical displacement at 
node 3 and the rotations at nodes 2 and 3. Also, compute the reaction forces at nodes 1 and 
2 and reaction moment at node 1.

2,000 lb/ft

1 2 3

7 ft14 ft

	 8.	 The beam shown in the accompanying figure is a wide-flange W16 * 31 with a cross-sectional 
area of 9.12 in2 and a depth of 15.88 in. The second moment of area is 375 in4. The beam is 
subjected to a uniformly distributed load of 2000 lb/ft and a point load of 800 lb. The modulus 
of elasticity of the beam is E = 29 * 106 lb/in2. Using manual calculations, determine the 
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vertical displacement at node 3 and the rotations at nodes 2 and 3. Also, compute the reaction 
forces at nodes 1 and 2 and reaction moment at node 1.

800 lb

2,000 lb/ft

1 2 3

10 ft 2.5 ft 2.5 ft

	 9.	 The lamp frame shown in the accompanying figure has hollow, square cross sections and is 
made of steel, with E = 29 * 106 lb/in2. Using hand calculations, determine the endpoint 
deflection of the cross member where the lamp is attached.

4 in

35 lb

1/4 in thick

6 in

3/16 in thick

Main Cross member

6 ft

15 ft

	 10.	 A park picnic-table top is supported by two identical metal frames; one such frame is shown 
in the accompanying figure. The frames are embedded in the ground and have hollow, circu-
lar cross-sectional areas. The tabletop is designed to support a distributed load of 300 lb/ft2. 
Using ANSYS, size the cross section of the frame to support the load safely. The modulus of 
elasticity is E = 29 * 106 lb/in2.
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All members have the same
hollow circular cross section.

32 in

28 in

4 ft

	 11.	 The frame shown in the accompanying figure is used to support a load of 3000 lb. The main 
vertical section of the frame has an annular cross section with an area of 8.63 in2 and a polar 
radius of gyration of 2.75 in. The outer diameter of the main tubular section is 6 in. All other 
members also have annular cross sections with respective areas of 2.24 in2 and polar radii of 
gyration of 1.91 in. The outer diameter of these members is 4 in. Using ANSYS, determine the 
deflections at the points where the load is applied. The frame is made of steel, with a modulus 
elasticity of E = 29 * 106 lb/in2.

1500 lb 1500 lb

15 ft

12 ft

455
3 ft
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	 12.	 Verify the equivalent nodal loading for a beam element subjected to a triangular load, as 
shown in the accompanying figure.

w 3 wL
20

7 wL
20

wL2

30
wL2

20L

	 13.	 Referring to the section in this chapter discussing the frame elements, show that the stiff-
ness  matrix represented with respect to the global coordinate system is related to the 
stiffness matrix described with respect to the frame’s local coordinate system, according to 
the relationship

[K](e) = [T]T[K]xy
(e)[T]

	 14.	 The frame shown in the accompanying figure is used to support a load of 500 lb/ft. Using 
ANSYS, size the cross sections of each member if standard-size steel square tubing is to be 
used. Use three different sizes. The deflection of the centerpoint is to be kept under 0.05 in.

500 lb/ft

15 ft

5 ft

10 ft
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	 15.	 The frame shown in the accompanying figure is used to support the load given in the figure. 
Using ANSYS, size the members if standard sizes of steel I-beams are to be used.

12 ft

12 ft

500 lb/ft

700 lb/ft

15 ft 15 ft

	 16.	 Verify the equivalent nodal loading for a beam element subjected to the load shown in the 
accompanying figure.

P
—P
2

PL
8

—P
2

M = PL
8

M =
—L
2

—L
2

	 17.	 Use a one-element model and calculate the deflection and slope at the endpoint of the beam 
shown in the accompanying figure. Compare your results to deflection and slope values given 
in Table 4.1.

w0

X E, I

L
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	 18.	 Use a two-element model and solve Example 4.3. Compare your results to the deflections 
and the end slope of the single element model.

	 19.	 Use a one-element model and calculate the deflection and slope at the endpoint of the beam 
shown in the accompanying figure. Compare your results to the deflection and slope values 
given in Table 4.1.

X

P

L

E, I

	 20.	 Use a one-element model and calculate the deflection and the slope at the midpoint of the 
beam shown in the accompanying figure. Compare your results to the deflection and slope 
values given in Table 4.1.

w

L

E, I

	 21.	 The beam shown in the accompanying figure is a wide-flange W18 * 35, with a cross-
sectional area of 10.3 in2 and a depth of 17.7 in. The second moment of area is 510 in4. 
The beam is subjected to a point load of 2500 lb. The modulus of elasticity of the beam 
E = 29 * 106 lb/in2. Use a two-element model and calculate the deflection of the midpoint 
of the beam. Compare your results to exact values.

2500 lb

7.5 ft 7.5 ft

	 22.	 The frame shown in the accompanying figure is used to support a load of 1000 lb. Using 
ANSYS, size the cross sections of each member if standard sizes of steel I-beams are used.
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1000 lb

4 ft

8 ft

5 ft

4 ft

	 23.	 The frame shown in the accompanying figure is used to support the indicated load. Using 
ANSYS, size the cross sections of each member if standard sizes of steel I-beams are used.

3000 lb/ft3000 lb/ft

2500 lb/ft

20 ft 20 ft

15 ft

15 ft
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	 24.	 The frame shown in the accompanying figure is used to support the indicated load. Using 
ANSYS, size the cross sections of each member if standard sizes of steel I-beams are used.

40 KN/m

5 KN

10
 K

N/m
10 KN/m

5 KN

5 m

5 m

5 m

45 455 5
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	 25.	 The beams shown in the accompanying figure are used to support the indicated load. Using 
ANSYS, size the cross sections of each beam if standard sizes of steel I-beams are used.

10 ft

5 f
t

X

Z

Y

1000 lb

500 lb

C

B
A

	 26.	 Show that [D]{U} = {U}T[D]T.

	 27.	 Starting with Equations (4.39) and (4.41), show that the relationship given by Eqs. (4.42) is 
true.

	 28.	 Starting with Equation (4.42) and using the results given by Eq. (4.36a) perform the integra-
tions to obtain the results given in the first column of the stiffness matrix, Equation (4.43).

	 29.	 Starting with Equation (4.42) and using the results given by Eq. (4.36a) perform the integra-
tions to obtain the results given in the fourth row of the stiffness matrix, Equation (4.43).
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	 30.	 Design Project  Size the members of the bridge shown in the accompanying figure for a case 
in which traffic is backed up with a total of four trucks equally spaced on the bridge. A typical 
truck has a payload weight of 64,000 lb and a cab weight of 8000 lb. As a starting point, you 
may use one cross section for all beam elements. You may also assume one cross section for 
all truss members. The roadbed weighs 1500 lb/ft and is supported by I-beams. Use standard 
steel I-beam sizes. Design your own truss configuration. In your analysis, you may assume 
that the concrete column does not deflect significantly. Write a brief report discussing how 
you came up with the final design.

I-beam

Concrete

Design your own truss

10 ft

58 ft

100 ft

200 ft

25 ft

25 ft
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C h a p t e r  5

One-Dimensional Elements

The objectives of this chapter are to introduce the concepts of one-dimensional elements 
and shape functions and their properties in more detail. The idea of local and natural 
coordinate systems is also presented here. In addition, one-dimensional elements used 
by ANSYS are discussed. These are the main topics discussed in Chapter 5:

	 5.1	 Linear Elements

	 5.2	 Quadratic Elements

	 5.3	 Cubic Elements

	 5.4	 Global, Local, and Natural Coordinates

	 5.5	 Isoparametric Elements

	 5.6	 Numerical Integration: Gauss–Legendre Quadrature

	 5.7	 Examples of One-Dimensional Elements in ANSYS

5.1  Linear Elements

The heat transfer example in this section is employed to introduce the basic ideas of 
one-dimensional elements and shape functions. Fins are commonly used in a variety of 
engineering applications to enhance cooling. Common examples include a motorcycle 
engine head, a lawn mower engine head, extended surfaces (heat sinks) used in elec-
tronic equipment, and finned-tube heat exchangers. A straight fin of a uniform cross 
section is shown in Figure 5.1, along with a typical temperature distribution along the 
fin. As a first approximation, let us divide the fin into three elements and four nodes. 
The actual temperature distribution may be approximated by a combination of linear 
functions, as shown in Figure 5.1. To better approximate the actual temperature gradient 
near the base of the fin in our finite element model, we have placed the nodes closer 
to each other in that region. It should be clear that we can improve the accuracy of our 
approximation by increasing the number of elements as well. However, for now, let us 
be content with the three-element model and focus our attention on a typical element, 

M05_MOAV4303_04_GE_C05.INDD   303 27/11/14   9:46 AM

www.FreeEngineeringbooksPdf.com



304    Chapter 5    One-Dimensional Elements

as shown in Figure 5.2. The temperature distribution along the element may be interpo-
lated (or approximated) using a linear function, as depicted in Figure 5.2.

The forthcoming derivation of the shape functions are similar to the one we 
showed in Chapter 4, Section 4.1. As a review and for the sake of continuity and conve-
nience, the steps to derive the shape functions are presented here again.

The linear temperature distribution for a typical element may be expressed as

	 T (e) = c1 + c2 X	 (5.1)

The element’s end conditions are given by the nodal temperatures Ti and Tj, according 
to the conditions

	 T = Ti at X = Xi	 (5.2)

	 T = Tj at X = Xj	

(1)

2

Tbase

T

1 3 4

T�uid

X

Actual temperature pro�le

Approximate temperature pro�le

B
as

e

L

(3)(2)

Figure 5.1  Temperature distribution for 
a fin of uniform cross section.

T

i j(e)

Ti

Tj

X
Xi Xj

/ Figure 5.2  Linear approximation of 
temperature distribution for an element.
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Substitution of nodal values into Eq. (5.1) results in two equations and two unknowns:

	 Ti = c1 + c2Xi	 (5.3)

	 Tj = c1 + c2Xj	

Solving for the unknowns c1 and c2, we get

	 c1 =
TiXj - TjXi

Xj - Xi
	 (5.4)

	 c2 =
Tj - Ti

Xj - Xi
	 (5.5)

The element’s temperature distribution in terms of its nodal values is

	 T (e) =
TiXj - TjXi

Xj - Xi
+

Tj - Ti

Xj - Xi
 X	 (5.6)

Grouping the Ti terms together and the Tj terms together, we obtain

	 T (e) = ¢ Xj - X

Xj - Xi
≤Ti + ¢ X - Xi

Xj - Xi
≤Tj	 (5.7)

We now define the shape functions, Si and Sj, according to the equations

	  Si =
Xj - X

Xj - Xi
=

Xj - X

/
	 (5.8)

	  Sj =
X - Xi

Xj - Xi
=

X - Xi

/
	 (5.9)

where / is the length of the element. Thus, the temperature distribution of an element 
in terms of the shape functions can be written as

	 T (e) = SiTi + SjTj	 (5.10)

Equation (5.10) can also be expressed in matrix form as

	 T (e) = [Si Sj] bTi

Tj
r 	 (5.11)

As you recall, for the structural example in Chapter 4, the deflection u(e) for a typical 
column element is represented by

	 u(e) = [Si Sj] bui

uj
r 	 (5.12)

where ui and uj represent the deflections of nodes i and j of an arbitrary element (e). 
It should be clear by now that we can represent the spatial variation of any unknown 
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variable over a given element by using shape functions and the corresponding nodal 
values. Thus, in general, we can write

	 Ψ(e) = [Si Sj] bΨi

Ψj
r 	 (5.13)

where Ψi and Ψj represent the nodal values of the unknown variable, such as tempera-
ture, deflection, or velocity.

Properties of Shape Functions

The shape functions possess unique properties that are important for us to understand 
because they simplify the evaluation of certain integrals when we are deriving the con-
ductance or stiffness matrices. One of the inherent properties of a shape function is that 
it has a value of unity at its corresponding node and has a value of zero at the adjacent 
node. Let us demonstrate this property by evaluating the shape functions at X = Xi and 
X = Xj. Evaluating Si at X = Xi and X = Xj, we get

Si 0 X = Xi
=

Xj - X

/
2
X = Xi

=
Xj - Xi

/
= 1 and Si 0 X = Xj

=
Xj - X

/
2
X = Xj

=
Xj - Xj

/
= 0	 (5.14)

Evaluating Sj at X = Xi and X = Xj, we obtain

Sj 0 X = Xi
=

X - Xi

/
2
X = Xi

=
Xi - Xi

/
= 0 and Sj 0 X = Xj

=
X - Xi

/
2
X = Xj

=
Xj - Xi

/
= 1	 (5.15)

This property is also illustrated in Figure 5.3.
Another important property associated with shape functions is that the shape 

functions add up to a value of unity. That is,

	 Si + Sj =
Xj - X

Xj - Xi
+

X - Xi

Xj - Xi
= 1	 (5.16)

It can also be readily shown that for linear shape functions, the sum of the derivatives 
with respect to X is zero. That is,

	
d

dX
¢ Xj - X

Xj - Xi
≤ +

d
dX

¢ X - Xi

Xj - Xi
≤ = -

1
Xj - Xi

+
1

Xj - Xi
= 0	 (5.17)

X
Xi Xj

1

Si

X
Xi Xj

1

Sj

Figure 5.3  Linear shape functions.

M05_MOAV4303_04_GE_C05.INDD   306 27/11/14   9:46 AM

www.FreeEngineeringbooksPdf.com



Section 5.2    Quadratic Elements    307

EXAMPLE 5.1

We have used linear one-dimensional elements to approximate the temperature distri-
bution along a fin. The nodal temperatures and their corresponding positions are shown 
in Figure 5.4. What is the temperature of the fin at (a) X = 4 cm and (b) X = 8 cm?

In Chapter 6, we will discuss in detail the analysis of one-dimensional fin problems, 
including the computation of nodal temperatures. However, for now, using the given 
nodal temperatures, we can proceed to answer both parts of the question:

	 a.	 The temperature of the fin at X = 4 cm is represented by element (2);

 T (2) = S2
(2)T2 + S3

(2)T3 =
X3 - X

/
 T2 +

X - X2

/
 T3

 T =
5 - 4

3
 (41) +

4 - 2
3

 (34) = 36.35C

	 b.	 The temperature of the fin at X = 8 cm is represented by element (3);

 T (3) = S3
(3)T3 + S4

(3)T4 =
X4 - X

/
 T3 +

X - X3

/
 T4

 T =
10 - 8

5
 (34) +

8 - 5
5

 (20) = 25.6°C

For this example, note the difference between S3
(2) and S3

(3).

1 2

X

3 4

Tbase = 505C

T�uid = 185C

(1) (2) (3)

5 cm3 cm2 cm

Figure 5.4  The nodal temperatures and their corresponding positions along the fin in Example 5.1.

d T1

T2

T3

T4

t = d 50
41
34
20

t  °C

5.2  Quadratic Elements

We can increase the accuracy of our finite element findings either by increasing the num-
ber of linear elements used in the analysis or by using higher order interpolation func-
tions. For example, we can employ a quadratic function to represent the spatial variation 
of an unknown variable. Using a quadratic function instead of a linear function requires 

M05_MOAV4303_04_GE_C05.INDD   307 27/11/14   9:46 AM

www.FreeEngineeringbooksPdf.com



308    Chapter 5    One-Dimensional Elements

that we use three nodes to define an element. We need three nodes to define an element 
because in order to fit a quadratic function, we need three points. The third point can 
be created by placing a node, such as node k, in the middle of an element, as shown in 
Figure 5.5. Referring to the previous example of a fin, using quadratic approximation, 
the temperature distribution for a typical element can be represented by

	 T (e) = c1 + c2X + c3X
2	 (5.18)

and the nodal values are

	 T = Ti at X = Xi 	 (5.19)

	 T = Tk at X = Xk	

	 T = Tj at X = Xj 	

Three equations and three unknowns are created upon substitution of the nodal values 
into Eq. (5.18):

	 Ti  = c1 + c2Xi + c3Xi
2 	 (5.20)

	 Tk = c1 + c2Xk + c3Xk
2	

	 Tj  = c1 + c2Xj + c3Xj
2 	

Solving for c1, c2, and c3 and rearranging terms leads to the element’s temperature dis-
tribution in terms of the nodal values and the shape functions:

	 T (e) = SiTi + SjTj + SkTk	 (5.21)

In matrix form, the above expression is

	 T (e) = [Si Sj Sk] c Ti

Tj

Tk

s 	 (5.22)

Tk

T

i jk

Ti

Tj

X
Xi Xk Xj

/

//2 Figure 5.5  Quadratic approximation 
of the temperature distribution for an 
element.
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where the shape functions are

	 Si  =
2
/ 2 (X - Xj) (X - Xk) 	 (5.23)

	 Sj  =
2

/ 2 (X - Xi) (X - Xk) 	

	 Sk =
-4
/2  (X - Xi) (X - Xj)	

In general, for a given element the variation of any parameter Ψ in terms of its nodal 
values may be written as

	 Ψ(e) = [Si Sj Sk] c Ψi

Ψj

Ψk

s 	 (5.24)

It is important to note here that the quadratic shape functions possess properties 
similar to those of the linear shape functions; that is, (1) a shape function has a value 
of unity at its corresponding node and a value of zero at the other adjacent node, and 
(2) if we sum up the shape functions, we will again come up with a value of unity. The 
main difference between linear shape functions and quadratic shape functions is in their 
derivatives. The derivatives of the quadratic shape functions with respect to X are not 
constant.

5.3  Cubic Elements

The quadratic interpolation functions offer good results in finite element formulations. 
However, if additional accuracy is needed, we can resort to even higher order inter-
polation functions, such as third-order polynomials. Thus, we can use cubic functions 
to represent the spatial variation of a given variable. Using a cubic function instead of 
a quadratic function requires that we use four nodes to define an element. We need 
four nodes to define an element because in order to fit a third-order polynomial, we 
need four points. The element is divided into three equal lengths. The placement of 
the four nodes is depicted in Figure 5.6. Referring to the previous example of a fin, 
using cubic approximation, the temperature distribution for a typical element can be 
represented by

	 T (e) = c1 + c2 X + c3 X
2 + c4 X

3	 (5.25)

and the nodal values are

	  T = Ti  at X = Xi 	 (5.26)

	  T = Tk  at X = Xk 	

	  T = Tm  at X = Xm	

	  T = Tj  at X = Xj 	
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Four equations and four unknowns are created upon substitution of the nodal values 
into Eq. (5.25). Solving for c1, c2, c3, and c4 and rearranging terms leads to the element’s 
temperature distribution in terms of the nodal values and the shape functions:

	 T (e) = SiTi + SjTj + SkTk + SmTm	 (5.27)

In matrix form, the above expression is

	 T (e) = [Si Sj Sk Sm] d Ti

Tj

Tk

Tm

t 	 (5.28)

where the shape functions are

	  Si = -
9

2/3 (X - Xj)(X - Xk)(X - Xm)	 (5.29)

	  Sj =
9

2/3 (X - Xi)(X - Xk)(X - Xm) 	

	  Sk =
27
2/3 (X - Xi)(X - Xj)(X - Xm) 	

	  Sm = -
27
2/3 (X - Xi)(X - Xj)(X - Xk) 	

It is worth noting that when the order of the interpolating function increases, it 
is necessary to employ Lagrange interpolation functions instead of taking the above 
approach to obtain the shape functions. The main advantage the Lagrange method offers 
is that using it, we do not have to solve a set of equations simultaneously to obtain the 
unknown coefficients of the interpolating function. Instead, we represent the shape 
functions in terms of the products of three linear functions. For cubic interpolating 

T

Ti

Xi

Tk

Xk

Tm

Xm

Tj

Xj

X

/

//3 //3 //3
Figure 5.6  Cubic approximation of the 
temperature distribution for an element.
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functions, the shape function associated with each node can be represented in terms of 
the product of three linear functions. For a given node—for example, i—we select the 
functions such that their product will produce a value of zero at other nodes—namely, j, 
k, and m—and a value of unity at the given node, i. Moreover, the product of the func-
tions must produce linear and nonlinear terms similar to the ones given by a general 
third-order polynomial function.

To demonstrate this method, let us consider node i, with the global coordinate Xi. 
First, the functions must be selected such that when evaluated at nodes j, k, and m, the 
outcome is a value of zero. We select

	 Si = a1(X - Xj)(X - Xk)(X - Xm)	 (5.30)

which satisfies the above condition. That is, if you substitute for X = Xj, or X = Xk, or 
X = Xm, the value of Si is zero. We then evaluate a1 such that when the shape function 
Si is evaluated at node i(X = Xi), it will produce a value of unity:

1 = a1(Xi - Xj)(Xi - Xk)(Xi - Xm) = a1(-/)¢ -
/
3
≤ ¢ -

2/
3
≤

Solving for a1, we get

a1 = -
9

2/3

and substituting into Eq. (5.30), we have

Si = -
9

2/3 (X - Xj)(X - Xk)(X - Xm)

The other shape functions are obtained in a similar fashion. Keeping in mind the expla-
nation offered above, we can generate shape functions of an (N - 1)-order polynomial 
directly from the Lagrange polynomial formula:

      SK = q
N

M = 1
 

X - XM omitting (X - XK)

XK - XM omitting (XK - XK)
=

(X - X1)(X - X2) g(X - XN)

(XK - X1)(XK - X2) g(XK - XN)
	 (5.31)

Note that in order to accommodate any order polynomial representation in Eq. (5.31) 
numeral values are assigned to the nodes and the subscripts of the shape functions.

In general, using a cubic interpolation function, the variation of any parameter Ψ 
in terms of its nodal values may be written as

Ψ(e) = [Si Sj Sk Sm] d Ψi

Ψj

Ψk

Ψm

t
Once again, note that the cubic shape functions possess properties similar to those of 
the linear and the quadratic shape functions; that is, (1) a shape function has a value of 
unity at its corresponding node and a value of zero at the other adjacent node, and (2) if 
we sum up the shape functions, we will come up with a value of unity. However, note 
that taking the spatial derivative of cubic shape functions will produce quadratic results.
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EXAMPLE 5.2

Using Lagrange interpolation functions, generate the quadratic shape functions directly 
from the Lagrange polynomial formula, Eq. (5.31):

SK = q
N

M = 1
 

(X - XM) omitting (X - XK)

(XK - XM) omitting (XK - XK)

For quadratic shape functions, N-1 = 2 and K = 1, 2, 3. Refer to Figure 5.5 and note 
that subscripts 1, 2, and 3 correspond to nodes i, k, and j respectively. Also, it is impor-
tant to distinguish the difference between lowercase k, denoting a specific node, and 
uppercase K, a variable subscript, denoting various nodes.

For node i or K = 1,

Si = S1 =
(X - X2)(X - X3)

(X1 - X2)(X1 - X3)
=

(X - X2)(X - X3)¢ -
/
2
≤(-/)

=
2
/2(X - X2)(X - X3)

For node k or K = 2,

Sk = S2 =
(X - X1)(X - X3)

(X2 - X1)(X2 - X3)
=

(X - X1)(X - X3)¢ /
2
≤ ¢ -

/
2
≤ =

-4
/2 (X - X1)(X - X3)

For node j or K = 3,

Sj = S3 =
(X - X1)(X - X2)

(X3 - X1)(X3 - X2)
=

(X - X1)(X - X2)

(/)¢ /
2
≤ =

2
/2(X - X1)(X - X2)

The results are identical to shape functions given by Eq. (5.23).

5.4 Glo bal, Local, and Natural Coordinates

Most often, in finite element modeling, it is convenient to use several frames of ref-
erence, as we briefly discussed in Chapters 3 and 4. We need a global coordinate 
system to represent the location of each node, orientation of each element, and to 
apply boundary conditions and loads (in terms of their respective global components). 
Moreover, the solution, such as nodal displacements, is generally represented with 
respect to the global directions. On the other hand, we need to employ local and natu-
ral coordinates because they offer certain advantages when we construct the geometry 
or compute integrals. The advantage becomes apparent particularly when the integrals 
contain products of shape functions. For one-dimensional elements, the relationship 
between a global coordinate X and a local coordinate x is given by X = Xi + x, as 
shown in Figure 5.7.
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Substituting for X in terms of the local coordinate x in Eqs. (5.8) and (5.9), we get

	 Si =
Xj - X

/
=

Xj - (Xi + x)

/
= 1 -

x
/

	 (5.32)

	 Sj =
X - Xi

/
=

(Xi + x) - Xi

/
=

x
/

	 (5.33)

where the local coordinate x varies from 0 to /; that is 0 … x … /.

One-Dimensional Linear Natural Coordinates

Natural coordinates are basically local coordinates in a dimensionless form. It is often 
necessary to use numerical methods to evaluate integrals for the purpose of calculating 
elemental stiffness or conductance matrices. Natural coordinates offer the convenience 
of having -1 and 1 for the limits of integration. For example, if we let

j =
2x
/

- 1

where x is the local coordinate, then we can specify the coordinates of node i as -1 and 
node j by 1. This relationship is shown in Figure 5.8.

We can obtain the natural linear shape functions by substituting for x in terms of 
j into Eqs. (5.32) and (5.33). This substitution yields

	 Si =
1
2

 (1 - j)	 (5.34)

	 Sj =
1
2

 (1 + j)	 (5.35)

Natural linear shape functions possess the same properties as linear shape functions; 
that is, a shape function has a value of unity at its corresponding node and has a value of 

Node i

Xi Xj

x

Global

Local
Node j

X

/

Figure 5.7  The relationship between 
a global coordinate X and a local 
coordinate x.

j
j = -1

j = 1
Node i

Xi Xj

Local x
Node j

/

Figure 5.8  The relationship between 
the local coordinate x and the natural 
coordinate j.
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zero at the adjacent node in a given element. As an example, the temperature distribu-
tion over an element of a one-dimensional fin may expressed by

	 T (e) = SiTi + SjTj =
1
2

 (1 - j)Ti +
1
2

 (1 + j)Tj	 (5.36)

It is clear that at j = -1, T = Ti and at j = 1, T = Tj.

5.5 I soparametric Elements

By now, it should be clear that we can represent other variables, such as the displacement 
u, in terms of the natural shape functions Si and Sj according to the equation

	 u(e) = Siui + Sjuj =
1
2

 (1 - j)ui +
1
2

 (1 + j)uj	 (5.36a)

Also note that the transformation from the global coordinate X(Xi … X … Xj) or the 
local coordinate x(0 … x … /) to j can be made using the same shape functions Si and 
Sj. That is,

	 X = SiXi + SjXj =
1
2

 (1 - j)Xi +
1
2

 (1 + j)Xj	 (5.36b)

or

x = Sixi + Sjxj =
1
2

 (1 - j)xi +
1
2

 (1 + j)xj

Comparing the relationships given by Eqs. (5.36), (5.36a), and (5.36b), we note that we 
have used a single set of parameters (such as Si, Sj) to define the unknown variables u, 
T, and so on, and we used the same parameters (Si, Sj) to express the geometry. Finite 
element formulation that makes use of this idea is commonly referred to as isopara-
metric (iso meaning the same or uniform) formulation, and an element expressed in 
such a manner is called an isoparametric element. We discuss isoparametric formulation 
further in Chapters 7 and 10.

Example 5.3

Determine the temperature of the fin in Example 5.1 at the global location X = 8 cm 
using local coordinates. Also determine the temperature of the fin at the global location 
X = 7.5 cm using natural coordinates.

1 2 3 4

Tbase = 505C

T�uid = 185C

(1) (2) (3)

5 cm3 cm2 cm

d T1

T2

T3

T4

t = d 50
41
34
20

t  °C
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	 a.	 Using local coordinates, we find that the temperature of the fin at X = 8 cm is 
represented by element (3) according to the equation

T (3) = S3
(3)T3 + S4

(3)T4 = ¢1 -
x
/
≤T3 +

x
/

 T4

Note that element (3) has a length of 5 cm, and the location of a point 8 cm from 
the base is represented by the local coordinate x = 3:

T = ¢1 -
3
5
≤(34) +

3
5

 (20) = 25.65C

	 b.	 Using natural coordinates, we find that the temperature of the fin at X = 7.5 cm 
is represented by element (3) according to the equation

T (3) = S3
(3)T3 + S4

(3)T4 =
1
2

 (1 - j)T3 +
1
2

 (1 + j)T4

Because the point with the global coordinate X = 7.5 cm is located in the middle 
of element (3), the natural coordinate of this point is given by j = 0:

T(3) =
1
2

 (1 - 0)(34) +
1
2

 (1 + 0)(20) = 275C

One-Dimensional Natural Quadratic  
and Cubic Shape Functions

The natural one-dimensional quadratic and cubic shape functions can be obtained in 
a way similar to the method discussed in the previous section. The quadratic natural 
shape functions are

	 Si = -
1
2

 j(1 - j) 	 (5.37)

	 Sj =
1
2

 j(1 + j) 	 (5.38)

	 Sk = (1 + j)(1 - j)	 (5.39)

The natural one-dimensional cubic shape functions are

	 Si =
1
16

 (1 - j)(3j + 1)(3j - 1)	 (5.40)

	 Sj =
1
16

 (1 + j)(3j + 1)(3j - 1)	 (5.41)

	 Sk =
9
16

 (1 + j)(j - 1)(3j - 1)	 (5.42)

	 Sm =
9
16

 (1 + j)(1 - j)(3j + 1)	 (5.43)
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For the sake of convenience, the results of Sections 5.1 to 5.4 are summarized in Table 5.1. 
Make sure to distinguish the differences among presentations of the shape functions 
using global, local, and natural coordinates.

Example 5.4

Evaluate the integral L
Xj

Xi

Sj
2dX using (a) global coordinates and (b) local coordinates.

	 a.	 Using global coordinates, we obtain

L
Xj

Xi

Sj
2dX = L

Xj

Xi

¢X - Xi

/
≤2

dX =
1

3/2  (X - Xi)
3 `

Xi

Xj

=
/
3

	 b.	 Using local coordinates, we obtain

L
Xj

Xi

Sj
2dX = L

/

0
¢ x

/
≤2

dx =
x3

3/2 `
0

/

=
/
3

This simple example demonstrates that local coordinates offer a simple way to evaluate 
integrals containing products of shape functions.

5.6 N umerical Integration: Gauss–Legendre Quadrature

As we discussed earlier, natural coordinates are basically local coordinates in a dimen-
sionless form. Moreover, most finite element programs perform element numerical 
integration by Gaussian quadratures, and as the limit of integration, they use an inter-
val from -1 to 1. This approach is taken because when the function being integrated 
is known, the Gauss–Legendre formulae offer a more efficient way of evaluating an 
integral as compared to other numerical integration methods such as the trapezoidal 
method. Whereas the trapezoidal method or Simpson’s method can be used to evalu-
ate integrals dealing with discrete data (see Problem 24), the Gauss–Legendre method 
is based on the evaluation of a known function at nonuniformally spaced points to 
compute the integral. The two-point Gauss–Legendre formula is developed next in this 
section. The basic goal behind the Gauss–Legendre formulae is to represent an integral 
in terms of the sum of the product of certain weighting coefficients and the value of the 
function at some selected points. So, we begin with

	 I = L
b

a

f(x)dx = a
n

i = 1
wi f(xi)	 (5.44)

Next, we must ask (1) How do we determine the value of the weighting coefficients, 
represented by the wi>s? (2) Where do we evaluate the function, or in other words, how 
do we select these points (xi)? We begin by changing the limits of integration from a to b  
to -1 to 1 with the introduction of the variable l such that

x = c0 + c1l
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Matching the limits, we get

a = c0 + c1(-1)

b = c0 + c1(1)

and solving for c0 and c1, we have

c0 =
(b + a)

2

and

c1 =
(b - a)

2

Therefore,

	 x =
(b + a)

2
+

(b - a)

2
 l	 (5.45)

and

	 dx =
(b - a)

2
 dl	 (5.46)

Thus, using Eqs. (5.45) and (5.46), we find that any integral in the form of Eq. (5.44) can 
be expressed in terms of an integral with its limits at -1 and 1:

	 I = L
1

-1

f(l) dl = a
n

i = 1
 wi f(li)	 (5.47)

The two-point Gauss–Legendre formulation requires the determination of two 
weighting factors w1 and w2 and two sampling points l1 and l2 to evaluate the func-
tion at these points. Because there are four unknowns, four equations are created using 
Legendre polynomials (1, l, l2, l3) as follows:

w1 f(l1) + w2 f(l2)  = L
1

-1

1 dl = 2

w1 f(l1) + w2 f(l2) = L
1

-1

l dl = 0

w1 f(l1) + w2 f(l2) = L
1

-1

l2 dl =
2
3

w1 f(l1) + w2 f(l2) = L
1

-1

l3 dl = 0

The above equations lead to the equations

 w1(1) + w2(1) = 2

 w1(l1) + w2(l2) = 0
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 w1(l1)
2 + w2(l2)

2 =
2
3

 w1(l1)
3 + w2(l2)

3 = 0

Solving for w1, w2, l1, and l2, we have w1 = w2 = 1, l1 = -0.577350269, and 
l2 = 0.577350269. The weighting factors and the 2, 3, 4, and 5 sampling points for 
Gauss–Legendre formulae are given in Table 5.2. Note that as the number of sampling 
points increases, so does the accuracy of the calculations. As you will see in Chapter 7, 
we can readily extend the Gauss–Legendre quadrature formulation to two- or three 
dimensional problems.

EXAMPLE 5.5

Evaluate the integral I = L
6

2

(x2 + 5x + 3) dx using the Gauss–Legendre two-point 

sampling formula.
This integral is simple and can be evaluated analytically, leading to the solution 

I = 161.333333333. The purpose of this example is to demonstrate the Gauss–Legendre 
procedure. We begin by changing the variable x to l by using Eq. (5.45). So, we obtain

x =
(b + a)

2
+

(b - a)

2
 l =

(6 + 2)

2
+

(6 - 2)

2
 l = 4 + 2l

and

dx =
(b - a)

2
 dl =

(6 - 2)

2
 dl = 2 dl

Table 5.2  Weighting factors and sampling points for Gauss–Legendre formulae

Points (n) Weighting factors (wi) Sampling points (li)

2 w1 = 1.00000000 l1 = -0.577350269
w2 = 1.00000000 l2 =    0.577350269

3 w1 = 0.55555556 l1 = -0.774596669
w2 = 0.88888889 l2 =   0
w3 = 0.55555556 l3 =   0.774596669

4 w1 = 0.3478548 l1 = -0.861136312
w2 = 0.6521452 l2 = -0.339981044
w3 = 0.6521452 l3 =   0.339981044
w4 = 0.3478548 l4 =   0.861136312

5 w1 = 0.2369269 l1 = -0.906179846
w2 = 0.4786287 l2 = -0.538469310
w3 = 0.5688889 l3 =   0
w4 = 0.4786287 l4 =   0.538469310
w5 = 0.2369269 l5 =   0.906179846
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Thus, the integral I can be expressed in terms of l:

I = L
6

2

(x2 + 5x + 3)dx = L
1

-1

(2)[(4 + 2l)2 + 5(4 + 2l) + 3)]dl

Using the Gauss–Legendre two-point formula and Table 5.2, we compute the value of 
the integral I from

I ≅ w1f(l1) + w2 f(l2)

From Table 5.2, we find that w1 = w2 = 1, and evaluating f(l) at l1 = -0.577350269 
and l2 = 0.577350269, we obtain

 f(l1) = (2)[[4 + 2(-0.577350269)]2 + 5(4 + 2(-0.577350269) + 3)] = 50.6444526769

 f(l2) = (2)[[4 + 2(0.577350269)]2 + 5(4 + 2(0.577350269) + 3)] = 110.688880653

 I = (1)(50.6444526769) + (1)110.688880653 = 161.33333333

EXAMPLE 5.6

Evaluate the integral L
Xj

Xi

Sj
2dX in Example 5.4 using the Gauss–Legendre two-point 

formula.
Recall from Eq. (5.35) that Sj = 1

2(1 + j) and by differentiating the relationship 

between the local coordinate x and the natural coordinate j (i.e., j =
2x
/

- 1 1  

dj =
2
/

 dx) we find dx = /
2 dj. Also note that for this problem, j = l. So,

I = L
Xj

Xi

Sj
2dX = L

Xj

Xi

¢X - Xi

/
≤2

dX = L
/

0
¢ x

/
≤2 

dx =
/
2 L

1

-1
J1

2
(1 + j) R 2

dj

Using the Gauss–Legendre two-point formula and Table 5.2, we compute the value of 
the integral I from

I ≅ w1 f(l1) + w2 f(l2)

From Table 5.2, we find that w1 = w2 = 1, and evaluating f(l) at l1 = -0.577350269 
and l2 = 0.577350269, we obtain

 f(j1) =
/
2

 J1
2

(1 + j1) R 2

=
/
2

 J1
2

(1 - 0.577350269) R 2

= 0.022329099389/

 f(j2) =
/
2

 J1
2

(1 + j2) R 2

=
/
2

 J1
2

(1 + 0.577350269) R 2

= 0.31100423389/

 I = (1)(0.022329099389/) + (1)(0.31100423389/) = 0.333333333/

Note that the above result is identical to the results of Example 5.4.

   
   

u

   
   
yf(x) f(l)
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5.7 Ex amples of One-Dimensional Elements in ANSYS

ANSYS offers uniaxial link elements that may be used to represent one-dimensional 
problems. These link elements include LINK31, LINK33, and LINK34. The LINK33 
element is a uniaxial heat conduction element. It allows for the transfer of heat between 
its two nodes via conduction mode. The nodal degree of freedom associated with this 
element is temperature. The element is defined by its two nodes, cross-sectional area, 
and material properties such as thermal conductivity. The LINK34 element is a uni-
axial convection link that allows for heat transfer between its nodes by convection. 
This element is defined by its two nodes, a convective surface area, and a convective 
heat transfer (film) coefficient. The LINK31 element can be used to model radiation 
heat transfer between two points in space. The element is defined by its two nodes, a 
radiation surface area, a geometric shape factor, emissivity, and the Stefan–Boltzman 
constant. In Chapter 6, we will use LINK33 and LINK34 to solve a one-dimensional 
heatconduction problem.

Summary

At this point you should

	 1.	 have a good understanding of the linear one-dimensional elements and shape 
functions, their properties, and their limitations.

	 2.	 have a good understanding of the quadratic and cubic one-dimensional elements 
and shape functions, their properties, and their advantages over linear elements.

	 3.	 know why it is important to use local and natural coordinate systems.
	 4.	 know what is meant by isoparametric element and formulation.
	 5.	 have a good understanding of Gauss–Legendre quadrature.
	 6.	 know examples of one-dimensional elements in ANSYS.
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Problems

	 1.	 We have used linear one-dimensional elements to approximate the temperature distribu-
tion along a fin. The nodal temperatures and their corresponding positions are shown in the 
accompanying figure. (a) What is the temperature of the fin at X = 8 cm? (b) Evaluate the 
heat loss from the fin using the relationship

Q = -kA
dT
dX

 0 X = 0

where k = 200 W/m # K and A = 15 mm2.
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1 2 3 4

Tbase = 1005C

T�uid = 185C

(1) (2) (3)

5 cm3 cm2 cm 	

d T1

T2

T3

T4

t = d 100
800
64
41

t  °C

	 2.	 Evaluate the integral L
Xj

Xi

Si
2 dX  for a linear shape function using (a) global coordinates and 

(b) local coordinates.

	 3.	 Starting with the equations

Ti  = c1 + c2Xi + c3X i
2

Tk = c1 + c2Xk + c3X k
2

Tj  = c1 + c2Xj + c3X j
2

solve for c1, c2, and c3, and rearrange terms to verify the shape functions given by

Si  =
2
/2 (X - Xj)(X - Xk)

Sj  =
2
/2 (X - Xi)(X - Xk)

Sk =
-4
/2  (X - Xi)(X - Xj)

	 4.	 For Problem 3, use the Lagrange functions to derive the quadratic shape functions by the 
method discussed in Section 5.3.

	 5.	 Derive the expressions for quadratic shape functions in terms of the local coordinates and 
compare your results to the results given in Table 5.1.

	 6.	 Verify the results given for one-dimensional quadratic natural shape functions in Table 5.1 by 
showing that (1) a shape function has a value of unity at its corresponding node and a value 
of zero at the other nodes, and (2) if we sum up the shape functions, we will come up with a 
value of unity.

	 7.	 Verify the results given for the local cubic shape functions in Table 5.1 by showing that (1) a 
shape function has a value of unity at its corresponding node and a value of zero at the other 
nodes and (2) if we sum up the shape functions, we will come up with a value of unity.

	 8.	 Verify the results given for the natural cubic shape functions in Table 5.1 by showing that (1) a 
shape function has a value of unity at its corresponding node and a value of zero at the other 
nodes and (2) if we sum up the shape functions, we will come up with a value of unity.
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	 9.	 Obtain expressions for the spatial derivatives of the quadratic and cubic shape functions.

	 10.	 As previously explained, we can increase the accuracy of our finite element findings either 
by increasing the number of elements used in the analysis to represent a problem or by using 
a higher order approximation. Derive the local cubic shape functions.

	 11.	 Evaluate the integral L
Xj

Xi

Si dX  for a quadratic shape function using (a) global coordinates, 

		  (b) natural coordinates, and (c) local coordinates.
	 12.	 Assume that the deflection of a cantilever beam was approximated with linear one-dimen-

sional elements. The nodal deflections and their corresponding positions are shown in the 
accompanying figure. (a) What is the deflection of the beam at X = 2.5 ft? (b) Evaluate the 
slope at the endpoint.

	

100 lb/ft

1 2

x

y

3 4 5

1 ft 1 ft 1 ft2 ft

EI = 2 * 106   lb · ft2

	

e y1

y2

y3

y4

y5

u = e 0
0.003275
0.022275
0.034400
0.046875

u  in

	 13.	 We have used linear one-dimensional elements to approximate the temperature distribution 
inside a metal plate. A heating element is embedded within a plate. The nodal temperatures 
and their corresponding positions are shown in the accompanying figure. What is the tem-
perature of the plate at X = 28 mm? Assume that (a) linear elements were used in obtaining 
nodal temperatures and (b) quadratic elements were used.

i T1

T2

T3

T4

T5

T6

T7

T8

T9

y = i 120
119
116
111
104
95
84
71
56

y  °C

1 2 3 4 5 6 7 8 9

X

10 mm

R

I

I

8 cm
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	 14.	 Quadratic elements are used to approximate the temperature distribution in a straight fin. 
The nodal temperatures and their corresponding positions are shown in the accompanying 
figure. What is the temperature of the fin at X = 8 cm?

g T1

T2

T3

T4

T5

T6

T7

w = g 100
74
56
44
36
31
28

w  °C

	 15.	 Develop the shape functions for a linear element, shown in the accompanying figure, using 
the local coordinate x whose origin lies at the one-fourth point of the element.

Xi
Xj

x

i j

/

//3

	 16.	 Using the natural coordinate system shown in the accompanying figure, develop the natural 
shape functions for a linear element.

Xi Xj

j

i j

/

	 17.	 In the accompanying figure, the deflection of nodes 2 and 3 are 0.02 mm and 0.025 mm, 
respectively. What are the deflections at point A and point B, provided that linear elements 
were used in the analysis?

A

1 2 3 4

B

8 cm6 cm12 cm

6 cm 3 cm

1 2 4 53 6 7

Tbase = 1005C

2 cm 2 cm 2 cm 2 cm 2 cm 2 cm
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	 18.	 Consider the steel column depicted in the accompanying figure. Under the assumption of 
axial loading, and using linear elements, we determined that the downward vertical displace-
ments of the column at various floor–column connection points aree u1

u2

u3

u4

u5

u = e 0
0.03283
0.05784
0.07504
0.08442

u in

Using local shape functions, determine the deflections of points A and B, located in the 
middle of elements (3) and (4) respectively.

1

2

3

4

5

(1)

A

B

(2)

(3)

(4)

30,000 lb

25,000 lb

25,000 lb

25,000 lb

15 ft

15 ft

15 ft

15 ft

	 19.	 Determine the deflection of points A and B on the column in Problem 18 using natural 
coordinates.

	 20.	 A 20-ft-tall post is used to support advertisement signs at various locations along its height, 
as shown in the accompanying figure. The post is made of structural steel with a modulus of 
elasticity of E = 29 * 106 lb/in2. Not considering wind loading on the signs and using linear 
elements, we determined that the downward deflections of the post at the points of load 
application are d u1

u2

u3

u4

t = d 0
6.2069 * 10-4

8.7931 * 10-4

10.8621 * 10-4

t  in
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Determine the deflection of point A, located at the midpoint of the middle member, using 
(a) global shape functions, (b) local shape functions, and (c) natural shape functions.

5 ft

10 ft

5 ft

100 lb

150 lb

200 lb

1

2

A

3

4

Ac = 1 in2

Ac = 2 in2

Ac = 3 in2

	 21.	 Evaluate the integral in Problem 11 using Gauss–Legendre two-point formula.

	 22.	 Evaluate the given integral analytically and using Gauss–Legendre formula.

L
5

1

(x3 + 6x2 + 10)dx

	 23.	 Evaluate the given integral analytically and using Gauss–Legendre two- and three-point 
formulae.

L
8

-2

(3x4 + x2 - 7x + 10)dx

	 24.	 In Section 5.6 we mentioned that when the function being integrated is known, the Gauss–
Legndre formulae offer a more efficient way of evaluating an integral as compared to the 
trapezoidal method. The trapezoidal approximation of an integral deals with discrete data at 
uniformly spaced intervals and is computed from

L
b

a

f(x)dx ≈ h¢1
2

 y0 + y1 + y2 + g + yn - 2 + yn - 1 +
1
2

 yn≤
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The above equation is known as the trapezoidal rule, and h represents the spacing among 
data points, y0, y1, y2, c, and yn. For Problem 23, use h = 1 and generate 11 data points:  
y0 at x = -2, y1 at x = -1, c, and y10 at x = 8. Use the generated data and the trapezoidal 
rule to approximate the integral. Compare this result to the results of Problem 23.

y = f(x)

x

y1

yn - 1

y0

yn

h h

a b

	 25.	 Derive and plot the spatial derivatives for linear, quadratic, and cubic elements. Discuss the 
differences.

	 26.	 Temperature distribution along a section of a material is given by T0 = 80°C, T1 = 70°C, 
T2 = 62°C, T3 = 55°C with X0 = 0, X1 = 2 cm, X2 = 4 cm, X3 = 6 cm. Use single linear, 
quadratic, and cubic elements to approximate the given temperature distribution. Plot the 
actual data points and compare them to the linear, quadratic, and cubic approximations. Also, 
estimate the spatial derivative of the given data and compare it to the derivatives of the linear, 
quadratic, and cubic representations.

	 27.	 Use the isoparametric formulation to express the following information: T1 = 100°C, 
T2 = 605C with the corresponding global coordinates X1 = 2 cm, X2 = 5 cm. Show the 
transformation equations between the global coordinate, the local coordinate, and the natu-
ral coordinate.

	 28.	 Use the isoparametric formulation to express the following deflection information: 
U1 = 0.01 cm, U2 = 0.02 cm with the corresponding global coordinates X1 = 2 cm, 
X2 = 12 cm. Show the transformation equations between the global coordinate, the local 
coordinate, and the natural coordinate.
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C h a p t e r  6

Analysis 
of One-Dimensional Problems

The main objective of this chapter is to introduce the analysis of one-dimensional prob-
lems. Most often, a physical problem is not truly one-dimensional in nature; however, 
as a starting point, we may model the behavior of a system using one-dimensional 
approximation. This approach can usually provide some basic insight into a more com-
plex problem. If necessary, as a next step we can always analyze the problem using a 
two- or three-dimensional approach. This chapter first presents the one-dimensional 
Galerkin formulation used for heat transfer problems. This presentation is followed by 
an example demonstrating analysis of a one-dimensional fluid mechanics problem. The 
main topics discussed in Chapter 6 are

	 6.1	 Heat Transfer Problems

	 6.2	 A Fluid Mechanics Problem

	 6.3	 An Example Using ANSYS

	 6.4	 Verification of Results

6.1 H eat Transfer Problems

Recall that in Chapter 1 we discussed the basic steps involved in any finite element 
analysis; to refresh your memory, these steps are repeated here.

Preprocessing Phase

	 1.	 Create and discretize the solution domain into finite elements; that is, subdivide 
the problem into nodes and elements.

	 2.	 Assume shape functions to represent the behavior of an element; that is, assume 
an  approximate continuous function to represent the solution for a element. 
The  one-dimensional linear and quadratic shape functions were discussed in 
Chapter 5.
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	 3.	 Develop equations for an element. This step is the main focus of the current 
chapter. We will use the Galerkin approach to formulate elemental descriptions. 
In Chapter 4, we used the minimum potential energy theorem to generate finite 
element models for members under axial loading and for beam elements.

	 4.	 Assemble the elements to represent the entire problem. Construct the global stiff-
ness or conductance matrix.

	 5.	 Apply boundary conditions and loading.

Solution Phase

	 6.	 Solve a set of linear algebraic equations simultaneously to obtain nodal results, 
such as the temperature at different nodes or displacements.

Postprocessing Phase

	 7.	 Obtain other important information. We may be interested in determining the heat 
loss or stress in each element.

We now focus our attention on step 3 of the preprocessing phase. We formulate 
the conductance and the thermal load matrices for a typical one-dimensional fin ele-
ment. We considered a straight fin of a uniform cross section in Chapter 5. For the sake 
of convenience, the fin is shown again in Figure 6.1. The fin is modeled using three ele-
ments and four nodes. The temperature distribution along the element is interpolated 
using linear functions. The actual and the approximate piecewise linear temperature 
distribution along the fin are shown in Figure 6.1. We will concentrate on a typical ele-
ment belonging to the fin and formulate the conductance matrix and the thermal load 
matrix for such an element.

One-dimensional heat transfer in a straight fin is governed by the following heat 
equation, as given in any introductory text on heat transfer:

	 kA 
d2T
dX 2 - hpT + hpTf = 0	 (6.1)

(1)

2

Tbase

T

1 3 4

T�uid

X

B
as

e

(3)(2)

Figure 6.1  The actual and approximate 
temperature distribution for a fin of uniform 
cross section.
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Equation (6.1) is derived by applying the conservation of energy to a differential section 
of a fin, as shown in Figure 6.2. The heat transfer in the fin is accomplished by conduc-
tion in the longitudinal direction (x-direction) and convection to the surrounding fluid. 
In Eq. (6.1), k is the thermal conductivity, and A denotes the cross-sectional area of the 
fin. The convective heat transfer coefficient is represented by h, the perimeter of the fin 
is denoted by p, and Tf  is the temperature of the surrounding fluid. Equation (6.1) is 
subjected to a set of boundary conditions. First, the temperature of the base is generally 
known; that is,

	 T(0) = Tb	 (6.2)

L
x

dqconvection

A (cross-sectional area)

qx + dx
qx

W

Tf , h

Tb

dx

Figure 6.2  Derivation of the heat equation for a fin.

We start by applying the energy balance to a differential element

 qx = qx + dx + dqconvection

 qx = qx +
dqx

dx
 dx + dqconvection

Next we use Fourier’s law

qx = -kA 
dT
dx

and use Newton’s law of cooling,

 dqconvection = h(dAs)(T - Tf)

 0 =
dqx

dx
 dx + dqconvection =

d
dx

 ¢ -kA 
dT
dx

≤ dx + h(dAs)(T - Tf)

Writing dAs (differential surface area) in terms of the perimeter of the fin and dx and simplify-
ing, we are left with

-kA 
d2T

dx2
+ hp(T - Tf) = 0
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The other boundary condition deals with the heat loss at the tip of the fin. In general, 
there are three possibilities. One possibility is that the tip is long enough so that the 
temperature of the tip is equal to the temperature of the surrounding fluid temperature. 
This situation is represented by the condition

	 T(L) = Tf 	 (6.3)

The situation in which the heat loss from the tip of the fin may be neglected is repre-
sented by the condition

	 -kA 
dT
dX
`
X = L

= 0	 (6.4)

If the heat loss from the tip of the fin should be included in the analysis, then we have 
the condition

	 -kA 
dT
dX
`
X = L

= hA(TL - Tf)	 (6.5)

Equation (6.5) is obtained by applying the energy balance to the cross-sectional 
area of the tip. Equation (6.5) simply states that the heat conducted to the tip’s surface 
is convected away by the surrounding fluid. Therefore, we can use one of the bound-
ary conditions given by Eqs. (6.3)–(6.5) and the base temperature to model an actual 
problem. Before we proceed with the formulation of the conductance matrix and the 
thermal load matrix for a typical element, let us emphasize the following points: (1) The 
governing differential equation of the fin represents the balance of energy at any point 
along the fin and thus governs the balance of energy at all nodes of a finite element 
model as well, and (2) the exact solution of the governing differential equation (if pos-
sible) subject to two appropriate boundary conditions renders the detailed temperature 
distribution along the fin, and the finite element solution represents an approximation 
of this solution. We now focus on a typical element and proceed with the formulation of 
the conductance matrix, recalling that the temperature distribution for a typical element 
may be approximated using linear shape functions, as discussed in Chapter 5. That is,

	 T (e) = [Si Sj] bTi

Tj
r 	 (6.6)

where the shape functions are given by

	 Si =
Xj - X

/
 and Sj =

X - Xi

/
	 (6.7)

In order to make this derivation as general as possible and applicable to other type 
of problems with the same form of differential equations, let c1 = kA, c2 = -hp, 
c3 = hpTf, and Ψ = T. Thus, Eq. (6.1) can be written as

	 c1 
d2Ψ
dX2 + c2Ψ + c3 = 0	 (6.8)
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Recall from our introductory discussion of weighted residual methods in Chapter 1  
that when we substitute an approximate solution into the governing differential equa-
tion, the approximate solution does not satisfy the differential equation exactly, and thus, 
an error, or a residual, is produced. Also recall that the Galerkin formulation requires 
the error to be orthogonal to some weighting functions. Furthermore, the weighting 
functions are chosen to be members of the approximate solution. Here we will use the 
shape functions as the weighting functions because they are members of the approxi-
mate solution.

We can obtain the residual equations in one of two ways: using a nodal approach 
or an elemental approach. Consider three consecutive nodes, i, j, and k, belonging to 
two adjacent elements (e), and (e + 1), as shown in Figure 6.3. Elements (e) and (e + 1) 
both contribute to error at node j. Realizing this fact, we can write the residual equation 
for node j as

	  Rj = Rj
(e) + Rj

(e + 1) = L
Xj

Xi

S
j
(e) Jc1 

d2Ψ
dX2 + c2Ψ + c3 R (e)

 dX	

	  +  L
X

k

Xj

Sj
(e + 1)Jc1 

d2Ψ
dX2 + c2Ψ + c3 R (e + 1)

 dX = 0	 (6.9)

Pay close attention to the subscripts denoting node numbers and superscripts referring 
to element numbers while following the forthcoming derivation. Writing the residual or 
the error equations for each node of a finite element model leads to a set of equations 
of the form

	 e R1

R2

R3#
Rn

u = e 0
0
0
0
0

u 	 (6.10)

where R2 = R2
(1) + R2

(2), R3 = R3
(2) + R3

(3), and so on.
Let us now look at the contribution of each element to the nodal residual equa-

tions more closely. Expanding Eq. (6.9) for a number of nodes (1, 2, 3, 4, and so on), 
we get

	  R1 = L
X2

X1

S1
(1) Jc1 

d2Ψ
dX2 + c2Ψ + c3 R (1)

 dX = 0	 (6.11)

(e) (e + 1)

i j k
Figure 6.3  Elements (e) and (e + 1) 
and their respective nodes.
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	 R2 = R2
(1) + R2

(2) = L
X2

X1

S2
(1) Jc1 

d2Ψ
dX2 + c2Ψ + c3 R (1)

dX	

	 + L
X3

X2

S2
(2) Jc1 

d2Ψ
dX 2 + c2Ψ + c3 R (2)

dX = 0	 (6.12)

	 R3 = R3
(2) + R3

(3) = L
X3

X2

S3
(2) Jc1 

d2Ψ
dX2 + c2Ψ + c3 R (2)

dX	

	 + L
X4

X3

S3
(3) Jc1 

d2Ψ
dX 2 + c2Ψ + c3 R (3)

dX = 0	 (6.13)

	 R4 = R4
(3) + R4

(4) = L
X4

X3

S4
(3) Jc1 

d2Ψ
dX2 + c2Ψ + c3 R (3)

dX	

	 + L
X5

X4

S4
(4) Jc1 

d2Ψ
dX 2 + c2Ψ + c3 R (4)

dX = 0	 (6.14)

and so on. Note that element (2) contributes to Eqs. (6.12) and (6.13), and element 
(3) contributes to Eqs. (6.13) and (6.14), and so on. In general, an arbitrary ele-
ment (e) having nodes i and j contributes to the residual equations in the following 
manner:

	 Ri
(e) = L

Xj

Xi

Si
(e) Jc1 

d2Ψ
dX 2 + c2Ψ + c3 R (e)

dX	 (6.15)

	 Rj
(e) = L

Xj

Xi

Sj
(e) Jc1 

d2Ψ
dX 2 + c2Ψ + c3 R (e)

dX	 (6.16)

This approach leads to the elemental formulation. It is important to note that we have 
set up the residual equations for an arbitrary element (e). Moreover, the elemental 
matrices obtained in this manner are then assembled to present the entire problem, and 
the residuals equations are set equal to zero.

Evaluation of the integrals given by Eqs. (6.15) and (6.16) will result in the 
elemental formulation. But first, we will manipulate the second-order terms into 

element 2 contribution$++++++1++++%++++++++1++&

element 2 contribution$++++++1++++%++++++++1++&

element 3 contribution$++++++1++++%++++++++1++&

element 3 contribution$++++++1++++%++++++++1++&

element 4 contribution$++++++1++++%++++++++1++&
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first-order terms. This manipulation is accomplished by using the chain rule in the  
following manner:

	  
d

dX
 ¢Si 

dΨ
dX

≤ = Si  
d2Ψ
dX2 +

dSi

dX
 
dΨ
dX

	 (6.17)

	  Si 
d2Ψ
dX2 =

d
dX

 ¢Si 
dΨ
dX

≤ -
dSi

dX
 
dΨ
dX

	 (6.18)

Substituting Eq. (6.18) into Eq. (6.15), we obtain

	 R
i
(e) = L

X
j

Xi

¢c1¢ d
dX

 ¢Si 
dΨ
dX

≤ -
dSi

dX
  
dΨ
dX

≤ + Si(c2Ψ + c3)≤ dX	 (6.19)

We eventually need to follow the same procedure for Eq. (6.16) as well, but for 
now let us focus only on one of the residual equations. There are four terms in Eq. (6.19) 
that need to be evaluated:

	  Ri
(e) = L

Xj

Xi

c1 ¢ d
dX

¢Si
dΨ
dX

≤ ≤ dX + L
Xj

Xi

c1 ¢ -
dSi

dX
  
dΨ
dX

≤ dX	

	  + L
Xj

Xi

Si(c2Ψ) dX + L
Xj

Xi

Si c3 dX 	 (6.20)

Considering and evaluating the first term, we have

          L
Xj

Xi

c1 ¢ d
dX

¢Si 
dΨ
dX

≤ ≤ dX = c1Si 
dΨ
dX
`
X = Xj

-c1Si 
dΨ
dX
`
X = Xi

= -c1 
dΨ
dX
`
X = Xi

	 (6.21)

It is important to realize that in order for us to obtain the result given by Eq. (6.21), Si is 
zero at X = Xj and Si = 1 at X = Xi. The second integral in Eq. (6.20) is evaluated as

	 L
Xj

Xi

c1 ¢ -
dSi

dX
 
dΨ
dX

 ≤ dX = -
c1

/
 (Ψi - Ψj)	 (6.22)

To obtain the results given by Eq. (6.22), first substitute for Si =
Xj - X

/
 and 

Ψ = SiΨi + SjΨj =
Xj - X

/
 Ψi +

X - Xi

/
 Ψj and then proceed with evaluation of 

integral. Evaluation of the third and the fourth integrals in Eq. (6.20) yields

	  L
Xj

Xi

Si(c2Ψ) dX =
c2 /
3

 Ψi +
c2 /
6

 Ψj	 (6.23)

	  L
Xj

Xi

Sic3 dX = c3 
/
2

	 (6.24)
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In exactly the same manner, we can evaluate the second residual equation for node j, as 
given by Eq. (6.16). This evaluation results in the following equations:

	  L
Xj

Xi

c1 ¢ d
dX

¢Sj 
dΨ
dX

≤ ≤ dX = c1Sj 
dΨ
dX

2
X = Xj

-c1Sj 
dΨ
dX

2
X = Xi

= c1 
dΨ
dX

2
X = Xj

	 (6.25)

	  L
Xj

Xi

c1¢ -
dSj

dX
 
dΨ
dX

≤ dX = -
c1

/
 (-Ψi + Ψj) 	 (6.26)

	  L
Xj

Xi

Sj(c2 Ψ) dX =
c2 /
6

  Ψi +
c2 /
3

 Ψj 	 (6.27)

	  L
Xj

Xi

Sj c3 dX = c3 
/
2

	 (6.28)

It should be clear by now that evaluation of Eqs. (6.15) and (6.16) results in two 
sets of linear equations, as given by:

	  bRi

Rj
r = d -c1 

dΨ
dX

2
X = Xi

c1 
dΨ
dX

2
X = Xj

t -
c1

/
 c 1  -1

-1 1
d  bΨi

Ψj
r 	

	  +  
c2 /
6

 J2 1
1 2

R bΨi

Ψj
r +

c3 /
2

 b1
1
r 	 (6.29)

Note that from here on, for the sake of simplicity of presentation of conductance and 
load matrices, we will set the residual of an element equal to zero. However, as we men-
tioned earlier, it is important to realize that the residuals are set equal to zero after all 
the elements have been assembled. Therefore, we rewrite the Eq. (6.29) as

        d  c1 
dΨ
dX

2
X = Xi

-c1 
dΨ
dX

2
X = Xj

t +
c1

/
 c 1  -1

-1 1
d bΨi

Ψj
r +

-c2/
6

  J2 1
1 2

R bΨi

Ψj
r =

c3/
2

 b1
1
r 	 (6.30)

Combining the unknown nodal parameters, we obtain

	 d c1
dΨ
dX

2
X = Xi

-c1

dΨ
dX

2
X = Xj

t + 5 [K]c1

(e) + [K]c2

(e)6 bΨi

Ψj
r = 5F6 (e)

	 (6.31)

where

[K]c1

(e) =
c1

/
 J 1 -1

-1 1
R
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is the elemental conductance for a heat transfer problem (or, it could represent the stiff-
ness for solid mechanics problems), due to the c1 coefficient,

[K]c2

(e) =
-c2 /

6
 J2 1

1 2
R

is the elemental conductance (or, for a solid mechanics problem, the stiffness) due to 
the c2 coefficient, and

5F6 (e) =
c3 /
2

 b1
1
r

is the load matrix for a given element. The termsd c1 
dΨ
dX

 2
X = Xi

-c1 
dΨ
dX

 2
X = Xj

t
contribute to both the conductance (or, for a solid-mechanics problem, the stiffness) 
matrix and the load matrix. They need to be evaluated for specific boundary conditions. 
We shall undertake this task shortly. However, let us first write down the conductance 
matrix for a typical one-dimensional fin in terms of its parameters. The conductance 
matrices are given by

	 [K]c1

(e) =
c1

/
 J 1 -1

-1 1
R =

kA
/

 J 1 -1
-1 1

R 	 (6.32)

and

	 [K]c2

(e) =
-c2 /

6
 J2 1

1 2
R =

hp/
6

J2 1
1 2

R 	 (6.33)

In general, the elemental conductance matrix may consist of three terms: The 
[K]c1

(e) term is due to conduction heat transfer along the fin (through the cross-sectional 
area); the [K]c2

(e) term represents the heat loss through the top, bottom, and side sur-
faces (periphery) of an element of a fin; and, depending on the boundary condition of 
the tip, an additional elemental conductance matrix [K]B.C.

(e)  can exist. For the very last 
element containing the tip surface, and referring to the boundary condition given by 
Eq. (6.5), the heat loss through the tip surface can be evaluated as

	
d c1 

dΨ
dX

2
X = Xi

-c1 
dΨ
dX

2
X = Xj

t = d kA
dT
dX

2
X = Xi

-kA
dT
dX

2
X = Xj

t = b 0
hA(Tj - Tf)

r
	

(6.34)
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By rearranging and simplifying, we have

	 d kA
dT
dX

2
X = Xi

-kA
dT
dX

2
X = Xj

t = b 0
hA(Tj - Tf)

r = J0 0
0 hA

R bTi

Tj
r - b 0

hATf
r 	 (6.35)

	 [K]B.C.
(e) = J0 0

0 hA
R 	 (6.36)

The term - b 0
hATf

r  belongs to the right side of Eq. (6.31) with the thermal load matrix. 

It shows the contribution of the boundary condition of the tip to the load matrix:

	 5F6B.C.
(e) = b 0

hATf
r 	 (6.37)

To summarize, the conductance matrix for all elements, excluding the last element, is 
given by

	 [K](e) = b kA
/

J 1 -1
-1 1

R +
hp /

6
 J2 1

1 2
R r 	 (6.38)

If the heat loss through the tip of the fin must be accounted for, the conductance matrix 
for the very last element must be computed from the equation

	 [K](e) = b kA
/

 J 1 -1
-1 1

R +
hp /

6
 J2 1

1 2
R + J0 0

0 hA
R r 	 (6.39)

The thermal load matrix for all elements, excluding the last element, is given by

	 5F6 (e) =
hp /Tf

2
 b1

1
r 	 (6.40)

If the heat loss through the tip of the fin must be included in the analysis, the thermal 
load matrix for the very last element must be computed from the relation

	 5F6 (e) =
hp /Tf

2
 b 1

1
r + b 0

hATf
r 	 (6.41)

The next set of examples demonstrates the assembly of elements to present the entire 
problem and the treatment of other boundary conditions.

Example 6.1  A Fin Problem

Aluminum fins of a rectangular profile, shown in Figure 6.4, are used to remove heat 
from a surface whose temperature is 100°C. The temperature of the ambient air is 20°C. 
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The thermal conductivity of aluminum is 168 W/m # K (W/m # °C). The natural convective 
heat transfer coefficient associated with the surrounding air is 30 W/m2 # K (W/m2 # °C). 
The fins are 80 mm long, 5 mm wide, and 1 mm thick. (a) Determine the temperature dis-
tribution along the fin using the finite element model shown in Figure 6.4. (b) Compute 
the heat loss per fin.

We will solve this problem using two boundary conditions for the tip. First, let us 
include the heat transfer from the tip’s surface in the analysis. For elements (1), (2), and 
(3) in the situation, the conductance and thermal load matrices are given by

 [K](e) = b kA
/

 J 1 -1
-1 1

R +
hp/

6
 J2 1

1 2
R r

 5F6 (e) =
hp /Tf

2
 b1

1
r

Substituting for the properties, we obtain

 [K](e) = b (168) (5 * 1 * 10- 6)

20 * 10- 3 J 1 -1
-1 1

R +
30 * 12 * 20 * 10- 6

6
J2 1

1 2
R r

 5F6 (e) =
30 * 12 * 20 * 10- 6 * 20

2
 b1

1
r = b0.072

0.072
r

The conductance matrix for elements (1), (2), and (3) is

[K](1) = [K](2) = [K](3) = J 0.0444 -0.0408
-0.0408 0.0444

 R  
W
°C

1 2 3 54

Tbase = 1005C

T�uid = 205C, h = 30 W/m2 · K

(1) (2) (3) (4)

20 mm 20 mm 20 mm 20 mm
Figure 6.4  Finite element model of a 
straight fin.
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and the thermal-load matrix for elements (1), (2), and (3) is

5F6 (1) = 5F6 (2) = 5F6 (3) = b0.072
0.072

 rW

Including the boundary condition of the tip, the conductance and load matrices for 
element (4) are obtained in the following manner:

 [K](e) = b kA
/

 J 1 -1
-1 1

R +
hp /

6
 J2 1

1 2
R + J0 0

0 hA
R r

 [K](4) = J 0.0444 -0.0408
-0.0408 0.0444

R + J0 0
0 (30 * 5 * 1 * 10- 6)

R = J 0.0444 -0.0408
-0.0408 0.04455

R   
W
°C

 5F6 (e) =
hp /Tf

2
 b1

1
r + b 0

hATf
r

 5F6 (4) = b0.072
0.072

r + b 0
(30 * 5 * 1 * 10- 6 * 20)

r = b0.072
0.075

r  W

Assembly of the elements leads to the global conductance matrix [K](G) and the global 
load matrix 5F6(G):

[K](G) = E 0.0444 -0.0408 0 0 0
-0.0408 0.0444 + 0.0444  -0.0408 0 0

0  -0.0408 0.0444 + 0.0444  -0.0408 0
0 0  -0.0408 0.0444 + 0.0444  -0.0408
0 0 0  -0.0408 0.04455

U
5F6(G) = e 0.072

0.072 + 0.072
0.072 + 0.072
0.072 + 0.072

0.075

u
Applying the base boundary condition T1 = 100°C, we find that the final set of linear 
equations becomesE 1 0 0 0 0

-0.0408 0.0888 -0.0408 0 0
0 -0.0408 0.0888 -0.0408 0
0 0 -0.0408 0.0888 -0.0408
0 0 0 -0.0408 0.04455

U e T1

T2

T3

T4

T5

u = e 100
0.144
0.144
0.144
0.075

u
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We can obtain the nodal temperatures from the solution of the above equation. The 
nodal solutions are e T1

T2

T3

T4

T5

u = e 100
75.03
59.79
51.56
48.90

u  °C

Note that the nodal temperatures are given in °C and not in °K.
Because the cross-sectional area of the given fin is relatively small, we could have 

neglected the heat loss from the tip. Under this assumption, the elemental conductance 
and forcing matrices for all elements are given by:

 [K](1) = [K](2) = [K](3) = [K](4) = J 0.0444 -0.0408
-0.0408 0.0444

R   
W
°C

 5F6(1) = 5F6(2) = 5F6(3) = 5F6(4) = b0.072
0.072

r  W

Assembly of the elements leads to the global conductance matrix [K](G) and the global 
load matrix 5F6(G):

[K](G) = E 0.0444 -0.0408 0 0 0
-0.0408 0.0444 + 0.0444 -0.0408 0 0

0 -0.0408 0.0444 + 0.0444 -0.0408 0
0 0 -0.0408 0.0444 + 0.0444 -0.0408
0 0 0 -0.0408 0.0444

U
5F6(G) = e 0.072

0.072 + 0.072
0.072 + 0.072
0.072 + 0.072

0.072

u
Applying the base boundary condition T1 = 100°C, we find that the final set of linear 
equations becomesE 1 0 0 0 0

-0.0408 0.0888  -0.0408 0 0
0  -0.0408 0.0888  -0.0408 0
0 0  -0.0408 0.0888  -0.0408
0 0 0  -0.0408 0.0444

U e T1

T2

T3

T4

T5

u = e 100
0.144
0.144
0.144
0.072

u
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which has approximately the same solution as that calculated previously:e T1

T2

T3

T4

T5

u = e 100
75.08
59.89
51.74
49.19

u  °C

Compared to the previous results, the nodal temperatures are slightly higher because 
we neglected the heat loss through the end surface of the tip.

The total heat loss Q from the fin can be determined by summing the heat loss 
through individual elements:

	  Qtotal = ΣQ(e) 	 (6.42)

	  Q(e) = L
Xj

Xi

hp(T - Tf) dX 	

	  = L
Xj

Xi

hp((SiTi + SjTj) - Tf) dX = hp /¢ ¢Ti + Tj

2
≤ - Tf≤	 (6.43)

Applying the temperature results to Eqs. (6.42) and (6.43), we have

 Qtotal = Q(1) + Q(2) + Q(3) + Q(4)

 Q(1) = hp /¢ ¢Ti + Tj

2
≤ - Tf≤ = 30 * 12 * 20 * 10- 6¢ ¢ 100 + 75.08

2
≤ - 20≤ = 0.4862 W

 Q(2) = 30 * 12 * 20 * 10- 6¢ ¢ 75.08 + 59.89
2

≤ - 20≤ = 0.3418 W

 Q(3) = 30 * 12 * 20 * 10- 6¢ ¢ 59.89 + 51.74
2

≤ - 20≤ = 0.2578 W

 Q(4) = 30 * 12 * 20 * 10- 6¢ ¢ 51.74 + 49.19
2

≤ - 20≤ = 0.2193 W

 Qtotal = 1.3051 W

Example 6.1  Revisited

Using Example 6.1, we will show how to use Excel to set up and solve a one-dimensional 
heat transfer problem.

	 1.	 In cell A1 type Example 6.1, and in cells A3, A4, A5, A6, A7, and A8 type 
L= , P= , A= , k= , h = , and Tf= , respectively, as shown. After inputting the 
value of L in cell B3, select B3, and in the “Name Box” type L and hit the Return 
key. Similarly, after inputting the values of P, A, k, h, and Tf in cells B4, B5, B6, B7, 
and B8 select each cell and in the corresponding “Name Box” type P, A, k, h, and 
Tf, respectively. Make sure to hit the Return key after you name each variable. 
Also, create the table shown.
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	 2.	 Create the [K] and {F} matrices as shown. For example, select cell E19 and type

= (A*k ,L) + (h*P*L ,6)*2 . As another example, select cells H22:H23 and type

= h*P*L*Tf ,2
and while holding down the Ctrl and Shift keys, hit the Return key.

	 3.	 Next, create [A1], [A2], [A3], and [A4] matrices and name them Aelement1, 
Aelement2, Aelment3, and Aelement4, as shown. See Section 2.5, Equation (2.9),  
if you have forgotten what these matrices represent. First create [A1] and then to 
create [A2], [A3], and [A4], copy [A1], rows 25 through 27 into rows 29 through 31; 33  
through 35; and 37 through 39 and modify them accordingly. The nodal temperatures 
T1, T2, T3, T4, T5, and Ti and Tj are shown alongside the [A1], [A2], [A3], and [A4] 
matrices to aid us observe the contribution of node to its neighboring elements.
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	 4.	 Next, create the conductance matrix for each element (with their proper positions 
in the global matrix) and name them K1G, K2G, K3G, and K4G. For example, to 
create [K]1G, select B41:F45 and type

= MMULT(TRANSPOSE(Aelement1),MMULT(Kelement,Aelement1))

and while holding down the Ctrl and Shift keys hit the Return key. In a similar way, 
create [K]2G,  [K]3G, and [K]4G as shown.

	 5.	 The final global matrix is created next. Select the range B65:F69 and type 
		  = K1G + K2G + K3G + K4G

and while holding down the Ctrl and Shift keys hit, the Return key.

	 6.	 Create the load matrix as shown.
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	 7.	 Apply the boundary conditions. Copy the appropriate portion of the KG matrix 
and paste it in the range C77:G81 as values only and modify it as shown. Name 
the range KwithappliedBC. Similarly, create the corresponding load matrix in the 
range C83:C87 and name it FwithappliedBC.

	 8.	 Select the range C89:C93 and type

= MMULT(MINVERSE(KwithappliedBC),FwithappliedBC)

and while holding down the Ctrl and Shift keys, hit the Return key.

The complete Excel sheet is shown next.
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Example 6.2  A Composite Wall Problem

A wall of an industrial oven consists of three different materials, as depicted in Figure 6.5. 
The first layer is composed of 5 cm of insulating cement with a clay binder that has a 
thermal conductivity of 0.08 W/m # K. The second layer is made from 15 cm of 6-ply 
asbestos board with a thermal conductivity of 0.074 W/m # K (W/m # °C). The exterior 
consists of 10-cm common brick with a thermal conductivity of 0.72 W/m2 # K (W/m # °C). 
The inside wall temperature of the oven is 200°C, and the outside air is 30°C with a con-
vection coefficient of 40 W/m2 # K (W/m2 # °C). Determine the temperature distribution 
along the composite wall.
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This heat conduction problem is governed by the equation

	 kA 
d2T
dX2 = 0	 (6.44)

and is subjected to the boundary conditions T1 = 200°C and -kA dT
dX 0 X = 30 cm =  

hA(T4 - Tf). For this example, we compare Eq. (6.44) to Eq. (6.8), finding that 
c1 = kA, c2 = 0, c3 = 0, and Ψ = T. Thus, for element (1), we have

 [K](1) =
kA
/

J 1 -1
-1 1

R =
0.08 * 1

0.05
J 1 -1

-1 1
R = J 1.6 -1.6

-1.6 1.6
R   

W
°C

 5F6 (1) = b0
0
r  W

For element (2), we have

 [K](2) =
kA
/

J 1 -1
-1 1

R =
0.074 * 1

0.15
J 1 -1

-1 1
R = J 0.493 -0.493

-0.493 0.493
R   

W
°C

 5F6(2) = b0
0
r  W

X

k = 0.72 W/m · K

Tsurface = 2005C

1 2 3 4

(1) (2) (3)T1 = 2005C

k = 0.08 W/m · K

T�uid = 305C, h = 40 W/m2 · K

10 cm5 cm 15 cm

k = 0.074 W/m · K

Figure 6.5  A composite wall of an industrial oven.
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For element (3), including the boundary condition at node 4, we have

 [K](3) =
kA
/

J 1 -1
-1 1

R + J0 0
0 hA

R =
0.72 * 1

0.1
J 1 -1

-1 1
R + J0 0

0 (40 * 1)
R

 = J 7.2 -7.2
-7.2 47.2

R   
W
°C

 5F6(3) = b 0
hATf

r = b 0
(40 * 1 * 30)

r = b 0
1200

r  W

Assembling elements, we obtain

 [K](G) = D 1.6 -1.6 0 0
-1.6 1.6 + 0.493 -0.493 0

0 -0.493 0.493 + 7.2 -7.2
0 0 -7.2 47.2

T
 5F6(G) = d 0

0
0

1200

t
Applying the boundary condition at the inside furnace wall, we getD 1 0 0 0

-1.6 2.093  -0.493 0
0  -0.493 7.693  -7.2
0 0  -7.2 47.2

T d T1

T2

T3

T4

t = d 200
0
0

1200

t
and solving the set of linear equations, we have the following results:d T1

T2

T3

T4

t = d 200
162.3
39.9
31.5

t  °C

Note that this type of heat conduction problem can be solved just as easily using fun-
damental concepts of heat transfer without resorting to finite element formulation. The 
point of this exercise was to demonstrate the steps involved in finite element analysis 
using a simple problem.

6.2 A  Fluid Mechanics Problem

Example 6.3  A Fluid Mechanics Problem

In a chemical processing plant, aqueous glycerin solution flows in a narrow channel, as 
shown in Figure 6.6. The pressure drop along the channel is continuously monitored. The 
upper wall of the channel is maintained at 50°C, while the lower wall is kept at 20°C. 
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The variation of viscosity and density of the glycerin with the temperature is given in 
Table 6.1. For a relatively low flow, the pressure drop along the channel is measured to 
be 120 Pa/m. The channel is 3 m long, 9 cm high, and 40 cm wide. Determine the velocity 
profile and the mass flow rate of the fluid through the channel.

The laminar flow of a fluid with a constant viscosity inside a channel is governed by 
the balance between the net shear forces and the net pressure forces acting on a parcel 
of fluid. The equation of motion is

	 m
d2u
dy2 -

dp

dx
= 0	 (6.45)

subject to the boundary conditions u(0) = 0 and u(h) = 0. Here, u represents fluid 
velocity, m is the dynamic viscosity of the fluid, and 

dp
dx is the pressure drop in the direction 

of the flow. For this problem, when comparing Eq. (6.45) to Eq. (6.8), we find that 
c1 = m, c2 = 0, c3 = -dp

dx, and Ψ = u.

1

2

3

4

5

6

7

u

y

x

h

205C

505C

Figure 6.6  Laminar flow of aqueous glycerin solution through a channel.

Table 6.1  Properties of aqueous glycerin solution 
as a function of temperature

Temperature 
(°C)

Viscosity  
(kg/m # s)

Density 
(kg/m3)

20 0.90 1255

25 0.65 1253

30 0.40 1250

35 0.28 1247

40 0.20 1243

45 0.12 1238

50 0.10 1233
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Here, the viscosity of the aqueous glycerin solution varies with the height of the 
channel. We will use an average value of viscosity over each element when computing 
the elemental resistance matrices. The average values of viscosity and density associated 
with each element are given in Table 6.2.

Using the properties from Table 6.2, we can compute the elemental flow resistance 
matrices as

 [K](1) =
m

/
J 1 -1

-1 1
R =

0.775
1.5 * 10- 2 J 1 -1

-1 1
R = J 51.67 -51.67

-51.67 51.67
R  

kg

m2 # s

 [K](2) =
m

/
J 1 -1

-1 1
R =

0.525
1.5 * 10-2   J 1 -1

-1 1
R = J 35 -35

-35 35
R  

kg

m2 # s

 [K](3) =
m

/
J 1 -1

-1 1
R =

0.340
1.5 * 10-2   J 1 -1

-1 1
R = J 22.67 -22.67

-22.67 22.67
R  

kg

m2 # s

 [K](4) =
m

/
J 1 -1

-1 1
R =

0.240
1.5 * 10-2   J 1 -1

-1 1
R = J 16 -16

-16 16
R  

kg

m2 # s

 [K](5) =
m

/
J 1 -1

-1 1
R =

0.160
1.5 * 10- 2   J 1 -1

-1 1
R = J 10.67 -10.67

-10.67 10.67
R  

kg

m2 # s

 [K](6) =
m

/
J 1 -1

-1 1
R =

0.110
1.5 * 10-2   J 1 -1

-1 1
R = J 7.33 -7.33

-7.33 7.33
R  

kg

m2 # s

Since [K] represents resistance to flow, we have opted to use the term elemental flow-
resistance matrix instead of elemental stiffness matrix. Because the flow is fully devel-
oped, 

dp
dx is constant; thus, the forcing matrix has the same value for all elements:

5F6(1) = 5F6(2) = c = 5F6(5) = 5F6(6) =
-  

dp

dx
/

2
b1

1
r =

-  (-  120)(1.5 * 10-2)

2
b1

1
r = b0.9

0.9
r N

m2

Table 6.2  Properties of each element

Element
Average Viscosity 

(kg/m # s)
Average Density 

(kg/m3)

1 0.775 1254

2 0.525 1252

3 0.34 1249

4 0.24 1245

5 0.16 1241

6 0.11 1236
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The negative value associated with the pressure drop represents the decreasing nature 
of the pressure along the direction of flow in the channel. The global resistance matrix 
is obtained by assembling the elemental resistance matrices:

[K](G) = G 51.67 -51.67 0 0 0 0 0
-51.67 51.67 + 35 -35 0 0 0 0

0 -35 35 + 22.67 -22.67 0 0 0
0 0 -22.67 22.67 + 16 -16 0 0
0 0 0 -16 16 + 10.67 -10.67 0
0 0 0 0 -10.67 10.67 + 7.33 -7.33
0 0 0 0 0 -7.33 7.33

W
and the global forcing matrix is

5F6(G) = g 0.9
0.9 + 0.9
0.9 + 0.9
0.9 + 0.9
0.9 + 0.9
0.9 + 0.9

0.9

w
Applying the no-slip boundary conditions at the walls leads to the matrix

G 1 0 0 0 0 0 0
-51.67 86.67  -35 0 0 0 0

0  -35 57.67  -22.67 0 0 0
0 0  -22.67 38.67  -16 0 0
0 0 0  -16 26.67  -10.67 0
0 0 0 0  -10.67 18  -7.33
0 0 0 0 0 0 1

W g u1

u2

u3

u4

u5

u6

u7

w = g 0
1.8
1.8
1.8
1.8
1.8
0

w
The solution provides the fluid velocities at each node:

g u1

u2

u3

u4

u5

u6

u7

w = g 0
0.1233
0.2538
0.3760
0.4366
0.3588

0

w  m/s
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The mass flow rate through the channel can be determined from

	  mtotal
#

= Σm
#(e) 	 (6.46)

	  m
#(e) = L

yj

yi

ruW dy = L
yj

yi

rW(Siui + Sjuj) dy = rW/¢ui + uj

2
≤	 (6.47)

In Eq. (6.47), W represents the width of the channel and r is density of the fluid. The 
elemental and total mass flow rates are given by

 m
#(1) = rW/ ¢ui + uj

2
≤ = 1254 * 0.4 * 1.5 * 10- 2 *

0 + 0.1233
2

= 0.4638 kg/s

 m
#(2) = 1252 * 0.4 * 1.5 * 10- 2 *

0.1233 + 0.2538
2

= 1.4164 kg/s

 m
#(3) = 1249 * 0.4 * 1.5 * 10- 2 *

0.2538 + 0.3760
2

= 2.3598 kg/s

 m
#(4) = 1245 * 0.4 * 1.5 * 10- 2 *

0.3760 + 0.4366
2

= 3.0350 kg/s

 m
#(5) = 1241 * 0.4 * 1.5 * 10- 2 *

0.4366 + 0.3588
2

= 2.9612 kg/s

 m
#(6) = 1236 * 0.4 * 1.5 * 10- 2 *

0.3588 + 0
2

= 1.3304 kg/s

 mtotal
#

= 11.566 kg/s

6.3 A n Example Using ANSYS

Example 6.4  Revisited

A wall of an industrial oven consists of three different materials, as shown in Figure 6.4,  
repeated here as Figure 6.7. The first layer is composed of 5 cm of insulating cement with 
a clay binder that has a thermal conductivity of 0.08 W/m # K. The second layer is made 
from 15 cm of 6-ply asbestos board with a thermal conductivity of 0.074 W/m # K. The 
exterior consists of 10-cm common brick with a thermal conductivity of 0.72 W/m2 # K. 
The inside wall temperature of the oven is 200°C, and the outside air is 30°C with a 
convection coefficient of 40 W/m2 # K. Determine the temperature distribution along 
the composite wall.

The following steps demonstrate how to create one-dimensional conduction prob-
lems with convective boundary conditions in ANSYS. This task includes choosing appro-
priate element types, assigning attributes, applying boundary conditions, and obtaining 
results.

To solve this problem using ANSYS, we employ the following steps:

Enter the ANSYS program by using the Launcher.

Type HeatTran (or a file name of your choice) in the Jobname entry field of the 
dialog box, and pick Run to start the GUI.
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Create a title for the problem. This title will appear on ANSYS display windows 
to provide a simple way of identifying the displays:

utility menu: File S Change Title c

Define the element type and material properties:

main menu: Preprocessor S Element Type S Add/Edit/Delete
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Assign the cross-sectional area of the wall.

main menu: Preprocessor S Real Constants S Add/Edit/Delete

Assign the thermal conductivity values.

main menu: Preprocessor S Material Props S Material Models S
� Thermal S Conductivity S Isotropic
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From the Define Material Model Behavior window:

Material S New Model N

Now double-click on Isotropic.
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From the Define Material Model Behavior window:

Material S New Model N

Assign the thermal conductivity of the third layer by double-clicking on Isotropic 
again.
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From the Define Material Model Behavior window:

Material S New Model N

Assign the heat transfer coefficient by double-clicking on Convection or Film 
Coef.

ANSYS Toolbar: SAVE_DB

Set up the graphics area (i.e., workplane, zoom, etc.):

utility menu: Workplane S WP Settings c
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Toggle on the workplane by the following sequence:

utility menu: Workplane S Display Working Plane

Bring the workplane to view using the following sequence:

utility menu: PlotCtrls S Pan, Zoom, Rotate c

Create nodes by picking points on the workplane:

main menu: Preprocessor S Modeling S Create S Nodes

� S On Working Plane

On the workplane, pick the location of nodes and apply them:

[WP = 0,0]
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[WP = 0.05,0]

[WP = 0.2,0]

[WP = 0.3,0]

Create the node for the convection element:

[WP = 0.3,0]

OK
You may want to turn off the workplane now and turn on node numbering:

utility menu: Workplane S Display Working plane

utility menu: PlotCtrls S Numbering c

You may want to list nodes at this point in order to check your work:

utility menu: List S Nodes c
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Close

ANSYS Toolbar: SAVE_DB

Define elements by picking nodes:

main menu: Preprocessor S Modeling S Create S Elements

� S Auto Numbered S Thru Nodes

[node 1 and then node 2]

[use the middle button anywhere in the ANSYS graphics window to 
apply.]

OK
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Assign the thermal conductivity of the second layer (element), and then connect 
the nodes to define the element:

main menu: Preprocessor S Modeling S Create S Elements  

� S Element Attributes

main menu: Preprocessor S Modeling S Create S Elements 

� S Auto Numbered S Thru Nodes

[node 2 and then node 3]

[anywhere in the ANSYS graphics window]

OK

Assign the thermal conductivity of third layer (element), and then connect the 
nodes to define the element:

main menu: Preprocessor S Modeling S Create S Elements 

� S Element Attributes
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main menu: Preprocessor S Modeling S Create S Elements  

� S Auto Numbered S Thru Nodes

	 [node 3 and then node 4*]

	 [anywhere in the ANSYS graphics window]

	 OK

Create the convection link:

main menu: Preprocessor S Modeling S Create S Elements  

� S Element Attributes

*Press the OK key of the Multiple-Entities window and proceed.
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main menu: Preprocessor S Modeling S Create S Elements  

� S Auto Numbered S Thru Nodes

	 [node 4†and then 5‡]

	 OK

ANSYS Toolbar: SAVE_DB

Apply boundary conditions:

main menu: Solution S Define Loads S Apply  

� S Thermal S Temperature S On Nodes

[node 1]

[anywhere in the ANSYS graphics window]

†Press the OK key of the Multiple-Entities window.
‡Press the Next key of the Multiple-Entities window, and then OK.
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main menu: Solution S Define Loads S Apply  

� S Thermal S Temperature S On Nodes

	 [node 5*]

	 [anywhere in the ANSYS graphics window]

ANSYS Toolbar: SAVE_DB

*Press the Next key and then the OK key of the Multiple-Entities window and proceed.
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Solve the problem:

main menu: Solution S Solve S Current LS

OK

Close (the solution is done!) window.

Close (the/STAT Command) window.

For the postprocessing phase, obtain information such as nodal temperatures:

main menu: General Postproc S List Results S Nodal Solution
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Close

Exit ANSYS and save everything.

Toolbar: QUIT

6.4  Verification of Results

There are various ways to verify your findings. Consider the nodal temperatures of 
Example 6.2, as computed by ANSYS and displayed in Table 6.3.

In general, for a heat transfer problem under steady-state conditions, conservation 
of energy applied to a control volume surrounding an arbitrary node must be satisfied. 
Are the energies flowing into and out of a node balanced out? Let us use Example 6.2 
to demonstrate this important concept. The heat loss through each layer of the compos-
ite wall must be equal. Furthermore, heat loss from the last layer must equal the heat 
removed by the surrounding air. So,

 Q(1) = Q(2) = Q(3) = Q(4)

 Q(1) = kA 
∆T
/

= (0.08) (1)¢ 200 - 162.3
0.05

≤ = 60 W

 Q(2) = (0.074) (1)¢162.3 - 39.9
0.15

≤ = 60 W

 Q(3) = (0.72) (1)¢ 39.9 - 31.5
0.1

≤ = 60 W

Table 6.3  Nodal temperatures

Node Number Temperature (°C)

1 200

2 162.3

3 39.9

4 31.5

5 30
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and the heat removal by the fluid is given by

Q(4) = hA∆T = (40) (1) (31.5 - 30) = 60 W

For thermal elements, ANSYS provides information such as heat flow through each 
element. Therefore, we could have compared those values with the one we calculated 
above.

Another check on the validity of your results could have come from examining the 
slopes of temperatures in each layer. The first layer has a temperature slope of 754°C/m. 
For the second layer, the slope of the temperature is 816°C/m. This layer consists of a 
material with relatively low thermal conductivity and, therefore, a relatively large tem-
perature drop. The slope of the temperature in the exterior wall is 84°C/m. Because the 
exterior wall is made of a material with relatively high thermal conductivity, we expect 
the temperature drop through this layer not to be as significant as the other layers.

Now consider the fin problem in Example 6.1. For this problem, recall that all 
elements have the same length. We determined the temperature distribution and the 
heat loss from each element. Comparing heat loss results, it is important to realize that 
element (1) has the highest value because the greatest thermal potential exists at the 
base of the fin, and as the temperature of the fin drops, so does the rate of heat loss 
for each element. This outcome is certainly consistent with the results we obtained 
previously.

These simple problems illustrate the importance of checking for equilibrium con-
ditions when verifying results.

Summary

At this point you should:

	 1.	 know how to formulate conductance or resistance matrices, and be able to for
mulate load matrices for various one-dimensional problems.

	 2.	 know how to apply appropriate boundary conditions.
	 3.	 have a good understanding of the Galerkin and energy formulations of one-

dimensional problems.
	 4.	 know how to verify your results.
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Problems

	 1.	 Aluminum fins, similar to the ones in Example 6.1, with rectangular profiles are used to 
remove heat from a surface whose temperature is 1505C. The temperature of the ambient 
air is 20°C. The thermal conductivity of aluminum is 168 W/m # K. The natural convective 
coefficient associated with the surrounding air is 35 W/m2 # K. The fins are 150 mm long,  
5 mm wide, and 1 mm thick. (a) Determine the temperature distribution along a fin using five 
equally spaced elements. (b) Approximate the total heat loss for an array of 50 fins.

	 2.	 For the aluminum fins in Problem 1, determine the temperature of a point on the fin 50 mm 
from the base. Also compute the fraction of the total heat that is lost through this section of 
the fin.

	 3.	 A pin fin, or spine, is a fin with a circular cross section. An array of aluminum pin fins are used 
to remove heat from a surface whose temperature is 120°C. The temperature of the ambient 
air is 25°C. The thermal conductivity of aluminum is 168 W/m # K. The natural convective 
coefficient associated with the surrounding air is 30 W/m2 # K. The fins are 100 mm long 
and have respective diameters of 4 mm. (a) Determine the temperature distribution along 
a fin using five equally spaced elements. (b) Approximate the total heat loss for an array of 
100 fins.

	 4.	 A rectangular aluminum fin is used to remove heat from a surface whose temperature is 80°C. 
The temperature of the ambient air varies between 18°C and 25°C. The thermal conductivity 
of aluminum is 168 W/m # K. The natural convective coefficient associated with the surround-
ing air is 25 W/m2 # K. The fin is 100 mm long, 5 mm wide, and 1 mm thick. (a) Determine 
the temperature distribution along a fin using five equally spaced elements for both ambient 
conditions. (b) Approximate the total heat loss for an array of 50 fins for each ambient condi-
tion. (c) The exact temperature distribution and heat loss for a fin with a negligible heat loss 
at its tip is given by the following hyperbolic functions

 
T(x) - Tf

Tb - Tf
=

cosh JA hp

kAc

(L - x) R
cosh JA hp

kAc

(L) R
 Q = 2hpkAc atanhJA hp

kAc

(L) R ≤(Tb - Tf)

Compare your finite element results to the exact results.
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	 5.	 Evaluate the integral L
Xj

Xi

SihpTf dX  for a situation in which the heat transfer coefficient h 

varies linearly over a given element.
	 6.	 The front window of a car is defogged by supplying warm air at 90°F to its inner surface. 

The glass has a thermal conductivity of k = 0.8 W/m # °C with a thickness of approximately 
1/4 in. With the supply fan running at moderate speed, the heat transfer coefficient associated 
with the air is 50 W/m2 # K. The outside air is at a temperature of 20°F with an associated 
heat transfer coefficient of 100 W/m2 # K. Determine (a) the temperatures of the inner and 
outer surfaces of the glass and (b) the heat loss through the glass if the area of the glass is 
approximately 15 ft2.

	 7.	 A wall of an industrial oven consists of three different materials, as shown in the accompany-
ing figure. The first layer is composed of 10 cm of insulating cement with a thermal conduc-
tivity of 0.12 W/m # K. The second layer is made from 20 cm of 8-ply asbestos board with a 
thermal conductivity of 0.071 W/m # K. The exterior consists of 12-cm cement mortar with 
a thermal conductivity of 0.72 W/m2 # K. The inside wall temperature of the oven is 250°C, 
and the outside air is at a temperature of 35°C with a convection coefficient of 45 W/m2 # K. 
Determine the temperature distribution along the composite wall.

Tsurface = 2505C

X

k = 0.72 W/m · K

1 2 3 4

(1) (2) (3)T1 = 2505C

k = 0.12 W/m · K

T�uid = 355C, h = 45 W/m2 · K

12 cm20 cm10 cm

k = 0.071 W/m · K

	 8.	 Replace the temperature boundary condition of the inside wall of the oven in Problem 7 with 
air temperature of 4055C and an associated convection coefficient of 100 W/m2 # K. Show the 
contribution of this boundary condition to the conductance matrix and the forcing matrix of 
element (1). Also determine the temperature distribution along the composite wall.

	 9.	 The equation for the heat diffusion of a one-dimensional system with heat generation in a 
Cartesian coordinate system is

k 
02T

0X 2 + q
#

= 0
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The rate of thermal energy generation q # represents the conversion of energy from electrical, 
chemical, nuclear, or electromagnetic forms to thermal energy within the volume of a given 
system. Derive the contribution of q # to the load matrix. Consider a strip of heating elements 
embedded within the rear glass of a car producing a uniform heat generation at a rate of 
approximately 8000 W/m3. The glass has a thermal conductivity of k = 0.8 W/m # °C with a 
thickness of approximately 6 mm. The heat transfer coefficient associated with the 20°C air 
inside the back of the car is approximately 20 W/m2 # K. The outside air is at a temperature of 
-5°C with an associated heat transfer coefficient of 50 W/m2 # K. Determine the temperatures 
of the inner and outer surfaces of the glass.

	 10.	 Verify the evaluation of the integral given by Eq. (6.23):

L
Xj

Xi

Si(c2Ψ) dX =
c2 /
3

  Ψi +
c2 /
6

 Ψj

	 11.	 Verify the evaluation of the integral given by Eq. (6.26):

L
Xj

Xi

c1¢ -
dSj

dX
dΨ
dX

≤  dX = -
c1

/
(-Ψi + Ψj)

	 12.	 The deformation of an axial element of length / due to the change in its temperature is given 
by

dT = a/∆T

where dT is the change in the length of the element, a is the thermal expansion coefficient 
of the material, and ∆T  represents the temperature change. Formulate the contribution of 
thermal strains to the strain energy of an element. Also formulate the stiffness and the load 
matrices for such an element.

	 13.	 You are to size fins of a rectangular cross section to remove a total of 200 W from a 400@cm2 
surface whose temperature is to be kept at 80°C. The temperature of the surrounding air 
is 25°C, and you may assume that the natural convection coefficient value is 25 W/m2 # K. 
Because of restrictions on the amount of space, the fins cannot be extended more than  
100 mm from the hot surface. You may select from the following materials: aluminum, copper, 
or steel. In a brief report, explain how you came up with your final design.
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Two-Dimensional Elements

The objective of this chapter is to introduce the concept of two-dimensional shape func-
tions, along with two-dimensional elements and their properties. Natural coordinates 
associated with quadrilateral and triangular elements are also presented. We derive the 
shape functions for rectangular elements, quadratic quadrilateral elements, and triangu-
lar elements. Examples of two-dimensional thermal and structural elements in ANSYS 
are also presented. The main topics discussed in Chapter 7 include the following:

	 7.1	 Rectangular Elements

	 7.2	 Quadratic Quadrilateral Elements

	 7.3	 Linear Triangular Elements

	 7.4	 Quadratic Triangular Elements

	 7.5	 Axisymmetric Elements

	 7.6	 Isoparametric Elements

	 7.7	 Two-Dimensional Integrals: Gauss-Legendre Quadrature

	 7.8	 Examples of Two-Dimensional Elements in ANSYS

7.1 R ectangular Elements

In Chapter 6, we studied the analysis of one-dimensional problems. We investigated 
heat transfer in a straight fin. We used one-dimensional linear shape functions to 
approximate temperature distributions along elements and formulated the conduc-
tance matrix and the thermal load matrix. The resulting systems of equations, once 
solved, yielded the nodal temperatures. In this chapter, we lay the groundwork for the 
analysis of two-dimensional problems by first studying two-dimensional shape func-
tions and elements. To aid us in presenting this material, let us consider the straight fin 
shown in Figure 7.1. The dimensions of the fin and thermal boundary conditions are 
such that we cannot accurately approximate temperature distribution along the fin by 
a one-dimensional function. The temperature varies in both the X-direction and the 
Y-direction.
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At this point, it is important to understand that the one-dimensional solutions are 
approximated by line segments, whereas the two-dimensional solutions are represented 
by plane segments. This point is illustrated in Figure 7.1. A close-up look at a typical 
rectangular element and its nodal values is shown in Figure 7.2.

It is clear from examining Figure 7.2 that the temperature distribution over the ele-
ment is a function of both X- and Y-coordinates. We can approximate the temperature 
distribution for an arbitrary rectangular element by

	 T (e) = b1 + b2x + b3y + b4xy	 (7.1)

Tj

ji

m
n

X

Y

B
as

e

T

Ti Tm

Tn

Figure 7.1  Using rectangular elements 
to describe a two-dimensional temperature 
distribution.

T

x, y    Local coordinate system
X, Y  Global coordinate system

Y

X

i j

mn

x

y

Ti
Tj Tm

Tn

/

w

Figure 7.2  A typical rectangular element.
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Note that there are four unknowns (b1, b2, b3, b4) in Eq. (7.1), because a rectangular 
element is defined by four nodes: i, j, m, n. Also note that the function varies linearly 
along the edges of the element, and it becomes nonlinear inside the element (see also 
Problem 31). Elements with these types of characteristics are commonly referred to 
as bilinear elements. The procedure for deriving two-dimensional shape functions is 
essentially the same as that for one-dimensional elements. To obtain b1, b2, b3, and b4, 
we use the local coordinates x and y. Considering nodal temperatures, we must satisfy 
the following conditions:

	  T = Ti     at    x = 0 and    y = 0 	 (7.2)

	  T = Tj     at    x = / and    y = 0 	

	  T = Tm    at    x = / and    y = w 	

	  T = Tn     at    x = 0 and    y = w 	

Applying the nodal conditions given by Eq. (7.2) to Eq. (7.1) and solving for b1, b2, b3, 
and b4, we have

	  b1 = Ti  b2 =
1
/

 (Tj - Ti) 	

	  b3 =
1
w

 (Tn - Ti)  b4 =
1

/w

 (Ti - Tj + Tm - Tn)	 (7.3)

Substituting expressions given for b1, b2, b3, and b4 into Eq. (7.1) and regrouping para
meters will result in the temperature distribution for a typical element in terms of shape 
functions:

	 T (e) = [Si Sj Sm Sn] d Ti

Tj

Tm

Tn

t 	 (7.4)

The shape functions in the above expression are

	 Si  = ¢1 -
x
/
≤ ¢1 -

y

w

≤	 (7.5)

	 Sj  =
x
/

 ¢1 -
y

w

≤ 	

	 Sm =
xy

/w

	

	 Sn  =
y

w

 ¢1 -
x
/
≤ 	
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Uix

ji

mn

Uiy Ujy

Umy

Uny

Unx
Umx

Ujx

u(e) = SiUix + SjUjx + SmUmx + SnUnx
v(e) = SiUiy + SjUjy + SmUmy + SnUny

It should be clear that we can use these shape functions to represent the variation of any 
unknown variable Ψ over a rectangular region in terms of its nodal values Ψi, Ψj, Ψm, 
and Ψn. Thus, in general, we can write

	 Ψ(e) = [Si Sj Sm Sn] d Ψi

Ψj

Ψm

Ψn

t 	 (7.6)

For example, Ψ could represent a solid element displacement in a certain direction as 
shown in Figure 7.3.

Natural Coordinates

As was discussed in Chapter 5, natural coordinates are basically local coordinates in a 
dimensionless form. Moreover, as you may recall, most finite element programs perform 
element numerical integration by Gaussian quadratures, and as the limits of integration, 
they use an interval from -1 to 1. The origin of the local coordinate system x, y used ear-
lier coincides with the natural coordinates j = -1 and h = -1, as shown in Figure 7.4.

If we let j =
2x
/

- 1 and h =
2y

w

- 1, then the shape functions in terms of the 

natural coordinates j and h are

	 Si =
1
4

 (1 - j)(1 - h)	 (7.7)

	 Sj =
1
4

 (1 + j)(1 - h)	

	 Sm =
1
4

 (1 + j)(1 + h)	

	 Sn =
1
4

 (1 - j)(1 + h)	

Figure 7.3  A rectangular element used 
in formulating plane-stress problems.
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These shape functions have the same general basic properties as their one-dimensional 
counterparts. For example, Si has a value of 1 when evaluated at the coordinates of 
node i, but has a value of zero at all other nodes.

Alternatively, we could have obtained the expressions given in Eq. (7.7) by using a 
product of linear functions similar to the Lagrange functions as explained in Chapter 5, 
Section 5.3. For example, for node i, we select the functions such that their product will 
produce a value of zero at other nodes—namely, j, m, and n—and a value of unity at 
the given node i. Along the j–m side (j = 1) and n–m side (h = 1), so if we choose the 
product of functions (1 - j)(1 - h) then the product will produce a value of zero along 
j–m side and n–m side. We then evaluate a1, an unknown coefficient, such that when the 
shape function Si is evaluated at node i(j = -1) and (h = -1), it will produce a value 
of unity. That is

1 = a1(1 - j)(1 - h) = a1(1-(-1))(1-(-1)) 1  a1 =
1
4

7.2  Quadratic Quadrilateral Elements

The eight-node quadratic quadrilateral element is basically a higher order version of the 
two-dimensional four-node quadrilateral element. This type of element is better suited 
for modeling problems with curved boundaries. A typical eight-node quadratic element 
is shown in Figure 7.5. When compared to the linear elements, for the same number of 
elements, quadratic elements offer better nodal results. In terms of the natural coordi-
nates j and h, the eight-node quadratic element has the general form of

	 Ψ(e) = b1 + b2j + b3h + b4jh + b5j
2 + b6h

2 + b7j
2h + b8jh

2	 (7.8)

j

j

h

y

i

mn

(x = 0, y = w)
(j = -1, h = 1)

(j = -1, h = -1)
(x = 0, y = 0)

(j = 1, h = -1)
(x = /, y = 0)

(x = /, y = w)
(j = 1, h = 1)

(0, 0)

x

/

w

Figure 7.4  Natural coordinates used to describe a quadrilateral element.
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To solve for b1, b2, b3, c, b8, we must first apply the nodal conditions and create eight 
equations from which we can solve for these coefficients. Instead of using this laborious 
and difficult method, we will follow an alternative approach, which is demonstrated 
next.

In general, the shape function associated with each node can be represented in 
terms of the product of two functions F1 and F2:

	 S = F1(j, h)F2(j, h)	 (7.9)

For a given node, we select the first function F1 such that it will produce a value of zero 
when evaluated along the sides of the element that the given node does not contact. 
Moreover, the second function F2 is selected such that when multiplied by F1, it will 
produce a value of unity at the given node and a value of zero at other neighboring 
nodes. The product of functions F1 and F2 must also produce linear and nonlinear terms 
similar to the ones given by Eq. (7.8). To demonstrate this method, let us consider corner 
node m, with natural coordinates j = 1 and h = 1. First, F1 must be selected such that 
along the ij-side (h = -1) and in-side (j = -1), the function will produce a value of 
zero. We select

F1(j, h) = (1 + j)(1 + h)

which satisfies the condition. We then select

F2(j, h) = c1 + c2j + c3h

The coefficients in F2 should be selected such that when F2 multiplied by F1, they will 
produce a value of unity at the given node m, and a value of zero at the adjacent neigh-
boring nodes / and o. Evaluating Sm at node m should give Sm = 1 for j = 1 and h = 1; 

i

j

/

o

k

n

p

m

j

h

(-1, 1)

(-1, -1)
i j

/

o

k

n

p

m
(1, 1)

(1, -1)

Figure 7.5  Eight-node quadratic quadrilateral element.
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evaluating Sm at node / should give Sm = 0 for j = 1 and h = 0; and evaluating Sm at 
node o should give Sm = 0 for j = 0 and h = 1. Applying these conditions to Eq. (7.9), 
we obtain

 1 = (1 + 1)(1 + 1)(c1 + c2(1) + c3(1)) = 4c1 + 4c2 + 4c3

 0 = (1 + 1)(1 + 0)(c1 + c2(1) + c3(0)) = 2c1 + 2c2

 0 = (1 + 0)(1 + 1)(c1 + c2(0) + c3(1)) = 2c1 + 2c3

which results in c1 = -1
4, c2 = 1

4, and c3 = 1
4 with Sm = (1 + j)(1 + h)(-1

4 + 1
4 j + 1

4 h). 
The shape functions associated with the other corner nodes are determined in a similar 
fashion. The corner node shape functions are

	 Si  = -
1
4

 (1 - j)(1 - h)(1 + j + h)	 (7.10)

	 Sj  =
1
4

 (1 + j)(1 - h)(-1 + j - h)	

	 Sm =
1
4

 (1 + j)(1 + h)(-1 + j + h)	

	 Sn  = -
1
4

 (1 - j)(1 + h)(1 + j - h)	

Let us turn our attention to the shape functions for the middle nodes. As an 
example, we will develop the shape function associated with node o. First, F1 must be 
selected such that along the ij-side (h = -1), in-side (j = -1), and jm-side (j = 1), 
the function will produce a value of zero. We select

F1(j, h) = (1 - j)(1 + h)(1 + j)

Note that the product of the terms given by F1 will produce linear and nonlinear terms, 
as required by Eq. (7.8). Therefore, the second function F2 must be a constant; otherwise, 
the product of F1 and F2 will produce third-order polynomial terms, which we certainly 
do not want! So,

F2(j, h) = c1

Applying the nodal condition

So = 1 for j = 0 and h = 1

leads to

1 = (1 - 0)(1 + 1)(1 + 0)  c1  = 2c1

	 F1(j, h)	 F2(j, h)
$++++%++++&	$+++11++%++++11+&

	 F1(j, h)	 F2(j, h)
$+++11+++%++++11++&	 $%&
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resulting in c1 = 1
2 with So = 1

2 (1 - j)(1 + h)(1 + j) = So = 1
2 (1 + h)(1 - j2). Using 

a similar procedure, we can obtain the shape functions for the midpoint nodes k, /, 
and p. Thus, the midpoint shape functions are

	  Sk =
1
2

 (1 - h)(1 - j2)	

	  S/ =
1
2

 (1 + j)(1 - h2)	

	  So =
1
2

 (1 + h)(1 - j2)	

	  Sp =
1
2

 (1 - j)(1 - h2)	

(7.11)

EXAMPLE 7.1

We have used two-dimensional rectangular elements to model the stress distribution 
in a thin plate. The nodal stresses for an element belonging to the plate are shown in 
Figure 7.6. What is the value of stress at the center of this element?

The stress distribution for the element is

s(e) = [Si Sj Sm Sn] d si

sj

sm

sn

t
Stress

Y

X

i

0.25 in.

j

mn

x

y

2345 lb/in2

2220 lb/in2

1845 lb/in21925 lb/in2

0.15 in.

Figure 7.6  Nodal stresses for Example 7.1.
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where si, sj, sm, and sn are stresses at nodes i, j, m, and n respectively, and the shape 
functions are given by Eq. (7.5):

 Si = ¢1 -
x
/
≤ ¢1 -

y

w

≤ = ¢1 -
x

0.25
≤ ¢1 -

y

0.15
≤

 Sj =
x
/

 ¢1 -
y

w

≤ =
x

0.25
 ¢1 -

y

0.15
≤

 Sm =
xy

/w

=
xy

(0.25)(0.15)

 Sn =
y

w

 ¢1 -
x
/
≤ =

y

0.15
 ¢1 -

x
0.25

≤
For the given element, the stress distribution in terms of the local coordinates x and y 
is given by

 
 

s(e) =

Si$++++%++++&¢1 -
x

0.25
≤ ¢1 -

y

0.15
≤ si$%&

(2220)

 

+

Sj$+++%+++&
x

0.25
¢1 -

y

0.15
≤ sj$%&

(1925)

 

+

Sm$++%++&
xy

(0.25)(0.15)

sm$%&

(1845)

 
Sn$+++%+++&

+
y

0.15
¢1 -

x
0.25

≤ sn$%&

(2345)

We can compute the stress at any point within this element from the aforementioned 
equation. Here, we are interested in the value of the stress at the midpoint. Substituting 
x = 0.125 and y = 0.075 into the equation, we have

s(0.125,0.075) = 555 + 481 + 461 + 586 = 2083 lb/in2

Note that we could have solved this problem using natural coordinates. This approach 
may be easier because the point of interest is located at the center of the element j = 0 
and h = 0. The quadrilateral natural shape functions are given by Eq. (7.7):

 Si =
1
4

 (1 - j)(1 - h) =
1
4

 (1 - 0)(1 - 0) =
1
4

 Sj =
1
4

 (1 + j)(1 - h) =
1
4

 (1 + 0)(1 - 0) =
1
4

 Sm =
1
4

 (1 + j)(1 + h) =
1
4

 (1 + 0)(1 + 0) =
1
4

 Sn =
1
4

 (1 - j)(1 + h) =
1
4

 (1 - 0)(1 + 0) =
1
4

 s(0.125,0.075) =
1
4

 (2220) +
1
4

 (1925) +
1
4

 (1845) +
1
4

 (2345) = 2083 lb/in2
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380    Chapter 7    Two-Dimensional Elements

Thus, the stress at the midpoint of the rectangular element is the average of the nodal 
stresses.

EXAMPLE 7.2

Confirm the expression given for the quadratic quadrilateral shape function Sn.
Referring to the procedure discussed in Section 7.2, we can represent Sn by

Sn = F1(j, h)F2(j, h)

For the shape function Sn, F1 should be selected such that it will have a value of zero 
along the ij-side (h = -1) and the jm-side (j = 1) So, we choose

F1(j, h) = (1 - j)(1 + h)

Furthermore, F2 is given by

F2(j, h) = c1 + c2j + c3h

and the coefficients c1, c2, and c3 are determined by applying the following conditions:

 Sn = 1 for j = -1 and h = 1

 Sn = 0 for j = 0  and h = 1

 Sn = 0 for j = -1 and h = 0

Recall from our discussion in the previous section, the coefficients in F2 are selected such 
that when F2 is multiplied by F1, they will produce a value of unity at node n, and a value 
of zero at adjacent neighboring nodes o and p. After applying these conditions we get

 1 = 4c1 - 4c2 + 4c3

 0 = 2c1 + 2c3

 0 = 2c1 - 2c2

resulting in c1 = -1
4, c2 = -1

4, and c3 = 1
4, which is identical to the expression previously 

given for Sn. That is,

Sn = -
1
4

 (1 - j)(1 + h)(1 + j - h)

7.3 L inear Triangular Elements

A major disadvantage associated with using bilinear rectangular elements is that they 
do not conform to a curved boundary very well. In contrast, triangular elements, shown 
describing a two-dimensional temperature distribution in Figure 7.7, are better suited 
to approximate curved boundaries. A triangular element is defined by three nodes, as 
shown in Figure 7.8. Therefore, we can represent the variation of a dependent variable, 
such as temperature, over the triangular region by

	 T (e) = a1 + a2X + a3Y	 (7.12)
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X

Y

T

Ti

Tj

Tk

(Xi ,Yi)

(Xj ,Yj)

(Xk ,Yk)

Y

Tj

Tk

j
i

k
X

B
as

e

T

Ti

Figure 7.7  Using triangular elements to 
describe a two-dimensional temperature 
distribution.

Figure 7.8  A triangular element.

Considering the nodal temperatures as shown in Figure 7.8, we must satisfy the follow-
ing conditions:

	  T = Ti at X = Xi and Y = Yi 	 (7.13)

	  T = Tj at X = Xj and Y = Yj 	

	  T = Tk at X = Xk and Y = Yk	
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382    Chapter 7    Two-Dimensional Elements

Substituting nodal values into Eq. (7.12), we have

	  Ti = a1 + a2Xi + a3Yi 	 (7.14)

	  Tj = a1 + a2Xj + a3Yj 	

	  Tk = a1 + a2Xk + a3Yk	

Solving for a1, a2, and a3, we obtain

	  a1 =
1

2A
 [(XjYk - XkYj)Ti + (XkYi - XiYk)Tj + (XiYj - XjYi)Tk]	 (7.15)

	  a2 =
1

2A
 [(Yj - Yk)Ti + (Yk - Yi)Tj + (Yi - Yj)Tk] 	

	  a3 =
1

2A
 [(Xk - Xj)Ti + (Xi - Xk)Tj + (Xj - Xi)Tk] 	

where A is the area of the triangular element and is computed from the equation

	 2A = Xi(Yj - Yk) + Xj(Yk - Yi) + Xk(Yi - Yj)	 (7.16)

See Example 7.3 for how Eq. (7.16) is derived. Substituting for a1, a2, and a3 into 
Eq. (7.12) and grouping Ti, Tj, and Tk terms yields

	 T (e) = [Si Sj Sk] c Ti

Tj

Tk

s 	 (7.17)

where the shape functions Si, Sj, and Sk are

	  Si =
1

2A
 (ai + biX + diY) 	 (7.18)

	  Sj =
1

2A
 (aj + bjX + djY) 	

	  Sk =
1

2A
 (ak + bkX + dkY)	

and

ai = XjYk - XkYj bi = Yj - Yk di = Xk - Xj

aj = XkYi - XiYk bj = Yk - Yi dj = Xi - Xk

ak = XiYj - XjYi bk = Yi - Yj dk = Xj - Xi

Again, keep in mind that triangular shape functions have some basic properties, like 
other shape functions defined previously. For example, Si has a value of unity when 
evaluated at the coordinates of node i and has a value of zero at all other nodes. Or, as 
another example, the sum of the shape functions has a value of unity. That property is 
demonstrated by the equation

	 Si + Sj + Sk = 1	 (7.19)
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Natural (Area) Coordinates for Triangular Elements

Consider point P with coordinates (X, Y) inside the triangular region. Connecting this 
point to nodes, i, j, and k results in dividing the area of the triangle into three smaller 
areas A1, A2, and A3, as shown in Figure 7.9.

Let us now perform an experiment. We move point P from its inside position to 
coincide with point Q along the kj-edge of the element. In the process, the value of 
area A1 becomes zero. Moving point P to coincide with node i stretches A1 to fill in the 
entire area A of the element. Based on the results of our experiment, we can define a 
natural, or area, coordinate j as the ratio of A1 to the area A of the element so that its 
values vary from 0 to 1. Similarly, moving point P from its inside position to coincide 
with point M, along the ki-edge, results in A2 = 0. Moving point P to coincide with 
node j stretches A2 such that it fills the entire area of the element; that is, A2 = A. We 
can define another area coordinate h as the ratio of A2 to A, and its magnitude var-
ies from 0 to 1. Formally, for a triangular element, the natural (area) coordinates j, h, 
and l are defined by

	  j =
A1

A
	 (7.20)

	  h =
A2

A
	 `

	  l =
A3

A
	

It is important to realize that only two of the natural coordinates are linearly indepen-
dent, because

A1

A
+

A2

A
+

A3

A
=

A
A

= 1 = j + h + l

A3A2

A1

Q

M
N

P

X

Y

i

j

k

j = 0

j

j = 1

h = 0

l 
= 

1

l 
= 

0

l

h

h = 1

Figure 7.9  Natural (area) coordinates for a triangular element.
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For example, the l@coordinate can be defined in terms of j and h by

	 l = 1 - j - h	 (7.21)

We also can show that the triangular natural (area) coordinates are exactly identical to 
the shape functions Si, Sj, and Sk. That is,

	  j = Si 	 (7.22)

	  h = Sj 	

	  l = Sk	

As an example, consider j, which is the ratio of A1 to A:

	 j =
A1

A
=

1
2

 [(XjYk - XkYj) + X(Yj - Yk) + Y(Xk - Xj)]

1
2

 [Xi(Yj - Yk) + Xj(Yk - Yi) + Xk(Yi - Yj)]
	 (7.23)

Comparison of Eq. (7.23) to Eq. (7.18)* shows that j and Si are identical. Equation (7.23) 
was derived by describing triangular areas A1 and A in terms of the coordinates of their 
vertexes and using Eq. (7.16). Note that the coordinates of point P is designated by X 
and Y, because point P could lie anywhere within the area A.

EXAMPLE 7.3

Verify that the area of a triangular element can be computed from Equation (7.16).
As shown in the accompanying diagram, the area of triangle ABD is equal to one 

half of the area of the parallelogram ABCD—with AB and AD as its sides.

(Xi ,Yi)

(Xj ,Yj)

(Xk,Yk)

A

B

C

D

k

i

j

Y

X

e3
e2

e1

*Substitute for A, ai, bi, di in terms of nodal coordinates.
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The area of the parallelogram ABCD is equal to the magnitude of AB
S

* AD
S

; that is,

2A = �AB
S

* AD
S

�

where

 AB
S

= (Xj - Xi)e
u

1 + (Yj - Yi)e
u

2

 AD
S

= (Xk - Xi)e
u

1 + (Yk - Yi)e
u

2

and e
u

1, e
u

2, and e
u

3 are unit vectors in the shown directions. Carrying out the crossprod-
uct operation in terms of the components of vectors AB

S
 and AD

S
,

2A = � AB
S

* AD
S

� = � [(Xj - Xi)e
u

1 + (Yj - Yi)e
u

2] * [(Xk - Xi)e
u

1 + (Yk - Yi)e
u

2] �

Noting that e
u

1 * e
u

1 = 0, e
u

1 * e
u

2 = e
u

3, and e
u

2 * e
u

1 = -e
u

3,

2A = � (Xj - Xi)(Yk - Yi)e
u

3 - (Yj - Yi)(Xk - Xi)e
u

3 �

and simplifying and regrouping terms, we show that the relationship given by Eq. (7.16) 
is true. That is,

2A = Xi(Yj - Yk) + Xj(Yk - Yi) + Xk(Yi - Yj)

7.4  Quadratic Triangular Elements

The spatial variation of a dependent variable, such as temperature, over a region may 
be approximated more accurately by a quadratic function, such as

	 T (e) = a1 + a2X + a3Y + a4X
2 + a5XY + a6Y

2	 (7.24)

By now, you should understand how to develop shape functions. Therefore, the shape 
functions for a quadratic triangular element, shown in Figure 7.10, are given below with-
out proof. The shape functions in terms of natural coordinates are

	  Si = j(2j - 1) 	 (7.25)

	  Sj = h(2h - 1) 	

	  Sk = l(2l - 1) = 1 - 3(j + h) + 2(j + h)2	

	  S/ = 4jh 	

	  Sm = 4hl = 4h(1 - j - h) 	

	  Sn = 4jl = 4j(1 - j - h) 	

EXAMPLE 7.4

We have used two-dimensional triangular elements to model the temperature distribu-
tion in a fin. The nodal temperatures and their corresponding positions for an element 
are shown in Figure 7.11. (a) What is the value of temperature at X = 2.15 cm and 
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i

/ j

m

k

n

k

n
m

i / j

l = 1

j 
= 

1

j 
= 

0

l = 0

h =
 1

h =
 0

2
l = 1–

2
j 

= 1 –

2
h =

 1–

Figure 7.10  A quadratic triangular element.

(2.25, 0.75)

(2.40, 1.65)

(1.5, 1.0)

775C

675C

695C

X

Y

T

k

i

j

Figure 7.11  Nodal temperatures and coordinates for the element in Example 7.4.
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Y = 1.1 cm? (b) Determine the components of temperature gradients for this element. 
(c) Determine the location of 70°C and 75°C isotherms.

	 a.	 The temperature distribution inside the element is

T (e) = [Si Sj Sk]c Ti

Tj

Tk

s
where the shape functions Si, Sj, and Sk are

 Si =
1

2A
(ai + biX + diY)

 Sj =
1

2A
(aj + bjX + djY)

 Sk =
1

2A
(ak + bkX + dkY)

and

 ai = XjYk - XkYj = (2.4)(1.0) - (1.5)(1.65) = -0.075

 aj = XkYi - XiYk = (1.5)(0.75) - (2.25)(1.0) = -1.125

 ak = XiYj - XjYi = (2.25)(1.65) - (2.40)(0.75) = 1.9125

 bi = Yj - Yk = 1.65 - 1.0 = 0.65

 bj = Yk - Yi = 1.0 - 0.75 = 0.25

 bk = Yi - Yj = 0.75 - 1.65 =  -0.9

 di = Xk - Xj = 1.50 - 2.40 =  -0.9

 dj = Xi - Xk = 2.25 - 1.5 = 0.75

 dk = Xj - Xi = 2.40 - 2.25 = 0.15

and

 2A = Xi(Yj - Yk) + Xj(Yk - Yi) + Xk(Yi - Yj)

 2A = 2.25(1.65 - 1.0) + 2.40(1.0 - 0.75) + 1.5(0.75 - 1.65) = 0.7125

 Si =
1

2A
 (ai + biX + diY) =

1
0.7125

 (-0.075 + 0.65X - 0.9Y)

 Sj =
1

2A
 (aj + bjX + djY) =

1
0.7125

 (-1.125 + 0.25X + 0.75Y)

 Sk =
1

2A
 (ak + bkX + dkY) =

1
0.7125

 (1.9125 - 0.9X + 0.15Y)
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The temperature distribution for the element is

T =
69

0.7125
 (-0.075 + 0.65X - 0.9Y) +

67
0.7125

 (-1.125 + 0.25X + 0.75Y) +

77
0.7125

 (1.9125 - 0.9X + 0.15Y)

After simplifying, we have

T = 93.632 - 10.808X - 0.421Y

Substituting for coordinates of the point X = 2.15 and Y = 1.1 leads to 
T = 69.935C.

	 b.	 In general, the gradient components of a dependent variable Ψ(e) are computed 
from

	  
0Ψ(e)

0X
=

0
0X

 [SiΨi + SjΨj + SkΨk] 	

	  
0Ψ(e)

0Y
=

0
0Y

 [SiΨi + SjΨj + SkΨk] 	

	  d 0Ψ(e)

0X
0Ψ(e)

0Y

t =
1

2A
 Jbi bj bk

di dj dk
R c Ψi

Ψj

Ψk

s 	 (7.26)

It should be clear from examining Eq. (7.26) that the gradients have constant val-
ues. This property is always true for linear triangular elements. The temperature 
gradients are computed fromd 0T (e)

0X
0T (e)

0Y

t =
1

2A
 Jbi bj bk

di dj dk
R c Ti

Tj

Tk

s =
1

0.7125
 J 0.65 0.25  -0.9

-0.9 0.75 0.15
R c 69

67
77

s = b -10.808
-0.421

r
Note that differentiation of the simplified temperature equation 
(T = 93.632 - 10.808X - 0.421Y) directly would have resulted in exactly the 
same values.

	 c.	 The location of 70°C and 75°C isotherms can be determined from the fact that 
over a triangular element, temperature varies linearly in both X- and Y-directions. 
Thus, we can use linear interpolation to calculate coordinates of isotherms. First, 
let us focus on the 70°C constant temperature line. This isotherm will intersect the 
77°C-69°C@edge according to the relations

77 - 70
77 - 69

=
1.5 - X

1.5 - 2.25
=

1.0 - Y
1.0 - 0.75
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X

Y

T

(2.25, 0.75)

(2.40, 1.65)

(1.5, 1.0)
(1.69, 0.94)

775C

675C

(2.16, 0.78)

705C

695C

(2
.13

, 1
.45

)

755C

(1.68, 1.13)

Figure 7.12  The isotherms of the element in Example 7.4.

which results in the coordinates X = 2.16 cm and Y = 0.78 cm. The 70°C iso-
therm also intersects the 77°C-67°C@edge:

77 - 70
77 - 67

=
1.5 - X
1.5 - 2.4

=
1.0 - Y

1.0 - 1.65

These relations result in the coordinates X = 2.13 cm and Y = 1.45 cm. Simi-
larly, the location of the 75°C isotherm is determined using the 77°C-69°C@edge:

77 - 75
77 - 69

=
1.5 - X

1.5 - 2.25
=

1.0 - Y
1.0 - 0.75

which results in the coordinates X = 1.69 and Y = 0.94. Finally, along the 
77°C-67°C@edge, we have:

77 - 75
77 - 67

=
1.5 - X
1.5 - 2.4

=
1.0 - Y

1.0 - 1.65

These equations result in the coordinates X = 1.68 and Y = 1.13. The iso-
therms and their corresponding locations are shown in Figure 7.12.

7.5 Ax isymmetric Elements

There are special classes of three-dimensional problems whose geometry and loading 
are symmetrical about an axis, such as the z-axis, as shown in Figure 7.13. These three-
dimensional problems may be analyzed using two-dimensional axisymmetric elements. 
In this section, we discuss the triangular and rectangular axisymmetric elements, and 
in Chapters 9 and 10 will show finite element formulations employing these types of 
elements.
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Axisymmetric Triangular Elements

In Section 7.3, we developed the shape functions for a linear triangular element. Recall 
that the variation of any unknown variable Ψ over a triangular region in terms of its 
nodal values Ψi, Ψj, Ψk and the shape functions may be represented by

Ψ(e) = [Si Sj Sk]c Ψi

Ψj

Ψk

s
where

 Si =
1

2A
 (ai + biX + diY)

 Sj =
1

2A
 (aj + bjX + djY)

 Sk =
1

2A
 (ak + bkX + dkY)

We now express the above shape functions in terms of r- and z-coordinates—coordi-
nates that are typically used for axisymmetric triangular elements. A typical axisym-
metric triangular element and its coordinates is shown in Figure 7.14.

Figure 7.13  Examples of axisymmetric 
elements.
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Substituting for the spatial coordinates X and Y in terms of r- and z-coordinates 
and the nodal coordinates Xi, Yi, Xj, Yj and Xk, Yk in terms of Ri, Zi, Rj, Zj and Rk, Zk 
results in the following set of shape functions

	  Si =
1

2A
 (ai + bir + diz) 	 (7.27)

	  Sj =
1

2A
 (aj + bjr + djz) 	

	  Sk =
1

2A
 (ak + bkr + dkz)	

where

 ai = RjZk - RkZj  bi = Zj - Zk  di = Rk - Rj

 aj = RkZi - RiZk  bj = Zk - Zi  dj = Ri - Rk

 ak = RiZj - RjZi  bk = Zi - Zj  dk = Rj - Ri

Axisymmetric Rectangular Elements

In Section 7.1 we discussed the rectangular element and derived the following shape 
functions.

z

r

k

i

jZk

Zi

Zj

Ri

Rk

Rj

Figure 7.14  An axisymmetric triangular element.
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 Si = ¢1 -
x
/
≤ ¢1 -

y

w

≤  Sj =
x
/

 ¢1 -
y

w

≤
 Sm =

xy

/w

   Sn =
y

w

 ¢1 -
x
/
≤

Let’s now consider the axisymmetric rectangular element shown in Figure 7.15. The 
relationship between the local coordinates x and y and the axisymmetric coordinates r 
and z is shown in Figure 7.15.

Substituting for x in terms of r and for y in terms of z, and making use of the fol-
lowing relationships among the nodal coordinates, we get

r = Ri + x  or  x = r - Ri

and

	  z = Zi + y  or  y = z - Zi	

Si = ¢1 -
x
/
≤ ¢1 -

y

w

≤ = £1 -
r - Ri

/
≥£1 -

z - Zi

w

≥ = £ / - (r - Ri)

/
≥£w - (z - Zi)

w

≥	 (7.28)

Realizing that / = Rj - Ri and w = Zn - Zi, we can simplify Eq. (7.28) to obtain the 
shape function Si in terms of r and z coordinates in the following manner:

b bx y

Zn

z

y

x

r

Zi

w

Ri

Rj

n m

i j

Figure 7.15  An axisymmetric rectangular element.
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Si = £ /$+%+&
Rj - Ri

 

- (r - Ri)

/
≥£ w$+%+&

Zn - Zi

 

- (z - Zi)
w

≥ = ¢Rj - r

/
≤ ¢Zn - z

w

≤
Similarly, we can obtain the other shape functions. Thus, the shape functions for an 
axisymmetric rectangular element are given by

	  Si = ¢Rj - r

/
≤ ¢Zn - z

w

≤	 (7.29)

	  Sj = ¢ r - Ri

/
≤ ¢Zn - z

w

≤	

	  Sm = ¢ r - Ri

/
≤ ¢ z - Zi

w

≤ 	

	  Sn = ¢Rj - r

/
≤ ¢ z - Zi

w

≤ 	

We discuss the application of these elements in solving heat transfer and solid mechanics 
problems in Chapters 9 and 10.

EXAMPLE 7.5

We have used axisymmetric rectangular elements to model temperature distribution in a hol-
low cylinder. The values of nodal temperature for an element belonging to the cylinder are 
shown in Figure 7.16. What is the value of the temperature at r = 1.2 cm and z = 1.4 cm?

2 cm

2 cm

1 cm

0.5 cm

z

r

n

i

m

j

50 C 47 C

44 C48 C

Figure 7.16  Nodal temperatures and coordinates for the element in Example 7.5.
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The temperature distribution for the element is given by

T (e) = [Si Sj Sm Sn]d Ti

Tj

Tm

Tn

t
where Ti, Tj, Tm, and Tn are the values of temperature at nodes i, j, m, and n respectively. 
Substituting for the coordinates of the point in the shape functions, we get

 Si = ¢Rj - r

/
≤ ¢Zn - z

w

≤ = ¢ 2 - 1.2
1.5

≤ ¢ 2 - 1.4
1

≤ = 0.32

 Sj = ¢ r - Ri

/
≤ ¢Zn - z

w

≤ = ¢ 1.2 - 0.5
1.5

≤ ¢2 - 1.4
1

≤ = 0.28

 Sm = ¢ r - Ri

/
≤ ¢ z - Zi

w

≤ = ¢ 1.2 - 0.5
1.5

≤ ¢ 1.4 - 1
1

≤ = 0.19

 Sn = ¢Rj - r

/
≤ ¢ z - Zi

w

≤ = ¢ 2 - 1.2
1.5

≤ ¢1.4 - 1
1

≤ = 0.21

The temperature at the given point is

T = (0.32)(48) + (0.28)(44) + (0.19)(47) + (0.21)(50) = 47.11°C

7.6 I soparametric Elements

As we discussed in Chapter 5, Section 5.5, when we use a single set of parameters (a set 
of shape functions) to define the unknown variables u, v, T, and so on, and use the same 
parameters (the same shape functions) to express the geometry, we are using an isopara-
metric formulation. An element expressed in such a manner is called an isoparametric 
element. Let us turn our attention to the quadrilateral element shown in Figure 7.17. Let 
us also consider a solid mechanics problem, in which a body undergoes a deformation. 
Using a quadrilateral element, the displacement field within an element belonging to 
this solid body can be expressed in terms of its nodal values as

	  u(e) = Si Uix + Sj Ujx + Sm Umx + Sn Unx	 (7.30)

	  v(e) = Si Uiy + Sj Ujy + Sm Umy + Sn Uny	

We can write the relations given by Eq. (7.30) in matrix form:

	 bu
v
r = JSi 0 Sj 0 Sm 0 Sn 0

0 Si 0 Sj 0 Sm 0 Sn
R h Uix

Uiy

Ujx

Ujy

Umx

Umy

Unx

Uny

x 	 (7.31)
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A(j, h)

Uix

j

j

h

i

mn

(-1, -1)

(1, -1)

(1, 1)
(-1, 1)

Uiy Ujy

Umy

Uny

Unx
Umx

Ujx

Figure 7.17  A quadrilateral element used in formulating plane-stress problems.

Note that using isoparametric formulation, we can use the same shape functions to 
describe the position of any point, such as A, within the element by the equations

	  x = Sixi + Sjxj + Smxm + Snxn	 (7.32)

	  y = Siyi + Sjyj + Smym + Snyn 	

As you will see in Chapter 10, the displacement field is related to the components 
of strains (exx = 0u

0x, eyy = 0v
0y, and gxy = 0u

0y + 0v
0x) and, subsequently, to the nodal displace-

ments using shape functions. In deriving the elemental stiffness matrix from strain energy, 
we need to take the derivatives of the components of the displacement field with respect 
to the x- and y-coordinates, which in turn means taking the derivatives of the appropri-
ate shape functions with respect to x and y. At this point, keep in mind that the shape 
functions are expressed in terms of j and h Eq. (7.7). Thus, in general, it is necessary to 
establish relationships that allow the derivatives of a function f(x,y) to be taken with 
respect to x and y and to express them in terms of derivatives of the function f(x,y) with 
respect to j and h. This point will become clear soon. Using the chain rule, we can write

	
0f(x,y)

0j
 =

0f(x,y)

0x
 
0x
0j

+
0f(x,y)

0y
 
0y

0j
	

	
0f(x,y)

0h
 =

0f(x,y)

0x
 
0x
0h

+
0f(x,y)

0y
 
0y

0h
	 (7.33)

Expressing Eq. (7.33) in matrix form, we have

	 d 0f(x,y)

0j
0f(x,y)

0h

t =

[J]
$++%++&D 0x

0j
0y

0j
0x
0h

0y

0h

T d 0f(x,y)

0x
0f(x,y)

0y

t 	 (7.34)
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Table 7.1  Two-dimensional shape functions

Linear Rectangular

j

j

h

y

i

mn

(x = 0, y = w)
(j = -1, h = 1)

(j = -1, h = -1)
(x = 0, y = 0)

(j = 1, h = -1)
(x = /, y = 0)

(x = /, y = w)
(j = 1, h = 1)

(0, 0)

x

/

w

Si = ¢1 -
x
/
≤ ¢1 -

y

w

≤
Sj =

x
/
¢1 -

y

w

≤
Sm =

xy

/w

Sn =
y

w

¢1 -
x
/
≤

Si =
1
4

 (1 - j)(1 - h)

Sj =
1
4

 (1 + j)(1 - h)

Sm =
1
4

 (1 + j)(1 + h)

Sn =
1
4

 (1 - j)(1 + h)

Quadratic Quadrilateral

i

j

/

o

k

n

p

m

j

h

(-1, 1)

(-1, -1)
i j

/

o

k

n

p

m
(1, 1)

(1, -1)

Si = -
1
4

 (1 - j)(1 - h)(1 + j + h)

Sj =
1
4

 (1 + j)(1 - h)(-1 + j - h)

Sm =
1
4

 (1 + j)(1 + h)(-1 + j + h)

Sn = -
1
4

 (1 - j)(1 + h)(1 + j - h)

Sk =
1
2

 (1 - h)(1 - j2)

S/ =
1
2

 (1 + j)(1 - h2)

So =
1
2

 (1 + h)(1 - j2)

Sp =
1
2

 (1 - j)(1 - h2)

where the J matrix is referred to as the Jacobian of the coordinate transformation. The 
relationships of Eq. (7.34) can be also presented as

	 d 0f(x,y)

0x
0f(x,y)

0y

t = [J]- 1d 0f(x,y)

0j
0f(x,y)

0h

t 	 (7.35)

For a quadrilateral element, the J matrix can be evaluated using Eq. (7.32) and (7.7). 
This evaluation is left as an exercise for you; see problem 7.24. We will discuss the deriva-
tion of the element stiffness matrix using the isoparametric formulation in Chapter 10. 
For the sake of convenience, the results of Sections 7.1 to 7.6 are summarized in Table 7.1.
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7.7 �T wo-Dimensional Integrals: Gauss–Legendre Quadrature

As we discussed in Chapter 5, most finite element programs perform numerical integra-
tion for elements by Gaussian quadratures, and as the limits of integration, they use an 
interval from -1 to 1. We now extend the Gauss–Legendre quadrature formulation to 
two-dimensional problems as follows:

	 I = L
1

- 1 L
1

- 1

f(j, h)dj dh ≅ L
1

- 1

Jan

i = 1
wi f(ji, h) Rdh ≅ a

n

i = 1
a

n

j = 1
wiwj f(ji, hj)	 (7.36)

The relationships of Eq. (7.36) should be self-evident. Recall that the weighting factors 
and the sampling points are given in Chapter 5, Table 5.2.

EXAMPLE 7.6

To demonstrate the steps involved in Gauss–Legendre quadrature computation, let us 
consider evaluating the integral

I = L
2

0 L
2

0

(3y2 + 2x)dx dy

Table 7.1  Continued

Linear Triangular

A3A2

A1

Q

M
N

P

X

Y

i

j

k

j = 0

j

j = 1

h = 0
l 

= 
1

l 
= 

0

l

h

h = 1

 Si =
1

2A
 (ai + biX + diY)

 Sj =
1

2A
 (aj + bjX + djY)

 Sk =
1

2A
 (ak + bkX + dkY)

ai = XjYk - XkYj bi = Yj - Yk di = Xk - Xj

aj = XkYi - XiYk bj = Yk - Yi dj = Xi - Xk

ak = XiYj - XjYi bk = Yi - Yj dk = Xj - Xi

Quadratic Triangular

i
/ j

m

k

n

k

n
m

i / j

l = 1

j 
= 

1

j 
= 

0

l = 0
h =

 1

h =
 0

2
l = 1–

2
j 

= 1 –

2
h =

 1–

 Si = j(2j - 1)

 Sj = h(2h - 1)

 Sk = l(2l - 1) = 1 - 3(j + h) + 2(j + h)2

 Sl = 4jh

 Sm = 4hl = 4h(1 - j - h)

 Sn = 4jl = 4j(1 - j - h)
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As you know, the given integral can be evaluated analytically as

 I = L
2

0 L
2

0

(3y2 + 2x)dx dy = L
2

0

JL2

0

(3y2 + 2x) dxR  dy

 = L
2

0

[(3y2x + x2)]0
2 dy = L

2

0

(6y2 + 4) dy = 24

We now evaluate the integral using Gauss–Legendre quadrature. We begin by changing 
y- and x-variables into j and h, using the relationships of Eq. (5.45):

 x = 1 + j  and  dx = dj

 y = 1 + h  and  dy = dh

Thus, the integral I can be expressed by

I = L
2

0 L
2

0

(3y2 + 2x)dx dy =L
1

- 1 L
1

- 1

[3(1 + h)2 + 2(1 + j)]dj dh

Using the two-point sampling formula, we have

 I ≅ a
n

i = 1
a

n

j = 1
wiwj f(ji, hj)

 I ≅ a
2

i = 1
a

2

j = 1
wiwj[3(1 + hj)

2 + 2(1 + ji)]

To evaluate the summation, we start with i = 1, while changing j from 1 to 2, and we 
repeat the process with i = 2, while changing j from 1 to 2:

 I ≅ [(1)(1)[3(1 + (-0.577350269))2 + 2(1 + (-0.577350269))]

 + (1)(1)[3(1 + (0.577350269))2 + 2(1 + (-0.577350269))]]

 + [(1)(1)[3(1 + (-0.577350269))2 + 2(1 + (0.577350269))]

 + (1)(1)[3(1 + (0.577350269))2 + 2(1 + (0.577350269))]] = 24.000000000

7.8 Ex amples of Two-Dimensional Elements in ANSYS

ANSYS offers many two-dimensional elements that are based on linear and quadratic 
quadrilateral and triangular shape functions. We will discuss the formulation of two-
dimensional thermal- and solid-structural problems in detail in Chapters 9 and 10. For now, 
consider some examples of two-dimensional structural-solid and thermal-solid elements.

Plane35  is a six-node triangular thermal solid element. The element has one 
degree of freedom at each node, the temperature. Convection and heat fluxes 
may be input as surface loads at the element faces. The output data for this ele-
ment include nodal temperatures and element data, such as thermal gradients 
and thermal fluxes.
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Plane77  is an eight-node quadrilateral element used in modeling two-dimensional 
heat conduction problems. It is basically a higher order version of the two-
dimensional, four-node quadrilateral element PLANE55. This element is more 
capable of modeling problems with curved boundaries. At each node, the element 
has a single degree of freedom, the temperature. Output data include nodal tem-
peratures and element data, such as thermal gradient and thermal flux components.

Plane182  is a four-node element used for 2-D modeling of solid structures. The 
element can be used as either a plane element (plane stress, plane strain, or gen-
eralized plane strain) or an axisymmetric element.

Plane183  can be used as a six-node (triangular) or eight-node (quadrilateral) 
structural solid element. It has quadratic displacement behavior and is well suited 
for modeling irregular shapes. The element is defined by either six or eight nodes 
having two degrees of freedom at each node: translations in the nodal x and y 
directions. The element may be used as a plane element (plane stress, plane strain, 
and generalized plane strain) or as an axisymmetric element. The KEYOPT(1) is 
set to 1 for triangular shaped elements.

Finally, it may be worth noting that although you generally achieve better 
results and greater accuracy with higher order elements, these elements require 
more computational time. This time requirement is because numerical integra-
tion of elemental matrices is more involved.

Summary

At this point you should

	 1.	 have a good understanding of the linear two-dimensional rectangular and trian-
gular shape functions and of elements, along with their properties and limitations.

	 2.	 have a good understanding of the quadratic two-dimensional triangular and quad-
rilateral elements, as well as shape functions, along with their properties and their 
advantages over linear elements.

	 3.	 know why it is important to use natural coordinate systems.
	 4.	 know what is meant by axisymmetric element.
	 5.	 know what is meant by isoparametric element and formulation.
	 6.	 know how to use Gauss–Legendre quadrature to evaluate two-dimensional integrals.
	 7.	 know examples of two-dimensional elements in ANSYS.
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Problems

	 1.	 We have used two-dimensional rectangular elements to model temperature distribution in 
a thin plate. The values of nodal temperatures for an element belonging to such a plate are 
given in the accompanying figure. Using local shape functions, what is the temperature at the 
center of this element?

1025F

1055F

1125F

1085F

Temperature

Y

X

i j

mn

x

y

0.15 in

0.3 in

	 2.	 Determine the temperature at the center of the element in Problem 1 using natural shape 
functions.

	 3.	 For a rectangular element, derive the x- and y-components of the gradients of a dependent 
variable Ψ.

	 4.	 Determine the components of temperature gradients at the midpoint of the element in 
Problem 1. Knowing that the element has a thermal conductivity of k = 100 Btu/hr # ft #  5F, 
compute the x- and y-components of the heat flux.

	 5.	 Compute the location of the 1045F and 1065F isotherms for the element in Problem 1. Also, 
plot these isotherms.

	 6.	 Two-dimensional triangular elements have been used to determine the stress distribution 
in a machine part. The nodal stresses and their corresponding positions for a triangular ele-
ment are shown in the accompanying figure. What is the value of stress at x = 2.2 cm and 
y = 1.2 cm?

	 7.	 Plot the 8.1 GPa and 7.88 GPa stress contour lines for an element of the machine part in 
Problem 6.

	 8.	 For a quadratic quadrilateral element, confirm the expressions given for the shape functions 
Si and Sj.
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	 9.	 For a quadratic quadrilateral element, confirm the expressions given for the shape functions 
Sk and S/.

	 10.	 For triangular elements, the integral that includes products of area coordinates may be evalu-
ated using the factorial relationship shown below:

LA
jahblc dA =

a!b!c!
(a + b + c + 2)!

 2A

Using the above relationship, evaluate the integral L
A

(Si
2 + SjSk) dA

	 11.	 Show that the area A of a triangular element can be computed from the determinant of3 1 Xi Yi

1 Xj Yj

1 Xk Yk

3 = 2A

	 12.	 In the formulation of two-dimensional heat transfer problems, the need to evaluate the inte-
gral 1A

[S]T hT dA  arises; h is the heat transfer coefficient, and T represents the temperature. 
Using a linear triangular element, evaluate the aforementioned integral, provided that tem-
perature variation is given by

T (e) = [Si Sj Sk]c Ti

Tj

Tk

s
and h is a constant. Also, note that for triangular elements, the integral that includes products 
of area coordinates may be evaluated using the factorial relationship shown below:

LA
jahblc dA =

a!b!c!
(a + b + c + 2)!

 2A
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(2.25, 0.75)

(2.40, 1.65)

(1.5, 1.0)

8.27 GPa

7.58 GPa

7.96 GPa

X

Y
k

i

j

Stress
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	 13.	 In the formulation of two-dimensional heat transfer problems, the need to evaluate the 
integral

LA

k¢ 0[S]T

0X
 
0T
0X

≤  dA

arises. Using a bilinear rectangular element, evaluate the aforementioned integral, provided 
temperature is given by

T (e) = [Si Sj Sm Sn]d Ti

Tj

Tm

Tn

t
and k is the thermal conductivity of the element and is a constant.

	 14.	 Look up the expressions for the nine-node quadratic quadrilateral element (Lagrangian 
element). Discuss its properties and compare it to the eight-node quadratic quadrilateral 
element. What is the basic difference between the Lagrangian element and its eight-node 
quadratic quadrilateral counterpart?

	 15.	 For triangular elements, show that the area coordinate h = Sj and the area coordinate l = Sk.

	 16.	 Verify the results given for natural quadrilateral shape functions in Eq. (7.7) by showing 
that (1) a shape function has a value of unity at its corresponding node and a value of zero 
at the other nodes and (2) if we sum up the shape functions, we will come up with a value 
of unity.

	 17.	 Verify the results given for natural quadratic triangular shape functions in Eq. (7.25) by show-
ing that a shape function has a value of unity at its corresponding node and a value of zero 
at the other nodes.

	 18.	 For plane stress problems, using triangular elements, we can represent the displacements u 
and y using a linear triangular element similar to the one shown in the accompanying figure.

Uix

Ujx

Ukx

Uky

Ujy

Uiy

i

j

k

The displacement variables, in terms of linear triangular shape functions and the nodal 
displacements, are
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 u = Si Uix + Sj Ujx + Sk Ukx

 v = Si Uiy + Sj Ujy + Sk Uky

Moreover, for plane stress situations, the strain displacement relationships are

exx =
0u
0x
  eyy =

0v

0y
  gxy =

0u
0y

+
0v

0x

Show that for a triangular element, strain components are related to the nodal displacements 
according to the relationc exx

eyy

gxy

s =
1

2A
 Cbi 0 bj 0 bk 0

0 di 0 dj 0 dk

di bi dj bj dk bk

S f Uix

Uiy

Ujx

Uiy

Ukx

Uky

v
	 19.	 Consider point Q along the kj-side of the triangular element shown in the accompanying 

figure. Connecting this point to node i results in dividing the area of the triangle into two 
smaller areas A2 and A3, as shown.

A3A2

X

Y

i

j

k

j = 0

j = 1

h = 0

h = 1

Q

sLj-k

Along the kj-edge, the natural, or area, coordinate j has a value of zero. Show that along 
the kj-edge, the other natural (area) coordinates h and l reduce to one-dimensional natu-
ral coordinates that can be expressed in terms of the local coordinate s according to the 
equations

 h =
A2

A
= 1 -

s
Lj - k

 l =
A3

A
=

s
Lj - k
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	 20.	 For the element in Problem 19, derive the simplified area coordinates along the ij and ki-edges 
using the one-dimensional coordinate s.

	 21.	 As you will see in Chapters 9 and 10, we need to evaluate integrals along the edges of a tri-
angular element to develop the load matrix in terms of surface loads or derivative boundary 
conditions. Referring to Problem 19 and making use of the relations

  L
1

0

(x)m - 1(1 - x)n - 1dx =
Γ(m)Γ(n)

Γ(m + n)

Γ(n) = (n - 1)! and Γ(m) = (m - 1)!

show that
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	 22.	 Consider a triangular element subjected to a distributed load along its ki-edge, as shown in 
the accompanying figure.

i

jk

px

k j

x

y i

py

Using the minimum total potential-energy method, the differentiation of the work done by 
these distributed loads with respect to the nodal displacements gives the load matrix, which 
is computed from

5F6(e) = LA

[S]T5p6dA,

where

[S]T = F Si 0
0 Si

Sj 0
0 Sj

Sk 0
0 Sk

V and 5p6 = bpx

py
r
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Realizing that along the ki-edge, Sj = 0, evaluate the load matrix for a situation in which 
the load is applied along the ki-edge. Use the results of Problem 21 to help you. Note, in this 
problem, A is equal to the product of the element thickness and the edge length.

	 23.	 For the element in Problem 22, evaluate the load matrices for a situation in which the dis-
tributed load is acting along the ij-edge and the jk-edge.

	 24.	 For a quadrilateral element, evaluate the Jacobian matrix J and its inverse J- 1 using Eqs. (7.32) 
and (7.7).

	 25.	 Verify the shape function Sj, Sm, and Sn given in Eq. (7. 29) for the axisymmetric rectangular 
element.

	 26.	 We have used axisymmetric triangular elements to model temperature distribution in a sys-
tem. The values of nodal temperature for an element belonging to the system are shown in 
the accompanying figure. What is the value of the temperature at r = 1.8 cm and z = 2 cm?

1.7 cm

2.2 cm

1.8 cm

1.5 cm

2 cm

z

r

k

i

j

1.6 cm

74 C

67 C

70 C

	 27.	 We have used axisymmetric rectangular elements to model temperature distribution in a 
system. The values of nodal temperature for an element belonging to the system are shown in 
the accompanying figure. What is the value of the temperature at r = 2.1 cm and z = 1.4 cm?

	 28.	 For an axisymmetric rectangular element, derive the r- and z-components of the gradients 
of dependent variable Ψ.

	 29.	 Evaluate the given integral analytically and using Gauss–Legendre formula.

L
3

0 L
6

0

(5y3 + 2x2 + 5) dx dy
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406    Chapter 7    Two-Dimensional Elements

	 30.	 Evaluate the given integral analytically and using Gauss–Legendre formula.

L
5

- 2 L
10

2

(y3 + 3y2 + 5y + 2x2 + x + 10) dx dy

	 31.	 Show that for the rectangular element shown in Figure 7.2 and represented by Eq. (7.1), 
the temperature distribution varies linearly along the edges of the element, and it becomes 
nonlinear inside the element. (Hint: realize that along the i-j edge, y = 0, along i-n, x = 0, 
along j-m, x = /, and along the n-m edge y = w.)
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1 cm
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j
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C h a p t e r  8

More ANSYS*

The main objective of this chapter is to introduce the essential capabilities and the 
organization of the ANSYS program. The basic steps in creating and analyzing a model 
with ANSYS are discussed here, along with an example used to demonstrate these steps 
at the end of the chapter. The main topics discussed in Chapter 8 include the following:

	 8.1	 ANSYS Program

	 8.2	 ANSYS Database and Files

	 8.3	 Creating a Finite Element Model with ANSYS: Preprocessing

	 8.4	 h-Method Versus p-Method

	 8.5	 Applying Boundary Conditions, Loads, and the Solution

	 8.6	 Results of Your Finite Element Model: Postprocessing

	 8.7	 Selection Options

	 8.8	 Graphics Capabilities

	 8.9	 Error-Estimation Procedures

	 8.10	 An Example Problem

8.1 Ansys  Program

The ANSYS program has two basic levels: the Begin level and the Processor level. When 
you first enter ANSYS, you are at the Begin level. From the Begin level, you can enter 
one of the ANSYS processors, as shown in Figure 8.1. A processor is a collection of func-
tions and routines to serve specific purposes. You can clear the database or change a file 
assignment from the Begin level.

There are three processors that are used most frequently: (1) the preprocessor 
(PREP7), (2) the processor (SOLUTION), and (3) the general postprocessor (POST1). 
The preprocessor (PREP7) contains the commands needed to build a model:

	 •	 define element types and options
	 •	 define element real constants

*Materials were adapted with permission from ANSYS documents.
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408    Chapter 8    More ANSYS

	 •	 define material properties
	 •	 create model geometry
	 •	 define meshing controls
	 •	 mesh the object created

The solution processor (SOLUTION) has the commands that allow you to apply bound-
ary conditions and loads. For example, for structural problems, you can define displace-
ment boundary conditions and forces, or for heat transfer problems, you can define 
boundary temperatures or convective surfaces. Once all the information is made avail-
able to the solution processor (SOLUTION), it solves for the nodal solutions. The gen-
eral postprocessor (POST1) contains the commands that allow you to list and display 
results of an analysis:

	 •	 read results data from results file
	 •	 read element results data
	 •	 plot results
	 •	 list results

There are other processors that allow you to perform additional tasks. For example, 
the time-history postprocessor (POST26) contains the commands that allow you to 
review results over time in a transient analysis at a certain point in the model. The 
design optimization processor (OPT) allows the user to perform a design optimization 
analysis.

8.2 A NSYS Database and Files

The previous section explained how the ANSYS program is organized. This section 
discusses the ANSYS database. ANSYS writes and reads many files during a typical 
analysis. The information you input when modeling a problem (e.g., element type, 
material property, dimensions, geometry, etc.) is stored as input data. During the solu-
tion phase, ANSYS computes various results, such as displacements, temperatures, 

Begin level

Processor level

PREP7 POST1 OPTPOST26 Etc.SOLUTION

Figure 8.1  Organization of ANSYS program.
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Section 8.2    ANSYS Database and Files    409

stresses, etc. This information is stored as results data. The input data and the results 
data are stored in the ANSYS database. The database can be accessed from any-
where in the ANSYS program. The database resides in the memory until the user 
saves the database to a database file Jobname.DB. Jobname is a name that the user 
specifies upon entering the ANSYS program; this feature will be explained in more 
detail later. The database can be saved and resumed at any time. When you issue the 
RESUME_DB command, the database is read into the memory from the database file 
that was saved most recently. In other words, the database becomes what you saved 
most recently. When you are uncertain about the next step you should take in your 
analysis, or if you want to test something, you should issue the SAVE_DB command 
before proceeding with your test. That way, if you are unhappy with the results of your 
test, you can issue the RESUME_DB command, which will allow you to go back to the 
place in your analysis where you started testing. The SAVE_DB, RESUME_DB, and 
QUIT commands are located in the ANSYS toolbar. In addition, the “Clear & Start 
New” option, located on the utility menu, allows the user to clear the database. This 
option is useful when you want to start a new, but do not wish to leave and reenter 
ANSYS.

When you are ready to exit the ANSYS program, you will be given four options: 
(1) Save all model data; (2) Save all model data and solution data; (3) Save all model 
data, solution data, and postprocessing data; or (4) Save nothing.

As previously explained, ANSYS writes and reads many files during a typical 
analysis. The files are of the form of Jobname.Ext. Recall that Jobname is a name you 
specify when you enter the ANSYS program at the beginning of an analysis. The default 
jobname is file. Files are also given unique extensions to identify their content. Typical 
files include the following:

	 •	 The log file (Jobname.LOG): This file is opened when ANSYS is first entered. 
Every command you issue in ANSYS is copied to the log file. Jobname.LOG is 
closed when you exit ANSYS. Jobname.LOG can be used to recover from a 
system crash or a serious user error by reading in the file with the /INPUT 
command.

	 •	 The error file (Jobname.ERR): This file is opened when you first enter ANSYS. 
Every warning and error message given by ANSYS is captured by this file. If 
Jobname.ERR already exists when you begin a new ANSYS session, all new 
warnings and error messages will be appended to the bottom of this file.

	 •	 The database file (Jobname.DB): This file is one of the most important ANSYS 
files because it contains all of your input data and possibly some results. The 
model portion of the database is automatically saved when you exit the ANSYS 
program.

	 •	 The output file (Jobname.OUT): This file is opened when you first enter ANSYS. 
Jobname.OUT is available if you are using the GUI; otherwise, your computer 
monitor is your output file. Jobname.OUT captures responses given by ANSYS to 
every command executed by the user. It also records warning and error messages 
and some results. If you change the Jobname while in a given ANSYS session, the 
output file name is not changed to the new Jobname.
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410    Chapter 8    More ANSYS

Other ANSYS files include the structural analysis results file (Jobname.RST); the thermal 
results file (Jobname.RTH); the magnetic results file (Jobname.RMG); the graphics file 
(Jobname.GRPH); and the element matrices file (Jobname.EMAT).

8.3 � Creating a Finite Element Model 
with ANSYS: Preprocessing

The preprocessor (PREP7) contains the commands needed to create a finite element 
model:

	 1.	 define element types and options
	 2.	 define element real constants if required for the chosen element type
	 3.	 define material properties
	 4.	 create model geometry
	 5.	 define meshing controls
	 6.	 mesh the object created

	 1.	 Define element types and options.
ANSYS provides 150 various elements to be used to analyze different problems. 
Selecting the correct element type is a very important part of the analysis process. 
A good understanding of finite element theory will benefit you the most in this 
respect, helping you choose the correct element for your analysis. In ANSYS, each 
element type is identified by a category name followed by a number. For example, 
two-dimensional solid elements have the category name PLANE. Furthermore, 
PLANE182  is a four-node quadrilateral element used to model structural solid 
problems. The element is defined by four nodes having two degrees of freedom 
at each node, translation in the x- and y-directions. PLANE183 is an eight-node 
(four corner points and four midside nodes) quadrilateral element used to model 
two-dimensional structural solid problems. It is a higher order version of the two-
dimensional, four-node quadrilateral element type, PLANE182. Therefore, the 
PLANE183  element type offers more accuracy when modeling problems with 
curved boundaries. At each node, there are two degrees of freedom, translation in 
the x- and y-directions. Many of the elements used by ANSYS have options that 
allow you to specify additional information for your analysis. These options are 
known in ANSYS as keyoptions (KEOPTs). For example, for PLANE183, with 
KEOPT (3) you can choose plane stress, axisymmetric, plane strain, or plane stress 
with the thickness analysis option. You can define element types and options by 
choosing

main menu: Preprocessor S  Element Type S  Add/Edit/Delete

You will see the Element Types dialog box next, shown in Figure 8.2.

A 	 List: A list of currently defined element types will be shown here. If you have not 
defined any elements yet, then you need to use the Add button to add an element. 
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The Library of Element Types dialog box will appear next (see Figure 8.3). Then 
you choose the type of element you desire from the Library.

B 	 Action Buttons: The purpose of the Add button is to add an element, as we just 
discussed. The Delete button deletes the selected (highlighted) element type. The 
Options button opens the element type options dialog box. You can then choose 
one of the desired element options for a selected element. For example, if you had 
selected the element PLANE183 with KEOPT (3) you could choose plane stress, 
axisymmetric, plane strain, or plane stress with the thickness analysis option, as 
shown in Figure 8.4.

	 2.	 Define element real constants.
Element real constants are quantities that are specific to a particular element. 
For example, a truss element requires cross-sectional area. It is important to 
realize that real constants vary from one element type to another; furthermore, 

A

B

Figure 8.2  Element Types dialog box.

Figure 8.3  Library of Element Types dialog box.
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not all elements require real constants. Real constants can be defined by the 
command

main menu: Preprocessor S  Real Constants S  Add/Edit/Delete

You will then see the Real Constants dialog box, as shown in Figure 8.5.
A 	 List: A list of currently defined real constants will be shown here. If you have not 

defined any real constants at this point, you need to use the Add button to add 
real constants. An example of a dialog box for a PLANE182 element’s real con-
stants is shown in Figure 8.6.

B 	 Action Buttons: The purpose of the Add button has already been explained. The 
Delete Button deletes the selected (highlighted) real constants. The Edit but-
ton opens a new dialog box that allows you to change the values of existing real 
constants.

	 3.	 Define material properties.
At this point, you define the physical properties of your material. For example, 
for solid structural problems, you may need to define the modulus of elasticity, 
Poisson’s ratio, or the density of the material, whereas for thermal problems, you 

Figure 8.4  The element type options dialog box.

A

B

Figure 8.5  Real Constants dialog box.

M08_MOAV4303_04_GE_C08.INDD   412 27/11/14   9:59 AM

www.FreeEngineeringbooksPdf.com



Section 8.3    Creating a Finite Element Model with ANSYS: Preprocessing    413

may need to define thermal conductivity, specific heat, or the density of the mate-
rial. You can define material properties by the command

main menu: Preprocessor S  Material Props S  Material Models

You will then see the Define Material Model Behavior dialog box, as shown in 
Figure 8.7.

The next dialog box allows you to define the appropriate properties for your 
analysis, as shown in Figure 8.8. You can use multiple materials in your model if the 
object you are analyzing is made of different materials. From the Define Material 
Model Behavior dialog box, click on Material button and then choose New Model.

	 4.	 Create model geometry.
There are two approaches to constructing a finite element model’s geometry:  
(1) direct (manual) generation and (2) the solid-modeling approach. Direct gener-
ation, or manual generation, is a simple method by which you specify the location 
of nodes and manually define which nodes make up an element. This approach 
is generally applied to simple problems that can be modeled with line elements, 
such as links, beams, and pipes, or if the object is made of simple geometry, such 
as rectangles. This approach is illustrated in Figure 8.9. Refer back to the truss 
problem of Example 3.1 in Chapter 3 to refresh your memory about the manual 
approach, if necessary.

Figure 8.6  An example of the dialog box for a PLANE 82 (with options) element’s real constants.
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414    Chapter 8    More ANSYS

With the solid-modeling approach, you use simple primitives (simple geomet-
ric shapes), such as rectangles, circles, polygons, blocks, cylinders, and spheres, to 
construct the model. Boolean operations are then used to combine the primitives. 
Examples of boolean operations include addition, subtraction, and intersection. 
You then specify the desired element size and shape, and ANSYS will automatically 
generate all the nodes and the elements. This approach is depicted in Figure 8.10. 

Figure 8.7  Material Model dialog box.

Figure 8.8a  Isotropic structural material properties dialog box.

M08_MOAV4303_04_GE_C08.INDD   414 27/11/14   9:59 AM

www.FreeEngineeringbooksPdf.com



Section 8.3    Creating a Finite Element Model with ANSYS: Preprocessing    415
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2

3
4 5
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Figure 8.9  A truss problem: First nodes 1–5 are created, then nodes are connected to 
form elements (1)–(6).

Figure 8.8b  Linear Isotropic Material 
Properties dialog box.

Figure 8.10  An example of the solid-
modeling approach.
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The construction of the model in ANSYS begins when you choose the Create op-
tion, as shown in Figure 8.11. You choose this option with the command sequence

main menu: Preprocessor S Modeling S Create

When you create entities such as keypoints, lines, areas, or volumes, they are au-
tomatically numbered by the ANSYS program. You use keypoints to define the 
vertices of an object. Lines are used to represent the edges of an object. Areas are 
used to represent two-dimensional solid objects. They are also used to define the 
surfaces of three-dimensional objects. When using primitives to build a model, 
you need to pay special notice to the hierarchy of the entities. Volumes are 
bounded by areas, areas are bounded by lines, and lines are bounded by keypoints. 
Therefore, volumes are considered to be the highest entity, and the keypoints are 
the lowest entity in solid modeling hierarchy. Remembering this concept is partic-
ularly important if you need to delete a primitive. For example, when you define 
one rectangle, ANSYS automatically creates nine entities: four keypoints, four 
lines, and one area. The relationship among keypoints, lines, and areas is depicted 
in Figure 8.12.

Solid Modeling

Direct Generation

Figure 8.11  The Create dialog box.

A1

K1 K2

K3K4

L4

L1

L2

L3

Figure 8.12  The relationship among the 
keypoints, lines, and areas.
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Area primitives and volume primitives are grouped under the Areas and Volumes 
categories in the Create menu. Now let us consider the Rectangle and the Circle 
menus, because they are commonly used to build two-dimensional models. 
The Rectangle menu offers three methods for defining a rectangle, as shown in  
Figure 8.13. The command for accessing the Rectangle menu is

main menu: Preprocessor S Modeling S Create S Rectangle

The Circle menu offers several methods for defining a solid circle or annulus, as 
shown in Figure 8.14.

The Partial Annulus option is limited to circular areas spanning 180° or less. 
In order to create a partial circle that spans more than 180°, you need to use the 
By Dimensions option. An example of creating a partial annulus spanning from 
u = 45° to u = 315° is shown in Figure 8.15. Note that you can create a solid circle 
by setting Rad@1 = 0.

The Working Plane (WP)

In ANSYS, you will use a working plane (WP) to create and orient the geometry of 
the object you are planning to model. All primitives and other modeling entities are 

By picking

By typing in x, y coordinates

Figure 8.13  The Rectangle menu.

By picking

By typing in radii and angles

Figure 8.14  The Circle menu.
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defined with respect to this plane. The working plane is basically an infinite plane with 
a two-dimensional coordinate system. The dimensions of the geometric shapes are 
defined with respect to the WP. By default, the working plane is a Cartesian plane. You 
can change the coordinate system to a polar system, if so desired. Other attributes of 
the working plane may be set by opening the WP settings dialog submenu, as shown 
in Figure 8.16. To access this dialog box, issue the following sequence of commands:

utility menu: Work Plane S WP Settings c

A 	 Coordinate System: Choose the working-plane coordinate system you want to 
use. You locate or define points in terms of X- and Y-coordinates when using the 
Cartesian coordinate system. You can also locate or define points with respect to 
a polar coordinate system using R- and u@coordinates.

B 	 Display Options: This section is where you turn on the grid or grid and triad. The 
triad appears in the center (0,0 coordinates) of your working plane.

C 	 Snap Options: These options control the locations of points that are picked. When 
activated, these options allow you to pick locations nearest to the snap point. For 
example, in a Cartesian working plane, Snap Incr controls the X- and Y-increments 
within the spacing grid. If you have set a spacing of 1.0 and a snap increment of 
0.5, then within the X,Y grid you can pick coordinates with 0.5 increments. For 
example, you cannot pick the coordinates 1.25 or 1.75.

RAD1

RAD2

+u

Figure 8.15  An example of creating a partial annulus spanning from u = 45° to 
u = 315°.
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D 	 Grid Control

Spacing:  This number defines the spacing between the grid lines.

Minimum:  This number is the minimum X-location at which you want the grid 
to be displayed with respect to the Cartesian coordinate system.

Maximum:  This number is the maximum X-location at which you want the grid 
to be displayed with respect to the Cartesian coordinate system.

Radius:  This number is the outside radius that you want the grid to be displayed 
with respect to the polar coordinate system.

Tolerance:  This number is the amount that an entity can be off of the current 
working plane and still be considered as on the plane.

The working plane is always active and, by default, not displayed. To display the 
working plane, you need to issue the following command:

utility menu: Work Plane S Display Working Plane

You can move the WP origin to a different location on the working plane. This fea-
ture is useful when you are defining primitives at a location other than the global 
location. You can move the WP origin by choosing the commands

utility menu: Work Plane S Offset WP to S XYZ Locations +

A

B

C

D

Figure 8.16  The WP settings dialog box.
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You can relocate the working plane by offsetting it from its current location, as 
shown in Figure 8.17. To do so, issue the command

utility menu: Work Plane S Offset WP by Increments c

A 	 Offset buttons: Picking these buttons will cause an immediate offset of your work-
ing plane in the direction shown on the buttons. The amount of offset is controlled 
by the Offset slider and the Snap-Incr value on the WP setting dialog box.

B 	 Offset Slider: This number controls the amount of offset that occurs with each 
pick of the offset buttons. If the slider is set to 1, the offset will be one times the 
Snap-Incr value on the WP setting dialog box.

C 	 Offset Dialog Input: This feature allows you to input the exact X, Y, and Z offset 
values for the working plane. For instance, typing 1,2,2 into this field and pressing 

A

B

C

E

D

Figure 8.17  The dialog box for offsetting the WP.

M08_MOAV4303_04_GE_C08.INDD   420 27/11/14   9:59 AM

www.FreeEngineeringbooksPdf.com



Section 8.3    Creating a Finite Element Model with ANSYS: Preprocessing    421

the Apply or OK button will move the working plane one unit in the positive 
X-direction and two units each in the positive Y- and Z-directions.

E 	 Location Status: This section displays the current location of the working plane in 
global Cartesian coordinates. This status is updated each time the working plane 
is translated.

You can also relocate the working plane by aligning it with specified keypoints, 
nodes, coordinate locations, and so on, as shown in Figure 8.18. To align the work-
ing plane, issue the command

utility menu: Work Plane S Align WP with

Plotting Model Entities

You can plot various entities, such as keypoints, lines, areas, volumes, nodes, and ele-
ments, using the Plot menu. From the utility menu, you can issue one of the following 
commands to plot:

 utility menu: Plot S Keypoints
 utility menu: Plot S Lines
 utility menu: Plot S Areas
 utility menu: Plot S Volumes
 utility menu: Plot S Nodes
 utility menu: Plot S Elements

The Plot Numbering Controls menu, shown in Figure 8.19, contains a useful graphics 
option that allows you to turn on keypoint numbers, line numbers, area numbers, and 
so on to check your model. To access this option, use the command

utility menu: PlotCtrls S Numbering c

You may need to replot to see the effects of the numbering command you issue.

	 5.	 Define meshing controls.
The next step in creating a finite element model is dividing the geometry into 
nodes and elements. This process is called meshing. The ANSYS program can auto-
matically generate the nodes and elements, provided that you specify the element 
attributes and the element size:

Nodes

XYZ Locations

Plane Normal to Line

Active Coord Sys

Speci�ed Coord Sys...

Global Cartesian

Keypoints

+

+

+

+

Figure 8.18  Working plane-relocation 
using the Align command.
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	 1.	 The element attributes include element type(s), real constants, and material 
properties.

	 2.	 The element size controls the fineness of the mesh. The smaller the element 
size, the finer the mesh. The simplest way to define the element size is by defin-
ing a global element size. For example, if you specify an element edge length 
of 0.1 units, then ANSYS will generate a mesh in which no element edge is 
larger than 0.1 units. Another way to control the mesh size is by specifying the 
number of element divisions along a boundary line. The Global Element Sizes 
dialog box is shown in Figure 8.20. To access this dialog box, issue the following 
commands:

main menu: Preprocessor S Meshing S Size Cntrls S
� Manual Size S Global S Size

	 6.	 Mesh the object.
You should get into the habit of saving the database before you initiate mesh-
ing. This way, if you are not happy with the mesh generated, you can resume the 
database and change the element size and remesh the model. To initiate meshing, 
invoke the commands

main menu: Preprocessor S Meshing S Mesh S Areas S Free

Figure 8.19  The Plot Numbering Controls dialog box.
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Once a picking menu appears, you can pick individual areas or use the Pick All 
button to select all areas for meshing. Upon selection of the desired areas, Pick 
the Apply or OK buttons to mesh. The meshing process can take some time, 
depending on the model complexity and the speed of your computer. During 
the meshing process, ANSYS periodically writes a meshing status to the output 
window. Therefore, it is useful to bring the output window to the front to see the 
meshing status messages.

Free meshing uses either mixed-area element shapes or all-triangular area 
elements, whereas the mapped meshing option uses all quadrilateral area elements 
and all hexahedral (brick) volume elements. Mapped area mesh requirements 
include three or four sides, equal numbers of elements on opposite sides, and 
even numbers of elements for three-sided areas. If you want to mesh an area that 
is bounded by more than four lines, you can use the concatenate command to 
combine some of the lines to reduce the total number of lines. Concatenation is 
usually the last step you take before you start meshing the model. To concatenate, 
issue the following series of commands:

main menu: Preprocessor S Meshing S Concatenate S Lines or Areas

Modifying Your Meshed Model

If you want to modify your model, you must keep in mind certain rules enforced 
by ANSYS:

	1.	 Meshed lines, areas, or volumes may not be deleted or moved.
	2.	 �You can delete the nodes and the elements with the meshing Clear 

command.

Also, areas contained in volumes may not be deleted or changed. Lines contained 
in areas may not be deleted. Lines can be combined or divided into smaller seg-
ments with line operation commands. Keypoints contained in lines may not be 
deleted. You start the clearing process by issuing the commands

main menu: Preprocessor S Meshing S Clear

Figure 8.20  The Global Element Size dialog box.
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The clearing process will delete nodes and elements associated with a selected 
model entity. Then you can use deleting operations to remove all entities associ-
ated with an entity. The “c and below” options delete all lower entities associ-
ated with the specified entity, as well as the entity itself. For example, deleting 
“Area and below” will automatically remove the area, the lines, and the keypoints 
associated with the area.

8.4  h-Method Versus p-Method

For solid structural problems, to obtain displacements, stresses, or strain, ANSYS offers 
two solution methods: h-method and p-method. The h-method makes use of elements 
that are based on shape functions that are typically quadratic. We have already pointed 
out that the elements based on quadratic shape functions are better than linear elements 
but not as good as higher order elements, such as cubic. We have also explained that the 
element size affects the accuracy of your results as well. Whereas the h-method makes 
use of quadratic elements, the p-method uses higher order polynomial shape functions 
to define elements. Because the h-method uses quadratic elements, mesh refinement 
may be necessary if you desire very accurate results. A simple way to determine if the 
element size is fine enough to produce good results is by solving the problem with a 
certain number of elements and then comparing its results to the results of a model with 
twice as many elements. If you detect substantial difference between the results of the 
two models, then the mesh refinement is necessary. You may have to repeat the process 
by refining the mesh until you can’t detect a substantial difference between the models.

As mentioned above, the p-method—which can be used only for linear structural 
static problems—makes use of polynomial shape functions that are of higher orders than 
quadratic ones. The user can specify a degree of accuracy, and the p-method manipulates 
the order of the polynomial or the p-level to better fit the degree of difficulty associated 
with the boundaries of the given problem and its behavior to the applied loads. A prob-
lem is solved at a given p-level, and then the order of the polynomial is increased and the 
problem is solved again. The results of the iterations are then compared to a set of conver-
gence criteria that the user has specified. In general, a higher p-level approximation leads 
to better results. One of the main benefits of using the p-method is that in order to obtain 
good results, you don’t need to manually manipulate the size of elements by creating 
finer meshes. Depending on the problem, a coarse mesh can provide reasonable results.

Finally, as you will learn in Section 8.9, ANSYS offers error-estimation procedures 
that calculate the level of solution errors due to meshing employed. It is worth noting 
that the p-method adaptive refinement procedure offers error estimates that are more 
precise than those of the h-method and can be calculated locally at a point or globally.

8.5 �A pplying Boundary Conditions, Loads, 
and the Solution

The next step of finite element analysis involves applying appropriate boundary condi-
tions and the proper loading. There are two ways to apply the boundary conditions and 
loading to your model in ANSYS. You can either apply the conditions to the solid model 
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(keypoints, lines, and areas), or the conditions can be directly imposed on the nodes and 
elements. The first approach may be preferable because should you decide to change the 
meshing, you will not need to reapply the boundary conditions and the loads to the new 
finite element model. It is important to note that if you decide to apply the conditions 
to keypoints, lines, or areas during the solution phase, ANSYS automatically transfers 
the information to nodes. The solution processor (SOLUTION) has the commands that 
allow you to apply boundary conditions and loads. It includes the following options:

for structural problems:  displacements, forces, distributed loads (pressures), 
temperatures for thermal expansion, gravity

for thermal problems:  temperatures, heat transfer rates, convection surfaces, 
internal heat generation

for fluid flow problems:  velocities, pressures, temperatures

for electrical problems:  voltages, currents

for magnetic problems:  potentials, magnetic flux, current density

Degrees of Freedom (DOF) Constraints

In order to constrain a model with fixed (zero displacements) boundary conditions, you 
need to choose the command sequence

main menu: Solution S Define Loads S Apply S Structural S Displacement

You can specify the given condition on the keypoints, lines, areas, or nodes. For example, 
if you choose to constrain certain keypoints, then you need to invoke the commands

main menu: Solution S Define Loads S Apply S Structural S Displacement

� S On Keypoints

A picking menu will appear. You then pick the keypoints to be constrained and press 
the OK button. An example of a dialog box for applying displacement constraints on 
keypoints is shown in Figure 8.21.

The KEXPND field in the dialog box of Figure 8.21 is used to expand the con-
straint specification to all nodes between the keypoints, as shown in Figure 8.22.

Once you have applied the constraints, you may want to display the constraint 
symbols graphically. To turn on the boundary condition symbols, open the Symbols 
dialog box, as shown in Figure 8.23, by choosing the commands

utility menu: PlotCtrls S Symbols c

Line or Surface Loads

In order to specify distributed loads on a line or surface of a model, you need to issue 
the following commands:

main menu: Solution S Define Loads S Apply S Structural S Pressures

� S On Lines or On Areas
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A picking menu will appear. You then pick the line(s) or surfaces that require a pressure 
load and press the OK button. An example of a dialog box for applying pressure loads 
on line(s) is shown in Figure 8.24.

For uniformly distributed loads, you need to specify only VALI. For a linear 
distribution, you need to specify both VALI and VALJ, as shown in Figure 8.25. It is 
important to note that in ANSYS, a positive VALI represents pressure into the surface.

(a)

(b)

Figure 8.21  The dialog box for applying displacements on keypoints.
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Obtain a Solution

Once you have created the model and have applied the boundary conditions and 
appropriate loads, then you need to instruct ANSYS to solve the set of equations 
generated by your model. But first save the database. To initiate the solution, pick 
the commands

main menu: Solution S Solve S Current LS

The next section is about reviewing the results of your analysis.

8.6 R esults of Your Finite Element Model: Postprocessing

There are two postprocessors available for review of your results: (1) POST1 and 
(2) POST26. The general postprocessor (POST1) contains the commands that allow 
you to list and display results of an analysis:

	 •	 Deformed shape displays and contour displays
	 •	 Tabular listings of the results data of the analysis
	 •	 Calculations for the results data and path operations
	 •	 Error estimations

You can read results data from the results file by using one of the choices from the dialog 
box shown in Figure 8.26. This dialog box may be accessed via the following command:

main menu: General Postproc

For example, if you are interested in viewing the deformed shape of a structure under a 
given loading, you choose the Plot Deformed Shape dialog box, as shown in Figure 8.27. 
To access this dialog box, issue the following sequence of commands:

main menu: General Postproc S Plot Results S Deformed Shape

Transfer to

model

Transfer to

model

KEXPND = NO

K1 K2

KEXPND = YES

K1 K2

Nodes

Figure 8.22  KEXPND options.
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You can also use contour displays to see the distribution of certain variables, such as a 
component of stress or temperature over the entire model. For example, issue the fol-
lowing command to access the dialog box shown in Figure 8.28.

main menu: General Postproc S Plot Results S
� Contour Plot S Nodal Solution

Figure 8.23  The Symbols dialog box.
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As already mentioned, you can list the results in a tabular form as well. For example, to 
list the reaction forces, you issue the following command, which gives you a dialog box 
similar to the one shown in Figure 8.29:

main menu: General Postproc S List Results S Reaction Solu

Select the component(s) of your choice and press the OK button.

Figure 8.24  The dialog box for applying pressure loads on lines.

100

100

100

100

200

200

VALI = 100

VALI = 100
VALJ = 200

VALI = 200
VALJ = 100 Figure 8.25  An example illustrating 

how to apply uniform and nonuniform 
loads.
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The time-history postprocessor (POST26) contains the commands that allow you 
to review results over time in a transient analysis. These commands will not be discussed 
here, but you may consult the ANSYS online help for further information about how to 
use the time-history postprocessor.

Once you have finished reviewing the results and wish to exit the ANSYS program, 
choose the Quit button from the ANSYS toolbar and pick the option you want. Press 
the OK button.

Figure 8.26  The General Postprocessing 
dialog box.

Figure 8.27  The Plot Deformed Shape dialog Box.
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Figure 8.29  The List Reaction Solution dialog box.

Figure 8.28  The Contour Nodal Solution Data dialog box.
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If, for any reason, you need to come back to modify a model, first launch ANSYS, 
and then type the file-name in the Initial Jobname entry field of the interactive dialog 
box. Then press the Run button. From the file menu, choose Resume Jobname.DB. Now 
you have complete access to your model. You can plot keypoints, nodes, elements, and 
the like to make certain that you have chosen the right problem.

8.7  Selection Options

The ANSYS program uses a database to store all of the data that you define during an 
analysis. ANSYS also offers the user the capability to select information about only a 
portion of the model, such as certain nodes, elements, lines, areas, and volumes for fur-
ther processing. You can select functions anywhere within ANSYS. To start selecting, 
issue the following command to bring up the dialogue box shown in Figure 8.30.

utility menu: Select S Entities . . .

The various selection commands and their respective uses are as follows:

Select:	 To select a subset of active items from the full set.

Reselect:	 To select again from the currently selected subset.

Also Select:	 To add a different subset to the current subset.

Unselect:	 To deactivate a portion of the current subset.

Select All:	 To restore the full set.

Select None:	 To deactivate the full set (opposite of the Select All command).

Invert:	 To switch between the active and inactive portions of the set.

Entity: Nodes, Elements, Volumes, Areas, etc.

Criterion: By Location, Attached To, etc.

Location Settings:

Select
Reselect
Also Select
Unselect
Invert

Figure 8.30  The Select Entities dialog box.
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The select dialog box can be used to select or unselect entities of your solid or 
finite element model. You can make selections based on the location of your entities in 
space, or you can select entities that are attached to other selected entities, such as nodes 
that are attached to selected elements. Be aware, however, that you must reactivate all 
entities before solving your model. Unselected entities will not be included in a solution. 
For example, if you select a subset of nodes on which to apply constraints, you should 
reactivate all nodes before solving. ANSYS allows the user to activate all entities with 
one simple operation by the command

utility menu: Select S Everything

You can also select a set of related entities in a hierarchical fashion. For example, given 
a subset of areas, you can select (a) all lines defining the areas, (b) all keypoints defining 
those lines, (c) all elements belonging to the areas, and so on. To select in this fashion, 
use the command

utility menu: Select S Everything Below

ANSYS also provides the capability to group some selected entities into a compo-
nent. You can group one type of entity—such as nodes, elements, keypoints, or lines—
into a component to be identified by a user-defined name (up to eight characters long).

8.8 G raphics Capabilities

Good graphics are especially important for visualizing and understanding a problem 
being analyzed. The ANSYS program provides numerous features that allow you to 
enhance the visual information presented to you. Some examples of the graphics capa-
bilities of ANSYS include deformed shapes, result contours, sectional views, and anima-
tion. Consult the ANSYS procedure manual for additional information about more than 
100 different graphics functions available to the user.

Up to five ANSYS windows can be opened simultaneously within one graphics 
window. You can display different information in different windows. ANSYS windows are 
defined in screen coordinates (-1 to +1 in the x-direction and -1 to +1 in the y-direction). 
By default, ANSYS directs all graphics information to one window (window 1). In order to 
define additional windows, you need to access the window-layout dialog box, as shown in 
Figure 8.31. To do so, issue the following commands:

utility menu: PlotCtrls S Window Controls S Window Layout . . .

There are three important concepts that you need to know with respect to window lay-
out: (1) focus point, (2) distance, and (3) viewpoint. The focus point, with coordinates XF, 
YF, ZF, is the point on the model that appears at the center of the window. By changing 
the coordinates of the focus point, you can make a different point on the model appear 
at the center of the window. Distance determines the magnification of an image. As 
the distance approaches infinity, the image becomes a point on the screen. As the dis-
tance is decreased, the image size increases until the image fills the window. Viewpoint 
determines the direction from which the object is viewed. A vector is established from 
the viewpoint to the origin of the display coordinate. The line of sight is parallel to this 
vector and is directed at the focus point.
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Next, the Pan–Zoom–Rotate dialog box allows you to change viewing direc-
tions, zoom in and out, or rotate your model. You can access this dialog box, shown in 
Figure 8.32 by the following commands:

utility menu: PlotCtrls S Pan, Zoom, Rotate . . .

The various commands within the Pan–Zoom–Rotate dialog box and their respective 
functions are:

Zoom:	 Pick the center and the corner of the zoom rectangle.

Box Zoom:	 Pick the two corners of the zoom rectangle.

Win Zoom:	� Same as Box Zoom, except the zoom rectangle has the same 
proportions as the window.

•	 Zoom out.

● 	 Zoom in.

Dynamic Mode:	 Allows you to pan, zoom, and rotate the image dynamically.

	 Pan model in X- and Y-directions.

	 Move the mouse right and left to rotate the model about the Z-axis of the screen.
Move the mouse up and down to zoom in and out.

	 Move the mouse right and left to rotate the model about the Y-axis of the screen.
Move the mouse up and down to rotate the model about the X-axis of the screen.

Fit: Changes the graphics specifications such that the image fits the window exactly.

Reset: Resets the graphics specifications to their default values.

Figure 8.31  The Window Layout dialog box.
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In Section 8.10, an example problem will demonstrate the basic steps in creating 
and analyzing a model with ANSYS.

8.9 E rror-Estimation Procedures

In the previous chapters we discussed how to use fundamental principles, such as stat-
ics equilibrium conditions or the conservation of energy, to check for the validity of 
results. We have also noted that when economically feasible or practical, the experi-
mental verification of a finite element model is the best way to check for the validity of 
results. Moreover, it has been pointed out that the element size affects the accuracy of 
your results. Now, consider how you know whether the element sizes associated with a 
meshed model are fine enough to produce good results. A simple way to find out is to 
first model a problem with a certain number of elements and then compare its results 
to the results of a model that you create with twice as many elements. In other words, 
double the number of original elements and compare the results of the analysis. If 
no significant difference between the results of the two meshes is detected, then the 

Viewing Direction

Zooming Options

Pan/Zoom Buttons

Rotate Buttons
(screen coordinates)

Dynamic Pan–Zoom–Rotate

Figure 8.32  The Pan–Zoom–Rotate 
dialog box.
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meshing is adequate. If substantially different results are obtained, then further mesh 
refinement might be necessary.

The ANSYS program offers error-estimation procedures that calculate the level of 
solution error due to mesh discretization. Error calculations used by ANSYS are based 
on discontinuity of stresses (or heat fluxes) along interelemental boundaries. Because 
neighboring elements share common nodes, the difference between the nodal stresses 
calculated for each element results in a discontinuous stress solution from element to 
element. The degree of discontinuity is based on both the mesh discretization and the 
severity of the stress gradient. Therefore, it is the difference in stresses from element to 
element that forms the basis for error calculation in ANSYS.

Error calculations in ANSYS are presented in three different forms: (1) the 
elemental-energy error (SERR for structural problems and TERR for thermal prob-
lems), which measures the error in each element based on the differences between 
averaged and unaveraged nodal stress or thermal flux values; (2) the percent error in 
energy norm (SEPC for structural problems and TEPC for thermal problems), which is 
a global measure of error energy in the model that is based on the sum of the elemen-
tal-error energies; and (3) the nodal-component value deviation (SDSG for structural 
problems and TDSG for thermal problems), which measures the local error quantity for 
each element and is determined by computing the difference between the averaged and 
unaveraged values of stress or heat flux components for an element. To display error 
distributors, use the following commands:

main menu: General Postproc S Plot Results S Contour Plot S Element Solu

You can select and plot the elemental-energy error to observe the high-error regions 
where mesh refinement may be necessary. You can also plot SDSG (or TDSG) to iden-
tify and quantify the region of maximum discretization errors by using the following 
command:

main menu:  General Postproc S Element Table S Define Table

The elemental-energy error or the nodal-component deviations can be listed as well by 
using the following command:

main menu:  General Postproc S Element Table S List Element Table

Note that ANSYS stress-contour plots and listings give the upper and the lower error 
bounds based on SDSG or TDSG calculations. The estimated-error bound of plotted 
stresses is denoted by SMXB or SMNB labels in the graphics-status area.

To make the task of mesh evaluation and refinement simpler, ANSYS offers adap-
tive meshing, which is a process that automatically evaluates mesh-discretization error 
and performs mesh refinement to reduce the error. The adaptive meshing performed 
by the ADAPT program of ANSYS will perform the following tasks: (1) it will generate 
an initial mesh and solve the model; (2) based on error calculations, it will determine 
if mesh refinement is needed; (3) if mesh refinement is necessary, it will automatically 
refine the mesh and solve the new model; and (4) it will refine the mesh until a loop 
limit or an acceptable error limit has been reached. Note that to begin the first run of the 
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adaptive-meshing program, you need to create the initial model by defining the element 
type, material property, and so on.

8.10 An  Example Problem

Consider one of the many steel brackets (E = 29 * 106 lb/in2, v = 0.3) used to sup-
port bookshelves. The dimensions of the bracket are shown in Figure 8.33. The bracket 
is loaded uniformly along its top surface, and it is fixed along its left edge. Under the 
given loading and the constraints, plot the deformed shape; also determine the principal 
stresses and the von Mises stresses in the bracket.

The following steps demonstrate how to solve this problem using ANSYS:

Enter the ANSYS program by using the Launcher.

Type Bracket (or a file name of your choice) in the Jobname entry field of the 
dialog box.

R = 0.5 in Thickness = 0.125 in
R = 4 in

12 in

2 in

6 in

R = 0.25 in

10 lb/in

Figure 8.33  A schematic of the steel bracket in the example problem.
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Pick Run to start the GUI.

Create a title for the problem. This title will appear on ANSYS display windows 
to provide a simple way of identifying the displays. To create a title, issue the 
command

utility menu:  File S Change Title c

Define the element type and material properties:

main menu:  Preprocessor S Element Type S Add/Edit/Delete
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Assign the thickness of the bracket:

main menu:  Preprocessor S Real Constants S Add/Edit/Delete
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Assign the modulus of elasticity and the Poisson’s-ratio values:

main menu:  Preprocessor S Material Props S Material Models

� S Structural S Linear S Elastic S Isotropic

ANSYS Toolbar: SAVE_DB

Set up the graphics area—that is, the work plane, zoom, and so on:
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utility menu: Workplane S Wp Settings. . .

Toggle on the workplane by the command sequence

utility menu: Workplane S Display Working Plane

Bring the workplane to view by the command sequence

utility menu: PlotCtrls S Pan,  Zoom, Rotate . . .
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Click on the small circle and the arrows until you bring the workplane to view, 
and then create the geometry:

main menu: Preprocessor S Modeling S Create S Areas S Rectangle

� S By 2 Corners

	 a)	 On the workplane, pick the location of the corners of Areas 1 and 2, as shown in 
Figure 8.34, and apply:

A3A2A1

A4

Figure 8.34  The areas making up 
the bracket.
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	 [At WP = 0,12 in the upper left corner of the workplane,  
press the left button]

	 [First, expand the rubber band down 2.0 and right 4.0 and, then, press the left 
button]

	 [WP = 4,12]

	 [Expand the rubber band down 2.0 and right 7.0]

	 OK

	 b)	 Create circle A3 by the commands

main menu: Preprocessor S Modeling S Create S Areas S Circle

� S Solid Circle

	 [WP = 11,11]

	 [Expand the rubber band to a radius of 1.0]

	 OK

	 c)	 Create quarter-circle A4 by the command

main menu: Preprocessor S Modeling S Create S Areas S Circle

� S Partial Annulus

Type in the following values in the given fields:

[WPX = 0]

[WPY = 10]

[Rad-1 = 0]

[Theta-1 = 0]

[Rad-2 = 4]

[Theta-2 = -90]

OK

	 d)	 Before creating the fillet, join the keypoints of Areas 1, 2, and 4 by the commands

main menu: Preprocessor S Modeling S Operate S Booleans

� S Glue S Areas

Pick Areas 1, 2, and 4.

OK
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	 e)	 Create the fillet by the commands

main menu: Preprocessor S Modeling S Create S Lines S Line Fillet

	 [Pick the bottom edge of rectangular Area 2]

	 [Pick the curved edge of quarter-circle Area 4]

	 APPLY

Then, issue the command

utility menu: PlotCtrls S Pan, Zoom, Rotate . . .

Use the Box Zoom button to zoom about the fillet region, and issue the command

utility menu: Plot S Lines

	 f)	 Create an area for the fillet with the commands

main menu: Preprocessor S Modeling S Create S Areas S Arbitrary

� S By Lines

Pick the fillet line and the two intersecting smaller lines.

OK

	 g)	 Add the areas together with the commands

main menu: Preprocessor S Modeling S Operate S Booleans

� S Add S Areas

Click on the Pick All button and issue the command

utility menu: PlotCtrls S Pan, Zoom, Rotate . . .

Click on the Fit button and then Close.
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	 h)	 Create the area of the small hole, but first change the Snap Incr value in the WP 
Settings dialog box to 0.25.

OK

Then issue the commands

main menu: Preprocessor S Modeling S Create S Areas S Circle

� S Solid Circle

	 [WP = 11,11]

	 Expand the rubber band to a radius of 0.25]

	 OK

	 i)	 Subtract the area of the small hole with the commands

main menu: Preprocessor S Modeling S Operate S Booleans

� S Subtract S Areas

	 [Pick the bracket area]

	 [anywhere in the ANSYS graphics area, Apply]

 	 [Pick the small circular area (r = 0.25)]

	 [anywhere in the ANSYS graphics area, Apply]

	 OK

Now you can toggle off the workplane grids with the command

utility menu: Workplane S Display Working Plane

ANSYS Toolbar: SAVE_DB

You are now ready to mesh the area of the bracket to create elements and nodes. Is-
sue the commands

main menu: Preprocessor S Meshing S Size Cntrls

� S Manual Size S Global S Size
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ANSYS Toolbar: SAVE_DB

main menu: Preprocessor S Meshing S Mesh S Areas S Free

Click on the Pick All button.

Apply boundary conditions:

main menu: Solution S Define Loads S Apply S Structural

� S Displacement S On Keypoints

Pick the three keypoints: (1) upper left corner of Area 1, (2) two inches below the 
keypoint you just picked (i.e., the upper left corner of Area 4), and (3) the lower 
left corner of Area 4.

OK
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main menu: Solution S Define Loads S Apply S Structural

	 S Pressure S On Lines

Pick the upper two horizontal lines associated with Area 1 and Area 2 (on the 
upper edge of the bracket).

OK

Solve the problem:

main menu: Solution S Solve S Current LS

OK

Close (the solution is done!) window.

Close (the/STAT Command) window if it appears.

For the postprocessing phase, first plot the deformed shape by using the commands

main menu: General Postproc S Plot Results S Deformed Shape
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Plot the von Mises stresses with the commands

main menu: General Postproc S Plot Results

� S Contour Plot S Nodal Solu
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Repeat the previous step and pick the principal stresses to be plotted. Then, exit 
ANSYS and save everything:

Toolbar: QUIT

Summary

At this point you should know

	 1.	 the basic organization of the ANSYS program. There are three processors that you 
will use frequently: (1) the preprocessor (PREP7), (2) the processor (SOLUTION), 
and (3) the general postprocessor (POST1).

	 2.	 the commands the preprocessor (PREP7) contains that you need to use to build 
a model:

	 •	 define element types and options
	 •	 define element real constants
	 •	 define material properties
	 •	 create model geometry
	 •	 define meshing controls
	 •	 mesh the object created

	 3.	 the commands the Solution processor (SOLUTION) has that allow you to apply 
boundary conditions and loads. The solution processor also solves for the nodal 
solutions and calculates other elemental information.

	 4.	 the commands the general postprocessor (POST1) contains that allow you to list 
and display results of an analysis:

	 •	 read results data from results file

	 •	 read element results data

	 •	 plot results

	 •	 list results
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	 5.	 that ANSYS writes and reads many files during a typical analysis.

	 6.	 that ANSYS also offers the user the capability to select information about a 
portion of the model, such as certain nodes, elements, lines, areas, and volumes, 
for further processing.

	 7.	 that the ANSYS program provides numerous features that allow you to enhance 
the visual information presented to you. Some examples of the graphics capa-
bilities of ANSYS are deformed shapes, result contours, sectional views, and 
animation.

References

ANSYS Manual: Introduction to ANSYS, Vol. I, Swanson Analysis Systems, Inc.
ANSYS User’s Manual: Procedures, Vol. I, Swanson Analysis Systems, Inc.
ANSYS User’s Manual: Commands, Vol. II, Swanson Analysis Systems, Inc.
ANSYS User’s Manual: Elements, Vol. III, Swanson Analysis Systems, Inc.

M08_MOAV4303_04_GE_C08.INDD   452 27/11/14   9:59 AM

www.FreeEngineeringbooksPdf.com



C h a p t e r  9

Analysis of Two-Dimensional 
Heat Transfer Problems

The main objective of this chapter is to introduce you to the analysis of two-dimensional 
heat transfer problems. General conduction problems and the treatment of various 
boundary conditions are discussed here. The main topics of Chapter 9 include the 
following:

	 9.1	 General Conduction Problems

	 9.2	 Formulation with Rectangular Elements

	 9.3	 Formulation with Triangular Elements

	 9.4	 Axisymmetric Formulation of Three-Dimensional Problems

	 9.5	 Unsteady Heat Transfer

	 9.6	 Conduction Elements Used by ANSYS

	 9.7	 Examples Using ANSYS

	 9.8	 Verification of Results

9.1  General Conduction Problems

In this chapter, we are concerned with determining how temperatures may vary with 
position in a medium as a result of either thermal conditions applied at the boundaries 
of the medium or heat generation within the medium. We are also interested in deter-
mining the heat flux at various points in a system, including its boundaries. Knowledge 
of temperature and heat flux fields is important in many engineering applications, 
including, for example, the cooling of electronic equipment, the design of thermal-fluid 
systems, and material and manufacturing processes. Knowledge of temperature distri-
butions is also useful in determining thermal stresses and corresponding deflections in 
machine and structural elements. There are three modes of heat transfer: conduction, 
convection, and radiation. Conduction refers to that mode of heat transfer that occurs 
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when there exists a temperature gradient in a medium. The energy is transported from 
the high-temperature region to the low-temperature region by molecular activities. 
Using a two-dimensional Cartesian frame of reference, we know that the rate of heat 
transfer by conduction is given by Fourier’s Law:

	  qX = -kA 
0T
0X

	 (9.1)

	  qY = -kA 
0T
0Y

	 (9.2)

qX and qY are the X- and the Y-components of the heat transfer rate, k is the thermal 
conductivity of the medium, A is the cross-sectional area of the medium, and 0T

0X  and 0T
0Y  

are the temperature gradients. Fourier’s Law may also be expressed in terms of heat 
transfer rates per unit area as

	  q>X = -k 
0T
0X

	 (9.3)

	  q>Y = -k 
0T
0Y

	 (9.4)

where q>X =
q

X

A  and q>Y =
q

Y

A  are called heat fluxes in the X-direction and the Y-direction, 
respectively. It is important to realize that the direction of the total heat flow is always 
perpendicular to the isotherms (constant temperature lines or surfaces). This relation-
ship is depicted in Figure 9.1.

Convective heat transfer occurs when a fluid in motion comes into contact with a 
solid surface whose temperature differs from the moving fluid. The overall heat transfer 
rate between the fluid and the surface is governed by Newton’s Law of Cooling, which is

	 q = hA(Ts - Tf)	 (9.5)

where h is the heat transfer coefficient, Ts is the solid surface temperature, and Tf  repre-
sents the temperature of the moving fluid. The value of the heat transfer coefficient for 

Isotherm

qX

qY

Y

X

q = qX + qY

Figure 9.1  The heat flux vector is 
always normal to the isotherms.
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a particular situation is determined from experimental correlations that are available 
in many books about heat transfer.

All matters emit thermal radiation. This rule is true as long as the body in ques-
tion is at a finite temperature (expressed in Kelvin or Rankine Scale). Simply stated, the 
amount of energy emitted by a surface is given by the equation

	 q″ = esTs
4	 (9.6)

where q″ represents the rate of thermal energy per unit area emitted by the surface, 
e is the emissivity of the surface 0 6 e 6 1, and s is the Stefan–Boltzman constant 
(s = 5.67 * 10-8 W/m2 # K4). It is important to note here that unlike conduction and 
convection modes, heat transfer by radiation can occur in a vacuum, and because all 
objects emit thermal radiation, it is the net energy exchange among the bodies that is of 
interest to us. The three modes of heat transfer are depicted in Figure 9.2.

In Chapter 1, it was explained that engineering problems are mathematical models 
of physical situations. Moreover, many of these mathematical models are differential 
equations that are derived by applying the fundamental laws and principles of nature 
to a system or a control volume. In heat transfer problems, these governing equations 
represent the balance of mass, momentum, and energy for a medium. Chapter 1 stated 
that when possible, the exact solutions of the governing differential equations should be 
sought because the exact solutions render the detailed behavior of a system. However, 
for many practical engineering problems, it is impossible to obtain exact solutions to 
the governing equations because either the geometry is too complex or the boundary 
conditions are too complicated.

The principle of the conservation of energy plays a significant role in the analysis 
of heat transfer problems. Consequently, you need to understand this principle fully in 

q"

T1

T2

Conduction through a solid object

Moving �uid
at Tf

Surrounding Temp, Tsur

Solid surface
Ts 7Tf

Convective heat transfer from a surface

q"

q"

Ts , 

Thermal radiation emitted by a surface

e

Figure 9.2  Various modes of heat transfer.
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order to model a physical problem correctly. The principle of the conservation of energy 
states the following: The rate at which thermal and/or mechanical energy enters a system 
through its boundaries, minus the rate at which the energy leaves the system through 
its boundaries, plus the rate of energy generation within the volume of the system, must 
equal the rate at which energy is stored within the volume of the system. This statement 
is represented by Figure 9.3 and the equation

	 Ein
# - Eout

# + Egeneration
# = Estored

#
	 (9.7)

Ein
#
 and Eout

#
 represent the amount of energy crossing into and out of the surfaces of a 

system. The thermal energy generation rate Egeneration
#

 represents the rate of the conver-
sion of energy from electrical, chemical, nuclear, or electromagnetic forms to thermal 
energy within the volume of the system. An example of such conversion is the electric 
current running through a solid conductor. On the other hand, the energy storage term 
represents the increase or decrease in the amount of thermal internal energy within 
the volume of the system due to transient processes. It is important to understand the 
contribution of each term to the overall energy balance of a system in order to model 
an actual situation properly. A good understanding of the principle of the conservation 
of energy will also help verify the results of a model.

This chapter focuses on the conduction mode of heat transfer with possible con-
vective or radiative boundary conditions. For now, we will focus on steady-state two-
dimensional conduction problems. Applying the principle of the conservation of energy 
to a system represented in a Cartesian coordinate system results in the following heat 
diffusion equation:

	 kX 
02T
0X2 + kY 

02T
0Y2 + q

# = 0	 (9.8)

Eout

Egenerated, Estored

Ein

.

.

. .

Figure 9.3  The principle of the conservation 
of energy.

M09_MOAV4303_04_GE_C09.INDD   456 27/11/14   10:03 AM

www.FreeEngineeringbooksPdf.com



Section 9.1    General Conduction Problems    457

The derivation of Eq. (9.8) is shown in Figure 9.4. In Eq. (9.8), q
#
 represents the heat 

generation per unit volume, within a volume having a unit depth. There are several 
boundary conditions that occur in conduction problems:

	 1.	 A situation wherein heat loss or gain through a surface may be neglected. This 
situation, shown in Figure 9.5, is commonly referred to as an adiabatic surface 

dY
qX

qY

qY + dY

qX + dX

dX

Figure 9.4  The derivation of the equation of heat conduction under steady-state 
conditions.

First, we begin by applying the principle of the conservation of energy to a small 
region (differential volume) in a medium:

Ein
# - Eout

# + Egeneration
# = Estored

#

qX + qY - (qX + dX + qY + dY) + q
#
dXdY(1) = rc dXdY 

0T
0t

qX + qY - ¢qX +
0qX

0X
 dX + qY +

0qY

0Y
 dY≤ + q

#
dXdY = rc dXdY 

0T
0t

Simplifying, we get

-
0qX

0X
 dX -

0qY

0Y
 dY + q

#
dXdY = rc dXdY 

0T
0t

Making use of Fourier’s Law, we have

qX = -kXA 
0T
0X

= -kX dY(1) 
0T
0X

qY = -kYA 
0T
0Y

= -kY dX(1) 
0T
0Y

-  
0

0X
¢ -kX dY 

0T
0X

≤  dX -
0

0Y
¢ -kY dX 

0T
0Y

≤dY + q
#
dXdY = rc dXdY 

0T
0t

r and c are the density and specific heat of the medium, and t represents time. For a 
steady-state situation, temperature does not change with time, and consequently, the 
right-hand side is zero. After simplifying, we obtain

kX 
02T

0X2
+ kY 

02T

0Y2
+ q

# = 0
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or a perfectly insulated surface. In conduction problems, symmetrical lines also 
represent adiabatic lines. This type of boundary condition is represented by

	
0T
0X

2
(X = 0, Y)

= 0	 (9.9)

	 2.	 A situation for which a constant heat flux is applied at a surface. This boundary 
condition, shown in Figure 9.6, is represented by the equation

	 -k 
0T
0X

2
X = 0

= q>0	 (9.10)

	 3.	 A situation for which cooling or heating is taking place at a surface due to convec-
tion processes. This situation, shown in Figure 9.7, is represented by the equation

	 -k 
0T
0X

2
(X = 0, Y)

= h[T(0, y) - Tf]	 (9.11)

X

Y

Perfectly
insulated surface

Figure 9.5  An adiabatic, or perfectly 
insulated, surface.

X

Y
q"0

Figure 9.6  A constant heat flux applied 
at a surface.
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	 4.	 A situation wherein heating or cooling is taking place at a surface due to net radia-
tion exchange with the surroundings. The expression for this condition will depend 
on the view factors and the emissivity of the surfaces involved.

	 5.	 A situation in which conditions 3 and 4 both exist simultaneously.
	 6.	 Constant surface-temperature conditions occur when a fluid in contact with a 

solid surface experiences phase change, as shown in Figure 9.8. Examples include 
condensation or evaporation of a fluid at constant pressure. This condition is rep-
resented by

	 T(0, Y) = T0	 (9.12)

The modeling of actual situations with these boundary conditions will be discussed 
and illustrated with examples after we consider finite element formulations of two-
dimensional heat conduction problems.

Tf , h

X

Y

Figure 9.7  Convention processes causing 
cooling or heating to take place at a surface.

T0

X

Y

Figure 9.8  Constant surface-temperature 
conditions occur due to phase change of a fluid 
in contact with a solid surface.
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9.2  Formulation with Rectangular Elements

Two-dimensional bilinear rectangular elements were covered in detail in Chapter 7.
Recall that for problems with straight boundaries, linear rectangular shape functions 
offer simple means to approximate the spatial variation of a dependent variable, such 
as temperature. For convenience, the expression for a rectangular element in terms of 
its nodal temperatures and shape functions is repeated here (also see Figure 9.9). The 
expression is

	 T (e) = [Si Sj Sm Sn] d Ti

Tj

Tm

Tn

t 	 (9.13)

where the shape functions Si, Sj, Sm, and Sn are given by

	  Si = ¢1 -
x
/
≤ ¢1 -

y

w

≤	 (9.14)

	  Sj =
x
/

 ¢1 -
y

w

≤ 	

	  Sm =
xy

/w

	

	  Sn =
y

w

 ¢1 -
x
/
≤ 	

We now apply the Galerkin approach to the heat diffusion equation, Eq. (9.8) expressed 
in local coordinates x, y, yielding four residual equations:

Tn

TmTj

Ti

T

Y

X

i j

mn

x

y

w

/ Figure 9.9  A typical rectangular 
element.
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	  Ri
(e) = LA Si¢kx 

02T
0x2 + ky 

02T
0y2 + q

# ≤  dA 	 (9.15)

	  Rj
(e) = LA Sj¢kx 

02T
0x2 + ky 

02T
0y2 + q

# ≤  dA 	

	  Rm
(e) = LA Sm¢kx 

02T
0x2 + ky 

02T
0y2 + q

# ≤  dA	

	  Rn
(e) = LA Sn¢kx 

02T
0x2 + ky 

02T
0y2 + q

# ≤  dA 	

Note that from here on, for the sake of simplicity of presentation of conductance and 
load matrices, we will set the residual of an element equal to zero. However, as we men-
tioned earlier, it is important to realize that the residuals are set equal to zero after all 
the elements have been assembled.

We can rewrite the four equations given by (9.15) in a compact matrix form as

	 LA [S]T¢kx 
02T
0x2 + ky 

02T
0y2 + q

# ≤  dA = 0	 (9.16)

where the transpose of the shape functions is given by the following matrix:

	 [S]T = d Si

Sj

Sm

Sn

t 	 (9.17)

Equation (9.16) consists of three main integrals:

	 LA [S]T¢kx 
02T
0x2 ≤  dA + LA

[S]T¢ky 
02T
0y2 ≤  dA + LA

[S]Tq
#
dA = 0	 (9.18)

Let C1 = kx, C2 = ky, and C3 = q
#
 so that we can later apply the results of the forth-

coming derivation to other types of problems with similar forms of governing differ-
ential equations. As will be demonstrated later in Chapters 10 and 12, we will use the 
general findings of this chapter to analyze the torsion of solid members and ideal fluid 
flow problems. So making respective substitutions, we have

	 LA

[S]T¢C1 
02T
0x2 ≤dA + LA

[S]T¢C2 
02T
0y2 ≤dA + LA

[S]TC3 dA = 0	 (9.19)

Evaluation of the integrals given by Eq. (9.19) will result in the elemental formulation. 
We first manipulate the second-order terms into first-order terms by using the chain 
rule in the following manner:

	
0
0x

¢ [S]T 
0T
0x

≤ = [S]T 
02T
0x2 +

0[S]T

0x
 
0T
0x

	 (9.20)
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Rearranging Eq. (9.20), we have

	 [S]T 
02T
0x2 =

0
0x

 ¢ [S]T 
0T
0x

≤ -
0[S]T

0x
 
0T
0x

	 (9.21)

Applying the results given by Eq. (9.21) to the first and the second terms in Eq. (9.19), 
we obtain

	 LA

[S]T ¢C1 
02T
0x2 ≤  dA = LA

C1 
0
0x

¢ [S]T 
0T
0x

≤  dA - LA

C1 ¢ 0[S]T

0x
 
0T
0x

≤  dA	 (9.22)

	 LA

[S]T ¢C2 
02T
0y2 ≤  dA = LA

C2 
0
0y

¢ [S]T 
0T
0y

≤  dA - LA

C2 ¢ 0[S]T

0y
 
0T
0y

≤  dA	 (9.23)

Using Green’s theorem, we can write the terms

LA

C1 
0
0x

¢ [S]T 
0T
0x

≤  dA

and

LA

C2 
0
0y

¢ [S]T 
0T
0y

≤  dA

in terms of integrals around the element boundary. We will come back to these terms 
later. For now, let us consider the

- LA

C1 ¢ 0[S]T

0x
 
0T
0x

≤  dA

term in Eq. (9.22). This term can easily be evaluated. Evaluating the derivatives for a 
rectangular element, we obtain

    
0T
0x

=
0
0x

 [Si Sj Sm Sn] d Ti

Tj

Tm

Tn

t =
1

/w

 [(-w + y) (w - y) y -y] d Ti

Tj

Tm

Tn

t 	 (9.24)

Also evaluating 
0[S]T

0x
 we have

	
0[S]T

0x
=

0
0x

  d Si

Sj

Sm

Sn

t =
1

/w

  d -w + y
w - y

y
-y

t 	 (9.25)

Substituting the results of Eqs. (9.24) and (9.25) into the term

- LAC1¢ 0[S]T

0x
 
0T
0x

≤  dA
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we have

- LA

C1¢ 0[S]T

0x
 
0T
0x

≤dA = -C1LA
1

(/w)2  d -w + y
w - y

y
-y

t [(-w + y) (w - y) y - y] d Ti

Tj

Tm

Tn

t  dA

(9.26)

Integrating yields

	 -C1LA

1
(/w)2  d -w + y

w - y
y

-y

t [(-w + y) (w - y) y - y] d Ti

Tj

Tm

Tn

t  dA	

	  = -
C1w

6/
D 2  -2  -1 1

-2 2 1  -1
-1 1 2  -2
1  -1  -2 2

T  d Ti

Tj

Tm

Tn

t 	 (9.27)

To get the results of Eq. (9.27), we carry out the integration for each term in the 4 * 4 
matrix. For example, by integrating the expression in the first row and first column, 
we get

 L
/

0 L
w

0

1
(/w)2  (-w + y)2 dy dx =

1
(/w)2 L

/

0

¢w

2
w +

w

3

3
- 2w 

w

2

2
≤  dx

 =
1

(/w)2  L
/

0

w

3

3
 dx =

1
(/w)2  

w

3/
3

=
1
3

 
w

/

or the integration of the expression in the first row and third column yields

 L
/

0 L
w

0

1
(/w)2  (-w + y)y dy dx =

1
(/w)2 L

/

0

¢-w 
w

2

2
+

w

3

3
≤ dx

 =
1

(/w)2 L
/

0

-
w

3

6
 dy = -

1
(/w)2  

w

3/
6

= -
1
6

 
w

/

In the same manner, we can evaluate the term

- LA C2 ¢ 0[S]T

0y
 
0T
0y

≤  dA

in Eq. (9.23) in the y-direction:

	
0T
0y

=
0
0y

 [Si Sj Sm Sn] d Ti

Tj

Tm

Tn

t =
1

/w

 [(-/ + x) -x  x (/ - x)] d Ti

Tj

Tm

Tn

t 	 (9.28)
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And evaluating 
0[S]T

0y
 we have

	
0[S]T

0x
=

0
0y

 d Si

Sj

Sm

Sn

t =
1

/w

 d -/ + x
-x
x

/ - x

t 	 (9.29)

Substituting the results of Eqs. (9.28) and (9.29) into the term

- LA

C2¢ 0[S]T

0y
 
0T
0y

≤  dA

we have

  - LA

C2¢ 0[S]T

0y
 
0T
0y

≤  dA = -C2LA

1
(/w)2  d -/ + x

-x
x

/ - x

t [(-/ + x) -x  x (/ - x)] d Ti

Tj

Tm

Tn

t  dA

(9.30)

Evaluation of the integral yields

	 -C2LA

1
(/w)2  d -/ + x

-x
x

/ - x

t [(-/ + x) -x  x (/ - x)] d Ti

Tj

Tm

Tn

t  dA = 	

	 -
C2/
6w

 D 2 1  -1  -2
1 2  -2  -1

-1  -2 2 1
-2  -1 1 2

T d Ti

Tj

Tm

Tn

t 	 (9.31)

Next, we will evaluate the thermal load term LA

[S]TC3 dA:

	 LA

[S]TC3 dA = C3LA
d Si

Sj

Sm

Sn

t  dA =
C3A

4
d 1

1
1
1

t 	 (9.32)

We now return to the terms

LA

C1 
0
0x

 ¢ [S]T 
0T
0x

≤  dA
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and

LA

C2 
0
0y

 ¢ [S]T 
0T
0y

≤  dA

As mentioned earlier, we can use Green’s theorem to rewrite these area integrals in 
terms of line integrals around the element boundary:

	 LA

C1 
0
0x

 ¢ [S]T 
0T
0x

≤  dA = Lt C1[S]T 
0T
0x

 cos u dt	 (9.33)

	 LA

C2 
0
0y

 ¢ [S]T 
0T
0y

≤  dA = Lt C2[S]T 
0T
0y

 sin u dt 	 (9.34)

t represents the element boundary, and u measures the angle to the unit normal.

A Review of Green’s Theorem

Before we proceed with the evaluation of Eqs. (9.33) and (9.34), let’s briefly review 
Green’s theorem, which is given by the following equation:

	 O
 

Region 

¢ 0g

0x
-

0f

0y
≤dxdy = L

 

Contour 

fdx + gdy	 (9.35)

In the relationship given by Eq. (9.35), f (x, y) and g (x, y) are continuous functions and 
have continuous partial derivatives.

Next, using simple area examples, we demonstrate how Green’s theorem is applied.
We can establish a relationship between the area of a region bounded by its con-

tour t and a line integral around it by substituting for f = 0 and g = x or by letting 
f = -y and g = 0 in Eq. (9.35). This approach leads to the following relationships:

	 A = O
 

Region

dxdy = L
 

Contour,t 

xdy	 (9.36)

or

	 A = O
 

Region 

dxdy = - L
 

Contour,t 

ydx	 (9.37)

We can also combine Eqs. (9.36) and (9.37), which results in yet another relationship 
between area and line integrals:

	 2A = 2 O
 

Region 

dxdy = L
 

Contour,t 

(xdy - ydx)	 (9.38)
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466    Chapter 9    Analysis of Two-Dimensional Heat Transfer Problems

Let’s now use the relationship given by Eq. (9.38) to calculate the area of a circle having 
a radius R. As shown in the accompanying figure, for a circle

x2 + y2 = R2

 x = R cos u  and  dx = -R sin u d u

 y = R sin u  and  dy = R cos u d u

Substituting these relationships into Eq. (9.38), we have

2A = LContour, t
(xdy - ydx) = L

2p

0 ((R cos u)(R cos ud u) - (R sin u)(-R sin ud u))

and simplifying, we get

2A = L
2p

0

R2(cos2 u + sin2 u)du = L
2p

0

R2 du = 2pR2

or

A = pR2

As another example, let’s calculate the area of the rectangle shown in the accompany-
ing diagram.

	

x

y y = b
0 6 x 6 a

y = 0
0 6 x 6 a

a

b

1

3

24

x = a
0 6 y 6 bx = 0

0 6 y 6 b

c cd dx ydy dx

x

R

y

u
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Using Eq. (9.36), we have

	 A = Lt1

xdy + Lt2

xdy + Lt3

 xdy + Lt4

 xdy	 (9.39)

Note that along t1, x varies from 0 to a and y is zero (dy = 0), and along t2, x = a and 
y varies from 0 to b. Along t3, x varies from a to 0 and y is constant (dy = 0), and along 
t4, x = 0 and y varies from b to 0. Then, substituting for these relationships in Eq. (9.39), 
we get

A = 0 + L
 

b

0
 

ady + 0 + 0 = ab

Let us now return to Eqs. (9.33) and (9.34), which contribute to the derivative boundary 
conditions. To understand what is meant by derivative boundary conditions, consider an 
element with a convection boundary condition, as shown in Figure 9.10.

Neglecting radiation, the application of the conservation of energy in the x-direction 
to the jm edge requires that the energy that reaches the jm edge through conduction 
must be equal to the energy being convected away (by the fluid adjacent to the jm 
edge). So,

	 -k 
0T
0x

= h(T - Tf)	 (9.40)

Substituting the right-hand side of Eq. (9.40) into Eq. (9.33), we get

	 Lt C1[S]T 
0T
0x

 cos u dt = Lt k[S]T 
0T
0x

 cos u dt = - Lt h[S]T(T - Tf) cos u dt	 (9.41)

i

n m

j

qconduction qconvection

Tf , h

Figure 9.10  A rectangular element with 
a convective boundary condition.
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468    Chapter 9    Analysis of Two-Dimensional Heat Transfer Problems

The integral given by Eq. (9.41) has two terms:

        - Lt h[S]T(T - Tf) cos u dt = -Lt h[S]TT cos u dt + Lt h[S]TTf cos u dt	 (9.42)

The terms Lt h[S]TT cos u dt and Lt h[S]TT sin u dt, for convective boundary condi-

tions along different edges of the rectangular element, contribute to conductance 
matrices:

[K](e) =
h/ij

6
 D 2 1 0 0

1 2 0 0
0 0 0 0
0 0 0 0

T   (9.43)	 [K](e) =
h/jm

6
 D0 0 0 0

0 2 1 0
0 1 2 0
0 0 0 0

T   (9.44)

[K](e) =
h/mn

6
 D 0 0 0 0

0 0 0 0
0 0 2 1
0 0 1 2

T   (9.45)	 [K](e) =
h/ni

6
 D2 0 0 1

0 0 0 0
0 0 0 0
1 0 0 2

T   (9.46)

Referring to Figure 9.9, note that in the above matrices, /ij = /mn = / and /jm = /in = w. 
To get the results of Eqs. (9.43) through (9.46), we need to carry out the integration for 
each term in the 4 * 4 matrix.

	  Lt h[S]TTdt = hLt d Si

Sj

Sm

Sn

t [Si Sj Sm Sn] d Ti

Tj

Tm

Tn

tdt 	

	  = hLt  D Si
2 SjSi SmSi SnSi

SiSj Sj
2 SmSj SnSj

SiSm SjSm Sm
2 SnSm

SiSn SjSn SmSn Sn
2

T d Ti

Tj

Tm

Tn

tdt	 (9.47)

i T
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Section 9.2    Formulation with Rectangular Elements    469

For example, along the i–j edge, where Sm = 0 and Sn = 0, the contribution of Eq. (9.47) 
to the conductance matrix becomes

	 Lt
 

h[S]T Tdt = hLt
 

D Si
2 SjSi 0 0

SiSj Sj
2 0 0

0 0 0 0
0 0 0 0

T d Ti

Tj

Tm

Tn

t  dt	 (9.48)

Expressing the shape functions Si and Sj in terms of natural coordinates:

 Si =
1
4

 (1 - j)(1 - h)

 Sj =
1
4

 (1 + j)(1 - h)

and noting

 j =
2x
/

- 1

dj =
2
/

 dx or dx =
/
2

 dj

and j varies from -1 to 1, Eq. (9.48) then becomes

Lt h[S]TTdt =

h/ij

2 L
 

1

-1
 

 

F ¢ 1
4

 (1 - j)(1 - h)≤2 ¢ 1
16

 (1 - j)(1 - h)(1 + j)(1 - h)≤ 0 0¢ 1
16

 (1 - j)(1 - h)(1 + j)(1 - h)≤ ¢ 1
4

 (1 + j)(1 - h)≤2

0 0

0 0 0 0
0 0 0 0

V
	 d Ti

Tj

Tm

Tn

tdj	 (9.49)
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470    Chapter 9    Analysis of Two-Dimensional Heat Transfer Problems

Making use of the fact that along i–j edge h = -1, and integrating Eq. (9.49), we get

	  L
 

t  

h[S]T Tdt =
h/ij

2 L
1

- 1

F ¢ 1
2

 (1 - j)≤2 ¢ 1
4

 (1 - j)(1 + j)≤ 0 0¢ 1
4

 (1 - j)(1 + j)≤ ¢ 1
2

 (1 + j)≤2

0 0

0 0 0 0
0 0 0 0

Vdj d Ti

Tj

Tm

Tn

t
 =

h/ij

6
D2 1 0 0

1 2 0 0
0 0 0 0
0 0 0 0

T d Ti

Tj

Tm

Tn

t
where

L
1

-1
 ¢1

2
 (1 - j)≤2

dj =
1
4

 Jj +
j3

3
- j2 R

- 1

1

=
2
3

and

 L
1

-1

 ¢1
4

 (1 - j)(1 + j)≤  dj =
1
4
Jj -

j3

3
R

- 1

1

=
1
3

 L
1

-1

 ¢ 1
2

 (1 + j)≤2

dj =
1
4

 Jj +
j3

3
+ j2 R

- 1

1

=
2
3

Similarly, we can obtain the results given by Eqs. (9.44) through (9.46).

The terms Lt

h[S]TTf   cos u dt and Lt

h[S]TTf   sin u dt contribute to the elemental 

thermal load matrix. Evaluating these integrals along the edges of the rectangular 
element, we obtain

5F6(e) =
hTf /ij

2
 d 1

1
0
0

t 	 (9.50)	 5F6(e) =
hTf /jm

2
 d 0

1
1
0

t 	 (9.51)

5F6(e) =
hTf /mn

2
 d 0

0
1
1

t 	 (9.52)	 5F6(e) =
hTf /ni

2
 d 1

0
0
1

t 	 (9.53)
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Let us summarize what we have done so far. The conductance matrix for a bilinear 
rectangular element is given by:

[K](e) =
kxw

6/
 D 2 -2 -1 1

-2 2 1 -1
-1 1 2 -2
1 -1 -2 2

T +
ky/

6w

 D 2 1  -1  -2
1 2  -2  -1

-1  -2 2 1
-2  -1 1 2

T
Note that the elemental conductance matrix is composed of (1) a conduction com-
ponent in the x-direction; (2) a conduction component in the y-direction; and (3) a 
possible heat transfer term by convection around the edge of a given element, as given 
by Eqs. (9.43) to (9.46). The thermal load matrix for an element could have two com-
ponents: (1) a component due to possible heat generation within a given element, and 
(2) a component due to possible convection heat transfer along an element’s edge(s), as 
given by Eqs. (9.50) to (9.53). The contribution of the heat generation to the element’s 
thermal-load matrix is given by

5F6(e) =
q

#
A

4
 d 1

1
1
1

t
It is worth noting that in situations in which constant heat-flux boundary conditions 
occur along the edges of a rectangular element, the elemental load matrix is given by 
(see Problem 5)

 5F6(e) =
q>o/ij

2
 d 1

1
0
0

t 	  5F6(e) =
q>o/jm

2
 d 0

1
1
0

t
 5F6(e) =

q>o/mn

2
 d 0

0
1
1

t 	  5F6(e) =
q>o/ni

2
 d 1

0
0
1

t
The next step involves assembling elemental matrices to form the global matrices 

and solving the set of equations [K]5T6 = 5F6  to obtain the nodal temperatures. 
We will demonstrate this step in Example 9.1. For now, let us turn our attention to the 
derivation of the elemental conductance and load matrices for a triangular element.

9.3  Formulation with Triangular Elements

As we discussed in Chapter 7, a major disadvantage associated with using rectangular 
elements is that they do not conform to curved boundaries. In contrast, triangular ele-
ments are better suited to approximate curved boundaries. For the sake of convenience, 
a triangular element is shown in Figure 9.11.
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472    Chapter 9    Analysis of Two-Dimensional Heat Transfer Problems

Recall that a triangular element is defined by three nodes and that we represent 
the variation of a dependent variable, such as temperature, over a triangular region using 
shape functions and the corresponding nodal temperatures by the equation

	 T (e) = [Si Sj Sk] c Ti

Tj

Tk

s 	 (9.54)

where the shape functions Si, Sj, and Sk are

 Si =
1

2A
 (ai + biX + diY)

 Sj =
1

2A
 (aj + bjX + djY)

 Sk =
1

2A
 (ak + bkX + dkY)

A is the area of the element and is computed from the equation

2A = Xi(Yj - Yk) + Xj(Yk - Yi) + Xk(Yi - Yj)

Also,

	  ai = XjYk - XkYj bi = Yj - Yk di = Xk - Xj	 (9.55)

	  aj = XkYi - XiYk bj = Yk - Yi dj = Xi - Xk	

	  ak = XiYj - XjYi bk = Yi - Yj dk = Xj - Xi 	

Tk

(Xj ,Yj)

(Xk ,Yk)

(Xi ,Yi)

Tj

Ti

X

Y

T

Figure 9.11  A triangular element.
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Employing the Galerkin approach, the three residual equations for a triangular element, 
in matrix form, are given by

	 LA

[S]T¢kX 
02T
0X2 + kY 

02T
0Y2 + q

# ≤  dA = 0	 (9.56)

where

[S]T = c Si

Sj

Sm

s
We now proceed with steps similar to the ones we followed to formulate the 

conductance and thermal load matrices for rectangular elements. First, we rewrite the 
second-derivative expressions in terms of the first-derivative expressions using the chain 
rule. Evaluating the integral

- LA

C1¢ 0[S]T

0X
 
0T
0X

≤  dA

for a triangular element, we obtain

	
0[S]T

0X
=

0
0X

 c Si

Sj

Sk

s =
1

2A
 c bi

bj

bk

s 	 (9.57)

	
0T
0X

=
0

0X
[Si Sj Sk] c Ti

Tj

Tk

s =
1

2A
 [bi bj bk] c Ti

Tj

Tk

s 	 (9.58)

Substituting for the derivatives, we get

	 - LA

C1¢ 0[S]T

0X
 
0T
0X

≤  dA = -C1LA

 
1

4A2  c bi

bj

bk

s [bi bj bk]c Ti

Tj

Tk

s  dA	 (9.59)

and integrating, we are left with

	 -C1LA

 
1

4A2  c bi

bj

bk

s [bi bj bk] c Ti

Tj

Tk

sdA =
C1

4A
 C b i

2 bibj bibk

bibj b j
2 bjbk

bibk bjbk bk
2

S c Ti

Tj

Tk

s 	 (9.60)

In the same manner, we can evaluate the term

- LA

C2 ¢ 0[S]T

0Y
 
0T
0Y

≤  dA
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as

	  
0[S]T

0Y
=

0
0Y

 c Si

Sj

Sk

s =
1

2A
 c di

dj

dk

s 	 (9.61)

	  
0T
0Y

=
0

0Y
 [Si Sj Sk]c Ti

Tj

Tk

s =
1

2A
 [di dj dk] c Ti

Tj

Tk

s 	 (9.62)

Substituting for the derivatives and integrating, we have

	 -C2LA

1
4A2  c di

dj

dk

s [di dj dk] c Ti

Tj

Tk

sdA = -
C2

4A
 C d i

2 didj didk

didj dj
2 djdk

didk djdk dk
2

S  c Ti

Tj

Tk

s 	 (9.63)

For a triangular element, the thermal load matrix due to the heat generation 
term C3 is

	 LA

[S]TC3 dA = C3LA

c Si

Sj

Sk

s  dA =
C3A

3
 c 1

1
1
s 	 (9.64)

Evaluating the terms Lt h[S]TT cos u dt and Lt h[S]TT sin u dt for a convective boundary 

condition along the edges of the triangular element results in the equations

[K](e) =
h/ij

6
 C 2 1 0

1 2 0
0 0 0

S   (9.65)	 [K](e) =
h/jk

6
 C0 0 0

0 2 1
0 1 2

S   (9.66)

[K](e) =
h/ki

6
 C2 0 1

0 0 0
1 0 2

S   (9.67)

Note that in the above matrices, /ij, /jk, and /ki represent the respective lengths of the 

three sides of the triangular element. The terms Lt h[S]TTf cos u dt and Lt h[S]TTf sin u dt 

contribute to the elemental thermal loads. Evaluating these integrals along the edges of 
the triangular element yields

5F6(e) =
hTf /ij

2
 c 1

1
0
s   (9.68)		  5F6(e) =

hTf /jk

2
 c 0

1
1
s   (9.69)

5F6(e) =
hTf /ki

2
 c 1

0
1
s   (9.70)
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Let us summarize the triangular formulation. The conductance matrix for a trian-
gular element is

[K](e) =
kX

4A
 C b i

2 bibj bibk

bibj b j
2 bjbk

bibk bjbk bk
2

S +
kY

4A
 C d i

2 didj didk

didj d j
2 djdk

didk djdk dk
2

S
Note once again that the elemental conductance matrix for a triangular element 

is composed of (1) a conduction component in the X-direction; (2) a conduction com-
ponent in the Y-direction; and (3) a possible heat loss term by convection from the 
edge(s) of a given element, as given by Eq. (9.65) to (9.67). The thermal load matrix 
for a triangular element could have two components: (1) a component resulting from a 
possible heat-generation term within a given element, and (2) a component due to pos-
sible convection heat loss from the element’s edge(s), as given by Eq. (9.68) to (9.70). 
The contribution of the heat generation to the element’s load matrix is

5F6(e) =
q

#
A

3
 c 1

1
1
s

The development of constant heat flux boundary conditions for triangular elements is 
left as an exercise. (See Problem 6.)

Next, we use an example to demonstrate how to assemble the elemental informa-
tion to obtain the global conductance matrix and the global load matrix.

Example 9.1

Consider a small industrial chimney constructed from concrete with a thermal conduc-
tivity value of k = 1.4 W/m # K, as shown in Figure 9.12. The inside surface temperature 
of the chimney is assumed to be uniform at 100°C. The exterior surface is exposed to the 
surrounding air, which is at 30°C, with a corresponding natural convection heat trans-
fer coefficient of h = 20 W/m2 # K. Determine the temperature distribution within the 
concrete under steady-state conditions.

We can make use of the symmetry of the problem, as shown in Figure 9.12, and 
only analyze a section of chimney containing 1/8 of the area. The selected section of 
the chimney is divided into nine nodes with five elements. Elements (1), (2), and (3) 
are squares, while elements (4) and (5) are triangular elements. Consult Table 9.1 while 
following the solution.

Table 9.1  The relationship between the 
elements and their corresponding nodes

Element i j m or k n

(1) 1 2 4 3
(2) 3 4 7 6
(3) 4 5 8 7
(4) 2 5 4
(5) 5 9 8
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The conductance matrix due to conduction in a rectangular element is given by

[K](e) =
kw

6/
 D 2 -2 -1 1

-2 2 1 -1
-1 1 2 -2
1 -1 -2 2

T +
k/
6w

 D 2 1 -1 -2
1 2 -2 -1

-1 -2 2 1
-2 -1 1 2

T
Elements (1), (2), and (3) all have the same dimensions; therefore,

[K](1) = [K](2) = [K](3) =
(1.4)(0.1)

6(0.1)
 D 2 -2 -1 1

-2 2 1 -1
-1 1 2 -2
1 -1 -2 2

T
+

(1.4)(0.1)

6(0.1)
 D 2 1 -1 -2

1 2 -2 -1
-1 -2 2 1
-2 -1 1 2

T

T = 1005C

Tsurr = 305C

h = 20W/m2
 · K20 cm

60 cm

(1)

(2) (3)

(4)

(5)

X

Y

1 2

3 4 5

6 7 8 9

Figure 9.12  A schematic of the chimney in Example 9.1.
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To help with assembly of the elements later, the corresponding node numbers for each 
element are shown on the top and the side of each matrix:

1(i) 2( j) 4(m) 3(n)

[K](1) = D 0.933 -0.233 -0.466 -0.233
-0.233 0.933 -0.233 -0.466
-0.466 -0.233 0.933 -0.233
-0.233 -0.466 -0.233 0.933

T  

1
2
4
3

3(i) 4( j)   7(m) 6(n)

[K](2) = D 0.933 -0.233 -0.466 -0.233
-0.233 0.933 -0.233 -0.466
-0.466 -0.233 0.933 -0.233
-0.233 -0.466 -0.233 0.933

T  

3
4
7
6

4(i) 5( j)   8(m) 7(n)

[K](3) = D 0.933 -0.233 -0.466 -0.233
-0.233 0.933 -0.233 -0.466
-0.466 -0.233 0.933 -0.233
-0.233 -0.466 -0.233 0.933

T  

4
5
8
7

For triangular elements (4) and (5), the conductance matrix is

[K](e) =
k

4A
 C b i

2 bibj bibk

bibj b j
2 bjbk

bibk bjbk bk
2

S +
k

4A
 C d i

2 didj didk

didj d j
2 djdk

didk djdk dk
2

S
where the b@ and d@terms are given by the relations of Eq. (9.55). Because the b@ and 
d@terms are calculated from the difference of the coordinates of the involved nodes, it 
does not matter where we place the origin of the coordinate system X, Y. Evaluating 
the coefficients for element (4), we have

 bi = Yj - Yk = 0.1 - 0.1 = 0   di = Xk - Xj = 0 - 0.1 = -0.1

 bj = Yk - Yi = 0.1 - 0 = 0.1   dj = Xi - Xk = 0 - 0 = 0

 bk = Yi - Yj = 0 - 0.1 = -0.1  dk = Xj - Xi = 0.1 - 0 = 0.1

Evaluating the coefficients for element (5) renders the same results because the differ-
ence between the coordinates of its nodes is identical to that of element (4). Therefore, 
elements (4) and (5) will both have the following conductance matrix:

[K](4) = [K](5) =
1.4

4(0.005)
 C0 0 0

0 (0.1)2 (0.1)(-0.1)
0 (0.1)(-0.1) (-0.1)2

S
+

1.4
4(0.005)

 C (-0.1)2 0 (-0.1)(0.1)
0 0 0

(-0.1)(0.1) 0 (0.1)2

S
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Showing the corresponding node numbers on the top and the side of each respective 
conductance matrix for elements (4) and (5), we obtain

2(i) 5( j) 4(k)

[K](4) = C 0.7 0 -0.7
0 0.7 -0.7

-0.7 -0.7 1.4
S  

2
5
4

5(i) 9( j) 8(k)

[K](5) = C 0.7 0  -0.7
0 0.7 -0.7

-0.7 -0.7 1.4
S  

5
9
8

As explained earlier, the convective boundary condition contributes to both 
the conductance matrix and the load matrix. The convective boundary condition 
contributes to the conductance matrices of elements (2) and (3) according to the 
relationship

 [K](e) =
h/mn

6
 D0 0 0 0

0 0 0 0
0 0 2 1
0 0 1 2

T i
j

m
n

 [K](2) = [K](3) =
(20)(0.1)

6
D0 0 0 0

0 0 0 0
0 0 2 1
0 0 1 2

T = D0 0 0 0
0 0 0 0
0 0 0.666 0.333
0 0 0.333 0.666

T
Including the nodal information, the conductance matrices for elements (2) and (3) are

[K](2) = D3 4 7 6
0 0 0 0
0 0 0 0
0 0 0.666 0.333
0 0 0.333 0.666

T  

 

3
4
7
6

[K](3) = D4 5 8 7
0 0 0 0
0 0 0 0
0 0 0.666 0.333
0 0 0.333 0.666

T  

 

4
5
8
7
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Heat loss by convection also occurs along jk edge of element (5); thus,

[K](e) =
h/jk

6
 C0 0 0

0 2 1
0 1 2

S  

i
j
k

[K](e) =
(20)(0.1)

6
 C0 0 0

0 2 1
0 1 2

S = C0 0 0
0 0.666 0.333
0 0.333 0.666

S
5 9 8

[K](5) = C0 0 0
0 0.666 0.333
0 0.333 0.666

S  

5
9
8

The convective boundary condition contributes to the thermal load matrices for ele-
ments (2) and (3) along their mn edge according to the relationship

5F6(e) =
hTf /mn

2
 d 0

0
1
1

t =
(20)(30)(0.1)

2
 d 0

0
1
1

t = d 0
0
30
30

t
Including the nodal information, we have

5F6(2) = d 0
0
30
30

t  

3
4
7
6

5F6(3) = d 0
0
30
30

t  

4
5
8
7

The convective boundary condition contributes to the load matrix for element (5) along 
its jk edge according to the matrix

5F6(e) =
hTf /jk

2
 c 0

1
1
s =

(20)(30)(0.1)

2
 c 0

1
1
s = c 0

30
30

s
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Again, including the nodal information, we have

5F6(5) = c 0
30
30

s   

5
9
8

Next, we need to assemble all of the elemental matrices. Using the nodal informa-
tion presented next to each element, the global conductance matrix becomes

	 1	 2	 3	 4	 5	 6	 7	 8	 9

[K](G) = I 0.933  -  0.233  -  0.233  -  0.466 0 0 0 0 0
-  0.233 1.633  -  0.466  -  0.933 0 0 0 0 0
-  0.233  -  0.466 1.866  -  0.466 0  -  0.233  -  0.466 0 0
-  0.466  -  0.933  -  0.466 4.199  -  0.933  -  0.466  -  0.466  -  0.466 0

0 0 0  -  0.933 2.333 0  -  0.466  -  0.933 0
0 0 -  0.233 -  0.466 0 1.599 0.1 0 0
0 0 -  0.466 -  0.466 -  0.466 0.1 3.198 0.1 0
0 0 0 -  0.466 -  0.933 0 0.1 3.665 -  0.367
0 0 0 0 0 0 0 -  0.367 1.366

Y �

1
2
3
4
5
6
7
8
9

Applying the constant temperature boundary condition at nodes 1 and 2 results in the 
global matrix

[K](G) = I 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

-  0.233  -  0.466 1.866  -  0.466 0  -  0.233  -  0.466 0 0
-  0.466  -  0.933  -  0.466 4.199  -  0.933  -  0.466  -  0.466  -  0.466 0

0 0 0  -  0.933 2.333 0  -  0.466  -  0.933 0
0 0  -  0.233  -  0.466 0 1.599 0.1 0 0
0 0  -  0.466  -  0.466  -  0.466 0.1 3.198 0.1 0
0 0 0  -  0.466  -  0.933 0 0.1 3.665  -  0.367
0 0 0 0 0 0 0  -  0.367 1.366

Y
Assembling the thermal load matrix, we have

5F6(G) = i 0
0
0
0
0
30

30 + 30
30 + 30

30

y
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and applying the constant temperature boundary condition at nodes 1 and 2 leads to 
the following final form of the thermal load matrix:

5F6(G) = i 100
100
0
0
0
30
60
60
30

y
The final set of nodal equations is given by

I 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0

-0.233  -0.466 1.866  -0.466 0  -0.233  -0.466 0 0
-0.466  -0.933  -0.466 4.199  -0.933  -0.466  -0.466  -0.466 0

0 0 0 -0.933 2.333 0 -0.466 -0.933 0
0 0 -0.233 -0.466 0 1.599 0.1 0 0
0 0 -0.466 -0.466 -0.466 0.1 3.198 0.1 0
0 0 0  -0.466  -0.933 0 0.1 3.665  -0.367
0 0 0 0 0 0 0  -0.367 1.366

Y
* i T1

T2

T3

T4

T5

T6

T7

T8

T9

y = i 100
100
0
0
0
30
60
60
30

y
Solving the set of linear equations simultaneously leads to the following nodal solution:

[T]T = [100 100 70.83 67.02 51.56 45.88 43.67 40.10 32.73]°C

To check for the accuracy of the results, first note that nodal temperatures are 
within the imposed boundary temperatures. Moreover, all temperatures at the outer 
edge are slightly above 30°C, with node 9 having the smallest value. This condition 
makes physical sense because node 9 is the outermost cornerpoint. As another check on 
the validity of the results, we can make sure that the conservation of energy, as applied 
to a control volume surrounding an arbitrary node, is satisfied. Are the energies flowing 
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into and out of a node balanced out? As an example, let us consider node 3. Figure 9.13 
shows the control volume surrounding node 3 used to apply the conservation of energy 
principle.

We start with the equation

aq = 0

and using Fourier’s law we have

k(0.1)¢ 67.02 - T3

0.1
≤ + k(0.05)¢ 45.88 - T3

0.1
≤ + k(0.05)¢ 100 - T3

0.1
≤ = 0

Solving for T3, we find that T3 = 69.98°C. This value is reasonably close to the value 
of 70.83°C, particularly considering the coarseness of the element sizes. We will discuss 
the verification of results further with another example problem solved using ANSYS.

Example 9.1  Revisited

We will now show how to use Excel to set up and solve Example 9.1.
	 1.	 In cell A1 type Example 9.1, and in cells A3, A4, and A5 type k =, h =,  and 

Tsurr =  as shown. After inputting the value of k in cell B3, select B3 and in the 
“Name Box” type k and hit the Return key. Similarly, after inputting the values of 
h and Tsurr in cells B4 and B5, select B4 and B5, and in the corresponding “Name 
Box” type h and Tsurr, respectively, and hit the Return key after each entry.

1

6

43 T4 = 67.02

T6 = 45.88

T1 = 100

Figure 9.13  Applying the principle of 
energy balance to node 3 to check the validity 
of our results.
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	 2.	 Create the table shown with element and node numbers and the x-, y-coordinates 
of the nodes. Also, create the width and the length of the rectangular elements. 
Select cell J9 and name it W. Similarly, select cell J10 and name it L. In cell J11 
type = W*L and name this cell, Arectangle.

	

	 3.	 Complete the table by inputting the element, node numbers, and the coordinates of 
the triangular elements. In cell F25, type = C27@C26; in cell F26 type = C25@C27;  
in cell F27 type = C26@C25; and name them deltai, deltaj, and deltak, respectively. 
Similarly, in cells G25 through G27 create betai, betaj, and betak. Note the con-
tents of G25, G26, and G27 are =D26@D27; =D27@D25; =D25@D26. Input the 
magnitude of the triangular element in cell J26 and name it Atriangle. In a similar 
way, input and name the information for element 5.

	

	 4.	 Compute the [K] matrices due to conduction for rectangular elements, [K1], 
[K2], and [K3] as shown and name them Kelement1. Note, they are equal that is 
[K1] = [K2] = [K3].
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	 5.	 Next, compute the [K] matrices due to conduction for triangular elements, that is, 
[K4] and [K5] as shown and name them Kelement4. Note, that [K4] = [K5].

	

	 6.	 Create the [K] matrices due to convection. Select the range I49:L52 and type 
=  (h*L ,6)*D49:G52 and while holding down the Ctrl and Shift keys hit the 
Return key. Name the range I49:L52, K2duetoconvection. In a similar way, com-
pute the [K5] matrix due to convection. Select the range G54:I56 and type
=  (h*L ,6)*C54:E56 and while holding down the Ctrl and Shift keys, hit the 
Return key. Name the range G54:I56, K5duetoconvection.

	

	 7.	 Create the {F2}, {F3}, and {F5} matrices as shown. Name the ranges E59:E62 and 
K59:K61, Felement2 and Felement5, respectively.
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	 8.	 Next, create [A1], [A2], [A3], [A4], and [A5] matrices and name them Aelement1, 
Aelement2, Aelment3, Aelement4, Aelement5, respectively. If you have forgotten 
what each [A] matrix represents, see Section 2.5, Eq. (2.9).

	

	 9.	 Now, create the stiffness matrix for each element (with their proper positions in 
the global matrix) and name them K1G, K2G, K3G, K4G, and K5G. For example, 
to create [K]1G, select B87:J95 and type

=MMULT(TRANSPOSE(Aelement1),MMULT(Kelement1,Aelement1))
and while holding down the Ctrl and Shift keys, hit the Return key. In a similar 
way, create [K]2G, [K]3G, [K]4G, and [K]5G as shown. Make sure to include the K 
due to convection to appropriate [K]G matrices. For example, as shown, for [K]5G,  
in the range B127:J135, you need to type

=MMULT(TRANSPOSE(Aelement5),MMULT(Kelement5+K5duetoconvect
ion,Aelement5))
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	 10.	 Next, create the load matrices and name them F2G, F3G, and F5G. For example, 
to create 5F62G, in the range B137:B145 type

=MMULT(TRANSPOSE(Aelement2),Felement2)
and while holding down the Ctrl and Shift keys, hit the Return key.
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	 11.	 The final global matrix is created next. Select the range B147:J155 and type 

=K1G+K2G+K3G+K4G+K5G

and while holding down the Ctrl and Shift keys, hit the Return key.

	 12.	 Create the global load matrix as shown.

	 13.	 Apply the boundary conditions. Copy the appropriate portion of the KG matrix and 
paste it in the range C167:K175 as values only. Name the range KwithappliedBC. 
Similarly, create the corresponding load matrix in the range C177:C185 and name 
it FwithappliedBC.

	 14.	 Select the range C187:C195 and type

=MMULT(MINVERSE(KwithappliedBC),FwithappliedBC)
and while holding down the Ctrl and Shift keys hit the Return key.
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The complete Excel sheet is shown next.
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9.4 �A xisymmetric Formulation  
of Three-Dimensional Problems

As we explained in Chapter 7, Section 7.5, there is a special class of three-dimen-
sional problems whose geometry and loading are symmetrical about an axis, such 
as a z-axis, as shown in Figure 7.12. These three-dimensional problems may be ana-
lyzed using two-dimensional axisymmetric elements. We discussed the formulation 
of axisymmetric elements in Section 7.5; in this section, we discuss the finite element 
formulation of axisymmetric conduction problems using triangular axisymmetric 
elements.
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We begin our finite element formulation by applying the principle of the conserva-
tion of energy to a differential volume represented in a cylindrical coordinate system. 
The resulting heat conduction equation is given by

	
1
r

 
0
0r
¢krr 

0T
0r

≤ +
1
r2  

0
0u

¢ku 
0T
0u

≤ +
0
0z

¢kz 
0T
0z

≤ + q # = rc 
0T
0t

	 (9.71)

In Eq. (9.71), kr, ku, kz represent thermal conductivities in r-, u@, and z-directions, q
#
 is 

the heat generation per unit volume, and c represents the specific heat of the material. 
The derivation of Eq. (9.71) is shown in Figure 9.14. For steady-state problems, the 
right-hand side of Eq. (9.71) vanishes. Moreover, for axisymmetric situations, there is 
no variation of temperature in the u@direction, and assuming thermal conductivity is 
constant (kr = ku = kz = k), Eq. (9.71) reduces to

	
k
r

 
0
0r
¢r 

0T
0r

≤ + k 
02T
0z2 + q

# = 0	 (9.72)

The Galerkin residuals for an arbitrary triangular element become

	 5R(e)6 = L
 

V
 

[S]T¢k
r

 
0
0r
¢r 

0T
0r

≤ + k 
02T
0z2 + q

#≤  dV	 (9.73)

where

 Si =
1

2A
 (ai + bir + diz)

 [S]T = c Si

Sj

Sk

s and Sj =
1

2A
 (aj + bjr + djz) and 

 Sk =
1

2A
(ak + bkr + dkz)

ai = RjZk - RkZj   bi = Zj - Zk   di = Rk - Rj

aj = RkZi - RiZk   bj = Zk - Zi   dj = Ri - Rk

ak = RiZj - RjZi   bk = Zi - Zj   dk = Rj - Ri

As marked below, Eq. (9.73) has three main parts

	 5R(e)6 = LV
[S]T¢k

r
 
0
0r

 ¢r 
0T
0r

≤ ≤dV + LV
[S]T¢k

02T
0z2 ≤dV + LV

[S]Tq
#
dV	 (9.74)

Using the chain rule, we can rearrange the terms in part one in the following manner:

	
k
r

 
0
0r

 ¢ [S]Tr 
0T
0r

≤ =
k
r

 
0[S]T

0r
 r

0T
0r

+
k
r

 [S]T 
0
0r
¢r 

0T
0r

≤	 (9.75)

h f dPart one Part two Part three
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dz

dr

qu

qu + du

qz

qr

qr + dr

qz + dz

u

Y

X

r

Z

rdu

Figure 9.14  The derivation of equation of heat conduction in cylindrical coordinates under steady-state 
conditions.

Applying the conservation of energy to a differential cylindrical segment,

Ein
# - Eout

# + Egenerated
#

= Estored
#

The r-, u@, and z-components of Fourier’s law in cylindrical coordinates are

qr = -krAr 
0T
0r

= -krrdudz 
0T
0r

 qu = -
ku

r
 Au 

0T
0u

= -
kudrdz

r
 
0T
0u

 qz = -kzAz 
0T
0z

= -kzrdudr 
0T
0z

 (qr + qu + qz) - (qr + dr + qu+ du + qz + dz) + q
#
 drdzrdu = rc drdzrdu 

0T
0t

(qr + qu + qz) -
•

qr +
0qr

0r
dr +

        
 

qu +
0qu

0u
du + qz +

0qz

0z
dz

µ
+ q

#
drdzrdu = rc drdzrdu 

0T
0t

-
0qr

0r
 dr -

0qu

0u
 du -

0qz

0z
 dz + q•drdzrdu = rc drdzrdu 

0T
0t

Substituting for qr, qu, and qz in the above equation

-
0
0r
¢ -krrdudz 

0T
0r

≤dr -
0
0u

¢ -
kudrdz

r
 
0T
0u

≤du -
0

0z
¢ -kzrdudr 

0T
0z

≤dz + q•drdzrdu = rc drdzrdu 
0T
0t

and simplifying the differential volume terms, we have

1
r

 
0
0r
¢krr 

0T
0r

≤ +
1

r2
 
0
0u

¢ku 
0T
0u

≤ +
0

0z
¢kz 

0T
0z

≤ + q
#

= rc 
0T
0t

eAr

e Au

e Ar

e dVe dV

eqr + dr eqz + dzequ+ du
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Now, using the relationship given by Eq. (9.75), the part one in Eq. (9.74) may be 
expressed as

	 [S]T¢k
r

 
0
0r
¢r 

0T
0r

≤ ≤ =
k
r

 
0
0r
¢ [S]Tr 

0T
0r

≤ - k 
0[S]T

0r
 
0T
0r

	 (9.76)

Similarly, using the chain rule and rearranging terms in part two of Eq. (9.74), we have

	 k
0
0z

 ¢ [S]T 
0T
0z

≤ = k[S]T 
02T
0z2 + k 

0[S]T

0z
 
0T
0z

	 (9.77)

and

	 k[S]T 
02T
0z2 = k 

0
0z

¢ [S]T 
0T
0z

≤ - k
0[S]T

0z
 
0T
0z

	 (9.78)

Applying the results given by Eqs. (9.76) and (9.78), the contributions of part one and 
part two to the residual matrix is

	 L
 

V
 

 [S]T¢k
r

0
0r
¢r

0T
0r

≤ ≤dV
 

= L
 

V
 

 
k
r

 
0
0r
¢ [S]Tr 

0T
0r

≤dV - L
 

V 
 k 

0[S]T

0r
 
0T
0r

 dV	 (9.79)

	  L
 

V
 

 [S]T¢k 
02T
0z2 ≤dV = L

 

V
 

 
0
0z

¢ [S]T0T
0z

≤dV - L
 

V
 

 
0[S]T

0z
 
0T
0z

 dV 	 (9.80)

Similar to what we did in Section 9.2, using Green’s theorem, we can rewrite the volume 

integrals, L
 

V
 

k
r

 
0
0r
¢ [S]Tr 

0T
0r

≤dV and L
 

V
 

0
0z

¢ [S]T 
0T
0z

≤dV in terms of area integrals around 

the element surface boundaries. We will come back to these terms later; for now let us 

consider the - L
 

V
 

k 
0[S]T

0r
 
0T
0r

 dV term in Eq. (9.79). This term can easily be evaluated. 

Evaluating the derivative for a triangular element, we obtain

	
0T
0r

=
0
0r

[Si Sj Sk]c Ti

Tj

Tk

s =
1

2A
[bi bj bk]c Ti

Tj

Tk

s 	 (9.81)

Also, evaluating 
0[S]T

0r
, we have

	
0[S]T

0r
=

0
0r

 c Si

Sj

Sk

s =
1

2A
 c bi

bj

bk

s 	 (9.82)

Substituting the results of Eqs. (9.81) and (9.82) into the term - L
 

V
 

k 
0[S]T

0r
 
0T
0r

 dV and 

integrating, we have

gPart onegPart two
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- L
 

V
 

k
0[S]T

0r
 
0T
0r

 dV = -kL
 

V
 

 
1

4A2  c bi

bj

bk

s  [bi bj bk]dV =
k

4A2  C bi
2 bibj bibk

bibj bj
2 bjbk

bibk bjbk bk
2

SV� (9.83)

Next, we use the Pappus–Guldinus theorem to compute the volume of the element 
that is generated by revolving the area element about the z-axis. You may recall from 
your Statics class that the Pappus–Guldinus theorem is used to calculate the volume of 
a body that is generated by revolving a sectional area about an axis similar to the one 
shown in Figure 9.15.

	 V = 2p rA	 (9.84)

In Equation (9.84), 2p r represents the distance traveled by the centroid of the sectional 
area. See Example 9.2 to refresh your memory about how the Pappus–Guldinus theorem 

(a) Generating volume of a sphere

z

A =    R2

2

r = 4R
3

   R3

3
4V = 2    r A =

(b) Generating volume of a cone

b2h
3

V = 2  r A =

c

c

b

h

A =
2
1

bh

 =
3
b

R

r

r

r

p
p

p

p

p p

Figure 9.15  The Pappus–Guldinus 
theorem—A volume generated by 
revolving an area about a fixed axis.
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is used to calculate a volume of an object. Substituting in Eq. (9.83) and simplifying, 
we get

	 - L
 

V
 

 k
0[S]T

0r
 
0T
0r

 dV =
prk
2A

C bi
2 bibj bibk

bibj bj
2 bjbk

bibk bjbk bk
2

S 	 (9.85)

As we discussed in Chapter 7, we can use shape functions to describe the position of any 
point within an element. Therefore, the radial position of the centroid of the element for 
which Si = Sj = Sk = 1/3 can be expressed by

	 r = SiRi + SjRj + SkRk =
Ri + Rj + Rk

3
	 (9.86)

Equation (9.86) can be used to calculate r. In a manner shown previously, we can also 

evaluate the term - L
 

V
 

0[S]T

0z
 
0T
0z

 dV

	
0T
0z

=
0
0z

[Si Sj Sk]c Ti

Tj

Tk

s =
1

2A
[di dj dk]c Ti

Tj

Tk

s 	 (9.87)

	
0[S]T

0z
=

0
0z

 c Si

Sj

Sk

s =
1

2A
 c di

dj

dk

s 	 (9.88)

Substituting for the derivatives and integrating, we have

- L
 

V 

 k
0[S]T

0z
 
0T
0z

 dV = -kL
 

V 
 

1
4A2  c di

dj

dk

s [di dj dk]dV =
k

4A2  C d i
2 didj didk

didj dj
2 djdk

didk djdk dk
2

SV	 (9.89)

And using the Pappus–Guldinus theorem, substituting for V = 2p rA in Eq. (9.89), we have

- L
 

V
 

 k
0[S]T

0z
 
0T
0z

 dV =
k

4A2  C di
2 didj didk

didj d j
2 djdk

didk djdk dk
2

S2p rA =
p rk
2A

 C d i
2 didj didk

didj d j
2 djdk

didk djdk dk
2

S � (9.90)

The thermal load due to the heat generation term is evaluated by first substituting for 

dV = 2p rdA and r =
Ri + Rj + Rk

3
, then integrating the resulting expression

	 L
 

V
 

[S]Tq
#
dV = q

#
L
 

V
 

 [S]TdV = q
#
L
 

V
 

 c Si

Sj

Sk

sdV = q
#
2p rL

 

V
 

 c Si

Sj

Sk

sdA	 (9.91)

and substituting for Si, Sj, and Sk and integrating, we get
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	 L
 

V
 

 [S]Tq
#
dV = q

#
2p rL

 

V
 

 c Si

Sj

Sk

sdA =
2pq

#
A

12
C2 1 1

1 2 1
1 1 2

S c Ri

Rj

Rk

s 	 (9.92)

We now return to the terms L
 

V
 

 
k
r

 
0
0r
¢ [S]Tr 

0T
0r

≤dV and L
 

V
 

 
0
0z

¢ [S]T 
0T
0z

≤dV.

As mentioned earlier, we can use Green’s theorem to rewrite these volume integrals in 
terms of area integrals around the boundaries similar to the approach we discussed in 
Section 9.2. For convective boundary conditions along the areas generated by revolving 
the edges of the triangular element, the above terms contribute to both the conductance 
matrix and the thermal load matrix in the following manner:

Along i9j, [K](e) =
2p/ij

12
C3Ri + Rj Ri + Rj 0

Ri + Rj Ri + 3Rj 0
0 0 0

S 	 (9.93)

and

	 5  f 6 (e) =
2phTf /ij

6
 c 2Ri + Rj

Ri + 2Rj

0
s 	 (9.94)

Along j9k, [K](e) =
2p/jk

12
 C0 0 0

0 3Rj + Rk Rj + Rk

0 Rj + Rk Rj + 3Rk

S 	 (9.95)

and

	 5 f6 (e) =
2phTf/jk

6
 c 0

2Rj + Rk

Rj + 2Rk

s 	 (9.96)

Along k9i, [K](e) =
2p/ki

12
 C3Ri + Rk 0 Ri + Rk

0 0 0
Ri + Rk 0 Ri + 3Rk

S 	 (9.97)

and

	 5 f6(e) =
2phTf /ki

6
 c 2Ri + Rk

0
Ri + 2Rk

s 	 (9.98)

Let us now summarize the axisymmetric triangular formulation. The conductance matrix 
for an axisymmetric triangular element is

[K](e) =
p rk
2A

 C bi
2 bibj bibk

bibj bj
2 bjbk

bibk bjbk bk
2

S +
p rk
2A

 C d i
2 didj didk

didj dj
2 djdk

didk djdk dk
2

S
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Note that the elemental conductance matrix for an axisymmetric triangular element is 
composed of (1) a conduction component in the radial direction; (2) a conduction com-
ponent in the z-direction; and (3) a possible heat loss or gain term by convection from 
the edge(s) of a given element as given by Eqs. (9.93), (9.95), and (9.97). The thermal load 
matrix for an axisymmetric triangular element could have two components: (1) a com-
ponent resulting from a possible heat generation term within a given element, Eq. (9.92), 
and (2) a component due to possible convection heat loss or gain from the element’s 
edge(s) as given by Eqs. (9.94), (9.96), and (9.98). The development of constant heat flux 
boundary conditions for an axisymmetric element is left as an exercise. (See Problem 25.)

Example 9.2

Use the Pappus–Guldinus theorem to calculate the volume of the solid portion of the 
annulus generated by revolving the rectangle about the z-axis, as shown in the accom-
panying figure.

z

7 in

3 in

r = 4 in

The centroid of the revolving rectangle is located 4 in from the z-axis.

V = 2p rA = 2p(4 in)(2 in)(7 in) = 112p in3

Alternatively, the volume of the solid portion of the annulus can be calculated from

V = pR2
2h - pR1

2h = p((5 in)2 - (3 in)2)(7 in) = 112p in3

As you can see, the results are in agreement.

9.5 U nsteady Heat Transfer

In this section, we are concerned with determining how temperatures may vary with 
position and time as a result of applied or existing thermal conditions. First, we review 
some important concepts dealing with transient heat transfer problems. A good under-
standing of these concepts will better assist you to model a physical problem using 
ANSYS. We begin our review with problems for which the spatial variation of tem-
perature is negligible during the transient process and consequently, the variation of 
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temperature with time is only important. Consider the cooling of a small spherical steel 
pellet as shown in Figure 9.16.

The thermophysical variables affecting the solution are shown in Figure 9.16. 
Because of the relatively small size of the pellet, the temperature variation with posi-
tion inside the sphere is negligible. We can obtain an expression for variation of tem-
perature with time starting with Eq. (9.7), Ein

# - Eout
# + Egen

#
= Estored

#
, and realizing that 

for this problem Ein
#

= 0, Eg
#

= 0. Moreover, convection heat transfer occurs between 
the sphere and the surrounding fluid according to Eq. (9.5), Eout

#
= -hA(T - Tf). The 

Estored
#

 term represents the decrease in the thermal energy of the sphere due to the cool-

ing process and is given by Estored
#

= rcV 
dT
dt

. Substituting for Ein
#

= 0, E
#
g = 0, Eout

#
 =

-hA(T - Tf), and Estored
#

= rcV 
dT
dt

 in Eq. (9.7), we get

	 -hA(T - Tf) = rcV 
dT
dt

	 (9.99)

Assuming a relatively large cooling reservoir, it is reasonable to expect the temperature 
of fluid not to change with time. Thus, in Equation (9.99) we have assumed that Tf  is 
constant. Equation (9.99) is a first order differential equation and to solve it, we let 
Θ = T - Tf, then we separate variables and integrate, which results in

	 -hAΘ = rcV
dΘ
dt

1
rcV

hA
 L

Θ

Θi

 
dΘ
Θ

= - L
t

0
dt 1 t =

rcV

hA
  ln

Θi

Θ
	 (9.100)

Thus, the time that it takes for a sphere to reach a certain temperature T is computed 
from

	 t =
rcV

hA
 ln 

Ti - Tf

T - Tf
	 (9.101)

And if we were interested in knowing what the temperature of a sphere was at a given 
time, we could rearrange Eq. (9.101) in the following manner

	
T - Tf

Ti - Tf
= exp¢ -

hA
rcV

 t≤	 (9.102)

h = heat transfer coef�cient,
W

Tf  = �uid Temperature,
m2· K

Ti = initial temperature of sphere,

    = density of the sphere,

c = speci�c heat of sphere,

kg

m3

J

kg · K

k = thermal conductivity of sphere, W

m · K

Steel
Pellet

5C
r

5C

Figure 9.16  Cooling of a small spherical pellet.
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For a transient problem, we may also be interested in knowing the amount of heat 
transferred to the fluid (or removed from a solid object) up to a certain time t. This 
information is obtained from

	 Q = L
 

t

0
 

 hA(T - Tf)dt	 (9.103)

Substituting for T - Tf  from Eq. (9.102) in Eq. (9.103) and integrating it, we get

	 Q = rcV(Ti - Tf)J1 - exp¢ -
hA
rcV

t≤ R 	 (9.104)

When dealing with the analysis of transient heat transfer problems, there are two dimen-
sionless quantities, the Biot and Fourier numbers, that are very useful. The Biot number 
provides a measure of the thermal resistance within the solid, being cooled (or heated 
in some problems), relative to the thermal resistance offered by the cooling (heating) 
fluid. The Biot number is defined according to

	 Bi =
hLc

ksolid
	 (9.105)

where Lc is a characteristic length, and is typically defined as the ratio of the volume 
of the object to its exposed surface areas. Small Biot numbers (typically, Bi 6 0.1)  
imply that thermal resistance within the solid object is negligible and consequently, 
the temperature distribution is approximately uniform at any instant inside the solid 
object.

Another important variable is the Fourier number, which is a dimensionless time 
parameter. It provides a measure of the rate of conduction within the solid relative to 
the rate of the thermal storage. The Fourier number is defined as

	 Fo =
at
L2

c

	 (9.106)

In Eq. (9.106), a is called thermal diffusivity and is equal to a =
k
rc

. The thermal diffu-

sivity value represents a measure of how well the material conducts heat in comparison 
to storing the heat. Thus, materials with low thermal diffusivity are better in storing 
thermal energy than they are in conducting it. The method which we described in this 
section to obtain solutions to problems wherein spatial variation of temperature at a 
given time step is neglected is called the Lumped Capacitance method. For problems in 
which Bi 6 0.1, lumped capacitance method renders accurate results.
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Exact Solutions

We now consider problems for which spatial and temporal variations of temperature 
must be considered. One-dimensional transient heat transfer, described in a Cartesian 
coordinate system, is governed by

	
02T
0x2 =

1
a

 
0T
0t

	 (9.107)

The solution of the governing differential heat equation requires application of two 
boundary conditions and one initial condition. Infinite series solutions exist for sim-
ple geometries with convective boundary conditions and uniform initial temperatures. 
These solutions provide temperature distribution as a function of position x inside the 
medium and time t. The infinite series solutions are also available for long cylinders 
and spheres. For heat transfer problems wherein Fo 7 0.2, the one term approximate 
solution provides accurate results and are presented in the form of charts called Heisler 
charts. For simple three-dimensional problems, the solution may be represented in terms 
of the product of one the dimensional solutions. For an in-depth review of exact solu-
tions, you are encouraged to study a good text on the heat transfer. For example of such 
a text, see Incropera and DeWitt (1996).

Example 9.3

In an annealing process, thin steel plates (k = 40 W/m.K, r = 7800 kg/m3, 
c = 400 J/kg.K) are heated to temperatures of 900°C and then cooled in an environment 
with temperature of 35°C and h = 25 W/m2.K. Each plate has a thickness of 5 cm. We 
are interested in determining how long it would take for a plate to reach a temperature 
of 50°C and what the temperature of the plate is after one hour.

First, we need to calculate the Biot number to see if the lumped capacitance 
method is applicable. The characteristic length for this problem is equal to half of the 
plate thickness. Recall that characteristic length is defined as the ratio of volume of the 
object to its exposed surface areas. Thus

Lc =
V

Aexposed
=

(area)(thickness)

2(area)
=

0.05 m
2

= 0.025 m

Bi =
hLc

ksolid
=

(25 W/m2.K)(0.025 m)

40 W/m.k
= 0.015

Because the Biot number is less than 0.1, the lumped capacitance method is applicable. 
We use Eq. (9.101) to determine the time that it takes for a plate to reach a temperature 
of 50°C.

t =
rcV

hA
 ln 

Ti - Tf

T - Tf
=

(7800 kg/m3)(400 J/kg.K)(0.025 m)

(25 W/m.K)
 ln 

900 - 35
50 - 35

= 12650 s = 3.5 hr
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We use Eq. (9.102) to determine the temperature of a plate after one hour.

T - Tf

Ti - Tf
= exp¢ -

hA
rcV

 t≤ =
T - 35

900 - 35
= exp¢ -

(25 W/m.K)(3600 s)

(7800 kg/m3)(400 J/kg.K)(0.025 m)
≤

1 T = 304.4°C

Finite Difference Approach

There are many practical heat transfer problems for which we cannot obtain exact solu-
tions, consequently we resort to numerical approximations. As we explained in Chapter 1,  
there are two common classes of numerical methods: (1) finite difference methods and 
(2) finite element methods. To better understand the finite element formulation of tran-
sient problems, let us first review two common finite difference procedures, the explicit 
method and Implicit method. The first step of any finite difference scheme is discretiza-
tion. We divide the medium of interest into a number of subregions and nodes as shown 
in Figure 9.17. The governing differential heat equation (e.g., Eq. (9.107)) is then written 
for each node, and the derivatives in the governing equations are replaced by difference 
equations.

Using the explicit method, the temperature of an arbitrary node n at time step 
p + 1, Tn

p + 1 is determined from the knowledge of temperatures of node n and its neigh-
boring nodes n - 1 and n + 1 at the previous time step p. Starting with expressing  
Eq. (9.107) in a finite difference form,

Tn - 1
p - 2Tn

p + Tn + 1
p

(∆x)2 =
1
a

 
Tn

p + 1 - Tn
p

∆t

and simplifying,

Tn
p + 1 =

a∆t
(∆x)2  (Tn - 1

p + Tn + 1
p ) + J1 - 2¢ a∆t

(∆x)2 ≤ RTn
p

we get

	 Tn
p + 1 = Fo(Tn - 1

p + Tn + 1
p ) + [1 - 2Fo]Tn

p	 (9.108)

Tn - 1 Tn Tn + 1

xx

Figure 9.17  Discretization of the medium into smaller subregions and nodes.
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where

	 Fo =
a∆t

(∆x)2	 (9.109)

We start at time t = 0 corresponding to time step p = 0 and use the initial tempera-
ture values in Eq. (9.108) to determine the temperature of node n at the next time step 
corresponding to time t = ∆t. We then proceed by using the newly calculated tempera-
tures as values for time step p and compute the temperatures at next time step p + 1. 
The march in time continues until the nodal temperature distribution corresponding to  
the desired time is obtained. As the name implies, explicit method makes explicit use  
of the knowledge of the temperature at previous time steps to compute the nodal values 
at the next time step. Although the explicit procedure is simple, there is a restriction on 
the size of time step that must be followed. Failure to follow the restriction will lead to 
unstable solutions that will not make physical sense. In Eq. (9.108) the term (1 - 2Fo) 
must be positive, that is 1 - 2Fo Ú 0 or Fo … 1

2 to ensure stable solutions. To better 
understand this restriction, consider a situation for which temperature of node n at time 
step p is, say, T n

p = 60°C, and the temperatures of neighboring nodes n - 1 and n + 1 
at time step p are T n - 1

p = T n + 1
p = 80°C. If we were to use a Fourier value greater than 

0.5, say 0.6, then using Equation (9.108), we would get

Tn
p + 1 = Fo(Tn - 1

p + Tn + 1
p ) + [1 - 2Fo]Tn

p = 0.6(80 + 80) + [1 - 2(0.6)](60) = 84°C

As you can see, the resulting temperature is not physically meaningful, because the tem-
perature of node n at time step p + 1 cannot exceed the temperature of its neighboring 
nodes. This violates the second law of thermodynamics. Therefore, for one-dimensional 
problems, the stability criterion is given by

	 Fo …
1
2

	 (9.110)

For two-dimensional problems, it can be shown that the stability criterion becomes

	 Fo …
1
4

	 (9.111)

Implicit Method

In order to overcome the time step restriction imposed by stability requirement, we can 
resort to implicit method. Using the implicit method, the temperature of an arbitrary 
node n at time step p + 1, T n

p + 1 is determined from its value at the previous time p and 
the value of temperatures at its neighboring nodes n - 1 and n + 1 at time step p + 1. 
The heat equation, Eq. (9.107) for an arbitrary node n is expressed by

Tn - 1
p + 1 - 2Tn

p + 1 + Tn + 1
p + 1

(∆x)2 =
1
a

 
Tn

p + 1 - Tn
p

∆t

and when simplified it results in

	 Tn
p + 1 - Tn

p = Fo(Tn - 1
p + 1 - 2Tn

p + 1 + Tn + 1
p + 1)	 (9.112)

M09_MOAV4303_04_GE_C09.INDD   502 27/11/14   10:04 AM

www.FreeEngineeringbooksPdf.com



Section 9.5    Unsteady Heat Transfer    503

Separating the unknown temperatures at time step p + 1 from the known temperature 
at time step p in Eq. (9.112), we get

	 Tn
p + 1 - Fo(Tn - 1

p + 1 - 2Tn
p + 1 + Tn + 1

p + 1) = Tn
p	 (9.113)

The implicit method leads to a set of linear equations that are solved simultaneously to 
obtain the nodal temperatures at time step p + 1. Example 9.4 demonstrate the steps 
involved in formulating and obtaining solutions using explicit and implicit schemes.

Example 9.4

Consider the long thin plate shown in Figure 9.18, which is initially at a uniform tempera-
ture of T = 250°C. The plate is made of Silicon carbide with the following properties: 
k = 510 W/m. K, r = 3100 kg/m3, and c = 655 J/kg.K. The plate is suddenly subjected 
to moving cold water with a very high convective heat transfer coefficient approximating 
a constant surface temperature of 0°C. We are interested in determining the variation 
of temperature within the plate.

10 cm

1

x

65432

1 cm

= 0
x = 0

T(x, 0) = 2505C 

0T

0x

T6 = 0

05C 05C

Figure 9.18  A schematic of the plate in Example 9.4.
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Explicit Solution

We can make use of the symmetry of the problem, as shown in Figure 9.18, and only 
analyze half of the plate. The selected section of the plate is divided into six nodes as 
shown in Figure 9.18. The thermal diffusivity of the plate is

a =
k
rc

=
510 W/m.K

(3100 kg/m3)(655 J/kg.K)
= 2.5 * 10-4 m2/s

To obtain meaningful results, we set Fo = 1
2 and solve for the appropriate time step

Fo =
a∆t

(∆x)2 =
1
2

=
(2.5 * 10- 4 m2/s)∆t

(0.01 m)2 1 ∆t = 0.2 s

The nodal equations are:

For node 1:  
0T
0x

2
x = 0

= 0 1 T1
p + 1 = T2

p + 1

Substituting for Fo = 0.5 in Eq. (9.108), for nodes 2, 3, 4, and 5, we have

Tn
p + 1 = 0.5(Tn - 1

p + Tn + 1
p )

and for node 6: T6
p + 1 = 0°C

Starting with the initial condition and marching out in time, we obtain the results 
shown in Table 9.2.

Implicit Solution

The boundary condition of node 1 requires that
For node 1:  T 1 

p + 1 = T 2
p + 1

We can use Eq. (9.113) to formulate the expressions for nodes 2, 3, 4, and 5:

-Tn + 1
p + 1 + 4Tn

p + 1 - Tn - 1
p + 1 = 2Tm

p

and for node 6:  T6
p + 1 = 0°C

Expressing the nodal equations in a matrix form, we have

F 1  -1 0 0 0 0
-1 4  -1 0 0 0
0  -1 4  -1 0 0
0 0  -1 4  -1 0
0 0 0  -1 4  -1
0 0 0 0 0 1

V f T1
P + 1

T2
P + 1

T3
P + 1

T4
P + 1

T5
P + 1

T6
P + 1

v = f 0
2T2

P

2T3
P

2T4
P

2T5
P

0

v
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Initially the plate is at a uniform temperature of 250°C. Using the initial conditions in 
the right hand side of the above matrix, we getF 1  -1 0 0 0 0

-1 4  -1 0 0 0
0  -1 4  -1 0 0
0 0  -1 4  -1 0
0 0 0  -1 4  -1
0 0 0 0 0 1

V f T1
1

T2
1

T3
1

T4
1

T5
1

T6
1

v = f 0
500
500
500
500
0

v
Solving the set of linear equations we obtain the nodal temperature values correspond-
ing to t = 0.2 s

[T1] = [248.36 248.36 245.09 232.02 183.00 0]

Using the above results we can now solve for nodal values at t = 0.4 sF 1  -1 0 0 0 0
-1 4  -1 0 0 0
0  -1 4  -1 0 0
0 0  -1 4  -1 0
0 0 0  -1 4  -1
0 0 0 0 0 1

V f T1
1

T2
1

T3
1

T4
1

T5
1

T6
1

v = f 0
2 * 248.36
2 * 245.09
2 * 232.02
2 * 183.00

0

v
[T2] = [244.38 244.38 236.44 211.19 144.29 0]

Table 9.2  Temperatures for Example 9.4, using the explicit method

Temperature (ºC)

n = 1 2 3 4 5 6

p t (sec) x = 0 0.01 0.02 0.03 0.04 0.05

0 0 250 250 250 250 250 250

1 0.2 250 250 250 250 250 0

2 0.4 250 250 250 250 125 0

3 0.6 250 250 250 187.5 125 0

4 0.8 250 250 218.7 187.5 93.7 0

5 1 234.3 234.3 218.7 156.2 93.7 0

6 1.2 226.5 226.5 195.2 156.2 78.1 0

7 1.4 210.8 210.8 191.3 136.6 78.1 0

8 1.6 201.1 201.1 173.7 134.7 68.3 0

9 1.8 187.4 187.4 167.9 121 67.3 0

10 2 177.6 177.6 154.2 117.6 60.5 0

11 2.2 165.9 165.9 147.6 107.3 58.8 0

12 2.4 156.7 156.7 136.6 103.2 53.6 0

13 2.6 146.6 146.6 129.9 95.1 51.6 0

14 2.8 138.2 138.2 120.8 90.7 47.5 0

15 3 129.5 129.5 114.4 84.1 45.3 0
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Using similar steps, we can march in time to obtain solutions at any desired time. 
Example 9.4 demonstrated the difference between the explicit and implicit schemes. 
Next, we will look at the finite element formulation of transient heat transfer problems.

Finite Element Approach 

In Sections 9.2 and 9.3 we derived the conductance and thermal load matrices for steady 
state heat problems. The finite element formulation of these problems leads to the fol-
lowing general form:

	  [K]5T6 = 5F6 	 (9.114)

 [conductance matrix]5 temperature matrix6 = 5 thermal load matrix6 	

For transient problems, we must also account for the thermal energy storage term, which 
leads to

	  [C]5T
#6 + [K]5T6 = 5F6 	 (9.115)

[heat storage matrix] + [conductance matrix]5 temperature matrix6 =

� 5 thermal load matrix6
To obtain the solution, at discrete points in time, to the system of equations given by  
Eq. (9.115), we use a time integration procedure. The time step used in this procedure 
plays an important role in the accuracy of results. If we select a time step that is too small, 
then spurious oscillation may occur in the temperature solutions leading to meaningless 
results. On the other hand, if the time step is too large, then the temperature gradients 

cannot be accurately computed. We can use the Biot number aBi =
h∆x
ksolid

b  and the 

Fourier number aFo =
a∆t

(∆x)2 b  to arrive at a reasonable time step. ∆x and ∆t represent 

the mean element width and the time step, respectively. For problems for which the Bi 6 1, 
the time step size may be estimated by setting the Fourier number equal to a scaling value 
b whose magnitude varies between 0.1 and 0.5 as shown below.

Fo =
a∆t

(∆x)2 = b

and solving for ∆t, we get

	 ∆t = b 
(∆x)2

a
 where 0.1 … b … 0.5	 (9.116)

If for a problem Bi 7 1, then the time step may be estimated from the product of the 
Fourier and Biot numbers in the following manner:

(Fo)(Bi) = J a∆t
(∆x)2 R J h∆x

ksolid
R = b
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and solving for ∆t, we get

	 ∆t = b 
(∆x)ksolid

ha
= b 

(∆x)rc

h
 where 0.1 … b … 0.5	 (9.117)

ANSYS uses the following generalized Euler scheme for time integration:

	 5Tp + I6 = 5Tp6 + (1 - u)∆t5T
#

p6 + u∆t5T
#

p + 16 	 (9.118)

In Eq. (9.118), u is called the Euler parameter. Temperature solutions are obtained for 
time step p + 1 from the knowledge of temperature values at previous time step p, 
starting at time t = 0, corresponding to the time step p = 0, when the initial tempera-
tures are known. For implicit scheme, which is unconditionally stable, the value of u is 

limited to 
1
2

… u … 1. When u =
1
2

, the integration scheme is commonly referred to as  

Crank–Nicolson. It provides accurate results for most transient heat transfer problems. 
When u = 1, the integration technique is called Backward Euler and is the default set-
ting in ANSYS. Substituting Eq. (9.118) into Eq. (9.115), gives

	
Equivalent K matrix¢ 1
u∆t

[C] + [K]≤  

5Tp + 16 =

Equivalent F matrix

5F6 + [C]¢ 1
u∆t
5Tp6 +

1 - u

1
5T

#
p6 ≤	 (9.119)

System of equations represented by Eq. (9.119) are solved to obtain nodal tem-
peratures at discrete points in time. Now, a few words about how the thermal loads 
should be applied. Thermal loads can be applied either suddenly as a step function 
or increased (or decreased) over a period of time as a ramp function as shown in 
Figure 9.19. Note that when using ANSYS, the value of the step load is typically 
applied at the first time substep. In Section 9.7 we will use ANSYS to solve a tran-
sient heat transfer problem.

9.6  Conduction Elements Used by ANSYS

ANSYS offers many two-dimensional thermal-solid elements that are based on linear 
and quadratic quadrilateral and triangular shape functions:

PLANE35 is a six-node triangular thermal-solid element. The element has one 
degree of freedom at each node—namely, temperature. Convection and heat 
fluxes may be input as surface loads at the element’s faces. The output data for this 
element include nodal temperatures and other data, such as thermal gradients and 
thermal fluxes. This element is compatible with the eight-node PLANE77 element.

PLANE55 is a four-node quadrilateral element used in modeling two-dimensional 
conduction heat transfer problems. The element has a single degree of freedom, 

d i
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which is temperature. Convection or heat fluxes may be input at the element’s 
faces. Output data include nodal temperatures and element data, such as thermal 
gradient and thermal flux components.

PLANE77 is an eight-node quadrilateral element used in modeling two-dimen-
sional heat conduction problems. It is basically a higher order version of the two-
dimensional four-node quadrilateral PLANE55 element. This element is better 
capable of modeling problems with curved boundaries. At each node, the ele-
ment has a single degree of freedom, which is temperature. Output data include 
nodal temperatures and element data, such as thermal gradient and thermal flux 
components.

Keep in mind that although you generally achieve more accuracy of results with higher 
order elements, they require more computational time because numerical integration 
of elemental matrices is more involved.

9.7 E xamples Using ANSYS

Steady State Example

Consider a small chimney constructed from two different materials. The inner layer 
is constructed from concrete with a thermal conductivity k = 0.07 Btu/hr # in # °F. 
The outer layer of the chimney is constructed from bricks with a thermal conduc-
tivity value k = 0.04 Btu/hr # in # °F. The temperature of the hot gases on the inside 
surface of the chimney is assumed to be 140°F, with a convection heat transfer coef-
ficient of 0.037 Btu/hr # in2 # °F. The outside surface is exposed to the surrounding air, 
which is at 10°F, with a corresponding convection heat transfer coefficient h = 0.012  

T
he

rm
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 L
oa

d

Time

(a) Step load

Value of step load is applied
at the �rst time subset

T
he

rm
al

 L
oa

d

Time

(b) Ramp load

Value of thermal load
increases with time

Figure 9.19  Thermal load options for a transient problem.

M09_MOAV4303_04_GE_C09.INDD   508 27/11/14   10:04 AM

www.FreeEngineeringbooksPdf.com



Section 9.7    Examples Using ANSYS    509

Btu/hr # in2 # °F. The dimensions of the chimney are shown in Figure 9.20. Determine the 
temperature distribution within the concrete and within the brick layers under steady-
state conditions. Also, plot the heat fluxes through each layer.

The following steps demonstrate how to choose the appropriate element type, cre-
ate the geometry of the problem, apply boundary conditions, and obtain nodal results 
for this problem using ANSYS.

Enter the ANSYS program by using the Launcher. Type Chimney (or a file name 
of your choice) in the Jobname entry field of the dialog box. Pick Run to start the 
GUI.

Create a title for the problem. This title will appear on ANSYS display windows 
to provide a simple way of identifying the displays. To create a title, issue the fol-
lowing command:

utility menu: File S Change Title. . .

12 in

26 in

26 in

Concrete

12 in 1 in

1 in

Figure 9.20  A schematic of the chimney 
in the example problem of Section 9.7.
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Define the element type and material properties with the commands

main menu: Preprocessor S Element Type S Add/Edit/Delete

From the Library of Element Types, under Thermal Mass, choose Solid, then 
choose Quad 4node 55:
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Assign the thermal conductivity values for concrete and brick. First, assign the 
value for concrete with the commands

main menu: Preprocessor S Material Props S Material Models

S Thermal S Conductivity S Isotropic

From the Define Material Model behavior window:

Material S New Model. . .
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Double click on Isotropic and assign thermal Conductivity for brick.

ANSYS Toolbar: SAVE_DB

Set up the graphics area (i.e., the workplane, zoom, etc.) with the commands

utility menu: Workplane S WP Settings. . .
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Toggle on the workplane by the issuing the command

utility menu: Workplane S Display Working Plane

Bring the workplane to view with the command

utility menu: PlotCtrls S Pan, Zoom, Rotate. . .

Click on the small circle until you bring the workplane to view. Then create the 
brick section of the chimney by issuing the commands

main menu: Preprocessor S Modeling S Create S Areas

S Rectangle S By 2 Corners

On the workplane, pick the respective locations of the corners of areas and apply:

   [WP = 0,0 lower left corner of the workplane]

   [Expand the rubber band up 26.0 and right 26.0]

   [WP = 6,6]

   [Expand the rubber band up 14.0 and right 14.0]
OK

To create the brick area of the chimney, subtract the two areas you have created 
with the commands

main menu: Preprocessor S Modeling S Operate S Booleans

S Subtract S Areas

   [Pick area 1]

   [Use the middle button anywhere in the ANSYS graphics window to apply]

   [Pick area 2]

   [Anywhere in the ANSYS graphics window]
OK
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Next, create the area of concrete by issuing the following commands:

main menu: Preprocessor S Modeling S Create S Areas S Rectangles

S By 2 Corners

On the workplane, pick the respective locations of the corners of areas and apply:

   [WP = 6,6]

   [Expand the rubber band up 14.0 and right 14.0]

This is our area number 4.

   [WP = 7,7]

   [Expand the rubber band up 12.0 and right 12.0]

Apply. This is our area number 5

OK

Next, subtract the two inside areas with the commands

main menu: Preprocessor S Modeling S Operate S Booleans

S Subtract S Areas

   [Pick the area number 4]

   [Use the middle button anywhere in the ANSYS graphics window to apply]

   [Pick the area number 5]

   [Anywhere in the ANSYS graphics window]
 OK

To check your work thus far, plot the areas. First, toggle off the workplane and turn 
on area numbering by the commands

utility menu: Workplane S Display Working Plane

utility menu: PlotCtrls S Numbering . . .
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utility menu: Plot S Areas

ANSYS Toolbar: SAVE_DB

We now want to mesh the areas to create elements and nodes. But first, we need 
to specify the element sizes. So issue the commands

main menu: Preprocessor S Meshing S Size Cntrls

S Manualsize S Global S Size
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Next, glue areas to merge keypoints with the commands

main menu: Preprocessor S Modeling S Operate S Booleans S Glue

S Areas

Select Pick All to glue the areas. We also need to specify material attributes for 
the concrete and the brick areas before we proceed with meshing. So, issue the 
commands

main menu: Preprocessor S Meshing S Mesh Attributes S Picked Areas

   [Pick the concrete area]

   [Anywhere in the ANSYS graphics window to apply]
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main menu: Preprocessor S Meshing S Mesh Attributes S Picked Areas

   [Pick the brick area]

   [Anywhere in the ANSYS graphics window to apply]

ANSYS Toolbar: SAVE_DB

We can proceed with meshing now. So, issue the following commands:

main menu: Preprocessor S Meshing S Mesh S Areas S Free

Select Pick All and proceed. Then issue the command

utility menu: PlotCtrls S Numbering . . .
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Apply boundary conditions using the command

main menu: Solution S Define Loads S Apply

S Thermal S Convection S On lines
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Pick the convective lines of the concrete, and press the OK button to specify the 
convection coefficient and the temperature:

main menu: Solution S Define Loads S Apply

S Thermal S Convection S On lines

Pick the exterior lines of the brick layer, and press the OK button to specify the 
convection coefficient and the temperature.
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To see the applied convective boundary conditions, issue the command

utility menu: PlotCtrls S Symbols . . .
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utility menu: Plot S Lines

ANSYS Toolbar: SAVE_DB

Now, solve the problem with the following commands:

main menu: Solution S Solve S Current LS

OK
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Close (the solution is done!) window.

Close (the/STAT Command) window.

Begin the postprocessing phase. First obtain information, such as nodal tempera-
tures and heat fluxes with the command

main menu: General Postproc S Plot Results

S Contour Plot S Nodal Solu
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Figure 9.21  Temperature contour plot.

The contour plot of the temperature distribution is shown in Figure 9.21.

Now use the following command to plot the heat flow vectors (the plot is shown 
in Figure 9.22):

main menu: General Postproc S Plot Results

S Vector Plot S Predefined
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Figure 9.22  Plot of the heat flow vectors.
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Next, issue the following commands:

	 utility menu: Plot S Areas

main menu: General Postproc S Path Operations S Define Path S

On Working Plane

Pick the two points along the line marked as A–A, as shown in Figure 9.23, and 
press the OK button.

A

A
BB

Brick

Concrete

Figure 9.23  Defining the path for 
path operation.

M09_MOAV4303_04_GE_C09.INDD   525 27/11/14   10:04 AM

www.FreeEngineeringbooksPdf.com



526    Chapter 9    Analysis of Two-Dimensional Heat Transfer Problems

Then, issue the commands

main menu: General Postproc S Path Operations S Map onto Path
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main menu: General Postproc S Path Operations S

Plot Path Item S On Graph

Figure 9.24  The variation of temperature gradients along path A–A.
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In a similar fashion, plot the variation of temperature gradients along path B-B.

Finally, exit ANSYS and save everything:

ANSYS Toolbar: Quit

Figure 9.25  The variation of temperature gradients along path B–B.
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Transient Example

In this problem we will use ANSYS to study the transient response of a fin. Aluminum 
fins (k = 170 W/m.K, r = 2800 kg/m3, c = 870 J/kg.K) are commonly used to dissipate 
heat from various devices. An example of a section of a fin is shown in Figure 9.26. The 
fin is initially at a uniform temperature of 28°C. Assume that shortly after the device 
is turned on, the temperature of the base of the fin is suddenly increased to 90°C. The 
temperature of the surrounding air is 28°C with a corresponding heat transfer coefficient 
of h = 30 W/m2.K.

25 mm

105 mm

10 mm

10 mm

30 mm

905C

T(0) = 285C

Tf = 285C

h = 30 W
m2 · K

Figure 9.26  A schematic of the fin in the example problem.

Enter ANSYS program by using the Launcher. Type TranFin (or a file name of 
your choice) in the Jobname entry field of the dialog box. Pick Run to start the 
Graphic User Interface (GUI).

Create a title for the problem.

utility menu: File S Change Title . . .
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main menu: Preprocessor S Element Type S Add/Edit/Delete
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main menu: Preprocessor S Material Props S Material Models

� S Thermal S Conductivity S Isotropic

main menu: Preprocessor S Material Props S Material Models

� S Thermal S Specific Heat
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main menu: Preprocessor S Material Props S Material Models S
� Thermal S Density

 ANSYS Toolbar: SAVE_DB

 main menu: Preprocessor S Modeling S Create S Areas S
� Rectangle S By 2 Corners

Apply
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Apply

Apply
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OK

 main menu: Preprocessor S Modeling S Operate S Booleans S Add S Areas

Pick All

 main menu: Preprocessor S Meshing S Size Cntrls S Smart Size S Basic
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 main menu: Preprocessor S Meshing S Mesh S Areas S Free

Pick All

 main menu: Solution S Analysis Type S New Analysis

OK

main menu: Solution S Define Loads S Settings S Uniform Temp

main menu: Solution S Define Loads S Apply S Thermal

� S Convection S On Lines
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Pick the edges of the fin which are exposed to the convective environment, and 
Apply.

main menu: Solution S Define Loads S Apply S Thermal

� S Temperature S On Lines

Pick the line representing the base of the fin.

OK
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Next, we will set a time duration of 300 seconds and a time step size of 1 second. 
We will also use ANSYS’s automatic time stepping capabilities to modify the time 
step size as needed.

main menu: Solution S Load Step Opts S Time/Frequenc

� S Time@Time Step

Now, we set the file write frequency to every subset.

main menu: Solution S Load Step Opts S Output Ctrls

� S DB/Results File
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main menu: Solution S Solve S Current LS

Close (the solution is done!) window.

Close (the /STAT Command) window.

Next, we define a variable called corner_ pt to store the temperature of the cor-
ner node with the following location X = 0.01 m, Y = 0.0475 m, Z = 0. You can 
choose some other node if you wish or you can directly pick the node of interest 
when asked in the Time History Postprocessing.
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utility menu: Parameters S Scalar Parameters . . .

Press the Accept button.

Close
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main menu: TimeHist Postproc

Add data

Press the Add Data button, the green plus button. Next, double-click on Nodal 
Solution, then DOF Solution, and Temperature.
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Type Corner_Temp or a name of your choice in the Variable Name field as shown.
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Type corner_ pt in the field shown. Recall corner_point corresponds to the node 
with the location X = 0.01 m, Y = 0.0475 m, Z = 0. Press the Enter key and then 
the OK button. This is the step where you could pick another node by manual 
picking instead of using the defined parameter corner_ pt.

 Close

 main menu: TimeHist Postproc S Graph Variables

 Type 2 in the NVAR1 1st variable to graph field.
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OK
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You can now see how the temperature of the corner_ pt changes with time.

The next few steps will show how to animate the temperature as it changes with 
time.

 main menu: General Postproc S Read Results S First Set

Utility menu: Plot Ctrls S Numbering . . .
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Utility menu: Plot Ctrls S Style S Contours S Non_uniform Contours . . .

Enter 28 in V1, 50 in V2, and 90 in V3 fields to specify the upper bounds of the 
first, second, and third contours. Now you can animate the results by issuing the 
following command:

utility menu: Plot Ctrls S Animate S Over Time . . .
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Then you can exit ANSYS.
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9.8  Verification of Results

First, let us discuss some simple yet powerful ways to verify your results visually. For 
symmetrical problems, you should always identify lines of symmetry created by geo-
metrical and thermal conditions. Lines of symmetry are always adiabatic lines, meaning 
that no heat flows in the directions perpendicular to these lines. Because no heat flows 
in the directions perpendicular to lines of symmetry, they constitute heat flow lines. In 
other words, heat flows parallel to these lines. Consider the variation of the tempera-
ture gradients 0T

0X  and 0T
0Y  and their vector sum along path A–A, as shown in Figure 9.25. 

Note that path A–A (in Figure 9.23) is a line of symmetry and, therefore, constitutes 
an adiabatic line. Because of this fact, the magnitude of 0T

0X  is zero along path A–A and 
0T
0Y  equals vector sum as shown in Figure 9.25. Comparing the variation of the tempera-
ture gradients 0T

0X  and 0T
0Y  and their vector sum along path B–B, as shown in Figure 9.26, 

renders the conclusion that the magnitude of 0T
0Y  is now zero and 0T

0X  equals vector sum.
Another important visual inspection of the results requires that the isotherms 

(lines of constant temperatures) always be perpendicular to the adiabatic lines, or lines 
of symmetry. You can see this orthogonal relationship in the temperature contour plot 
of the chimney, as shown in Figure 9.21.

We can also perform a quantitative check on the validity of the results. For exam-
ple, the conservation of energy applied to a control volume surrounding an arbitrary 
node must be satisfied. Are the energies flowing into and out of a node balanced out? 
This approach was demonstrated earlier with Example 9.1.

Summary

At this point you should

	 1.	 understand the fundamental concepts of the three modes of heat transfer. You 
should also know the various types of boundary conditions that could occur in a 
conduction problem.

	 2.	 know how the conductance matrices and the load matrices for two-dimensional 
conduction problems were obtained. The conductance matrix for a bilinear rect-
angular element is

[K](e) =
kxw

6/
 D 2  -  2  -  1 1

-  2 2 1  -  1
-  1 1 2  -  2
1  -  1  -  2 2

T +
ky/

6w
 D 2 1  -  1  -  2

1 2  -  2  -  1
-  1  -  2 2 1
-  2  -  1 1 2

T
Heat loss by convection around the edge of a rectangular element can also con-
tribute to the conductance matrix

[K](e) =
h/ ij

6
 D2 1 0 0

1 2 0 0
0 0 0 0
0 0 0 0

T  [K](e) =
h/ jm

6
 D0 0 0 0

0 2 1 0
0 1 2 0
0 0 0 0

T
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[K](e) =
h/mn

6
 D0 0 0 0

0 0 0 0
0 0 2 1
0 0 1 2

T   [K](e) =
h/ni

6
 D2 0 0 1

0 0 0 0
0 0 0 0
1 0 0 2

T
The load vector for a rectangular element could have many components. It could 
have a component due to a possible heat generation term within a given element:

5F6 (e) =
q

#
A

4
 d 1

1
1
1

t
It could also have a possible convection heat loss term(s) along the edge(s):

5F6 (e) =
hTf / ij

2
 d 1

1
0
0

t    5F6 (e) =
hTf / jm

2
 d 0

1
1
0

t
5F6 (e) =

hTf / mn

2
 d 0

0
1
1

t   5F6 (e) =
hTf / ni

2
 d 1

0
0
1

t
The conductance matrix for a triangular element is

[K](e) =
kx

4A
 C bi

2 bibj bibk

bibj bj
2 bjbk

bibk bjbk bk
2

S +
ky

4A
 C d i

2 didj didk

didj d j
2 djdk

didk djdk dk
2

S
Heat loss by convection around the edge of a triangular element can also contrib-
ute to the conductance matrix according to the equations

 [K](e) =
h/ij

6
 C2 1 0

1 2 0
0 0 0

S   [K](e) =
h/jk

6
 C0 0 0

0 2 1
0 1 2

S
 [K](e) =

h/ki

6
 C2 0 1

0 0 0
1 0 2

S
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The load matrix for a triangular element could have many components. It could 
have a component due to a possible heat generation term within a given element:

5F6 (e) =
q

#
A

3
 c 1

1
1
s

Also, it could have a possible convection heat loss term(s) along the edge(s):

5F6(e) =
hTf / ij

2
 c 1

1
0
s       [F](e) =

hTf / jk

2
 c 0

1
1
s

[F](e) =
hTf / ki

2
 c 1

0
1
s

	 3.	 understand the contribution of convective boundary conditions to the conductance 
matrix and the forcing matrix.

	 4.	 how the conductance and load matrices were obtained for axisymmetric problems 
using triangular elements.

	 5.	 be familiar with formulation of transient heat transfer problems.
	 6.	 always find ways to verify your results.

References

ANSYS User’s Manual: Procedures, Vol. I, Swanson Analysis Systems, Inc.
ANSYS User’s Manual: Commands, Vol. II, Swanson Analysis Systems, Inc.
ANSYS User’s Manual: Elements, Vol. III, Swanson Analysis Systems, Inc.
Incropera, F., and Dewitt, D., Fundamentals of Heat and Mass Transfer, 2nd ed., New York, John 

Wiley and Sons, 1985.
Segrlind, L., Applied Finite Element Analysis, 2nd ed., New York, John Wiley and Sons, 1984.

Problems

	 1.	 Construct the conductance matrices for the elements shown in the accompanying figure. 
Also, assemble the elements to obtain the global conductance matrix. The properties and the 
boundary conditions for each element are shown in the figure.
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(1)

k = 180 W/m · K

(2)

1

2 3

4 5

Insulated

Tf  = 155C,  h = 30 W/m2
 · K

Tf = 305C,  h = 20 W/m2
 · K

Tf  = 205C,  h = 10 W/m2
 · K

k = 160 W/m · K

1.75 cm

1.5 cm

2 cm

	 2.	 Construct the load matrix for each element in Problem 1. Also, assemble the elemental load 
matrices to construct the global load matrix.

	 3.	 Construct the conductance matrices shown in the accompanying figure. Also, assemble the 
elements to obtain the global conductance matrix. The properties and the boundary condi-
tions for each element are shown in the figure.

(1)

k = 180 W/m · K

(2)

1

2 3

4 5
Insulated

Tf  = 155C,  h = 30 W/m2
 · K

Tf  = 305C,  h = 20 W/m2
 · K

Tf  = 205C,  h = 10 W/m2
 · K

k = 160 W/m · K

1.75 cm

2 cm

1.5 cm

	 4.	 Construct the load matrix for each element in Problem 3. Also, assemble the elemental load 
matrices to construct the global load matrix.
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	 5.	 Show that for a constant heat flux boundary condition q>o, evaluation of the terms 

Lt

[S]Tq>o cos u dt and Lt

[S]Tq>o sin u dt along the edges of the rectangular element results in 

the elemental load matrices

	 5F6 (e) =
q>o/ij

2
 d 1

1
0
0

t 	 5F6 (e) =
q>o/jm

2
 d 0

1
1
0

t
	 5F6 (e) =

q>o/mn

2
 d 0

0
1
1

t 	 5F6 (e) =
q>o/ni

2
 d 1

0
0
1

t
	 6.	 Evaluate the constant heat flux boundary condition in Problem 5 for a triangular element.

	 7.	 Using the results of Problem 5, construct the load matrix for each element shown in the 
accompanying figure. Also, assemble the elemental matrices to construct the global load 
matrix. The boundary conditions are shown in the figure. Note that if all elements are made 
from the same material, then heat flow becomes one-dimensional.

5

7

10 11

8

12

9

4

2 3

Insulated surface

Insulated surface

q"= 100 W/cm

1

6

Tf  = 105C,  h = 80 W/m2 · K

1 cm

1.5 cm

	 8.	 In the Galerkin formulation of two-dimensional fins, the convection heat loss from the 

periphery of the extended surface gives rise to the term LA

[S]ThTdA. The term contributes 

to the elemental conductance matrix. Show that for a bilinear rectangular element, the inte-
gral yields

LA

[S]ThTdA = LA

[S]Th[Si Sj Sm Sn] d Ti

Tj

Tm

Tn

t  dA =
hA
36

 D4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4

T d Ti

Tj

Tm

Tn

t
M09_MOAV4303_04_GE_C09.INDD   552 27/11/14   10:04 AM

www.FreeEngineeringbooksPdf.com



Chapter 9    Problems    553

	 9.	 Evaluate the integral in Problem 8 for a triangular element. Show that

LA

[S]ThTdA = LA

[S]Th[Si Sj Sk] c Ti

Tj

Tk

sdA =
hA
12

 C2 1 1
1 2 1
1 1 2

S c Ti

Tj

Tk

s
	 10.	 Consider a small rectangular aluminum plate with dimensions of 20 cm * 10 cm and a ther-

mal conductivity value of k = 168 W/m # K, as shown in the accompanying figure. The plate 
is exposed to the boundary conditions shown in the figure. Using manual calculations, 
determine the temperature distribution within the plate, under steady-state conditions.
(Hint: Because there are two axes of symmetry, you should model only a quarter of the 
plate.)

Ts = 805CTs = 805C

Tf  = 205C,  h = 80 W/m2
 · K

Tf  = 205C,  h = 80 W/m2
 · K

	 11.	 Aluminum fins with triangular profiles, shown in the accompanying figure, are used to 
remove heat from a surface whose temperature is 150°C. The temperature of the surround-
ing air is 20°C. The natural heat transfer coefficient associated with the surrounding air 
is 30 W/m2 # K. The thermal conductivity of aluminum is k = 168 W/m # K. Using manual 
calculations, determine the temperature distribution along a fin. Approximate the heat loss 
for one such fin.
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20 mm

90 mm

1

2

3

4

5

6
7

	 12.	 For the fin in Problem 11, use ANSYS to determine the temperature distribution within the 
fin. What is the overall heat loss through the fin? Compare these results to the results of your 
manual calculations.

	 13.	 Aluminum fins with parabolic profiles, shown in the accompanying figure, are used to remove 
heat from a surface whose temperature is 120°C. The temperature of the surrounding air is 
20°C. The natural heat transfer coefficient associated with the surrounding air is 25 W/m2 # K. 
The thermal conductivity of aluminum is k = 168 W/m # K. Using ANSYS, determine the 
temperature distribution along a fin. Approximate the heat loss for one such fin.

y

5 mm

20 mm

80 mm

	 14.	 Using ANSYS, determine the temperature distribution in the window assembly shown in the 
accompanying figure. During the winter months, the inside air temperature is kept at 68°F, 
with a corresponding heat transfer coefficient of h = 1.46 Btu/hr # ft2 # °F. Assume an outside 
air temperature of 10°F and a corresponding heat transfer coefficient of h = 6 Btu/hr # ft2 # °F. 
What is the overall heat loss through the window assembly?
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Aluminum

1 in

7 in 3 in

1/4 in

1 in

3/4 in

36 in

24 in

11.75 in

GlassTf  = 685F,  h = 1.46 Btu/hr · ft2 · F
Tf  = 105F,  h = 6 Btu/hr · ft2 · F

Concrete

	 15.	 Aluminum fins (k = 170 W/m # K) are commonly used to dissipate heat from electronic 
devices. An example of such a fin is shown in the accompanying figure. Using ANSYS, deter-
mine the temperature distribution within the fin. The base of the fin experiences a constant 
flux of q′ = 1000 W/m. A fan forces air over the surfaces of the fin. The temperature of the 
surrounding air is 20°C with a corresponding heat transfer coefficient of h = 40 W/m2 # K.

1 mm

1 mm
1 mm

4 mm

1 mm

1 mm

2 mm 2 mm

q' = 1000 W/m

6 mm
6 mm
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	 16.	 Hot water flows through pipes that are embedded in a concrete slab. A section of the slab 
is shown in the accompanying figure. The temperature of the water inside the pipe is 50°C, 
with a corresponding heat transfer coefficient of 200 W/m2 # K. With the conditions shown at 
the surface, use ANSYS to determine the temperature of the surface. Assuming that the heat 
transfer coefficient associated with the hot-water flow remains constant, find the water tem-
perature at which the surface freezes. Neglect the thermal resistance through the pipe walls.

Assume to be perfectly insulated

7.5 cm

Tf = -55C,  h = 34 W/m2 · K

20 cm

1.5 m

0.3 m

D = 1.7 cm

0.15 m

	 17.	 Consider the heat transfer through a basement wall with the dimensions given in the accom-
panying figure. The wall is constructed from concrete and has a thermal conductivity of 
k = 1.0  Btu/hr # ft # °F. The nearby ground has an average thermal conductivity of k = 0.85  
Btu/hr # ft # °F. Using ANSYS, determine the temperature distribution within the wall and the 
heat loss from the wall. The inside air is kept at 68°F with a corresponding heat transfer coef-
ficient of h = 1.46 Btu/hr # ft2 # °F. Assume an outside air temperature of 15°F, and a corre-
sponding heat transfer coefficient of h = 6 Btu/hr # ft2 # °F. Assume that at about four feet away 
from the wall, the horizontal component of the heat transfer in the soil becomes negligible.

6 in

Tinside = 685F, h = 1.46 Btu/hr · ft2
 · F

Toutside = 155F, h = 6 Btu/hr · ft2
 · F

4 ft

3 ft

8 ft

C
on

cr
et

e 
w

al
l

Soil
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	 18.	 We would like to include the heat transfer rates through an uninsulated basement floor in our 
model in Problem 17. Considering the heat transfer model shown in the accompanying figure, 
determine the temperature distributions in the wall, the floor, and the soil, and the heat loss 
from the floor and the wall. As shown in the figure, assume that at about four feet away from 
the wall and the floor, the horizontal and the vertical components of the heat transfer in the 
soil become negligible.

Tinside = 685F, h = 1.46 Btu/hr · ft2
 · F

Toutside = 155F, h = 6 Btu/hr · ft2
 · F

4'

4'

12'

6"
 C

on
cr

et
e 

w
al

l

3'

8'

6" Concrete �oor

Soil

	 19.	 In order to enhance heat transfer rates, the inside surface of a tube is extended to form lon-
gitudinal fins, as shown in the accompanying figure. Determine the temperature distribution 
inside the tube wall, given the following data:

r1

r2

t

H
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 r1 = 2 in    k = 400 W/m # K

 r2 = 21
4 in    Tinside = 80°C

 t = 3
4 in    hinside = 150 W/m2 # K

 H = 3
4 in    Toutside = 15°C

 houtside = 30 W/m2 # K

	 20.	 Consider the concentric-tube heat exchanger shown in the accompanying figure. A mixture 
of aqueous ethylene glycol solution arriving from a solar collector is passing through the 
inner tube. Water flows through the annulus as shown in the figure. The average temperature 
of the water at the section shown is 15°C, with a corresponding heat transfer coefficient of 
h = 200 W/m2 # K. The average temperature of the ethylene glycol mixture is 48°C, with 
an associated heat transfer coefficient of h = 150 W/m2 # K. In order to enhance the heat 
transfer rates between the fluids, the outside surface of the inner tube is extended to form 
longitudinal fins, as shown in the figure. Determine the temperature distribution inside the 
heat exchanger’s walls, assuming that the outside of the heat exchanger is perfectly insulated. 
Also, determine the heat transfer rate between the fluids.

Water

5 mm

5 mm

Insulation

Ethylene
glycol solution

17.5 mm

12.5 mm

50 mm
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	 21.	 Use Green’s theorem Eq. (9.36) to calculate the area of the triangle shown in the accompany-
ing figure.

x
b

a

y

1

23

	 22.	 Calculate the conductance matrix for the axisymmetric triangular element shown. The element 
belongs to a solid body made of aluminum alloy with a thermal conductivity k = 200 W/m # K.

r

z

(2, 2)

(5, 8)

(9, 3)

Coordinates in mm

q  = 6 * 10-3

W/mm3

Tf = 

i

j

k

m2 . k
h = W25

15  C

.

5

	 23.	 Construct the load matrix for Problem 22.

	 24.	 Construct the load matrix for each axisymmetric triangular element shown. Also, assemble 
the elemental load matrices to construct the global load matrix.

(2)

Insulated

(3)

k = 160 W/m . K

k = 160 W/m . K

k = 180 W/m . K

1.75 cm

1.5 cm

2 cm

Tf = 205 C, h = 30 W/m2 . K

Tf = 305 C, h = 30 W/m2 . K

Tf = 155 C, h = 30 W/m2 . K

(1)

4 5

1

2 3
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	 25.	 Evaluate the constant heat-flux boundary condition for an axisymmetric triangular element.

	 26.	 Evaluate the integral - L
 

V 

 
k
r

 
0[S]T

0r
 
0T
0r

 dV for an axisymmetric rectangular element.

	 27.	 Evaluate the integral - L
 

V
 

 
0[S]T

0z
 
0T
0z

 dV for an axisymmetric rectangular element.

	 28.	 Under certain conditions, heat transfer rate q in a two-dimensional system may be computed 
using the equation q = kS(T1 - T2), where k is the thermal conductivity of the medium, S is 
the shape factor, and T1 and T2 are temperatures of the surfaces, as shown in accompanying 
diagrams. Using ANSYS plot the temperature distribution in the soil for each of the situations 
shown. Also, using ANSYS calculate the heat-transfer rate for each case and compare it to 
the shape factor solution.

First situation deals with an isothermal sphere that is buried in soil with k = 0.5 W/m # K, 
z = 10 m, D = 1 m, T1 = 300°C, T2 = 27°C,  and the corresponding shape factor is given by

S =
2pD

1 -
D
4z

.

z
T1

D

T2

Soil

Second situation deals with an isothermal horizontal pipe is buried in soil with 
k = 0.5 W/m # K, z = 2 m, D = 0.5 m, L = 50 m, T1 = 100°C, T2 = 5°C and the corre-

sponding shape factor is given by  S =
2pL

lna4z
D
b

.

L
D

z

T2

Soil
T1

M09_MOAV4303_04_GE_C09.INDD   560 27/11/14   10:04 AM

www.FreeEngineeringbooksPdf.com



Chapter 9    Problems    561

	 29.	 For the fin in Problem 15, assume that the fin is initially at the surrounding temperature of 
20°C and the base of the fin experiences a sudden flux of q′ = 1000 W/m. Study the transient 
response of the fin. Compare the steady state results to the transient response for long after 
the sudden flux is applied.

	 30.	 For the slab in Problem 16, assume that the slab is initially at the temperature of surround-
ing -5°C. Suddenly hot water at a temperature of 50°C with a corresponding heat transfer 
coefficient of 200 W/m2 # K is introduced inside the pipes. Study the transient response of the 
system. How long will it take for the surface of the slap to reach a temperature of 2°C.

	 31.	 Design Problem At some ski resorts, in order to keep ice from forming on the surface of 
uphill roads leading to condominiums, hot water is pumped through pipes that are embedded 
beneath the surface of the road. You are to design a hydronic system to perform such a task. 
Choose your favorite ski resort and look up its design conditions, such as the ambient air 
temperature, and soil temperature. The system that you construct may consist of a series of 
tubes, pumps, a hot-water heater, valves, fittings, and so on. Basic information sought includes 
the type of pipes, their sizes, the spacing between the tubes, the configuration of the piping 
system, and the distance below the surface the pipes should be embedded. If time allows, you 
may also size the pump and the hot-water heater.
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C h a p t e r  1 0

Analysis of Two-Dimensional 
Solid Mechanics Problems

The objective of this chapter is to introduce you to the analysis of two-dimensional 
solid mechanics problems. Structural members and machine components are generally 
subject to a push–pull, bending, or twisting type of loading. The components of common 
structures and machines normally include beams, columns, plates, and other members 
that can be modeled using two-dimensional approximations. Axial members, beams, and 
frames were discussed in Chapter 4. The main topics discussed in Chapter 10 include 
the following:

	 10.1	 Torsion of Members with Arbitrary Cross-Section Shape

	 10.2	 Plane-Stress Formulation

	 10.3	 Isoparametric Formulation: Using a Quadrilateral Element

	 10.4	 Axisymmetric Formulation

	 10.5	 Basic Failure Theories

	 10.6	 Examples Using ANSYS

	 10.7	 Verification of Results

10.1 �T orsion of Members with Arbitrary  
Cross-Section Shape

There are still many practicing engineers who generate finite element models for prob-
lems for which there exist simple analytical solutions. For example, you should not be 
too quick to use the finite element method to solve simple torsional problems. This 
type of problem includes torsion of members with circular or rectangular cross sections. 
Let us briefly review the analytical solutions that are available for torsional problems. 
When studying the mechanics of materials, you were introduced to the torsion of long, 
straight members with circular cross sections. A problem is considered to be a torsional 
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problem when the applied moment or torque twists the member about its longitudinal 
axis, as shown in Figure 10.1.

Over the elastic limit, the shear stress (t) distribution within a member with a 
circular cross section, such as a shaft or a tube, is given by the equation

	 t =
Tr
J

	 (10.1)

where T is the applied torque, r is the radial distance measured from the center of 
the shaft to a desired point in the cross section, and J represents the polar moment  
of inertia of the cross-sectional area. It should be clear from examination of Eq. (10.1) 
that the maximum shear stress occurs at the outer surface of the shaft, where r is equal 
to the radius of the shaft. Also, recall that the angle of twist (u) caused by the applied 
torque can be determined from the equation

	 u =
TL
JG

	 (10.2)

in which L is the length of the member and G is the shear modulus (modulus of rigid-
ity) of the material. Furthermore, there are analytical solutions that can be applied to 
torsion of members with rectangular cross-sectional areas.* When a torque is applied 
to a straight bar with a rectangular cross-sectional area, within the elastic region of the 
material, the maximum shearing stress and an angle of twist caused by the torque are 
given by

	  tmax =
T

c1wh2 	 (10.3)

	  u =
TL

c2Gwh3	 (10.4)

L is the length of the bar and w and h are the larger and smaller sides of the cross-
section, respectively. (See Figure 10.2.) The values of coefficients c1 and c2 (given in 
Table 10.1) are dependent on the aspect ratio of the cross section. As the aspect ratio 
approaches large numbers (w/h S ∞), c1 = c2 = 0.3333. This relationship is demon-
strated in Table 10.1.

T

T

Figure 10.1  Torsion of a shaft.

*See Timoshenko and Goadier (1970) for more detail.
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The maximum shear stress and the angle of twist for cross-sectional geometries 
with high aspect ratios (w/h 7 10) are given by:

	  tmax =
T

0.333 wh2 	 (10.5)

	  u =
TL

0.333 Gwh3	 (10.6)

These types of members are commonly referred to as thin-wall members. Examples of 
some thin-wall members are shown in Figure 10.3.

Therefore, if you come across a problem that fits these categories, solve it using the 
torsional formulae. Do not spend a great deal of time generating a finite element model.

Finite Element Formulation of Torsional Problems

Fung (1965) discusses the elastic torsional behavior of noncircular shafts in detail. There 
are two basic theories: (1) St. Venant’s formulation and (2) the Prandtl formulation. 

h

L

w

Figure 10.2  A straight rectangular bar in torsion.

Table 10.1  c1 and c2 values for a bar 
with a rectangular cross section

w/h c1 c2

1.0 0.208 0.141

1.2 0.219 0.166

1.5 0.231 0.196

2.0 0.246 0.229

2.5 0.258 0.249

3.0 0.267 0.263

4.0 0.282 0.281

5.0 0.291 0.291

10.0 0.312 0.312

∞ 0.333 0.333
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Here, we will use the Prandtl formulation. The governing differential equation for the 
elastic torsion of a shaft in terms of the stress function f is

	
02f

0x2 +
02f

0y2 + 2Gu = 0	 (10.7)

where G is the shear modulus of elasticity of the bar and u represents the angle of twist 
per unit length. The shear stress components are related to the stress function f accord-
ing to the equations

	  tzx =
0f
0y

	 (10.8)

	  tzy = -
0f
0x

	 (10.9)

Note that with Prandtl’s formulation, the applied torque does not directly appear in 
the governing equation. Instead, the applied torque is related to the stress function 
and is

	 T = 2LA

f dA	 (10.10)

In Eq. (10.10), A represents the cross-sectional area of the shaft. Comparing the dif-
ferential equation governing the torsional behavior of a member, Eq. (10.7), to the 
heat diffusion equation, Eq. (9.8), we note that both of these equations have the same 
form. Therefore, we can apply the results of Section 9.2 and Section 9.3 to torsional 
problems. However, when comparing the differential equations for torsional problems, 
we let c1 = 1 and c2 = 1, c3 = 2Gu. The stiffness matrix for a rectangular element 

Figure 10.3  Examples of thin-wall members.
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then becomes

	 [K](e) =
w

6/
 D 2 -2 -1 1

-2 2 1 -1
-1 1 2 -2
1 -1 -2 2

T +
/

6w

 D 2 1 -1 -2
1 2 -2 -1

-1 -2 2 1
-2 -1 1 2

T 	 (10.11)

where w and / are the length and the width, respectively, of the rectangular element, as 
shown in Figure 10.4. The load matrix for an element is

	 {F}(e) =
2GuA

4
 d 1

1
1
1

t 	 (10.12)

and for triangular elements, shown in Figure 10.5, the stiffness and load matrices are

	  [K](e) =
1

4A
 C bi

2 bibj bibk

bibj bj
2 bjbk

bibk bjbk bk
2

S +
1

4A
 C di

2 didj didk

didj dj
2 djdk

didk djdk dk
2

S 	 (10.13)

	  F(e) =
2GuA

3
 c 1

1
1
s 	 (10.14)

where the area A of the triangular element and the a, b, and d@terms are given by

 2A = Xi(Yj - Yk) + Xj(Yk - Yi) + Xk(Yi - Yj)

 ai = XjYk - XkYj bi = Yj - Yk di = Xk - Xj

 aj = XkYi - XiYk bj = Yk - Yi dj = Xi - Xk

 ak = XiYj - XjYi  bk = Yi - Yj dk = Xj - Xi

Next, we will consider an example problem dealing with torsion of a steel bar.

Y

X

i j

mn

x

y

fn

fi

f

fj

fm

/

w

Figure 10.4  Nodal values of the stress 
function for a rectangular element.
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Example 10.1

Consider the torsion of a steel bar (G = 11 * 103 ksi) having a rectangular cross section, 
as shown in the accompanying figure. Assume that u = 0.0005 rad/in. Using the finite 
element procedure discussed above, we are interested in determining the shear stress 
distribution within the bar.

(Xk, Yk)

(Xi, Yi)

(Xj, Yj)

X

Y

fk

fi

fj

f

Figure 10.5  Nodal values of the stress 
function for a triangular element.

Steel bar
G = 11 * 103 ksi

P

P

0.5 in
1 in

1 in

Before we proceed with the solution, note that the point of this exercise is to demon-
strate the finite element steps for a torsional problem. As we mentioned earlier, this 
problem has a simple analytical solution which we will present when we revisit this 
problem later in this chapter.
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We can make use of the symmetry of the problem, as shown in Figure 10.6, and 
only analyze a section of the shaft containing 1/8 of the area. The selected section of the 
shaft is divided into six nodes and three elements (a crude model). Elements (1) and 
(3) are triangular, while element (2) is rectangular. Consult Table 10.2 while following 
the solution.

For triangular elements (1) and (3), the stiffness matrix is

[K](1) = [K](3) =
1

4A
 C bi

2 bibj bibk

bibj bj
2 bjbk

bibk bjbk bk
2

S +
1

4A
 C di

2 didj didk

didj dj
2 djdk

didk djdk dk
2

S
Evaluating the b@ and d@coefficients for element (1), we get

 bi = Yj - Yk = 0 - 0.25 =  -0.25  di = Xk - Xj = 0.125 - 0.125 = 0

 bj = Yk - Yi = 0.25 - 0 = 0.25  dj = Xi - Xk = 0 - 0.125 = -0.125

 bk = Yi - Yj = 0 - 0 = 0    dk = Xj - Xi = 0.125 - 0 = 0.125

6

5

(2)

(3)

(1)

4

1 2 3

Y

X Figure 10.6  A schematic of the bar in 
Example 10.1.

Table 10.2  The relationship between elements and their corresponding nodes and their [coordinates]

Element i j m or k n

(1) 1 [0, 0] 2 [0.125, 0] 4 [0.125, 0.25]

(2) 2 [0.125, 0] 3 [0.25, 0] 5 [0.25, 0.25] 4 [0.125, 0.25]

(3) 4 [0.125, 0.25] 5 [0.25, 0.25] 6 [0.25, 0.5]
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Note that evaluating the b@ and d@coefficients for element (3) renders the same values 
because the difference between the coordinates of its nodes is identical to that of ele-
ment (1). Therefore, elements (1) and (3) will both have the following stiffness matrix:

[K](1) = [K](3) =
1

4(0.015625)
 C 0.0625 -0.0625 0

-0.0625 0.0625 0
0 0 0

S
+

1
4(0.015625)

 C0 0 0
0 0.015625 -0.015625
0 -0.015625 0.015625

S
To help with assembly of the elements later, the corresponding node numbers for the 
elements are shown on the top and the side of the stiffness matrices. The stiffness matri-
ces for elements (1) and (3), are

[K](1) = C1(i) 2( j) 4(k)
1 -1 0

-1 1.25 -0.25S
0 -0.25 0.25

 

 

1
2
4

[K](3) = C4(i) 5( j) 6(k)
1 -1 0

-1 1.25 -0.25S
0 -0.25 0.25

 

 

4
5
6

The stiffness matrix for element (2) is

 [K](2) =
w

6/
 D 2 -2 -1 1

-2 2 1 -1
-1 1 2 -2
1 -1 -2 2

T +
/

6w

 D 2 1 -1 -2
1 2 -2 -1

-1 -2 2 1
-2 -1 1 2

T
 [K](2) =

0.25
6(0.125)

 D 2 -2 -1 1
-2 2 1 -1
-1 1 2 -2
1 -1 -2 2

T +
0.125

6(0.25)
 D 2 1 -1 -2

1 2 -2 -1
-1 -2 2 1
-2 -1 1 2

T
The stiffness matrix for element (2) with the corresponding node numbers is

[K](2) = D 2(i) 3( j) 5(m) 4(n)
0.83333333 -0.58333333 -0.4166666 0.16666667

-0.58333333 0.83333333 0.16666667 -0.41666667
-0.41666667 0.16666667 0.83333333 -0.58333333
0.16666667 -0.41666667 -0.58333333 0.83333333

T  

 

2
3
5
4

The load matrices for the triangular elements (1) and (3) are computed from
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5F6(e) =
2GuA

3
 c 1

1
1
s  leading to: 5F6(1) = c 57.29166667

57.29166667
57.29166667

s  

1
2
4
 and 5F6(3) = c 57.29166667

57.29166667
57.29166667

s 

4
5
6

The load matrix for the rectangular element (2) including the nodal information is

5F6(2) =
2GuA

4
 d 1

1
1
1

t = d 85.9375
85.9375
85.9375
85.9375

t 

2
3
5
4

Using the nodal information presented next to each element, the global stiffness matrix 
becomes

[K](G) = F 1 2 3 4 5 6
1 -1 0 0 0 0

-1 2.08333333 -0.58333333 -0.08333333 -0.41666666 0
0 -0.58333333 0.83333333 -0.41666667 0.16666667 0
0 -0.08333333 -0.41666667 2.08333333 -1.58333333 0
0 -0.41666666 0.16666667 -1.58333333 2.08333333 -0.25
0 0 0 0 -0.25 0.25

V  

 

1
2
3
4
5
6

Assembling the load matrices, we get

5F6(G) = f 57.3
57.3 + 85.9

85.9
57.3 + 57.3 + 85.9

57.3 + 85.9
57.3

v = f 57.3
143.2
85.93
200.5
143.2
57.3

v
Applying the boundary condition of f = 0 to nodes 3, 5, and 6, we get the following 
3 * 3 matrix: C 1 -1 0

-1 2.083 -0.083
0 -0.083 2.083

S c f1

f2

f3

s = c 57.3
143.2
200.5

s
Solving the set of linear equations simultaneously leads to the following nodal solution:

[f]T = [250 193 0 104 0 0]

We can compute the shear stress components (see Figure 10.7) from Eqs. (10.8) and 
(10.9) in the following manner. For elements (1) and (3)

 tZX =
0f
0Y

=
0

0Y
 [Sifi + Sjfj + Skfk] =

0
0Y

 [Si Sj Sk]c fi

fj

fk

s =
1

2A
 [di dj dk]c fi

fj

fk

s
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 tZY = -
0f
0X

= -
0

0X
 [Sifi + Sjfj + Skfk] = -

0
0X

 [Si Sj Sk]c fi

fj

fk

s
= -

1
2A

[bi bj bk]c fi

fj

fk

s
The shear stress components for element (1) are

 tZX
(1) = [di dj dk]c fi

fj

fk

s =
1

0.03125
 [0 -0.125 0.125]c 250

193
104

s = -356 lb/in2

 tZY
(1) = -[bi bj bk]c fi

fj

fk

s = -
1

0.03125
 [-0.25 0.25 0]c 250

193
104

s = 456 lb/in2

Similarly, we can compute the shear stress components for element (3).

 tZX
(3) =

1
0.03125

 [0 -0.125 0.125]c 104
0
0

s = 0 lb/in2

 tZY
(3) = -

1
0.03125

 [-0.25 0.25 0]c 104
0
0

s = 832 lb/in2

Because the spatial derivatives of linear triangular elements are constants, note that the 
computed shear stress distribution over the region represented by the triangular ele-
ment is constant. This is one of the drawbacks of using linear triangular elements. We 
could have divided the selected section of the shaft into many more elements or used 

Y

X

Z

tZX

tZY

Figure 10.7  The directions of shear stress components.
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higher order elements, as discussed in Chapter 7, to come up with better results. The 
shear stress components over the rectangular element is obtained in the same manner.

 tZX =
0f
0Y

=
0

0Y
 [Sifi + Sjfj + Smfm + Snfn] =

0
0Y

[Si Sj Sm Sn]d fi

fj

fm

fn

t
 tZX =

1
/w

 [(-/ + x) -x x (/ - x)]d fi

fj

fm

fn

t
Similarly,

 tZY = -
0f
0X

= -
1

/w

[(-w + y) (w - y) y -y]d fi

fj

fm

fn

t
Note that for the bilinear rectangular element, the shear stress components vary with 
position and can be computed for a specific location within the element. It is left as an 
exercise for you to substitute for the local coordinates of a point within the boundaries 
of element (2) to obtain the shear stress components. We will revisit this problem later 
and solve it using ANSYS.

Example 10.1  Revisited

We will now show how to use Excel to set up and solve Example 10.1.

	 1.	 In cell A1 type Example 10.1, and in cells A3 and A4 type G= and  �= as shown. 
After inputting the value of G in cell B3, select B3 and in the “Name Box” type G 
and hit the Return key. Similarly, after inputting the value of Θ in cell B4, select 
B4 and in the “Name Box” type Theta and hit the Return key.

	 2.	 Create the table shown with the element and node numbers and the coordinates 
of the nodes. In cell F8, type =  C10@C9; in cell F9 type = C8@C10; in cell F10 type 
=C9@C8; and name them deltai, deltaj, and deltak, respectively. Similarly, in cells 
G8 through G10 create betai, betaj, and betak. Note the contents of G8, G9, and 
G10 are =D9@D10; =D10@D8; =D8@D9. 
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		  In cell I9 and J9 type Atriangle and its value. Name the content of J9, Atriangle. 
Similarly, create W and L and the corresponding values and name them W and L 
(cell J13 and J14 W and L). Calculate the area of the rectangle in cell J15 
using =W*L and name it Arectangle.

	 3.	 Compute the [K1] and [K3] matrices, using the delta, beta, and area values. Name 
the range G22:I24, Kelment1 and Kelement3.

	 4.	 In a similar way create Kelement2.
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	 5.	 Create the {F1}, {F3}, and {F2} matrices as shown.

	 6.	 Next, create [A1], [A3], and [A2] matrices and name them Aelement1, Aelement3, 
Aelment2, as shown. If you have forgotten what A matrices represent, see Section 2.5,  
Eq. (2.9).

	 7.	 Next, create the stiffness matrix for each element (with their proper positions in 
the global matrix) and name them K1G, K3G, and K2G. See Eq. (2.9). For example, 
to create [K]1G, select B54:G59 and type 

		  =MMULT(TRANSPOSE(Aelement1),MMULT(Kelement1,Aelement1)) 

		  and while holding down the Ctrl and Shift keys, hit the Return key. In a similar 
way, create [K]3Gand [K]2G as shown.
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	 8.	 Create the load matrices as shown.

	 9.	 The final global matrix is created next. Select the range B82:G87 and type 
=K1G+K2G+K3G and while holding down the Ctrl and Shift keys, hit the 
Return key. Name the range B82:G87, KG.

	 10.	 Create the load matrix as shown and name it FG.

	 11.	 Apply the boundary conditions. Copy the appropriate portion of the KG matrix 
and paste it in the range C96:E98 as values only. Name the range KwithappliedBC. 
Similarly, create the corresponding load matrix in the range C100:C102 and name 
it FwithappliedBC.
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	 12.	 Select the range C104:C106 and type

		  =MMULT(MINVERSE(KwithappliedBC),FwithappliedBC)

		  and while holding down the Ctrl and Shift keys hit the Return key.

		  The complete Excel sheet is shown next.
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10.2 P lane-Stress Formulation

We begin by reviewing some of the fundamental concepts dealing with the elastic behav-
ior of materials. Consider an infinitesimally small cube volume surrounding a point 
within a material. An enlarged version of this volume is shown in Figure 10.8. The faces 

tYZ

sZZ

tZY

tZX
sXX

X

Y

Z

sYY

tXY

tXZ

tYX

Figure 10.8  The components of stress 
at a point.
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of the cube are oriented in the directions of (X, Y, Z) coordinate system.* The appli-
cation of external forces creates internal forces and, subsequently, stresses within the 
material. The state of stress at a point can be defined in terms of the nine components 
on the positive faces and their counterparts on the negative surfaces, as shown in the 
figure. However, recall that because of equilibrium requirements, only six independent 
stress components are needed to characterize the general state of stress at a point. Thus 
the general state of stress at a point is defined by:

	 [S]T = [sXX sYY sZZ tXY tYZ tXZ]	 (10.15)

where sXX, sYY, and sZZ are the normal stresses and tXY, tYZ, and tXZ are the shear stress 
components, and they provide a measure of the intensity of the internal forces acting 
over areas of the cube faces. In many practical problems, we come across situations 
where there are no forces acting in the Z-direction and, consequently, no internal forces 
acting on the Z- faces. This situation is commonly referred to as a plane-stress situation, 
as shown in Figure 10.9.

For a plane-stress situation, the state of stress reduces to three components:

	 [S]T = [sXX sYY tXY]	 (10.16)

sYY

sYY

sXXsXX

tXY

tXY

tYX

tYX

X

Y

Z
sYY 

tYX

sXX

tXY

sYY

tYX

sXX

tXY

Figure 10.9  Plane state of stress.

*Note that throughout this section X, Y, Z and x, y, z coordinate systems are aligned.
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We have just considered how an applied force can create stresses within a body. As you 
know, the applied force will also cause a body to undergo deformation, or change in its 
shape. We can use a displacement vector to measure the changes that occur in the posi-
tion of a point within a body. The displacement vector d

S can be written in terms of its 
Cartesian components as

d
S

= u(x, y, z) i
S + y(x, y, z) j

S
+ w(x, y, z) k

S

where the i, j, and k components of the displacement vector represent the difference in 
the coordinates of the displacement of the point from its original position (x, y, z) to a 
new position (x′, y′, z′) caused by loading, as given by the equations

 u(x, y, z) = x′ - x

 y(x, y, z) = y′ - y

 w(x, y, z) = z′ - z

To better measure the size and shape changes that occur locally within the mate-
rial, we define normal and shear strains. The state of strain at a point is, therefore, char-
acterized by six independent components:

	 [E]T = [exx eyy ezz gxy gyz gxz]	 (10.17)

exx, eyy, and ezz are the normal strains, and gxy, gyz, and gxz are the shear-strain compo-
nents. These components provide information about the size and shape changes that 
occur locally in a given material due to loading. The situation in which no displacements 
occur in the z-direction is known as a plane-strain situation. As you may recall from your 
study of the mechanics of materials, there exists a relationship between the strain and 
the displacement. These relationships are

	  exx =
0u
0x
  eyy =

0y
0y
  ezz =

0w

0z
	

	  gxy =
0u
0y

+
0v

0x
 gyz =

0v

0z
+

0w

0y
 gxz =

0u
0z

+
0w

0x

	 (10.18)

Over the elastic region of a material, there also exists a relationship between the state 
of stresses and strains, according to the generalized Hooke’s law. These relationships are

	  exx =
1
E

 [sxx - n(syy + szz)] 	 (10.19)

	  eyy =
1
E

 [syy - n(sxx + szz)] 	

	  ezz =
1
E

 [szz - n(sxx + syy)] 	

	  gxy =
1
G

 txy gyz =
1
G

 tyz gzx =
1
G

 tzx	
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where E is the modulus of elasticity (Young’s modulus), v is Poisson’s ratio, and G is 
the shear modulus of elasticity (modulus of rigidity). For a plane-stress situation, the 
generalized Hooke’s law reduces to

	 c sxx

syy

txy

s =
E

1 - n2  D1 n 0
n 1 0

0 0
1 - n

2

T c exx

eyy

gxy

s 	 (10.20)

or, in a compact matrix form,

	 5S6 = [v]5E6 	 (10.21)

where

 [S]T = [sxx syy txy]

 [N] =
E

1 - n2  D1 n 0
n 1 0

0 0
1 - n

2

T
 {E} = c exx

eyy

gxy

s
For a plane-strain situation, the generalized Hooke’s law becomes

	 c sxx

syy

txy

s =
E

(1 + n)(1 - 2n)
 D1 - n n 0

n 1 - n 0

0 0
1
2

- n

T c exx

eyy

gxy

s 	 (10.22)

Furthermore, for plane stress situations, the strain–displacement relationship becomes

	 exx =
0u
0x
 eyy =

0y
0y
 gxy =

0u
0y

+
0y
0x

	 (10.23)

We have discussed throughout this text that the minimum total potential energy 
approach is very commonly used to generate finite element models in solid mechanics. 
External loads applied to a body will cause the body to deform. During the deforma-
tion, the work done by the external forces is stored in the material in the form of elastic 
energy, which is called strain energy. For a solid material under biaxial loading, the strain 
energy Λ is

	 Λ(e) =
1
2 LV

(sxx exx + syy eyy + txygxy) dV	 (10.24)
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Or, in a compact matrix form,

	 Λ(e) =
1
2 LV

[S]T5E6  dV	 (10.25)

Substituting for stresses in terms of strains using Hooke’s law, Eq. (10.25) can be 
written as

	 Λ(e) =
1
2 LV

([v]{E})T{E} =
1
2 LV

{E}T[v]T{E} =
1
2 LV

5E6T[v]5E6  dV	 (10.26)

Note in arriving at the final form of integral, we have used Eq. (2.12) and [y]T = [y].
We are now ready to look at finite element formulation of plane stress problems using 
triangular elements. We can represent the displacements u and v using a linear triangular 
element similar to the one shown in Figure 10.10.

The displacement variable, in terms of linear triangular shape functions and the 
nodal displacements, is

	  u = SiUix + SjUjx + SkUkx	 (10.27)

	  y = SiUiy + SjUjy + SkUky	

We can write the relations given by Eq. (10.27) in a matrix form:

	 bu
v

r = JSi 0 Sj 0 Sk 0
0 Si 0 Sj 0 Sk

R f Uix

Uiy

Ujx

Ujy

Ukx

Uky

v 	 (10.28)

Uix

Ujx

Ukx

Uky

Ujy

Uiy

i

j

k

Figure 10.10  A triangular element used 
in formulating plane stress problems.
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The next step involves relating the strains to the displacement field and, subsequently, 
relating the strains to the nodal displacements using shape functions. Referring to the 
strain–displacement relations as given by Eq. (10.23), we need to take the derivatives of 
the components of the displacement field with respect to the x and y coordinates, which 
in turn means taking the derivatives of the appropriate shape functions with respect to 
x and y. Performing these operations results in the following relations:

 exx =
0u
0x

=
0
0x

 (SiUix + SjUjx + SkUkx) =
1

2A
 [biUix + bjUjx + bkUkx] 	 (10.29)

 eyy =
0y
0y

=
0
0y

 (SiUiy + SjUjy + SkUky) =
1

2A
 [diUiy + djUjy + dkUky] 	

 gxy =
0u
0y

+
0y
0x

=
1

2A
 [diUix + biUiy + djUjx + bjUjy + dkUkx + bkUky]	

Representing the relations of Eq. (10.29) in a matrix form, we have

	 c exx

eyy

gxy

s =
1

2A
 Cbi 0 bj 0 bk 0

0 di 0 dj 0 dk

di bi dj bj dk bk

S f Uix

Uiy

Ujx

Ujy

Ukx

Uky

v 	 (10.30)

and in a compact matrix form, Eq. (10.30) becomes

	 5E6 = [B]5U6 	 (10.31)

where

5E6 = c exx

eyy

gxy

s [B] =
1

2A
 Cbi 0 bj 0 bk 0

0 di 0 dj 0 dk

di bi dj bj dk bk

S 5U6 = f Uix

Uiy

Ujx

Ujy

Ukx

Uky

v
Substituting into the strain energy equation for the strain components in terms of the 
displacements, we obtain

	 Λ(e) =
1
2 LV

5E6T[v]5E6  dV =
1
2 LV

[U]T[B]T[v][B][U] dV	 (10.32)

Differentiating with respect to the nodal displacements, we obtain

	
0Λ(e)

0Uk
=

0
0Uk

 ¢ 1
2 LV

[U]T[B]T[v][B][U] dV≤ for k = 1, 2,c 6	 (10.33)
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Evaluation of Eq. (10.33) results in the expression [K](e)5U6. The expression for the 
stiffness matrix is thus

	 [K](e) = L V

[B]T[v][B] dV = V[B]T[v][B]	 (10.34)

Here, V is the volume of the element and is the product of the area of the element and 
its thickness. Example 10.2 will show how Eq. (10.34) is used to evaluate the stiffness 
matrix for a two-dimensional triangular plane stress element.

Load Matrix

To obtain the load matrix for a two-dimensional plane stress element, we must first 
compute the work done by the external forces, such as distributed loads or point loads. 
The work done by a concentrated load Q is the product of the load component and the 
corresponding displacement component. We can represent the work done by concen-
trated loads in a compact matrix form as

	 W (e) = 5U6T5Q6 	 (10.35)

A distributed load with px and py components does work according to the relationship

	 W(e) = LA

(upx + `py) dA	 (10.36)

where u and y are the displacements in the x and y directions, respectively, and A repre-
sents the surface over which the distributed load components are acting. The magnitude 
of the surface A is the product of the element thickness t and the length of the edge 
over which the distributed load is applied. Using triangular elements to represent the 
displacements, we find that the work done by distributed loads becomes

	 W(e) = LA

5U6T[S]T5p6  dA	 (10.37)

where

5p6 = bpx

py
r

The next step in evaluating the load matrix involves the minimization process. In the 
case of the concentrated load, differentiation of Eq. (10.35) with respect to nodal dis-
placements yields the components of the loads:

	 5F6(e) = f Qix

Qiy

Qjx

Qjy

Qkx

Qky

v 	 (10.38)
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The differentiation of the work done by the distributed load with respect to the nodal 
displacements gives the load matrix

	 5F6(e) = L A

[S]T5p6  dA	 (10.39)

where

[S]T = F Si 0
0 Si

Sj 0
0 Sj

Sk 0
0 Sk

V
Consider an element subjected to a distributed load along its ki-edge, as shown 

in Figure 10.11.
Evaluating Eq. (10.39) along the ki-edge and realizing that along the ki-edge, 

Sj = 0, we have

    5F6(e) = LA

 F Si 0
0 Si

Sj 0
0 Sj

Sk 0
0 Sk

V bpx

py
r  dA = tL/ki

 F Si 0
0 Si

0 0
0 0
Sk 0
0 Sk

V bpx

py
r  d/ =

tLik

2
  f   

px

py

0
0
px

py

v 	 (10.40)

Note that the effect of the distributed load in Figure 10.11 along the ki-edge is repre-
sented by two equal nodal forces at i and k, with each force having x and y components. 
In a similar fashion, we can formulate the load matrix for a distributed load acting along 

i

jk

px

k j

x

y i

py

Figure 10.11  A distributed load acting 
over the ki-edge of a triangular element.
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586    Chapter 10    Analysis of Two-Dimensional Solid Mechanics Problems

other sides of the triangular element. Evaluation of the integral in Eq. (10.39) along the 
ij-edge and the jk-edge results in

	 5F6(e) =
tLij

2
 f px

py

px

py

0
0

v  5F6(e) =
tLjk

2
 f 0

0
px

py

px

py

v 	 (10.41)

It is worth noting that, generally speaking, linear triangular elements do not offer as 
accurate results as do the higher order elements. The purpose of the above derivation 
was to demonstrate the general steps involved in obtaining the elemental stiffness and 
load matrices. Next, we will derive the stiffness matrix for a quadrilateral element using 
isoparametric formulation.

10.3 �Is oparametric Formulation: Using  
a Quadrilateral Element

As we discussed in Chapters 5 and 7, when we use a single set of parameters (a set of 
shape functions) to define the unknown variables u, v, T, and so on, and to express the 
position of any point within the element, we are using isoparametric formulation. An 
element expressed in such manner is called an isoparametric element. We will now turn 
our attention to the quadrilateral element previously shown as Figure 7.16 (repeated 
here for convenience). Using a quadrilateral element, we can express the displacement 
field within an element by Eq. (7.30):

	 u = SiUix + SjUjx + SmUmx + SnUnx� (7.30)

	 ` = SiUiy + SjUjy + SmUmy + SnUny�

A(j, h)

Uix

j

j

h

i

mn

(-1, -1)

(1, -1)

(1, 1)
(-1, 1)

Uiy Ujy

Umy

Uny

Unx
Umx

Ujx

Figure 7.16  A quadrilateral element 
used in formulating plane stress problems.
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Section 10.3    Isoparametric Formulation: Using a Quadrilateral Element     587

We can write the relations given by Eq. (7.30) in matrix form, given previously in  
Eq. (7.31):

	 bu
y
r = JSi 0 Sj 0 Sm 0 Sn 0

0 Si 0 Sj 0 Sm 0 Sn
R h Uix

Uiy

Ujx

Ujy

Umx

Umy

Unx

Uny

x � (7.31)

Note that using isoparametric formulation, we can use the same shape functions 
to describe the position of any point within the element by the relationships in 
Eq. (7.32):

	  x = Sixi + Sjxj + Smxm + Snxn� (7.32)

 y = Siyi + Sjyj + Smym + Snyn

The displacement field is related to the components of strains (exx = 0u
0x, eyy = 0y

0y, 
and  gxy = 0u

0y + 0y
0x) and subsequently to the nodal displacements through shape 

functions.
In Chapter 7, we also showed that using the Jacobian of the coordinate transforma-

tion, we can write the following, previously presented as Eq. (7.34):

	 d 0f(x, y)

0j
0f(x, y)

0h

t = D 0x
0j

0y

0j
0x
0h

0y

0h

T d 0f(x, y)

0x
0f(x, y)

0y

t � (7.34)

The relationship of Eq. (7.34) was also presented as the following, previously shown as 
Eq. (7.35):

	 d 0f(x, y)

0x
0f(x, y)

0y

t = [J]-1 d 0f(x, y)

0j
0f(x, y)

0h

t � (7.35)

[J]e

M10_MOAV4303_04_GE_C10.INDD   587 27/11/14   10:08 AM

www.FreeEngineeringbooksPdf.com



588    Chapter 10    Analysis of Two-Dimensional Solid Mechanics Problems

For a quadrilateral element, the J matrix can be evaluated using Eqs. (7.32) and (7.7):

[J] = D 0x
0j

0y

0j
0x
0h

0y

0h

T = D 0
0j

 [Sixi + Sjxj + Smxm + Snxn]
0
0j

 [Siyi + Sjyj + Smym + Snyn]

0
0h

 [Sixi + Sjxj + Smxm + Snxn]
0

0h
 [Siyi + Sjyj + Smym + Snyn]

T
(10.42)

[J] =
1
4

 J[ - (1 - h)xi + (1 - h)xj + (1 + h)xm - (1 + h)xn]
[ - (1 - j)xi - (1 + j)xj + (1 + j)xm + (1 - j)xn]

[ - (1 - h)yi + (1 - h)yj + (1 + h)ym - (1 + h)yn]
[ - (1 - j)yi - (1 + j)yj + (1 + j)ym + (1 - j)yn]

R = JJ11 J12

J21 J22
R 	 (10.43)

Also recall that the inverse of a two-dimensional square matrix is given by

	 [J]-1 =
1

J11J22 - J12J21
 J J22 -J12

-J21 J11
R =

1
det J

 J J22 -J12

-J21 J11
R 	 (10.44)

We can now proceed with the formulation of the stiffness matrix. The strain energy 
of an element is

	 Λ(e) =
1
2 LV

5E6T[v]5E6  dV =
1
2

(te)LA

5E6T[v]5E6  dA	 (10.45)

where te is the thickness of the element. Recall the strain–displacement relationships 
in matrix form

	 5E6 = c exx

eyy

gxy

s = f 0u
0x
0y
0y

0u
0y

+
0y
0x

v 	 (10.46)

Evaluating the derivatives, we obtain

	 d 0u
0x
0u
0y

t =
1

det J
 J J22 -J12

-J21 J11
R d 0u

0j
0u
0h

t 	 (10.47)

and

	 d 0y
0x
0y
0y

t =
1

det J
 J J22 -J12

-J21 J11
R d 0y

0j
0y
0h

t 	 (10.48)
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Combining Eqs. (10.46), (10.47), and (10.48) into a single relationship, we have

	 5E6 = f 0u
0x
0y
0y

0u
0y

+
0y
0x

v =

[A]

1
det J

C J22 -J12 0 0
0 0 -J21 J11

-J21 J11 J22 -J12

S g 0u
0j 
0u
0h
0y
0j
 0y

0h

w 	 (10.49)

Note how we defined the [A] matrix, to be used later. Using Eq. (7.30), we can perform 
the following evaluation:

g 0u
0j 
0u
0h
0y
0j

 0y
0h

w =

[ D]

1
4
D-(1 -  h) 0 (1 -  h) 0 (1 + h) 0 -(1 + h) 0
-(1 -  j) 0 -(1 + j) 0 (1 + j) 0 (1 -  j) 0

0 -(1 -  h) 0 (1 -  h) 0 (1 + h) 0 -(1 + h)
0 -(1 -  j) 0 -(1 + j) 0 (1 + j) 0 (1 -  j)

T
	  

5U6

h Uix

Uiy

Ujx

Ujy

Umx

Umy

Unx

Uny

x     ( 10.50)

We can express the relationship in Eq. (10.50) in a compact matrix form as

	 5E6 = [A][D]5U6 	 (10.51)

Next, we need to transform the dA term (dA = dx dy) in the strain energy integral into a 
product of natural coordinates. This transformation is achieved in the following manner:

	 Λ(e) =
1
2

 (te)LA 5E6
T[v]5E6  dA =

1
2

 (te)L
1

-1 L
1

-1
5E6T[v]5E6det Jdjdh    (10.52)

iy
e

edA
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590    Chapter 10    Analysis of Two-Dimensional Solid Mechanics Problems

Substituting for the strain matrix {E} and the properties of the material matrix [v] into 
Eq. (10.52) and differentiating the strain energy of the element with respect to its nodal 
displacements, we find that the expression for the element stiffness matrix becomes:

	 [K](e) = teL
1

-1 L
1

-1

[[A][D]]T[v][A][D] det Jdjdh	 (10.53)

Note that the resulting stiffness matrix is an 8 * 8 matrix. Furthermore, as discussed in 
Chapter 7, the integral of Eq. (10.53) is to be evaluated numerically, using the Gauss–
Legendre formula.

Example 10.2

A two-dimensional triangular plane stress element made of steel, with modulus of elastic-
ity E = 200 GPa and Poisson’s ratio y = 0.32, is shown in Figure 10.12. The element is  
3 mm thick, and the coordinates of nodes i, j, and k are given in centimeters in Figure 10.12. 
Determine the stiffness and load matrices under the given conditions.

The element stiffness matrix is

[K](e) = V[B]T[v][B]
where

 V = tA

 [B] =
1

2A
Cbi 0 bj 0 bk 0

0 di 0 dj 0 dk

di bi dj bj dk bk

S
 [v] =

E
1 - n2  D1 n 0

n 1 0

0 0
1 - n

2

T

X

Y

(2.25, 0.75)

(2.40, 1.65)(1.5, 1.0)

i

j

k

P = 500 N

px = 12 MPa

505

Figure 10.12  The loading and nodal coordinates for the element in 
Example 10.2.

M10_MOAV4303_04_GE_C10.INDD   590 27/11/14   10:08 AM

www.FreeEngineeringbooksPdf.com



Section 10.3    Isoparametric Formulation: Using a Quadrilateral Element     591

Thus,

 bi = Yj - Yk = 1.65 - 1.0 = 0.65  di = Xk - Xj = 1.50 - 2.40 =  -0.9

 bj = Yk - Yi = 1.0 - 0.75 = 0.25  dj = Xi - Xk = 2.25 - 1.5 = 0.75

 bk = Yi - Yj = 0.75 - 1.65 = -0.9 dk = Xj - Xi = 2.40 - 2.25 = 0.15

and

 2A = Xi(Yj - Yk) + Xj(Yk - Yi) + Xk(Yi - Yj)

 2A = 2.25(1.65 - 1.0) + 2.40(1.0 - 0.75) + 1.5(0.75 - 1.65) = 0.7125

Substituting appropriate values into the above matrices, we have

 [B] =
1

0.7125
 C 0.65 0 0.25 0 -0.9 0

0 -0.9 0 0.75 0 0.15
-0.9 0.65 0.75 0.25 0.15 -0.9

S
 [B]T =

1
0.7125

 F 0.65 0 -0.9
0 -0.9 0.65

0.25 0 0.75
0 0.75 0.25

-0.9 0 0.15
0 0.15 -0.9

V
 [v] =

200 * 105 
N

cm2

1 - (0.32)2  D 1 0.32 0
0.32 1 0

0 0
1 - 0.32

2

T = C22281640 7130125 0
7130125 22281640 0

0 0 7575758
S

Carrying out the matrix operations results in the element stiffness matrix:

[K](e) =
(0.3)¢ 0.7125

2
≤

(0.7125)2  F 0.65 0 -0.9
0 -0.9 0.65

0.25 0 0.75
0 0.75 0.25

-0.9 0 0.15
0 0.15 -0.9

V C22281640 7130125 0
7130125 22281640 0

0 0 7575758
S

C 0.65 0 0.25 0 -0.9 0
0 -0.9 0 0.75 0 0.15

-0.9 0.65 0.75 0.25 0.15 -0.9
S
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Simplifying, we obtain

[K](e) = F 3273759 -1811146 -314288 372924 -2959471 1438221
-1811146 4473449 439769 -2907167 1371376 -1566282
-314288 439769 1190309 580495 -876020 -1020265
372924 -2907167 580495 2738296 -953420 168871

-2959471 1371376 -876020 -953420 3835491 -417957
1438221 -1566282 -1020265 168871 -417957 1397411

V (N/cm)

The load matrix due to the distributed load is

5F6(e) =
tLik

2
 f px

py

0
0
px

py

v =
(0.3)2(2.25 - 1.5)2 + (0.75 - 1.0)2

2
 f 1200

0
0
0

1200
0

v = f 142
0
0
0

142
0

v
The load matrix due to the concentrated load is

5F6(e) = f 0
0

Qjx

Qjy

0
0

v = f 0
0

-500 cos (50)
-500 sin (50)

0
0

v = f 0
0

-321
-383

0
0

v
The complete load matrix for the element is

5F6(e) = f 142
0

-321
-383
142
0

v(N)
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10.4 A xisymmetric Formulation

In this section we briefly discuss the formulation of a stiffness matrix using axisymmetric 
triangular elements. The steps that we are about to take are similar to the steps shown 
in Section 10.2, where we expressed the state of the stress at a point using a Cartesian 
coordinate system. However, as you saw in Chapter 9, Section 9.4, axisymmetric formu-
lations require the use of a cylindrical coordinate system. Moreover, because geometry 
and loading are symmetrical about the z-axis, the state of stress and strain at a point are 
defined by only the following components:

	  [s]T = [srr szz trz suu]	 (10.54)

	  [E]T = [err ezz grz euu]	 (10.55)

The relationship between the strains and the displacements are given by

	 err =
0u
0r
 ezz =

0w

0z
 grz =

0u
0z

+
0w

0r
 euu =

u
r

	 (10.56)

See Figure 10.13 to help you visualize the deformations. The relationship between the 
stress and the strain is given by generalized Hooke’s law according to

d srr

szz

trz

suu

t =
E(1 - n)

(1 + n)(1 - 2n)
 H 1

n

1 - n
0

n

1 - n

n

1 - n
1 0

n

1 - n

0 0
1 - 2n

2(1 - n)
0

n

1 - n

n

1 - n
0 1

X d err

ezz

grz

euu

t     (10.57)

dr
u

dz
w

w +  dr0w

0r

u +  dz0u
0z

u +  dr0u
0r

r

z

u

(r +u)du
rdu

rdu

du

z

r

s

t

zz

zr

trz

srr
dz

dr

Figure 10.13  The component of the stress and displacements in a cylindrical 
coordinate system.
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We can express Eq. (10.57) in a compact matrix form by

	 5S6 = [N]5E6 	 (10.58)

The next step involves writing the displacement variables u and w in terms of axisym-
metric triangular shape functions. The nodal displacements of the axisymmetric trian-
gular element are shown in Figure 10.14.

	 b u
w

r = JSi 0 Sj 0 Sk 0
0 Si 0 Sj 0 Sk

R f Uir

Uiz

Ujr

Ujz

Ukr

Ukz

v 	 (10.59)

The expressions for the shape functions are given in Eq. (7.27). As a next step we need 
to evaluate the strains from the strain displacement relationships.

	  err =
0u
0r

=
0
0r

 [SiUir + SjUjr + SkUkr]	 (10.60)

	  ezz =
0w

0z
=

0
0z

 [SiUiz + SjUjz + SkUkz]	 (10.61)

 grz =
0u
0z

+
0w

0r
=

0
0z

 [SiUir + SjUjr + SkUkr] +
0
0r

 [SiUiz + SjUjz + SkUkz]� (10.62)

 euu =
u
r

=
SiUir + SjUjr + SkUkr

r
� (10.63)

As we did in Section 10.2, after taking the derivatives of the components of the displace-
ment fields we can express the relationship between the strain components and the 
nodal displacements in a compact matrix form by

	 {E} = [B]5U6 	 (10.64)

k

Ukz

Ukr

Ujz

Uiz

Ujr

Uiri

j
Figure 10.14  The nodal displacements 
of an axisymmetric triangular element.
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We then substitute for the strain matrix (in terms of displacements) in the strain energy 
of the axisymmetric element that eventually leads to the stiffness matrix, which is com-
puted from

	 [K](e) = 2p1[B]T[n][B]rdA	 (10.65)

Note that the resulting matrix is a 6 * 6 matrix.

10.5 B asic Failure Theories

One of the goals of most structural solid analyses is to check for failure. The predic-
tion of failure is quite complex in nature; consequently, many investigators have been 
studying this topic. This section presents a brief overview of some failure theories. For 
an in-depth review of failure theories, you are encouraged to study a good text on the 
mechanics of materials or on machine design. (For a good example of such a text, see 
Shigley and Mischke, 1989.)

Using ANSYS, you can calculate the distribution of the stress components sx, sy, 
and txy, and the principal stresses s1, and s2 within the material. But how would you decide 
whether or not the solid part you are analyzing will permanently deform or fail under the 
applied loading? You may recall from your previous study of the mechanics of materi-
als that to compensate for what we do not know about the exact behavior of a material 
and/or to account for future loading for which we may have not accounted, but to which 
someone may subject the part, we introduce a Factor of Safety (F.S.), which is defined as

	 F.S. =
Pmax

Pallowable
	 (10.66)

where Pmax is the load that can cause failure. For certain situations, it is also customary 
to define the factor of safety in terms of the ratio of maximum stress that causes failure 
to the allowable stresses if the applied loads are linearly related to the stresses. But 
how do we apply the knowledge of stress distributions in a material to predict failure? 
Let us begin by reviewing how the principal stresses and maximum shear stresses are 
computed. The in-plane principal stresses at a point are determined from the values of 
sxx, syy, and txy at that point using the equation

	 s1,2 =
sx + sy

2
{ C¢sx - sy

2 ≤2

+ txy
2 	 (10.67)

The maximum in-plane shear stress at the point is determined from the relationship

	 tmax = C¢sx - sy

2 ≤2

+ txy
2 	 (10.68)

There are a number of failure criteria, including the maximum-normal-stress theory, 
the maximum-shear-stress theory, and the distortion-energy theory. The distortion-energy 
theory, often called the von Mises–Hencky theory, is one of the most commonly used 
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criteria to predict failure of ductile materials. This theory is used to define the start of 
yielding. For design purposes, the von Mises stress s

v
 is calculated according to the 

equation

	 sy = 2s1
2 - s1s2 + s2

2	 (10.69)

A safe design is one that keeps the von Mises stresses in the material below the yield 
strength of the material. The relationship among the von Mises stress, the yield strength, 
and the factor of safety is

	 sy =
SY

F.S.
	 (10.70)

where SY is the yield strength of the material, obtained from a tension test. Most 
brittle materials have a tendency to fail abruptly without any yielding. For a brittle 
material under plane-stress conditions, the maximum-normal-stress theory states that 
the material will fail if any point within the material experiences principal stresses 
exceeding the ultimate normal strength of the material. This idea is represented by 
the equations

	 �s1 � = Sultimate    �s2 � = Sultimate	 (10.71)

where Sultimate is the ultimate strength of the material, obtained from a tension test. The 
maximum-normal-stress theory may not produce reasonable predictions for materials 
with different tension and compression properties; in such structures, consider using the 
Mohr failure criteria instead.

10.6 E xamples Using Ansys

ANSYS offers a number of elements that can be used to model two-dimensional 
solid-structural problems. Some of these elements were introduced in Chapter 7. 
The two-dimensional solid-structural elements in ANSYS include PLANE182 and 
PLANE183. 

Plane182  is a four-node element used for 2-D modeling of solid structures. 
The element can be used as either a plane element (plane stress, plane strain or 
generalized plane strain) or an axisymmetric element.

Plane183  can be used as a six-node (triangular) or eight-node (quadrilateral) 
structural solid element. It has quadratic displacement behavior and is well suited 
for modeling irregular shapes. The element is defined by either six or eight nodes 
having two degrees of freedom at each node: translations in the nodal x and  
y directions. The element may be used as a plane element (plane stress, plane strain 
and generalized plane strain) or as an axisymmetric element. The KEYOPT(1) is 
set to 1 for triangular shaped element.

As the theory in Section 10.1 suggested, because of similarities between the gov-
erning equation of torsional problems and heat transfer, in addition to the ele-
ments listed above, you can use thermal solid elements (e.g., PLANE35, a six-node 
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triangular element; PLANE55, a four-node quadrilateral element; or PLANE77, an 
eight-node quadrilateral element) to model torsional problems. However, when 
using the solid thermal elements, make sure that the appropriate values are sup-
plied to the property fields and the boundary conditions. Example 10.1 (revisited) 
demonstrates this point.

Example 10.2  Revisited

Consider Example 10.1, which deals with the torsion of a steel bar (G = 11 * 103 ksi) 
having a rectangular cross section, as shown in the accompanying figure. Assuming 
that u = 0.0005 rad/in, and using ANSYS, we are interested in determining the loca-
tion and magnitude of the maximum shear stress. We will then compare the solution 
generated with ANSYS to the exact solution for a straight rectangular bar, as discussed 
in Section 10.1.

Steel bar
G = 11 * 103 ksi

P

P

0.5 in
1 in

1 in

Enter the ANSYS program by using the Launcher. Type Torsion (or a file name of 
your choice) in the Jobname entry field of the dialog box. Pick Run to start the GUI.

Create a title for the problem.

utility menu: File S Change Title . . .
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main menu: Preprocessor S Element Type S Add/Edit/Delete

main menu: Preprocessor S Material Props S Material Models S
Thermal S Conductivity S Isotropic
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ANSYS Toolbar: SAVE_DB

main menu: Preprocessor S Modeling S Create S Areas S
Rectangle S by 2 Corners
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main menu: Preprocessor S Meshing S Size Cntrls S
Smart Size S Basic

main menu: Preprocessor S Meshing S Mesh S Areas S Free

Pick All

main menu: Solution S Define Loads S Apply S
Thermal S Temperature S On Line

Pick the edges of the rectangle and apply a zero constant temperature boundary 
condition on all four edges.

main menu: Solution S Define Loads S Apply S Thermal S
Heat Generat S On Area
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Pick the area of the rectangle and apply a constant value of 2Gu = 11000.

main menu: Solution S Solve S Current LS

OK

Close (the solution is done!) window.

Close (the /STAT Command) window.

main menu: General Postproc S Plot Results S Contour Plot S
Nodal Solu
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The solution is then given in the following figure:

By calculating the aspect ratio of the cross section 
w

h
=

1.0 in
0.5 in

= 2.0 and consulting

Table 10.1, we find that c1 = 0.246 and c2 = 0.229. Substituting for G, w, h, u, c1, and c2

in Eqs. (10.3) and (10.4), we get

 u =
TL

c2Gwh3 = 0.0005 rad/in =
T(1 in)

0.229(11 * 106 lb/in2)(1 in)(0.5 in)3 1 T = 157.5 lb.in

 tmax =
T

c1wh2 =
157.5 lb.in

0.246(1 in)(0.5 in)2 = 2560 lb/in2

When comparing 2560 lb/in2 to the FEA results of 2558 lb/in2, you see that we could 
have saved lots of time by calculating the maximum shear stress using the analytical 
solution and avoided generating a finite element model.
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Example 10.3

The bicycle wrench shown in Figure 10.15 is made of steel with a modulus of elasticity

E = 200 GPa a200 * 105 
N

cm2 b  and a Poisson’s ratio n = 0.3.  The wrench is 3 mm (0.3 cm) 

thick. Determine the von Mises stresses under the given distributed load and boundary 
conditions.

1 cm1 cm

R = 1.25 cm
The sides of the middle
hexagon are 9 mm long.

1.5 cm

The sides of the corner
hexagons are 7 mm long.

Fixed all the way around
this hexagon.

88 N/cm

3 cm

Figure 10.15  A schematic for the bicycle wrench in Example 10.3.

The following steps demonstrate how to (1) create the geometry of the problem, 
(2) choose the appropriate element type, (3) apply boundary conditions, and (4) obtain 
nodal results:

Enter the ANSYS program by using the Launcher. Type Bikewh (or a file name of 
your choice) in the Jobname entry field of the dialog box. Pick Run to start the GUI.

Create a title for the problem. This title will appear on ANSYS display windows to 
provide a simple way to identify the displays. So, issue the command

utility menu: File S Change Title . . .
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Define the element type and material properties with the following commands:

main menu: Preprocessor S Element Type S Add/Edit/Delete
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Close

Assign the thickness of the wrench with the following commands:

main menu: Preprocessor S Real Constants S Add/Edit/Delete
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Assign the modulus of elasticity and Poisson’s ratio values by using the following 
commands:

main menu: Preprocessor S Material Props S Material Models S
Structural S Linear S Elastic S Isotropic
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ANSYS Toolbar: SAVE_DB

Set up the graphics area (i.e., workplane, zoom, etc.) with the following commands:

utility menu: Workplane S Wp Settings . . .

Toggle on the workplane by using the command

utility menu: Workplane S Display Working Plane

Bring the workplane to view by using the command

utility menu: PlotCtrls S Pan,  Zoom,  Rotate . . .

Click on the small circle until you bring the work plane to view. Then, create the 
geometry with the following commands:

main menu: Preprocessor S Modeling S Create S
Areas S Rectangles S By 2 Corners

On the workplane, create the two rectangles:

Use the mouse buttons as shown below, or type the values in the appropriate fields.

  [WP = 2.25, 0.5]

  Expand the rubber band up 1.5 and right 3.0]

or
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  [WP = 7.25, 0.5]

  [Expand the rubber band up 1.5 and right 3.0]

OK

Create the circles with the following commands:

main menu: Preprocessor S Modeling S Create S Areas S
Circle S Solid Circle

  [WP = 1.25,1.25]

  [Expand the rubber band to a radius of 1.25]

or
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  [WP = 6.25,1.25]

  [Expand the rubber band to a radius of 1.25]

  [WP = 11.25, 1.25]

  [Expand the rubber band to a radius of 1.25]

OK

Add the areas together with the commands:

main menu: Preprocessor S Modeling S Operate S Booleans S Add S
Areas

Click on the Pick All button, and then create the hexagons. First, change the Snap 
Incr in the WP Settings dialog box to 0.1 with the command
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utility menu: PlotCtrls S Pan, Zoom, Rotate . . .

Click on the Box Zoom, and put a box zoom around the left circle, then using the 
following commands create the hexagon:

main menu: Preprocessor S Modeling S Create S Areas S
Polygon S Hexagon

Use the mouse buttons as shown below, or type the values in the appropriate fields:

  [1.25, 1.25]

  [Expand the hexagon to WP Rad = 0.7, Ang = 120]

or
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Then, issue the command

utility menu: PlotCtrls S Pan, Zoom, Rotate . . .

Click on the Fit button. Then, click on the Box Zoom, and put a box zoom around 
the center circle. Use the mouse buttons as shown below, or type the values in the 
appropriate fields:

  [6.25, 1.25]

  [Expand the hexagon to WP Rad = 0.9, Ang = 120]

or
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utility menu: PlotCtrls S Pan, Zoom, Rotate . . .

Click on the Fit button. Then, click on the Box Zoom, and put a box zoom around 
the right-end circle. Use the mouse buttons as shown below, or type the values in 
appropriate fields:

  [11.25, 1.25]

  [Expand the hexagon to WP Rad = 0.7, Ang = 120]

or

ANSYS Toolbar: SAVE_DB

Subtract the areas of the hexagons to create the driver holes:

main menu: Preprocessor S Modeling S Operate S Booleans S
Subtract S Areas

  [Pick the solid area of the wrench]

  [Apply anywhere in the ANSYS graphics area]
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  [Pick the left hexagon area]

  [Pick the center hexagon area]

  [Pick the right hexagon area]

  [Apply anywhere in the ANSYS graphics area]

OK

Now you can toggle off the workplane grids with the following command:

utility menu: Workplane S Display Working Plane

ANSYS Toolbar: SAVE_DB

You are now ready to mesh the area of the bracket to create elements and nodes. 
So, issue the following commands:

main menu: Preprocessor S Meshing S Size Cntrls S
Manual Size S Global S Size

ANSYS Toolbar: SAVE_DB

main menu: Preprocessor S Meshing S Mesh S Areas S Free
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Click on the Pick All button.

OK

Apply the boundary conditions and the load:

main menu: Solution S Define Loads S Apply S Structural S
Displacements S On Keypoints

Pick the six corner keypoints of the left hexagon:

OK

main menu: Solution S Define Loads S Apply S Structural S
Pressure S On Lines

Pick the appropriate horizontal line, as shown in the problem statement:

OK
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Solve the problem:

main menu: Solution S Solve S Current LS

OK

Close (the solution is done!) window.

Close (the STAT Command) window.

Begin the postprocessing phase and plot the deformed shape with the following 
commands:

main menu: General Postproc S Plot Results S Deformed Shape
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Plot the von Mises stresses with the following commands:

main menu: General Postproc S Plot Results S
Contour Plot S Nodal Solu
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Exit ANSYS and save everything:

ANSYS Toolbar: QUIT

10.7  Verification of Results

Now we turn our attention to Example 10.3. There are several ways to check the validity 
of the results of this problem. You can print the reaction forces and check the value of 
their sum against the applied force. Are statics equilibrium conditions satisfied? Using 
the path operations of ANSYS, you can also cut an arbitrary section through the wrench 
and visually assess the x- and y-components of the local stresses and shear stresses along 
the section. You can integrate the stress information along the path to obtain the internal 
forces and compare their values to the applied force. Are statics equilibrium conditions 
satisfied? These questions are left to you to confirm.

Summary

At this point you should

	 1.	 know that it is wise to use simple analytical solutions rather than finite element 
modeling for a simple problem whenever appropriate. Use finite element model-
ing only when it is necessary to do so. Simple analytical solutions are particularly 
appropriate when you are solving basic torsional problems.

	 2.	 know that the stiffness matrix for torsional problems is similar to the conductance 
matrix obtained for two-dimensional conduction problems. The stiffness matrix 
and the load matrix using a rectangular element are

 [K](e) =
w

6/
 D 2 -  2 -  1 1

-  2 2 1 -  1
-  1 1 2 -  2
1 -  1 -  2 2

T +
/

6w

 D 2 1 -  1 -  2
1 2 -  2 -  1

-  1 -  2 2 1
-  2 -  1 1 2

T
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 5F6(e) =
2GuA

4
 d 1

1
1
1

t
For triangular elements, the stiffness and load matrices are, respectively

 [K](e) =
1

4A
 C bi

2 bibj bibk

bibj bj
2 bjbk

bibk bjbk bk
2

S +
1

4A
 C d i

2 didj didk

didj d j
2 djdk

didk djdk dk
2

S
 5F6(e) =

2GuA
3

 c 1
1
1
s

	 3.	 know that the stiffness matrix for a plane-stress triangular element is

[K](e) = V[B]T[N][B]

where

V = tA

[B] =
1

2A
 Cbi 0 bj 0 bk 0

0 di 0 dj 0 dk

di bi dj bj dk bk

S [v] =
E

1 -  n2  D1 n 0
n 1 0

0 0
1 -  n

2

T
and

 bi = Yj - Yk  di = Xk - Xj

 bj = Yk - Yi  dj = Xi - Xk

 bk = Yi - Yj  dk = Xj - Xi

 2A = Xi(Yj - Yk) + Xj(Yk - Yi) + Xk(Yi - Yj)

	 4.	 know that the load matrix due to a distributed load along the element’s edges is

5F6(e) =
tLij

2
 f  

px

py

px

py

0
0

v 5F6(e) =
tLjk

2
 f  

0
0
px

py

px

py

v 5F6(e) =
tLik

2
 f  

px

py

0
0
px

py

v
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	 5.	 understand how an element’s stiffness matrix is obtained through the isopara
metric formulation.

	 6.	 understand how an element’s stiffness matrix is obtained through axisymmetric 
formulation.
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Problems

	 1.	 Using ANSYS, verify the stress-concentration chart for a flat bar with a circular hole under 
axial loading. Refer to a textbook on the mechanics of materials or textbook on machine 
design for the appropriate chart. Recall that the stress-concentration factor k is defined as

k =
smax

savg

and for this case, its value changes from approximately 3.0 to 2.0, depending on the size of 
the hole. Use ANSYS’s selection options to list the value of smax at point A or B.

PP

A

B

	 2.	 Consider one of the many steel brackets (E = 29 * 106 lb/in2, n = 0.3) used to support 
bookshelves. The thickness of the bracket is 1/8 in. The dimensions of the bracket are shown 
in the accompanying figure. The bracket is loaded uniformly along its top surface, and it is 
fixed along its left edge. Under the given loading and the constraints, plot the deformed 
shape; also, determine the von Mises stresses in the bracket.
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15 lb/in

R 0.25

Fillet radius
0.5 in

12 in

2 in

1 in

6 in 6 in

	 3.	 A 18@in@thick plate supports a load of 200 lb, as shown in the accompanying figure. The plate is 
made of steel, with E = 29 * 106 lb/in2 and n = 0.3. Using ANSYS, determine the principal 
stresses in the plate. When modeling, distribute the load over part of the bottom portion of 
the hole.
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Thickness = 1/8 in

100 lb

5.0 in

Radius = 1.0 in

1.0 in

Radius = 0.5 in
5.0 in

	 4.	 Elements (1) and (2) are subjected to the distributed loads shown in the accompanying figure. 
Replace the distributed loads by equivalent loads at nodes 3, 4, and 5.

5

(1)

3

1 2

4
(x = 2.5, y = 2.0)

x

y 200

100 N/cm

(2)2.0 cm

1.5 cm
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	 5.	 Using a steel sample similar to the one shown in the accompanying figure, perform a numeri-
cal tension test over the elastic region of the material. Plot the stress–strain diagram over 
the elastic region. Use ANSYS’s selection options to list the stress and strain values at the 
mid-section of the steel sample.

9/16 in

1/8 in

1 in

5 in

13/16 in

mid-section

	 6.	 Example 1.4 (revisited). A steel plate is subjected to an axial load, as shown in the accompa-
nying figure. The plate is 1/16 in thick, and it has a modulus of elasticity E = 29 * 106 lb/in2. 
Recall that we approximated the deflections and average stresses along the plate using the 
concept of one-dimensional direct formulation. Using ANSYS, determine the deflection and 
the x- and y-components of the stress distributions in the plate. Also, determine the loca-
tion of the maximum-stress-concentration regions. Plot the variation of the x-component 
of the stress at sections A–A, B–B, and C–C. Compare the results of the direct-formulation 
model to the results obtained from ANSYS. Furthermore, recall that for the given problem, 
it was mentioned that the way in which you apply the external load to your finite element 
model will influence the stress-distribution results. Experiment with applying the load over 
an increasingly large load-contact surface area. Discuss your results.

800 lb1"
1"
8
—

C

C

A

A

B

B

2"

2"

2"4"1"
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	 7.	 Consider a plate with a variable cross section supporting a load of 1500 lb, as shown in the 
accompanying figure. Using ANSYS, determine the deflection and the x- and y-components 
of the stress distribution in the plate. The plate is made of a material with a modulus of elastic-
ity E = 10.6 * 103 ksi. In Problem 24 of Chapter 1, you were asked to analyze this problem 
using simple direct formulation. Compare the results of your direct-formulation model to 
the results obtained from ANSYS. Experiment with applying the load over an increasingly 
large load-contact surface area. Discuss your results.

Thickness = 0.125 in

1500 lb

in

1"
8
—

1
2
—

2 in

10 in 5 in

2.5 in

4 in
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	 8.	 A thin steel plate with the profile given in the accompanying figure is subjected to an axial 
load. Using ANSYS, determine the deflection and the x- and y-components of the stress 
distributions in the plate. The plate has a thickness of 0.125 in and a modulus of elasticity 
of E = 28 * 103 ksi. In Problem 4 of Chapter 1, you were asked to analyze this problem 
using simple direct formulation. Compare the results of your direct-formulation model to 
the results obtained from ANSYS. Experiment with applying the load over an increasingly 
larger load-contact surface area. Discuss your results.

500 lb

in

in

Holes equally spaced

1
8
—

1
2
—

in1
2
—

in1
2
—

4 in

2 in

2 in

12 in
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	 9.	 Consider the torsion of a steel bar (G = 11 * 103 ksi and n = 0.3) having an equilateral-
triangular cross section, as shown in the accompanying figure. Assuming that u = 0.005 rad/in 
and using ANSYS, determine the location(s) and magnitude of the maximum shear stress. 
Compare the solution generated with ANSYS to the exact solution obtained from the equation

tmax =
GLu

2 # 31
.

L = 1.2 in

	 10.	 Consider the torsion of a steel wide-flange member (W4 * 13 and G = 11 * 103 ksi) 
with dimensions shown in the accompanying figure. Assuming u = 0.0005 rad/in and using 
ANSYS, plot the shear stress distributions. Could you have solved this problem using the 
thin-wall member assumption and, thus, avoid resorting to a finite element model?

0.28 in

0.345 in

4.06 in

4.16 in

	 11.	 Consider the torsion of a steel bar (G = 11 * 103 ksi) having a square cross section, as shown 
in the accompanying figure. Assuming that u = 0.0005 rad/in and using ANSYS, determine 
the location(s) and magnitude of the maximum shear stress. Compare the solution generated 

		  with ANSYS to the exact solution obtained from the equation tmax = Ghu
1.6

.
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h

h = 1.2 in

	 12.	 Consider the torsion of a steel bar (G = 11 * 103 ksi) having a polygon cross section, as 
shown in the accompanying figure. Assuming that u = 0.0005 rad/in and using ANSYS, deter-
mine the location(s) and magnitude of the maximum shear stress. Compare the solution 

		  generated with ANSYS to the exact solution obtained from the equation tmax = GLu

0.9 .

L = 1.2 in

	 13.	 Consider the torsion of a steel bar (G = 11 * 103 ksi) having an elliptical cross section, 
as shown in the accompanying figure. Assuming that u = 0.0005 rad/in and using ANSYS, 
determine the location(s) and magnitude of the maximum shear stress. Compare the solution 

		  generated with ANSYS to the exact solution obtained from the equation tmax = Gbh2u

b2 + h2
.

h = 1 in

b = 0.5 in

	 14.	 Consider the torsion of a steel bar (G = 11 * 103 ksi) having a hollow, circular cross section, 
as shown in the accompanying figure. Assuming that u = 0.0005 rad/in and using ANSYS, 
determine the location(s) and magnitude of the maximum shear stress. Compare the solution 

		  generated with ANSYS to the exact solution obtained from the equation tmax = 
GDu

2 .

D = 1.5 in
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	 15.	 Design Project  The purpose of this project is twofold: (1) to provide a basis for the applica-
tion of solid-design principles using finite element methods and (2) to foster competitiveness 
among students. Each student is to design and construct a structural model from a 38 * 6 * 6 
in sheet of plexiglas material that adheres to the specifications and rules given later in this 
problem and that is capable of competing in three areas: (1) maximum failure load per 
model weight, (2) predication of failure load using ANSYS, and (3) workmanship. A sketch 
of a possible model is shown in the accompanying figure. Each end of the model will have a 
diameter hole (eye) of d 7 1/2″ drilled through it perpendicular to the axis of loading, for 
which pins can be inserted and the model loaded in tension. The dimension a must also be 
set such that a 7 1″. The distance between the eyes will be / 7 2″. The maximum thickness 
of the member in the region of the eye will be t 6 3/8″. This requirement will ensure that the 
model fits into the loading attachment. A dimension of b 6 1″ from the center of the eyes to 
the outer edge in the direction of loading must be maintained so that the loading attachment 
can be used. The maximum width is limited to w 6 6″, and the maximum height is limited 
to h 6 6″. Any configuration may be used. Two sheets of 3

8 * 6 * 6 in Plexiglas) will be 
provided. You can use one sheet to experiment and one sheet for your final design. Write a 
brief report discussing the evolution of your final design.

P

A A

Section A–A

t

d

b

b

P

Holes parallel to
and at an angle of 905
to the axis of loading

aa

w

h/
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C h a p t e r  1 1

Dynamic Problems

The main objective of this chapter is to introduce analysis of dynamic systems. A dynamic 
system is defined as a system that has mass and components, or parts, that are capable 
of relative motion. Examples of dynamic systems include structures such as buildings, 
bridges, water towers, planes, and machine components. In most engineering applica-
tions mechanical vibration is undesirable. However, there are systems, such as shakers, 
mixers, and vibrators, that are intentionally designed to vibrate. Before discussing finite 
element formulations of dynamic problems, we review dynamics of particles and rigid 
bodies, and examine basic concepts dealing with vibration of mechanical and structural 
systems. A good understanding of the fundamental concepts of dynamics and vibration 
is necessary for an accurate finite element modeling of actual physical situations. After 
we establish the basic foundation, we consider finite element formulation of an axial 
member, a beam, and frame elements. The main topics discussed in Chapter 11  include 
the following:

	 11.1	 Review of Dynamics

	 11.2	 Review of Vibration of Mechanical and Structural Systems

	 11.3	 Lagrange’s Equations

	 11.4	 Finite Element Formulation of Axial Members

	 11.5	 Finite Element Formulation of Beams and Frames

	 11.6	 Examples Using ANSYS

11.1 R eview of Dynamics

The subject of dynamics is traditionally divided into two broad areas: kinematics and 
kinetics. Kinematics deals with space and time relationships—in other words, the geo-
metric aspect of motion. Kinematics is the study of variables such as distance traveled by 
an object, its speed, and its acceleration. The fundamental dimensions associated with all 
of these variables are length and time. When studying kinematics, we are not concerned 
with causes of motion but focus instead on the motion itself. Study of kinetics, on the 
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other hand, deals with the relationship between forces and moments, and the resulting 
motion.

Kinematics of a Particle

Let us first define a particle and explain when it is appropriate to model a problem using 
a particle. For an object to be considered as a particle, all forces acting on the object 
must act at the same point and create no rotation. Moreover, an object is modeled as a 
particle when its size does not play a significant role in the way it behaves. In general, 
the motion of a particle is described by its position, instantaneous velocity, and the 
instantaneous acceleration.

The motion of an object along a straight path is called rectilinear motion, which is 
the simplest form of motion. The kinematical relationships for an object moving along 
a straight line is given by Eqs. (11.1) through (11.3). In these equations, x represents the 
position of the object, t is time, v is velocity, and a represents the acceleration of the 
particle.

	  v =
dx
dt

	 (11.1)

	  a =
dv

dt
	 (11.2)

	  vdv = adx	 (11.3)

The position and displacement of an object moving along a straight path are shown in 
Figure 11.1.

Plane Curvilinear Motion  When a particle moves along a curved path, its 
motion can be described using a number of coordinate systems. As shown in Figure 11.2, 

x ∆x

O
Particle

at time t

at time t + ∆t

Figure 11.1  Rectilinear motion of a 
particle.

Y

X
x

y
r

i
j

P

Figure 11.2  Rectangular components 
of motion of a particle.
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using a rectangular coordinate system (x, y), we can describe the position r
u

, velocity v
u

, 
and acceleration a

u

 of the particle with

	  r
u

= xi
u

+ yj
u

	 (11.4)

	  v
u

= vxi
u

+ vyj
u

 where vx =
dx
dt
 and vy =

dy

dt
	 (11.5)

	  a
u

= axi
u

+ ayj
u

 where ax =
dvx

dt
 and ay =

dvy

dt
	 (11.6)

In Eqs. (11.4) through (11.6) x and y are rectangular components of the position vector; 
vx, vy, ax, and ay are the Cartesian components of the velocity and acceleration vectors.

Normal and Tangential Coordinates  The plane motion of a particle can also be 
described using normal and tangential unit vectors, as shown in Figure 11.3. It is impor-
tant to note that unlike the previously employed Cartesian unit vectors i

u

 and j
u

, whose
directions are fixed in space, the directions of unit vectors e

u

t and e
u

n change as they move 
along with the particle. The changes in the direction of e

u

t and e
u

n, as the particle moves 
from position 1 to position 2, are shown in Figure 11.3. The velocity and acceleration of 
a particle in terms of unit vectors e

u

t and e
u

n are

	  v
u

= ve
u

t 	 (11.7)

	  a
u

= ane
u

n + ate
u

t where an =
v

2

r
 and at =

dv

dt
	 (11.8)

Polar Coordinates  A polar coordinate (or radial and transverse) system offers 
yet another way of describing motion of an object along a curved path. To locate the 
object, two pieces of information are used: a radial distance r in a direction specified by 
the unit vector e

u

r and the angular coordinate u in the e
u

u direction, as shown in Figure 11.4. 
The position, velocity, and acceleration of the object are given by

	  r
u

= re
u

r 	 (11.9)

	  v
u

= vre
u

r + vue
u

u where vr =
dr
dt
 and vu = r 

du
dt

	 (11.10)

	  a
u

= are
u

r + ate
u

t where ar =
d2r
dt2 - r¢du

dt
≤2

 and au = r 
d2 u

dt2 + 2¢dr
dt

≤ ¢du
dt

≤	 (11.11)

r

et

en

e t

en

y

P

y

1

2

Figure 11.3  Normal and tangential 
components of motion of a particle.
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Note similar to normal and tangential unit vectors, the directions of e
u

u and e
u

r 
change as they move along with the particle.

Relative Motion  The relationship between the position of two particles moving 
along different paths is shown in Figure 11.5. When studying Figure 11.5, note that the X,Y 
coordinate system is fixed, and an observer located at its origin (point O) measures the 
absolute motion of the particles A and B. Therefore, vectors r

u

A and r
u

B represent the 
absolute positions of particle A and B with respect to the observer. On the other hand, 
vector r

u

B/A represents the position of particle B with respect to A. The relationship 
among these vectors is given by

	 r
u

B = r
u

A + r
u

B/A	 (11.12)

Taking the time derivative of Eq. (11.12), we get

	 v

u

B = v

u

A + v

u

B/A	 (11.13)

where v
u

B and v
u

A are absolute velocities of particle A and B measured by the observer
at O, and v

u

B/A is the velocity of particle B relative to A (measured by someone moving 
along with A). By taking the time derivative of Eq. (11.13), we can obtain the relation-
ship between the absolute accelerations of particle A and B and acceleration of particle 
B relative to A.

X

Y

r

P

ereu

u Figure 11.4  Polar components of a 
curvilinear motion.

Y

O
X

rB

rB/A

r A

A

B

Path of B

Path of A

Figure 11.5  Relationship between two 
particles moving along different paths.
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Kinetics of a Particle

The equations of motion for a particle of constant mass m under the influence of forces 
F1, F2, F3, c, Fn is governed by Newton’s second law according to

	 a
n

i = 1
F
u

i = ma
u

	 (11.14)

We can describe the equations of motion using either a rectangular, normal and tan-
gential, or polar coordinate system. Using a rectangular coordinate system, Eq. (11.14) 
is expressed by

	 aFx = max	 (11.15)

	 aFy = may	 (11.16)

In a normal and tangential coordinate system, Eq. (11.14) becomes

	 aFn = man	 (11.17)

	 aFt = mat	 (11.18)

And in a polar coordinate system, we have

	 aFr = mar	 (11.19)

	 aFu = mau	 (11.20)

where the respective components of accelerations are given in the previous sections.
It is important to point out that the only way to account correctly for every force 

acting on a particle is to draw a free-body diagram. A free-body diagram represents the 
interaction of the particle with its surroundings. To draw a free-body diagram, as the 
name implies, you must free the body from its surroundings and show all the interaction 
of the body with its surroundings with forces of appropriate magnitudes and directions 
(see Figure 11.6).

Newton’s second law of motion is a vectorial equation that relates forces acting on 
the object to its mass and acceleration. If the solution to a problem requires position and 
velocity information, then kinematical relationships are used to obtain such information 
from the knowledge of the object’s acceleration.

A

Wind
Fwind

Sign
W = mg

Rx

Ry

A

M

Sign

Figure 11.6  A free-body diagram of the 
object shown. Note the object shown can not 
be considered as a particle. The sign is merely 
used to demonstrate the concept of free-body 
diagram.
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Work and Energy Principle  Whereas Newton’s second law is a vectorial equa-
tion, the work–energy principle is a scalar relationship. The work–energy principle 
relates the work done by forces over a distance to the object’s mass and speed. The 
work–energy principle becomes very useful for situations for which we are interested 
in determining the change in speed of an object due to applied forces. The work done 
by a force moving an object from position 1 to position 2, as shown in Figure 11.7, is 
defined by

	 W1-2 =LF
u

.dr
u

	 (11.21)

The work–energy principle simply states that net work done by all forces acting on an 
object will bring about a change in its kinetic energy according to

	 LF
u

.dr
u

=
1
2

 mv2
2 -

1
2

 mv1
2	 (11.22)

The terms 
1
2

 mv2
2 and 

1
2

 mv1
2 represent the kinetic energy of the object and correspond to 

its 2 and 1 positions. When using the work–energy principle, you must pay close attention 
to two important things: (1) work is done only when a force undergoes a displacement; 
(2) if the tangential component of the force (the component that moves the object) and 
displacement have the same direction, then the work done is considered positive, and if 
they have opposite directions, work done is a negative quantity.

Linear Impulse and Linear Momentum  For problems wherein the time history 
of forces is known (i.e., how forces act on an object over a time period), the impulse and 
momentum approach may be used to determine the resulting changes in the velocities 
of the object. Newton’s second law can be rearranged and integrated over time in the 
following manner:

	 aF
u

=
dmv

u

dt
 1  aF

u

dt = dmv

u

	 (11.23)

	 L
t2

t1

aF
u

dt = mv

u

2 - mv

u

1	 (11.24)

F n

F t

F d r

Y

X

1

2

Figure 11.7  Work done by a force moving 
an object.
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Equation (11.24) may be expressed in any of the previously mentioned coordinate sys-
tems. For example, using a Cartesian coordinate system, Eq. (11.24) becomes

	 L
t2

t1

aFxdt = m(vx)2 - m(vx)1	 (11.25)

	 L
t2

t1

aFydt = m(vy)2 - m(vy)1	 (11.26)

Next, we will use Example 11.1 to demonstrate some of the ideas we have discussed so far.

Example 11.1 

A small sphere having mass m is released from position 1, as shown in Figure 11.8. We 
are interested in determining the velocity of the sphere as a function of u. We solve this 
problem using both Newton’s law and the work–energy principle.

Using Newton’s second law and referring to the free-body diagram shown in the 
accompanying figure, applying Eq. (11.18), we have

 aFt = mat

 mg cos u = mat 1 at = g cos u

Now, using Eq. (11.3), the kinematical relationship between velocity and acceleration, 
and noting that ds = Ldu,

 vdv = atds

 L
v

0
vdv = L

u

0
g cos uLdu 1 v = 22Lg sin u

We now solve the problem using the work–energy principle. The force due to the tension 
in the string does not perform any work because it acts normal to the path of the sphere. 
Relating the work done by the weight of the sphere W1-2 = mgL sin u to the change in 
its kinetic energy, we get

mgL sin u =
1
2

 mv

2 - 0 1 v = 22Lg sin u

You realize that it is easier to solve this problem using the work–energy principle, because 
we were interested in determining the speed of the sphere and not its acceleration.

s

L

u

u

1

man

mat

en

et

T

mg Figure 11.8  The sphere of Example 11.1.

M11_MOAV4303_04_GE_C11.INDD   635 27/11/14   10:12 AM

www.FreeEngineeringbooksPdf.com



636    Chapter 11    Dynamic Problems

Kinematics of a Rigid Body

In this section we discuss kinematics of a rigid body. Unlike a particle model, a rigid body 
is an object whose size affects its dynamic behavior and forces can act anywhere on the 
body. Moreover, as the name implies, a rigid body is considered rigid—no deformation 
due to application of forces. A rigid body is an idealization of an actual situation in which 
the magnitude of motion caused by forces and moments is much larger than internal 
displacements. Motion of a rigid body may be classified as pure translation, pure rota-
tion, or a combination of translation and rotation called general plane motion.

Translation of a Rigid Body  When a rigid body undergoes a pure translational 
motion, all constituent particles move with the same velocity and acceleration. As shown 
in Figure 11.9, points A and B have the same velocity.

Rotation of a Rigid Body about a Fixed Axis  When a rigid body rotates about 
a fixed axis, the particles of the rigid body follow circular paths, as shown in Figure 11.10. 
The relationships between the velocity of a point A such as vA and its acceleration and 
the angular velocity and acceleration of the rigid body, v and a, are given by

	  vA = rAv 	 (11.27)

	  an = rA v2 =
vA

2

rA
= vAv	 (11.28)

	  at = rAa 	 (11.29)

AA

BB

Path of A

Path of B

vA

vB = vA
Figure 11.9  A pure translation of a 
rigid body.

A

A

yA

yA

rA

an at

v
a

Figure 11.10  Pure rotation motion.
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In general, the velocity and the acceleration components of a point (such as A) located 
on a rigid body in terms of the position vector r

u

A, the angular velocity v
u

, and the angu-
lar acceleration a

u

 are given by

	  v
u

A = v
u

* r
u

A 	 (11.30)

	  an = v
u

* (v
u

* r
u

A)	 (11.31)

	  at = a
u

* r
u

A 	 (11.32)

General Plane Motion  The motion of a rigid body undergoing simultaneous 
rotation and translation is commonly referred to as general plane motion. The relation-
ship between the velocities of two points A and B at an instant is given by

	 v

u

A = v

u

B + v

u

A/B	 (11.33)

where v
u

A and v
u

B are the absolute velocities of points A and B and vA/B represents 
the velocity of point A relative to point B. The magnitude of vA/B is expressed by 
vA/B = rA/B v, and its direction is normal to the position vector rB/A, as shown in 
Figure 11.11.

The acceleration of points A and B are related according to

	 a
u

A = a
u

B + a
u

A/B = a
u

B + (a
u

A/B)n + (a
u

A/B)t	 (11.34)

A

B C

Pure rotation

General plane motion

Pure translation

vB

vB

vB

vA

vA

vB

vA/B

vA/B

rA/B

B
B

B

A
A

A

vA = vB  +  vA/B

=
+

Figure 11.11  The relationship between the velocities of two points belonging to a rigid 
body undergoing a general plane motion.
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where

	  (a
u

A/B)n = v
u

* (v
u

* r
u

A/B)	 (11.35)

	  (a
u

A/B)t = a
u

* r
u

A/B 	 (11.36)

and the magnitudes of the normal and tangential components of the acceleration of A 
relative to B are given by

	  (aA/B)n =
vA/B

2

rA/B
= rA/B v2	 (11.37)

	  (aA/B)t = rA/B a 	 (11.38)

The directions of these components are shown in Figure 11.12.

Kinetics of a Rigid Body

The study of kinetics of a rigid body includes forces and moments that create the motion 
of the rigid body.

Rectilinear Translation  The rectilinear translation of a rigid body under the 
influence of forces F1, F2, F3, c, Fn is governed by Newton’s second law according to

	  aFx = m(aG)x	 (11.39)

	  aFy = m(aG)y	 (11.40)

A

aA

aB

A

B
B

B

A

aB

aA

aB

(aA/B)n

(aA/B)t

(aA/B)t

(a A/B
) n

r A/B

aB

= +

Figure 11.12  The directions of the normal and tangential components of a
u

A/B.

M11_MOAV4303_04_GE_C11.INDD   638 27/11/14   10:12 AM

www.FreeEngineeringbooksPdf.com



Section 11.1    Review of Dynamics    639

Although we have related the sum of forces to the acceleration of the mass center a
u

G, it 
is important to realize that for a rigid body undergoing translation, all constituent par-
ticles have the same velocity and acceleration. Moreover, since the body is not rotating, 
the sum of the moments of the forces about mass center G must be zero.

	 ⤽aMG = 0	 (11.41)

However, if we were to take the sum of the moment about another point, such as O, then 
the sum of the moments about that point is not zero, because the inertia forces m(aG)x 
and m(aG)y create moments about that point. That is,

	 ⤽aMO = m(aG)x d1 - m(aG)y d2	 (11.42)

The free-body and inertia diagrams for a rigid body undergoing pure translational 
motion are shown in Figure 11.13.

Rotation about a Fixed Axis  The rotation of a rigid body is governed by the 
following equations:

	  aFn = mrG/O v2	 (11.43)

	  aFt = mrG/O a 	 (11.44)

	  ⤽aMO = IO a 	 (11.45)

In Eq. (11.45), Io is the mass moment of inertia of the body about point O, as shown in 
Figure 11.14. Whereas mass provides a measure of resistance to translational motion, the 
mass moment of inertia represents the amount of the body’s inherent resistance to rota-
tional motion. For a special case when the rigid body is rotating about its mass center G,  
the equations of motion become

	  aFx = 0 	 (11.46)

	  aFy = 0 	 (11.47)

	  ⤽aMG = IG a	 (11.48)

G G

O O

F2

F3

F1
(maG)y

(maG)x
=

d2

d1

Figure 11.13  The kinetics of a rigid body under translational motion.
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General Plane Motion  For a rigid body that is translating and rotating simulta-
neously, the equations of motion become

	  aFx = m(aG)x	 (11.49)

	  aFy = m(aG)y	 (11.50)

	  ⤽aMG = IG a 	 (11.51)

or as shown in Figure 11.15, the sum of the moments about another point such as O must 
include the moments created by inertia forces.

	 ⤽aMO = IG a + m(aG)xd1 - m(aG)yd2	 (11.52)

Work–Energy Relations  The work–energy principle relates the work done by 
forces and moments to the change in the kinetic energy of the rigid body as shown in 

G

O

F2

F3

F1

=

rG/O

G

O

mrG/Oa

IGa

m
r G

/O
    
2
v

e n

et

Figure 11.14  The rotational motion of a rigid body.

G
F2

F 3

F1

=
IGa

O

(maG)y

(maG)x

d2

d1

Figure 11.15  General plane motion of a rigid body.
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Figure 11.16. The forces and moments acting on a rigid body do work according to

	  W1-2 = LF
u

.dr
u

	 (11.53)

	  W1-2 = LMdu	 (11.54)

where dr and du are the infinitesimal translation and rotational displacements. Because 
the rigid body can translate and rotate, its kinetic energy has two parts: a translational 
and a rotational part. The rigid body’s translational part of kinetic energy is given by

	 T =
1
2

 mvG
2 	 (11.55)

The rotational kinetic energy of a rigid body about it mass center G is given by

	 T =
1
2

 IG v2	 (11.56)

The total kinetic energy of a rigid body undergoing a general plane motion is then given by

	 T =
1
2

 mvG
2 +

1
2

 IG v2	 (11.57)

The rotational kinetic energy of a rigid body about an arbitrary point O is

T =
1
2

 IO v2

Impulse and Momentum  For problems in which time history of forces and 
moments are known, the impulse and momentum approach is used to determine the 
changes in the velocities of the rigid body. The linear impulse and momentum equations 
for a rigid body are

	  L
t2

t1

aF
u

dt = m(v

u

G)2 - m(v

u

G)1	 (11.58a)

	  L
t2

t1

aMG dt = IG(v)2 - IG(v)1	 (11.58b)

F

F 1

F 1

1
2 IG    

2v

1
2 mv

2

M = F1 d

G

d

Figure 11.16  Work–energy principle for a rigid body.
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In Eq. (11.58b), aMG represents the sum of all moments about mass center G, and IG 
is the mass moment of inertia of the rigid body about its mass center G.

Next, we use Example 11.2 to show how the concepts discussed previously are 
applied to formulate the equations of motion for a rigid body.

Example 11.2 

In this example we derive the equations of motion for the system shown in the accompany-
ing figure. When studying this example, keep in mind that the rod can rotate and translate.

G

k1 k2

L/ 2 L/ 2

G

GL/ 2

L/ 2

Free-body diagram

x

k2(x +       )
L
2
u

k1(x -       )L
2
u

u

Inertia diagram

mx
..

uIG

..

The free-body diagram of the rod is shown above. This is a snapshot of the rod at a 
point in time as it oscillates. One way of arriving at the free-body diagram shown is 
by imagining that you pull the rod straight up and turn it counterclockwise and then 
let it go. To keep track of the motion of the rod, we will use x and x∙∙ to locate transla-
tion of the mass center and use u and u∙∙ to measure the rotational motion. Note x is 
measured from the static equilibrium position and as a result the weight of the rod 
and the spring forces in static position cancel each other out. Applying Eqs. (11.50) 
and (11.51), we have

 aFx = m(aG)x = mx∙∙

 -k1¢x -
L
2

 u≤ - k2¢x +
L
2

 u≤ = mx∙∙

and simplifying, we get the equation of translational motion

mx∙∙ + (k1 + k2)x - (k1 - k2) 
L
2

 u = 0
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The equation for rotational component is obtained from

⤻+  aMG = IGa = IG u∙∙

k1¢x -
L
2

 u≤L
2

- k2¢x +
L
2

 u≤  
L
2

= IGu
∙∙

and simplifying we get the equation for rotational motion, which is given by

IGu
∙∙ - (k1 - k2) 

L
2

 x + (k1 + k2)¢L
2
≤2

u = 0

Now that we have reviewed dynamics of particles and rigid bodies, we are ready to review 
the basic definitions, fundamental principles, and governing equations in vibrations.

11.2 �R eview of Vibration of Mechanical 
and Structural Systems

A dynamic system is defined as a system that has mass and components (parts) that are 
capable of relative motion. A dynamic system has the following properties:

Because of the mass of the system and the changes in the velocity of the system, 
the kinetic energy of the system can increase or decrease with time.

Elastic members of the system are capable of storing elastic energy.

The materials making up the system have damping characteristics that could con-
vert a portion of the work or energy input (into the system) into heat.

Work or energy enters the system through excitation of support or direct applica-
tion of forces.

Examples of dynamic systems are given in Table 11.1.

Degrees of Freedom

The degree of freedom is defined as the number of spatial coordinates required to 
completely describe the motion of a system—in other words, the number of coordinates 
needed to keep track of all components or lumped masses making up the system. For 
example, the four-story building shown in Table 11.1 requires four spatial coordinates 
to locate the temporal position of each floor mass. As another example we may use a 
model with three degrees of freedom to study the dynamic behavior of an airplane as 
shown in Table 11.1.

Simple Harmonic Motion

Consider the simple single degree of freedom system consisting of a linear spring and 
mass, as shown in Figure 11.17.
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The free-body diagram for the static equilibrium is shown in Figure 11.17(b). As 
you can see, at static equilibrium, the weight of the mass is supported by the spring 
force, kdstatic = W. In the forthcoming analysis, k represents the stiffness of the spring in  
N/mm (or lb/in), and dstatic is the static deflection in mm (or in). To obtain the governing 
equation of motion, we displace the mass and then release it, as shown in Figure 11.17(c). 

Table 11.1  Examples of dynamic systems

A water tower

Actual System Possible Dynamic Model

A four-story building

Stiffness
and

damping

x1m

An airplane

m3

m2

m1

x4

x3

x2

x1

Stiffness
and

damping

m1 m3

z1 z3

m2

z2

Stiffness and damping

m4

Water
tower
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k

m

(a)

Static equilibrium

(b)

m

W = mg

@

m
y

Static equilibrium

(c)

y0

(d)

m

W

@

m

my
..

m

k  static

y0

k(  static + y)

m

Figure 11.17  A simple single degree of 
freedom system: (a) the system, (b) the 
free-body diagram of the system in static 
equilibrium, (c) displacing mass by y0, and 
(d) the free-body diagram for the oscillating 
mass.

We then apply Newton’s second law, which leads to

	 aFy = my∙∙	 (11.59)

	 -kdstatic - ky + W = my∙∙	 (11.60)

We previously showed that W = kdstatic; therefore, Eq. (11.60) reduces to

	 my∙∙ + ky = 0	 (11.61)

Referring to Figure 11.17(c), you are reminded that y is measured from the static equi-
librium position of the system. It is customary to write Eq. (11.61) in the following 
manner:

	 y∙∙ + vn
2 y = 0	 (11.62)

where

	 vn
2 =

k
m

= undamped natural circular frequency of the system (rad/s)	 (11.63)

In order to solve the governing differential equation of motion (Eq. 11.62), we need to 
first define the initial conditions. Since Eq. (11.62) is a second-order differential equa-
tion, two initial conditions are required. Let’s assume that at time t = 0, we pull the mass 
down by a distance of y0 and then release it without giving the mass any initial velocity. 
Then, for time t = 0, we can write the following initial conditions:

	 y = y0 (or written alternatively as y(0) = y0)	 (11.64)

and

	 y∙ = 0 (or y∙(0) = 0)	 (11.65)
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For this simple degree of freedom system, the general solution to the governing differ-
ential equation is then given by

	 y(t) = c1 sin vn t + c2 cos vn t	 (11.66)

You should know from your studies in differential equation class how to obtain 
Eq. (11.66). Moreover, you should recall that the solution to a differential equation 
must satisfy the differential equation. In other words, if we were to substitute the solu-
tion, Eq. (11.66), back into the governing differential equation of motion, Eq. (11.62), 
the outcome must be zero. To demonstrate this point, we substitute the solution back 
into the governing differential equation:

(-c1vn
2 sin vn t - c2vn

2 cos vn t) + vn
2 (c1 sin vn t + c2 cos vn t) = 0

	 0 = 0	 Q.E.D.

Applying the initial condition y(0) = y0, we have

y0 = c1 sin (0) + c2 cos (0)

which leads to c2 = y0, and applying y∙(0) = 0 leads to

 y∙ = c1vn cos vn t - c2 vn sin vn t

 0 = c1 vn cos(0) - c2vn sin(0)

 c1 = 0

After substituting for c1 and c2 in Eq. (11.66), the solution representing the location of 
the mass (from the static equilibrium position) as a function of time is given by

	 y(t) = y0 cos vn t	 (11.67)

and the velocity and acceleration of the mass are given by

	  y∙(t) =
dy

dt
= -y0 vn sin vn t 	 (11.68)

	  y∙∙(t) =
d2y

dt2 = -y0 vn
2 cos vn t	 (11.69)

In order to look at the harmonic behavior of the system, we have plotted the position 
of the mass in Figure 11.18.

Using Figure 11.18, we can now define period and frequency for a dynamic system. 
As shown in Figure 11.18, period T is defined as the time that it takes for the mass m 
to complete one cycle, typically measured in seconds. On the other hand, frequency f is 
defined as the number of cycles per second and is expressed in Hertz. The relationship 
between frequency and period is given by

	 f =
1
T

	 (11.70)

This is a good place to point out the difference between the circular frequency v, which 
is expressed in radians per second (rad/s), and frequency f, which is expressed in cycles 

iy∙∙ g y
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per second (hz). The relationship between v and f is given by

	  v = 2pf 	 (11.71)

	  v¢ radians
second

≤ = ¢ 2p radians
cycle

≤  f ¢ cycles

second
≤	

Example 11.3 

Consider the simple degree of freedom system shown in the accompanying figure. We 
are interested in determining the position and the velocity of the 4 kg mass as a function 
of time. The spring has a stiffness value of 39.5 N/cm. To start the vibration, we will pull 
down the mass by 2 cm and then release it with no initial velocity.

k = 39.5 N/cm

Mass

y

The natural circular frequency is calculated from Eq. (11.63),

vn = A k
m

= A (39.5 N/cm)(100 cm/1m)

4 kg
= 31.42 rad/s

and the frequency and period are

 f =
vn

2p
=

31.42
2p

= 5 hz

 T =
1
f

=
1
5

= 0.2 s

k

m

y

Time

y

Period, T

Amplitude,
y0

Figure 11.18  The behavior of a simple single degree of freedom system.
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It takes 0.2 seconds for the mass to complete one cycle. When designing for dynamic 
systems, the knowledge of magnitude of forces transmitted to the support, or the foun-
dation, is important to ensure the integrity of the foundation. For Example 11.3, the 
magnitude of the force transmitted to the support is determined from

R(t) = ky + W = ky0 cos vn t + W

Substituting for W = mg = (4 kg)(9.81 m/s2) = 39.2 N, we get

R(t) = (39.5)(2)cos(31.42t) + 39.2

The maximum reaction force occurs when the spring is stretched the maximum amount 
and whenever the value of cos(31.42t) becomes 1.

Rmax = (39.5)(2) + 39.2 = 118.2 N

Note that for the given system, the value of Rmax depends on the initial displacement. Also 
note that the support reaction should be equal to the weight of the system when y = 0.

Forced Vibration of a Single Degree of Freedom System

The vibration of a structural system may be induced by a number of sources such as 
wind, earthquake, or an unbalanced rotating machinery housed on a floor of a build-
ing. These sources of excitations may create forces that are sinusoidal, sudden, random, 
or that vary with time in a certain manner. We can learn a lot about the behavior of a 
system by considering basic excitation functions, such as a sinusoidal, step, or a ramp 
function. Moreover, to simplify presentation and since for most structures damping is 
relatively small, we will not consider it in our forthcoming presentations. Let us now 
consider a spring mass system subjected to a sinusoidal force, as shown in Figure 11.19. 
The motion of the system is governed by

	 my∙∙ + ky = F0 sin vt	 (11.72)

Dividing both sides of Eq. (11.72) by mass m,

	 y∙∙ +
k
m

 y =
F0

m
 sin vt	 (11.73)

and by letting vn
2 =

k
m

, we have

	 y∙∙ + vn
2 y =

F0

m
 sin vt	 (11.74)

k

m

y
F(t) = F0 sin vt

Figure 11.19  A spring mass system 
subjected to a harmonic forcing function.
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The general solution to Eq. (11.74) has two parts: a homogenous solution and a particu-
lar solution. As shown previously, the homogenous solution yh is given by

	 yh(t) = A sin vn t + B cos vnt	 (11.75)

For the particular solution yp, we assume a function of the form

	 yp(t) = Y0 sin vt	 (11.76)

and differentiating it to get yp
∙∙, we get

	  y∙
p(t) = Y0 v cos vt 	 (11.77)

	  y∙∙
p (t) = -Y0 v2sin vt	

Substituting for yp
∙∙ and yp into Eq. (11.74)

-Y0 v2 sin vt + vn
2 Y0 sin vt =

F0

m
 sin vt

and solving for Y0, we have

	 Y0 =

F0

m

-v2 + vn
2 =

F0

m

vn
2

-v2 + vn
2

vn
2

=

F0

k

1 - a v
vn
b

2	 (11.78)

Note that upon arriving at the final expression for Y0, we divided the numerator and the 
denominator by vn

2, and we substituted for vn
2 = k

m.
The forced behavior of the spring mass system to the harmonic forcing function 

is then given by

	 y(t) = A cos vn t + B sin vn t +

F0

k

1 - ¢ v

vn
≤2

 sin vt	 (11.79)

It is important to point out that the natural response of the system will eventually die 
out because every system has some inherent damping. Consequently, in the upcoming 
discussions we will focus only on the forced response. To shed more light on the response 
of a single degree of freedom system to a sinusoidal force, using Eq. (11.78), we have 
plotted the ratio of the amplitude of the forced response Y0 to the static deflection
F0

k  (that is caused if the force is applied statically) as a function of frequency ratio vvn.
The response is shown in Figure 11.20.

It is clear from examining Figure 11.20 that as the frequency ratio approaches 
unity, the amplitude of forced oscillation becomes very large. This condition, known as 
resonance, is highly undesirable.

gNatural Response

eForced Response
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Forced Vibration Caused by an Unbalanced Rotating Mass

As we mentioned earlier, vibration of a system may be induced by an unbalanced rotat-
ing mass within a machine. In machines the vibration occurs when the center of mass of 
the rotating component does not coincide with its center of rotation. The vibration of an 
unbalanced machine may be modeled by a single degree of freedom system that is excited 
by a sinusoidal forcing function. The sinusoidal forcing function results from the vertical 
component of the normal acceleration of unbalanced mass, as shown in Figure 11.21.

For these situations, the forcing function is represented by

	 F(t) = m0e v2 sin vt	 (11.80)

where m0 is the unbalanced mass, e is eccentricity, and v is the angular speed of the 
rotating component. Comparing Eq. (11.80) to Eq. (11.72), we note that F0 = m0e v2 
and substituting for F0 in Eq. (11.79), and considering only the forced response we get

	 y(t) =

m0ev
2

k

1 - ¢ v

vn
≤2

 sin vt	 (11.81)

bY0

0

4

3

2

1

1 2 3 4

-4

-1

-2

-3

v

nvY
0

F
0 k

Figure 11.20  Amplitude of the 
forced behavior as a function of the 
frequency ratio.
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and rewriting the amplitude of the vibration Y0, by substituting k = mvn
2, and 

regrouping,

	 Y0 =

m0 ev2

k

1 - a v
vn
b

2 =

m0 ev2

mvn
2

1 - a v
vn
b

2 1
Y0 m
m0 e

=

v2

vn
2

1 - a v
vn
b

2	 (11.82)

From examining the numerator 
m0 ev2

m
 in Eq. (11.82), we note that by increasing the 

mass of the system m, we can reduce the amplitude of vibration. You may have seen 
turbine or large pumps mounted on heavy concrete blocks to reduce the amplitude of 
unexpected vibration. Moreover, we can show that as

	
v

vn
V 1 1 

Y0 m
m0 e

= 0	 (11.83)

and

	
v

vn
W 1 1 

Y0 m
m0 e

= -1	 (11.84)

Using Eq. (11.82), we have plotted 
Y0 m
m0 e

 as a function of frequency ratio 
v

vn
 and have 

shown it in Figure 11.22. The behavior of the system as a function of frequency ratio is 
self-evident when examining Figure 11.22.

The derivation of the response of a single degree of freedom mass spring system to 
a suddenly applied force, a ramp function, or a suddenly applied force that decays with 
time is left as an exercise. See Problems 4 and 5 at the end of this chapter.

k
2

k

m0e

2

v

  =u

u

vt

t

m0ev2sin vt 
m 0e

v
2

m0ev2cos v

Figure 11.21  An unbalanced rotating machine.
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Forces Transmitted to Foundation

As we mentioned earlier, when designing for dynamic systems, the knowledge of the 
forces transmitted to the support or the foundation is important to ensure the integrity 
of the foundation. The relationship between the vibration of the mass and the forces 
transmitted to the foundation is depicted in Figure 11.23.

As shown in Figure 11.23, forces are transmitted to the foundation through the 
springs. The magnitude of these forces, which varies with time, is given by

	 F(t) = ky(t) =
k

F0

k

1 - a v
vn
b

2 sin vt =
F0

1 - a v
vn
b

2 sin vt	 (11.85)

However, for most engineering applications, we are interested in determining maximum 
magnitude of forces transmitted to the foundation, which occurs when sin vt has a value 
of 1 in Eq. (11.85), and is given by

	 Fmax =
F0

1 - a v
vn
b

2	 (11.86)

0

4

3

2

1

1 2 3 4

-4

-1

-2

-3

v

nvY
0m m
0e

Figure 11.22  A plot of 
Y0m

m0e
 as a function 

of frequency ratio 
v

vn
.

M11_MOAV4303_04_GE_C11.INDD   652 27/11/14   10:12 AM

www.FreeEngineeringbooksPdf.com



Section 11.2    Review of Vibration of Mechanical and Structural Systems    653

In the field of vibration, it is customary to define a transmission ratio or transmissibility 
TR as the ratio of Fmax to the static magnitude F0:

	 TR = 2 Fmax

F0

2 = 5 F0

1 - a v
vn
b

2

F0

5 = 3 1

1 - a v
vn
b

2
3 	 (11.87)

Figure 11.24 shows the relationship between transmissibility and the frequency ratio, as 
given by Eq. (11.87).

It is clear from examining Figure 11.24, as the frequency ratio approaches unity, 
the transmissibility approaches very large values, which could have catastrophic con-
sequences. Furthermore, Figure 11.24 shows that in order to keep transmissibility 

F(t) = F0 sin vt

k
2

k
2

Foundation

Mass

F0 sin vt

Foundation

Mass

ky

ky

Figure 11.23  Forces transmitted to a foundation.

1

1

TR

2 3 4√2

TR 7 1 TR 6 1

v

vn

Figure 11.24  Transmissibility as a function of frequency ratio.
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low, machines should operate at frequencies that are much greater than their natural 
frequencies.

Support Excitation

In this section we review support excitation. A spring mass system that is being excited 
by its support is shown in Figure 11.25. Using Newton’s second law, we can formulate 
the governing equation of motion of the oscillating mass as follows:

	 -k(y1 - y2) = my1
∙∙	 (11.88)

Note that the magnitude of the spring force depends on the relative position of the mass 
with respect to its support. Separating the excitation term from the response, we have

	 my1
∙∙ + ky1 = ky2	 (11.89)

Dividing both sides of Eq. (11.89) by m, we get

	 y1
∙∙ + vn

2 y1 = vn
2 y2 = vn

2 Y2 sinvt	 (11.90)

We can use the solution we obtained earlier to the differential equation given by 

Eq. (11.74). By comparing Eq. (11.90) to Eq. (11.74), and noting that vn
2Y2 =

F0

m
, the

solution to Eq. (11.90) then becomes

	 y1(t) =

vn
2Y2

vn
2

1 - ¢ v

vn
≤2

 sin vt =
Y2

1 - ¢ v

vn
≤2

 sin vt	 (11.91)

To get a physical feeling for what the solution represents, let’s turn our attention to the 
amplitude of mass, as given by Eq. (11.91). If we replace the spring with a stiff rod and 
excite the support, as shown in Figure 11.26(a), we note that because of the rod’s large k 

fAmplitude of mass

Mass Mass

Support

k(y1 - y2)

my
..

1

y1

k
2

k
2

Mass

y2 = Y2 sin vt

Figure 11.25  Support excitation.

M11_MOAV4303_04_GE_C11.INDD   654 27/11/14   10:12 AM

www.FreeEngineeringbooksPdf.com



Section 11.2    Review of Vibration of Mechanical and Structural Systems    655

value and consequently large vn, the frequency ratio would be very small, vvn V 1, and 
consequently the amplitude of oscillation of mass would equal Y2. As you would expect, 
the mass will move with the same amplitude as the support. Now, if we replace the rod 
with a soft spring having a small k value (thus a small vn), the frequency ratio becomes 
v
vn W 1. Substituting a large value for frequency ratio in Eq. (11.91) will show that the 
mass will vibrate with very small amplitude and will appear nearly stationary.

Multiple Degrees of Freedom

In the previous sections we considered the natural and forced behavior of a single degree 
of freedom system. Next, we will demonstrate some of the important characteristics of 
a multiple degrees of freedom system using a simple two degrees of freedom system. 
Consider the two degrees of freedom system shown in Figure 11.27. We are interested in 
determining the natural frequencies of the system shown. We begin by formulating the 
governing equations of motion for each mass. To write the equations of motion, we will 
initiate the free vibration by displacing the masses such that x2 7 x1.

Using the free-body diagrams shown, the equations of motion are

	  m1x1
∙∙ + 2kx1 - kx2 = 0	 (11.92)

	  m2x2
∙∙ - kx1 + 2kx2 = 0	 (11.93)

or, in a matrix form,Jm1 0
0 m2

R  bx1
∙∙

x2
∙∙ r + J 2k -k

-k 2k
R  bx1

x2
r = b 0

0
r

Note that Eqs. (11.92) and (11.93) are second-order homogenous differential equations. 
Also note that these equations are coupled because both x1 and x2 appear in each equa-
tion. This type of system is called elastically coupled and may be represented in the 
general matrix form by

	 [M]5x∙∙6 + [K]5x6 = 0	 (11.94)

Mass

Steel
Rod

(very large k)

Support

Mass

Soft
Spring

Support

(a) (b)

Figure 11.26  Experiments demonstrating the relationship between the amplitude of 
support excitation and the amplitude of the mass.
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where [M] and [K] are the mass and the stiffness matrices respectively. We can simplify 
Eqs. (11.92) and (11.93) by dividing both sides of each equation by the values of the 
respective masses:

	 x1
∙∙ +

2k
m1

 x1 -
k

m1
 x2 = 0	 (11.95)

	 x2
∙∙ -

k
m2

 x1 +
2k
m2

 x2 = 0	 (11.96)

Using matrix notation, we premultiply the matrix form of the equations of motion by 
the inverse of the mass matrix [M]-1, which leads to

	 5x∙∙6 + [M]-1[K]5x6 = 0	 (11.97)

As a next step, we assume a harmonic solution of the form x1(t) = X1 sin (vt + f) and 
x2(t) = X2 sin (vt + f) [or in matrix form, 5x6 = 5X6  sin (vt + f)] and substitute the 
assumed solutions into the differential equations of motion, Eqs. (11.95) and (11.96), to 
create a set of linear algebraic equations.

This step leads to

-v2X1 sin(vt + f) +
2k
m1

 X1 sin(vt + f) -
k

m1
 X2 sin(vt + f) = 0

-v2X2 sin(vt + f) -
k

m2
 X1 sin(vt + f) +

2k
m2

X2 sin(vt + f) = 0

After simplifying the sin(vt + f) terms, we get

	 -v2 bX1

X2
r + D 2k

m1
-

k
m1

-
k

m2

2k
m2

T bX1

X2
r = b0

0
r 	 (11.98)

k

m1

x1

k

k

m2

m1

Assuming x2 7 x1

m2

x2 kx2

kx1

k (x2 - x1)

k (x2 - x1)

- kx1 + k (x2 - x1) = m1 x
..

1

- k (x2 - x1) - kx2 = m2 x
..

2

Figure 11.27  A schematic diagram 
of an elastic system with two degrees of 
freedom.
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or, in a general matrix form,

	 -v25X6 + [M]-1[K]5X6 = 0	 (11.99)

Note that 5x6 = bx1(t)
x2(t)

r  represents the position of each mass as the function of time, 

the 5X6 = bX1

X2
r  matrix denotes the amplitudes of each oscillating mass, and f is the 

phase angle. Equation (11.98) may be written as

	 -v2J1 0
0 1

R c X1

X2
s + D 1

m1
0

0
1

m2

T J 2k -k
-k 2k

R bX1

X2
r = 0	 (11.100)

or by

	 D D 2k
m1

-
k

m1

-
k

m2

2k
m2

T - v2C1 0
0 1

S T bX1

X2
r = b0

0
r 	 (11.101)

Simplifying Eq. (11.101) further, we have

	 D -v2 +
2k
m1

-
k

m1

-
k

m2
-v2 +

2k
m2

T bX1

X2
r = 0	 (11.102)

Problems with governing equations of the type (11.99) or (11.102) have nontrivial solu-
tions only when the determinant of the coefficient matrix is zero. Let’s assign some 
numerical values to the above example problem and proceed with the solution. Let 
m1 = m2 = 0.1 kg and k = 100 N/m. Forming the determinant of the coefficient matrix 
and setting it equal to zero, we get

	 2 -v2 + 2000 -1000
-1000 -v2 + 2000

2 = 0	 (11.103)

	 (-v2 + 2000)(-v2 + 2000) - (-1000)(-1000) = 0	 (11.104)

Simplifying Eq. (11.104), we have

	 v4 - 4000v2 + 3,000,000 = 0	 (11.105)

Equation (11.105) is called the characteristic equation, and its roots are the natural 
frequencies of the system.
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v1
2 = l1 = 1000 (rad/s)2  and   v1 = 31.62 rad/s

v2
2 = l2 = 3000 (rad/s)2  and  v2 = 54.77 rad/s

Once the v2 values are known, they can be substituted back into Eq. (11.102) to solve for 
the relationship between X1 and X2. The relationship between the amplitudes of mass 
oscillating at natural frequencies is called natural modes. We can use either relationship 
(rows) in Eq. (11.102).

 (-v2 + 2000) X1 - 1000X2 = 0  and substituting for v1
2 = 1000

 (-1000 + 2000)X1 - 1000 X2 = 0  S  
X2

X1
= 1

Or, using the second row,

 -1000 X1 + (-v2 + 2000)X2 = 0  and substituting for v1
2 = 1000

 -1000X1 + (-1000 + 2000)X2 = 0 S  
X2

X1
= 1

As expected, the results are identical. The second mode is obtained in a similar manner 
by substituting for v2

2 = 3000 in Eq. (11.102).

 (-v2 + 2000) X1 - 1000X2 = 0  and substituting for v2
2 = 3000

 (-3000 + 2000)X1 - 1000X2 = 0 S  
X2

X1
= -1

It is important to note again that the solution of the eigenvalue problems leads to 
establishing a relationship among the unknowns, not specific values. To shed more light 
on what the above natural frequencies and modes represent, consider the following 
experiment. Pull down both mass one and two by, say, 1 inch (X1 = X2 = 1), and then 
release the system. Under these initial conditions, the system will oscillate at the first 
natural frequency (v1 = 31.62 rad/s). However, if you were to give the system the fol-
lowing initial conditions: pull mass one up by 1 inch and pull mass two down by 1 inch 
(X2 = -X1 = 1), then release them, the system would oscillate at the second natural 
frequency (v2 = 54.77 rad/s). Any other initial conditions will result in the system oscil-
lating such that both natural frequencies affect its behavior.

Equations of Motion for Forced Vibration  
of Multiple Degrees of Freedom

In the previous section we showed that the general form of equations of motion for free 
vibration of multiple degrees of freedom is

	 [M]5x∙∙6 + [K]5x6 = 0	 (11.106)

With damping [C] included, the equations of motion for free vibration of multiple 
degrees of freedom becomes

	 [M]5x∙∙6 + [C]5x∙6 + [K]5x6 = 0	 (11.107)
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The natural response of a system with a multiple degrees of freedom can also be 
obtained using modal analysis. Modal analysis involves the uncoupling of the differen-
tial equations of motion using what is called principal coordinates. The basic idea is to 
represent the motion of each part (mass) by a single coordinate that makes no reference 
to any other coordinate. Once the equations of motion are uncoupled, then each inde-
pendent equation is treated as a single degree of freedom system. To better understand 
the idea of principal coordinates, consider the two degrees of freedom system shown 
in Figure 11.27 and assume that m1 = m2 = m, then the equations of motion become

	 x1
∙∙ +

2k
m

 x1 -
k
m

 x2 = 0	 (11.95b)

	 x2
∙∙ -

k
m

 x1 +
2k
m

 x2 = 0	 (11.96b)

Substitute in Eqs. (11.95) and (11.96) m1 = m2 = m to arrive at Eqs. (11.95b) and 
(11.96b). Now consider first adding Eqs. (11.95b) and (11.96b) and then subtracting 
Eq. (11.96b) from Eq. (11.95b). These operations result in

x1
∙∙ + x2

∙∙ +
k
m

 (x1 + x2) = 0  1 p1
∙∙ +

k
m

 p1 = 0

x1
∙∙ - x2

∙∙ +
3k
m

 (x1 - x2) = 0  1 p2
∙∙ +

3k
m

 p2 = 0

where p1 = x1 + x2 and p2 = x1 - x2. As you can see by using the principal coordi-

nates  p1 and p2, we were able to decouple the equations of motion. The natural fre-

quencies of the system are v1 = A k
m

 and v2 = A3k
m

. It is left as an exercise for you to 

verify these results by determining the roots of characteristics equation. Although the 
decoupling of equations of motion are much more involved than what is shown here, 
the above example demonstrates the basic idea of principal coordinates and decoupling. 
The modal analysis is also used in determining the natural and the forced response of 
multiple degrees of freedom systems with damping.

The matrix form of equations of motion for multiple degrees of freedom subjected 
to forces is given by

	 [M]5x∙∙6 + [K]5x6 = 5F6 	 (11.108)

where 5F6  is the force matrix. And with damping, we have the following relationship:

	 [M]5x∙∙6 + [C]5x∙6 + [K]5x6 = 5F6 	 (11.109)

Up to this point, we have explained how to approximate the behavior of systems with 
distributed mass and elastic properties by discrete models that consist of lumped masses 
and equivalent (or bulk) stiffness, and a finite number of degrees of freedom. Moreover, 
as you have seen, these models are represented by ordinary differential equations, sub-
ject to initial conditions, whose solutions render the natural or the forced responses of 
the system.
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Because rods and beams play significant role in many engineering applications, 
we will discuss their finite element formulations in detail in Sections 11.4 and 11.5. 
Rods and beams are continuous systems which theoretically possess infinite numbers 
of degrees of freedom and natural frequencies. However, for most practical problems, 
only the first few natural frequencies are important. In general, the governing equations 
of motions of continuous systems are partial differential equations whose exact solu-
tions require both boundary and initial conditions. Except for a few simple problems, 
the solutions are very complex and hard to find. Therefore, we resort to numerical 
approximation of discrete models to solve many practical problems. We will discuss 
the finite element formulation of bars, beams, and frames using Lagrange’s equations 
in the forthcoming sections.

11.3  Lagrange’s Equations

In the previous sections we derived the governing equations of motions of vibrating 
systems using Newton’s second law. In this section we introduce another approach, 
which uses Lagrange’s equations to formulate equations of motions. Lagrange’s equa-
tions are given by

	
d
dt

 ¢ 0T
0q ∙

i
≤ -

0T
0qi

+
0Λ
0qi

= Qi (i = 1, 2, 3, . . , n)	 (11.110)

where

 t = time

 T = kinetic energy of the system

 qi = coordinate system

 qi
∙ = time derivate of the coordinate system representing velocity

 Λ = potential energy of the system

 Qi = nonconservative forces or moments

We will use Example 11.4 to demonstrate how to use Lagrange’s equations to formulate 
equations of motion for a dynamic system.

Example 11.4 

Use Lagrange’s equations to formulate the governing equations of motion for the sys-
tems shown in Figure 11.28.

The spring mass system shown in Figure 11.28(a) is a single degree of freedom sys-
tem that requires only one coordinate q to describe its behavior. To apply Eq. (11.110), 
we must first express the kinetic and potential energies of the system in terms of the 
coordinate q and its derivative q ∙. Note that for this problem, we let q = x. The kinetic 
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and potential energies of the system are

T =
1
2

 mx∙2

Λ =
1
2

 kx2

Next, as required by Lagrange’s equation, we differentiate the kinetic energy term with 
respect to q ∙, or in our case, x ∙ :

0T
0q∙ =

0T
0x∙ =

0
0x∙  ¢ 1

2
mx∙2

 ≤ = (2)¢ 1
2
≤mx∙ = mx∙

Then, taking the time derivative of 
0T
0x∙, we get

d
dt

 ¢ 0T
0x∙ ≤ =

d
dt

 (mx∙) = mx∙∙

Because T is a function of x ∙ and not x, the 
0T
0x

= 0. Evaluating the potential term, 
0Λ
0q

, 

in Eq. (11.110), we have

0Λ
0q

=
0Λ
0x

=
0
0x

 ¢1
2

 kx2≤ = kx

Finally, substituting for each term in Eq. (11.110), we get

d
dt
¢ 0T

0qi
∙ ≤ -

0T
0qi

+
0Λ
0qi

= Qi

c 5 55mx∙∙
0

0
kx

k1

m1

x1

k2

m2

x2

k

mass

(a)

(b)

x

Figure 11.28  Spring mass systems of 
Example 11.4.

M11_MOAV4303_04_GE_C11.INDD   661 27/11/14   10:12 AM

www.FreeEngineeringbooksPdf.com



662    Chapter 11    Dynamic Problems

As expected, the governing differential equation of motion is given by

mx∙∙ + kx = 0

The system shown in Figure 11.28(b) has two degrees of freedom; consequently, we need 
two coordinates, x1 and x2, to formulate the kinetic and potential energies.

 T =
1
2

 m1x1
∙2

+
1
2

m2x2
∙2

 Λ =
1
2

 k1x1
2 +

1
2

k2(x2 - x1)
2

Taking the derivatives of each term, as required by Eq. (11.110), we get

 
0T
0x1

∙ = m1x1
∙  and  

d
dt
¢ 0T

0x1
∙ ≤ = m1x1

∙∙

 
0T
0x2

∙ = m2x2
∙  and  

d
dt
¢ 0T

0x2
∙ ≤ = m2x2

∙∙

 
0T
0x1

=
0T
0x2

= 0

 
0Λ
0x1

= k1x1 + k2(x1 - x2)

 
0Λ
0x2

= k2(x2 - x1)

Substituting each term in Lagrange’s equation, Eq. (11.110), we have

 m1x1
∙∙ + (k1 + k2)x1 - k2x2 = 0

 m2x2
∙∙ - k2x1 + k2x2 = 0

or we can express the equations of motion in a matrix form byJm1 0
0 m2

R bx1
∙∙

x2
∙∙ r + Jk1 + k2 -k2

-k2 k2
R bx1

x2
r = b0

0
r

11.4 F inite Element Formulation of Axial Members

In this section, using Lagrange’s equations, we first formulate the mass matrix for an axial 
member and then use it to obtain the natural frequencies of an axial member. Recall 
that the displacement of an axial member may be expressed using one-dimensional  
shape functions Si and Sj, as shown below:

	 u = SiUi + SjUj	 (11.111)

The shape functions in terms of the local coordinate x shown in Figure 11.29 are given by

	  Si = 1 -
x
L

	 (11.112)

	  Sj =
x
L

	 (11.113)
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It is important to note that whereas the displacement function for a static problem 
depends on coordinate x only, for a dynamic problem the displacement function is a 
function of x and time t; that is, u = u(x, t). The total kinetic energy of the member is 
the sum of the kinetic energies of its constituent particles (or smaller chunks).

	 T = L
L

0

g

2
 u∙2

dx	 (11.114)

In Eq. (11.114), u∙ represents the velocity of the particles along the member, and g is 
mass per unit length. The velocity of the member can be expressed in terms of its nodal 
velocities Ui

∙ and Uj
∙ and is given by

	 u∙ = SiUi
∙ + SjUj

∙	 (11.115)

Substituting Eq. (11.115) into Eq. (11.114), we have

	 T =
g

2 L
L

0
(SiUi

∙ + SjUj
∙)2dx	 (11.116)

And taking the derivatives as required by Lagrange’s equation, Eq. (11.110), we get

	  
0T
0Ui

∙ =
g

2 L
L

0
2Si(SiUi

∙ + SjUj
∙)dx 	 (11.117)

	  
0T
0Uj

∙ =
g

2 L
L

0
2Sj(SiUi

∙ + SjUj
∙)dx 	 (11.118)

	  
d
dt

 ¢ 0T
0Ui

∙ ≤ = gJLL

0
Si

2Ui
∙∙dx + L

L

0
SiSjUj

∙∙dxR 	 (11.119)

	  
d
dt

 ¢ 0T
0Uj

∙ ≤ = gJLL

0
SiSjUi

∙∙dx + L
L

0
Sj

2Uj
∙∙dxR 	 (11.120)

Note that Si and Sj are functions of x alone, whereas Ui
∙∙ and Uj

∙∙ represent accelerations 
at nodes i and j respectively, which are functions of time. Evaluating the integrals of 
Eqs. (11.119) and (11.120), we get

	 gL
L

0
Si

2dx = gL
L

0
¢1 -

x
L
≤2

dx =
gL

3
	 (11.121)

L

i

x
Ui

j

Uj

Figure 11.29  An axial member.
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	  gL
L

0
SiSjdx = gL

L

0
¢1 -

x
L
≤ ¢ x

L
≤dx =

gL

6
	 (11.122)

	  gL
L

0
Sj

2dx = gL
L

0
¢ x

L
≤2

dx =
gL

3
	 (11.123)

Substituting the results of the integrals given by Eqs. (11.121) through (11.123) into 
Eqs. (11.119) and (11.120), leads to [M]{ü}. Then for an axial member, the mass matrix 
becomes

	 [M](e) =
gL

6
 J2 1

1 2
R 	 (11.124)

We derived the stiffness matrix for an axial element in Chapter 4, Section 4.1, which is 
given by

[K](e) =
AE
L

 J 1  -1
-1 1

R
Next, we will use Example 11.5 to demonstrate how to use the results of this section.

Example 11.5 

Consider the 30-cm long aluminum rod shown in Figure 11.30. The rod has a modulus 
of elasticity E = 70 GPa and density r = 2700 kg/m3 (g = 5.4 kg/m). The rod is fixed 
at one end, as shown in the figure, and we are interested in approximating the natural 
frequencies of the rod using the three-element model shown.

The mass matrix for each element is computed from Eq. (11.124)

[M](1) = [M](2) = [M](3) =
gL

6
 J2 1

1 2
R =

(5.4)(0.1)

6
 J2 1

1 2
R = J0.18 0.09

0.09 0.18
R

30 cm

1

U1

10 cm10 cm10 cm

A = 20 cm2

E = 70 GPa,     = 2700 kg/m3r

2 3 4

U2 U3 U4

Figure 11.30  The aluminum rod of 
Example 11.5.
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and the elemental stiffness matrix is

[K](1) = [K](2) = [K](3) =
AE
L

 J 1  -1
-1 1

R =

(20 * 10-4)(70 * 109)

0.1
 J 1  -1

-1 1
R = 1.4 * 109J 1  -1

-1 1
R

Assembling the mass and the stiffness matrices,

 [M](G) = D0.18 0.09 0 0
0.09 0.36 0.09 0

0 0.09 0.36 0.09
0 0 0.09 0.18

T
 [K](G) = 109D 1.4  -1.4 0 0

-1.4 2.8  -1.4 0
0  -1.4 2.8  -1.4
0 0  -1.4 1.4

T
Applying the boundary condition—because node 1 is fixed—the first rows and columns 
of mass and stiffness matrices are eliminated. Application of the boundary condition at 
node 1 reduces the mass and the stiffness matrices to

 [M](G) = C0.36 0.09 0
0.09 0.36 0.09

0 0.09 0.18
S

 [K](G) = 109C 2.8  -1.4 0
-1.4 2.8  -1.4

0  -1.4 1.4
S

As previously discussed in the section dealing with the natural vibration of multiple 
degrees of freedom systems, to get the natural frequencies of the system, we need to 
solve [M]-1[K]5X6 = v25X6  or, in the case of the rod, [M]-1[K]5U6 = v25U6. 
Computing the inverse of the mass matrix, we get

[M]-1 = C 2.9915  -0.8547 0.4274
-0.8547 3.4188  -1.7094
0.4274  -1.7094 6.4103

S
And calculating

[M]-1[K] = 1010C 0.9573  -0.7179 0.1795
-0.7179 1.3162  -0.7179
0.3590  -1.4359 1.1368

S
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and solving for the eigenvlaues, we obtain the natural frequencies: v1 = 1.5999 * 105 rad/s,
v2 = 0.8819 * 105 rad/s,  v3 = 0.2697 * 105 rad/s.

Example 11.5  Revisited

Using Example 11.5, we will show how to use Excel to set up and solve a dynamic 
problem.

	 1.	 In cell A1 type Example 11.5, and in cells A3, A4, A5, and A6 type A= , E= , L= , 
and G= , respectively, as shown. After inputting the value of A in cell B3, select B3 
and in the “Name Box” type A and hit the Return key. Similarly, after inputting 
values of E, L, and g in cells B4, B5, and B6, select each cell and in each “Name 
Box” type E, L, and Gamma, respectively. Make sure to hit the Return key after 
you name each variable. Also, create the table shown.

	 2.	 Create the [M] and [K] matrices as shown. For example, select cell C16 and type 
=(Gamma*L ,6)*2. As another example, select cell C22 and type =(A*E ,L)*1. 
Also, select the range C16:D17 and name it Melement1. Similarly, select the range 
C22:D23 and name it Kelement1.

	 3.	 Next, create [A1], [A2], and [A3] matrices and name them Aelement1, Aelement2, 
and Aelment3, as shown. See Section 2.5, Eq. (2.9). if you have forgotten what 
these matrices represent. First create [A1] and then to create [A2], and [A3], copy 
[A1], rows 25 through 27 into rows 29 through 31; 33 through 35; and modify them 
accordingly. The nodal temperatures U1, U2, U3, and U4, and Ui and Uj are shown 
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alongside the [A1], [A2], and [A3] matrices to aid us observe the contribution of 
node to its neighboring elements.

	 4.	 Next, create the mass matrix for each element (with their proper positions in the 
global matrix) and name them M1G, M2G, and M3G. For example, to create [M]1G,  
select B37:E40 and type

=MMULT(TRANSPOSE(Aelement1),MMULT(Melement1,Aelement1))

and while holding down the Ctrl and Shift keys, hit the Return key. In a similar way, 
create [M]2G, and [M]3G, as shown. The final global mass matrix is created next. 
Select the range B52:E55 and type =M1G+M2G+M3G and while holding down 
the Ctrl and Shift keys, hit the Return key.

	 5.	 Create the stiffness matrix for each element (with their proper positions in the 
global matrix) and name them K1G, K2G, and K3G. For example, to create [K]1G,  
select B57:E60 and type

=MMULT(TRANSPOSE(Aelement1),MMULT(Kelement1,Aelement1))

M11_MOAV4303_04_GE_C11.INDD   667 27/11/14   10:12 AM

www.FreeEngineeringbooksPdf.com



668    Chapter 11    Dynamic Problems

and while holding down the Ctrl and Shift keys, hit the Return key. In a similar 
way, create [K]2G, and [K]3G, as shown. The final global stiffness matrix is created 
next. Select the range B72:E75 and type =K1G+K2G+K3G and while holding 
down the Ctrl and Shift keys, hit the Return key.

	 6.	 Apply the boundary conditions. Copy the appropriate portion of the MG matrix 
and paste it in the range C77:E79 as values only and modify it as shown Name the 
range MwithappliedBC. Similarly, create the corresponding stiffness matrix in the 
range C81:E83 and name it KwithappliedBC.

	 7.	 Next, we will create the [M]-1 and [M]-1[K] matrices. Select the range C85:E87 
and type

=MINVERSE(MwithappliedBC)

and while holding down the Ctrl and Shift keys hit the Return key. Name this range 
InversofM. Then select the range C89:E91 and type

=MMULT(InverseofM,KwithappliedBC)

and while holding down the Ctrl and Shift keys, hit the Return key. Name this 
range Mminus1K.
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	 8.	 Next, we create the identity matrix and name it I.

	 9.	 Input an initial guess (e.g. 2e10) in cell D98 and name it Omegasquared. In cell 
C100 type

=MDETERM(Mminus1K-Omegasquared*I)

Also, in cell B102 type =SQRT(Omegasquared).

We now use the Goal Seek .  .  . function of Excel to calculate the eigenvalues. 
Choose the Data tab and the What-If Analysis and then Goal Seek. . . 

Your initial guess will be changed to the new value.
The complete Excel sheet is shown next.
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11.5 F inite Element Formulation of Beams and Frames

In this section, using Lagrange’s equations, we will formulate the vibration of a beam 
and a frame element. Recall from Chapter 4, Section 4.2 that the deflection of a beam 
element may be represented using shape functions Si1, Si2, Sj1, Sj2 and the nodal displace-
ments Ui1, Ui2, Uj1, Uj2 by

v = Si1Ui1 + Si2Ui2 + Sj1Uj1 + Sj2Uj2

where the shape functions are given by

 Si1 = 1 -
3x2

L2 +
2x3

L3

 Si2 = x -
2x2

L
+

x3

L2

 Sj1 =
3x2

L2 -
2x3

L3

 Sj2 = -
x2

L
+

x3

L2

For the sake of presentation continuity, the beam element shown previously in Figure 4.8 
is repeated here.

j
i

x

y

Ui2
Uj2

Ui1 Uj1

X

Y

L

Figure 4.8  A beam element.

The kinetic energy of a beam element is determined by adding the kinetic energy of its 
constituent particles according to

	 T = L
L

0

g

2
 v∙2

 dx	 (11.125)

In Eq. (11.125), v∙ represents the velocity distribution within the beam and is a func-
tion of time and position. We can represent the velocity of the beam in terms of shape 
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functions and the lateral and rotational velocities of nodes i and j according to

	 v

∙ = Si1Ui1
∙ + Si2Ui2

∙ + Sj1Uj1
∙ + Sj2Uj2

∙ 	 (11.126)

Substituting for the velocity distribution in the kinetic energy equation, we have

	 T = L
L

0
 
g

2
 v∙2

dx =
g

2 L
L

0
 (Si1Ui1

∙ + Si2Ui2
∙ + Sj1Uj1

∙ + Sj2Uj2
∙ )2dx	 (11.127)

Although v∙ is a function of time and position, note that the nodal velocities are only a 
function of time. The shape functions account for the spatial variations in Eqs. (11.26) 
and (11.27). Evaluating the derivative terms as required by Lagrange’s equations, 
we get

	
0T

0Ui1
∙ =

g

2 L
L

0
2Si1 (Si1Ui1

∙ + Si2Ui2
∙ + Sj1Uj1

∙ + Sj2Uj2
∙ )dx	 (11.128)

	
0T

0Ui2
∙ =

g

2 L
L

0
2Si2 (Si1Ui1

∙ + Si2Ui2
∙ + Sj1Uj1

∙ + Sj2Uj2
∙ )dx	 (11.129)

	
0T

0Uj1
∙ =

g

2 L
L

0
2Sj1(Si1Ui1

∙ + Si2Ui2
∙ + Sj1Uj1

∙ + Sj2Uj2
∙ )dx	 (11.130)

	
0T

0Uj2
∙ =

g

2 L
L

0
2Sj2 (Si1Ui1

∙ + Si2Ui2
∙ + Sj1Uj1

∙ + Sj2Uj2
∙ )dx	 (11.131)

and evaluating the 
d
dt

 ¢ 0T
0qi

≤ terms, we have

	
d
dt

 ¢ 0T
0Ui1

∙ ≤ = gJLL

0
Si1 (Si1Ui1

∙∙ + Si2Ui2
∙∙ + Sj1Uj1

∙∙ + Sj2Uj2
∙∙) dxR 	 (11.132)

	
d
dt

 ¢ 0T
0Ui2

∙ ≤ = gJLL

0
Si2 (Si1Ui1

∙∙ + Si2Ui2
∙∙ + Sj1Uj1

∙∙ + Sj2Uj2
∙∙) dxR 	 (11.133)

	
d
dt

 ¢ 0T
0Uj1

∙ ≤ = gJLL

0
Sj1 (Si1Ui1

∙∙ + Si2Ui2
∙∙ + Sj1Uj1

∙∙ + Sj2Uj2
∙∙) dxR 	 (11.134)

	
d
dt

 ¢ 0T
0Uj2

∙ ≤ = gJLL

0
Sj2 (Si1Ui1

∙∙ + Si2Ui2
∙∙ + Sj1Uj1

∙∙ + Sj2Uj2
∙∙) dxR 	 (11.135)

Like nodal velocities, note that the lateral and rotational accelerations of nodes i and j 
Ui1

∙∙, Ui2
∙∙, Uj1

∙∙, Uj1
∙∙ are independent of coordinate x and are only functions of time. This 

realization allows us to pull the nodal accelerations out of the integrals in Eqs. (11.132) 
through (11.135), and only integrate the products of the shape functions. It is important 
to point out that when integrating Eqs. (11.132) to (11.135), we need not evaluate all 
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16 integrals. Some of these integrals are identical. The integrals that must be evaluated 
follow:

	 gL
L

0
Si1

2  dx = gL
L

0
¢1 -

3x2

L2 +
2x3

L3 ≤2

 dx =
13gL

35
=

13
35

 m	 (11.136)

gL
L

0
Si1Si2 dx = gL

L

0
¢1 -

3x2

L2 +
2x3

L3 ≤ ¢x -
2x2

L
+

x3

L2 ≤  dx =
11gL2

210
=

11
210

 mL	 (11.137)

	 gL
L

0
Si1Sj1 dx = gL

L

0
¢1 -

3x2

L2 +
2x3

L3 ≤ ¢ 3x2

L2 -
2x3

L3 ≤  dx =
9gL

70
	 (11.138)

	 gL
L

0
Si1Sj2 dx = gL

L

0
¢1 -

3x2

L2 +
2x3

L3 ≤ ¢ -
x2

L
+

x3

L2 ≤  dx = -
13gL2

420
	 (11.139)

	 gL
L

0
Sj2

2  dx = gL
L

0
¢ -

x2

L
+

x3

L2 ≤2

 dx =
gL3

105
	 (11.140)

	 gL
L

0
Sj2Sj1 dx = gL

L

0
¢ -

x2

L
+

x3

L2 ≤ ¢ 3x2

L2 -
2x3

L3 ≤  dx = -
11gL2

210
	 (11.141)

Incorporating the results of the integrations leads to [M]{V∙∙}, then the mass matrix for 
a beam element is given by

	 [M](e) =
gL

420
 D 156 22L 54  -13L

22L 4L2 13L -3L2

54 13L 156  -22L
-13L -3L2 -22L 4L2

T 	 (11.142)

We now turn our attention to the stiffness matrix. Recall from Section 4.2 that the stiff-
ness matrix for a beam element is

	 [K](e) =
EI
L3  D 12 6L -12 6L

6L 4L2 -6L 2L2

-12  -6L 12  -6L
6L 2L2 -6L 4L2

T 	 (11.143)

We discuss the finite element formulation of the mass matrix for a frame element next, 
and then demonstrate finite element modeling of oscillating frames with Example 11.7.

Frame Element

You may recall from our discussion of frames in Chapter 4 that frames represent struc-
tural members that may be rigidly connected with welded joints or bolted joints. For 
such structures, in addition to rotation and lateral displacement, we also need to be 
concerned about axial deformations. For the sake of presentation continuity, the frame 
element, Figure 4.12, is repeated here.
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674    Chapter 11    Dynamic Problems

In the previous section we developed the mass matrix for a beam element. This matrix 
accounts for lateral displacements and rotations at each node and is

	 [M](e) =
gL

420
 F0 0 0 0 0 0

0 156 22L 0 54  -13L
0 22L 4L2 0 13L -3L2

0 0 0 0 0 0
0 54 13L 0 156  -22L
0  -13L -3L2 0  -22L 4L2

V 	 (11.144)

The mass matrix for a member under axial movement was developed in Section 11.4 
and is given by

	 [M](e) =
gL

6
 F2 0 0 1 0 0

0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 2 0 0
0 0 0 0 0 0
0 0 0 0 0 0

V =
gL

420
 F140 0 0 70 0 0

0 0 0 0 0 0
0 0 0 0 0 0

70 0 0 140 0 0
0 0 0 0 0 0
0 0 0 0 0 0

V 	 (11.145)

Adding Eqs. (11.144) and (11.145) results in the mass matrix for a frame element:

	 [M](e) =
gL

420
 F 140 0 0 70 0 0

0 156 22L 0 54  -13L
0 22L 4L2 0 13L -3L2

70 0 0 140 0 0
0 54 13L 0 156  -22L
0  -13L -3L2 0  -22L 4L2

V 	 (11.146)

j

x
y

X

Y

ui2

uj2

ui1

uj1

ui3

uj3

i

u

Figure 4.12  A frame element.
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In Section 4.2, we derived the stiffness matrix for the frame element, which is given by

	 [K]xy
(e) =   

AE
L

0 0 -
AE
L

0 0

0
12EI

L3

6EI
L2 0 -

12EI
L3

6EI
L2

0
6EI
L2

4EI
L

0 -
6EI
L2

2EI
L

-
AE
L

0 0
AE
L

0 0

0 -
12EI

L3 -
6EI
L2 0

12EI
L3 -

6EI
L2

0
6EI
L2

2EI
L

0 -
6EI
L2

4EI
L

	 (11.147)

In Chapter 4 we also discussed the role and the importance of using local and global 
coordinate systems to formulate and analyze finite element models. You may recall that 
the local degrees of freedom are related to the global degrees of freedom through the 
transformation matrix, according to the relationship

	 5u6 = [T]5U6 	 (11.148)

where the transformation matrix is

	 [T] = F  cos u sin u 0 0 0 0
-sin u cos u 0 0 0 0

0 0 1 0 0 0
0 0 0 cos u sin u 0
0 0 0  -sin u cos u 0
0 0 0 0 0 1

V 	 (11.149)

The equations of motion in the element’s local coordinate system is given by

	 [M]xy
(e)5u∙∙6 + [K]xy

(e)5u6 = 5 f6 (e)	 (11.150)

We can now make use of the relationships between local and global displacements and 
accelerations 5u6 = [T]5U6  and 5u∙∙6 = [T]5U ∙∙6  and the local and global descrip-
tion of forces 5 f6 = [T]5F6  and substitute for 5u6 , 5u∙∙6 , 5 f6  in Eq. (11.150). These 
substitutions result in

	 [M]xy
(e)[T]5U ∙∙6 + [K]xy

(e)[T]5U6 = [T]5F6(e)	 (11.151)

Premultiplying Eq. (11.151) by [T]-1,

	 [T]-1[M]xy
(e)[T]5U ∙∙6 + [T]-1[K]xy

(e)[T]5U6 = [T]-1[T]5F6(e)	 (11.152)

I 	 Y
c c c5u∙∙6 5u6 5 f 6
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It can be readily shown that for the transformation matrix, [T]-1 = [T]T (see Example 11.6). 
Using this relationship and simplifying Eq. (11.152), we get

	 [T]T[M]xy
(e)[T]5U ∙∙6 + [T]T[K]xy

(e)[T]5U6 = 5F6 (e)	 (11.153)

Finally, the equations of motion in terms of global coordinates become

	 [M](e)5U ∙∙6 + [K](e)5U6 = 5F6 (e)	 (11.154)

where

	 [M](e) = [T]T[M]xy
(e)[T]	 (11.155)

and

	 [K](e) = [T]T[K]xy
(e)[T]	 (11.156)

We will demonstrate how to use these equations to determine the natural frequencies 
of beams and frames with Example 11.7.

Example 11.6 

In this example we show that [T]-1 = [T]T. We begin by showing that

[T]T[T] = [I]

G  cos u -sin u 0 0 0 0
 sin u cos u 0 0 0 0

0 0 1 0 0 0
0 0 0 cos u -sin u 0
0 0 0 sin u cos u 0
0 0 0 0 0 1

W G  cos u sin u 0 0 0 0
-sin u cos u 0 0 0 0

0 0 1 0 0 0
0 0 0 cos u sin u 0
0 0 0  -sin u cos u 0
0 0 0 0 0 1

W =

G1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

W
Note that the relationship cos2 u + sin2 u = 1 is used to simplify the results. Because
[T]-1[T] = [I] and we just showed that [T]T[T] = [I], then [T]-1 = [T]T must be true.

d d[M](e) [K](e)
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Example 11.7 

Consider the frame shown in Figure 11.31. The frame is made of steel, with 
E = 30 * 106 lb/in2. The cross-sectional areas and second moment of areas for the 
members are shown in the figure. The frame is fixed as shown, and we are interested in 
determining the natural frequencies using the three-element model shown. Members 
(1) and (3) are W12 * 26 steel beams, while member (2) is a W16 * 26 steel beam.

The mass per unit length is

g =
26 lb

(12 in)(32.2 ft/s2)(12 in/ft)
= 0.0056 lb.s2/in2

For each element, the relationship between the local and global coordinate systems is 
shown in Figure 11.32.

The stiffness values to be used in the stiffness matrix for elements (1) and (3) are

 
AE
L

=
(7.65 in2)(30 * 106 lb/in2)

(15 ft)(12 in/ft)
= 1,275,000 lb/in

 
12EI

L3 =
(12)(30 * 106 lb/in2)(204 in4)

((15 ft)(12 in/ft))3 = 12,592 lb/in

 
6EI
L2 =

(6)(30 * 106 lb/in2)(204 in4)

((15 ft)(12 in/ft))2 = 1,133,333 lb

 
2EI
L

=
(2)(30 * 106 lb/in2)(204 in4)

(15 ft)(12 in/ft)
= 68,000,000 lb.in

 
4EI
L

=
(4)(30 * 106 lb/in2)(204 in4)

(15 ft)(12 in/ft)
= 136,000,000 lb.in

15 ft

20 ft

I = 204 in4

A = 7.65 in2

depth = 12.22 in

I = 301 in4

A = 7.68 in2

depth = 15.69 in

1

2

3

Figure 11.31  The frame of Example 11.7.
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The local stiffness matrices for elements (1) and (3) are

[K]xy
(1) = [K]xy

(3) =   

AE
L

0 0 -
AE
L

0 0

0
12EI

L3

6EI
L2 0 -

12EI
L3

6EI
L2

0
6EI
L2

4EI
L

0 -
6EI
L2

2EI
L

-
AE
L

0 0
AE
L

0 0

0 -
12EI

L3 -
6EI
L2 0

12EI
L3 -

6EI
L2

0
6EI
L2

2EI
L

0 -
6EI
L2

4EI
L

 = 103F 1275 0 0  -1275 0 0
0 12.592 1133.333 0  -12.592 1133.333
0 1133.333 136000 0  -1133.333 68000

-1275 0 0 1275 0 0
0  -12.592  -1133.333 0 12.592  -1133.333
0 1133.333 68000 0  -1133.333 136000

V
I 	 Y

1

(1)

2

4

(2)

(3)

3

32

X

Y

X

Y

x

y

x
X

Y

x

y

y

Figure 11.32  The configuration of elements (1), (2), and (3).
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The local mass matrix for elements (1) and (3) is

[M]xy
(1) = [M]xy

(3) =
gL

420
F140 0 0 70 0 0

0 156 22L 0 54  -13L
0 22L 4L2 0 13L -3L2

70 0 0 140 0 0
0 54 13L 0 156  -22L
0  -13L -3L2 0  -22L 4L2

V
=

(0.0056 lb.s2/in2)(15 ft)(12 in/ft)

420
*

F140 0 0 70 0 0
0 156 (22)(15)(12) 0 54  -(13)(15)(12)
0 (22)(15)(12) (4)((15)(12))2 0 (13)(15)(12) - (3)((15)(12))2

70 0 0 140 0 0
0 54 (13)(15)(12) 0 156  -(22)(15)(12)
0  -(13)(15)(12) -(3)((15)(12))2 0  -(22)(15)(12) (4)((15)(12))2

V
[M]xy

(1) = [M]xy
(3) = 0.0024F140 0 0 70 0 0

0 156 3960 0 54  -2340
0 3960 129600 0 2340  -97200

70 0 0 140 0 0
0 54 2340 0 156  -3960
0  -2340  -97200 0  -3960 129600

V
For element (1), the transformation matrix and its transpose are

[T] = F cos(90) sin(90) 0 0 0 0
-sin(90) cos(90) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(90) sin(90) 0
0 0 0 -sin(90) cos(90) 0
0 0 0 0 0 1

V = F 0 1 0 0 0 0
-1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 -1 0 0
0 0 0 0 0 1

V
[T]T = F0  -1 0 0 0 0

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0  -1 0
0 0 0 1 0 0
0 0 0 0 0 1

V
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For element (3), the transformation matrix and its transpose are

[T] = F cos(270) sin(270) 0 0 0 0
-sin(270) cos(270) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(270) sin(270) 0
0 0 0  -sin(270) cos(270) 0
0 0 0 0 0 1

V = F0 -1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 -1 0
0 0 0 1 0 0
0 0 0 0 0 1

V
[T]T = F 0 1 0 0 0 0

-1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0  -1 0 0
0 0 0 0 0 1

V
Substituting for [T]T, [K]xy

(1), and [T] into Eq. (11.156), we have:

[K](1) = 103F0  -1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0  -1 0
0 0 0 1 0 0
0 0 0 0 0 1

V F 1275 0 0 -1275 0 0
0 12.592 1133.333 0 -12.592 1133.333
0 1133.333 136000 0 -1133.333 68000

-1275 0 0 1275 0 0
0 -12.592 -1133.333 0 12.592 -1133.333
0 1133.333 68000 0 -1133.333 136000

V
F 0 1 0 0 0 0

-1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0  -1 0 0
0 0 0 0 0 1

V
[K](1) = 103F 12.592 0 -1133.33 -12.592 0 -1133.333

0 1275 0 0 -1275 0
-1133.33 0 136000 1133.333 0 68000
-12.592 0 133.333 12.59 0 1133.333

0 -1275 0 0 1275 0
-1133.333 0 68000 1133.33 0 136000

V
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Substituting for [T]T, [M]xy
(1), and [T] into Eq. (11.155), we have

[M](1) = 0.0024F0 -1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 -1 0
0 0 0 1 0 0
0 0 0 0 0 1

V
F140 0 0 70 0 0

0 156 3960 0 54 -2340
0 3960 129600 0 2340 -97200

70 0 0 140 0 0
0 54 2340 0 156 -3960
0 -2340 -97200 0 -3960 129600

V F 0 1 0 0 0 0
-1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 -1 0 0
0 0 0 0 0 1

V
[M](1) = 0.0024F 156 0 -3960 54 0 2340

0 140 0 0 70 0
-3960 0 129600 -2340 0 -97200

54 0 -2340 156 0 3960
0 70 0 0 140 0

2340 0 -97200 3960 0 129600

V
Similarly, the stiffness matrix and the mass matrix for element (3) are

[K](3) = 103F 0 1 0 0 0 0
-1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 -1 0 0
0 0 0 0 0 1

V F 1275 0 0 -1275 0 0
0 12.592 1133.333 0 -12.592 1133.333
0 1133.333 136000 0 -1133.333 68000

-1275 0 0 1275 0 0
0 -12.592 -1133.333 0 12.592 -1133.333
0 1133.333 68000 0 -1133.333 136000

V
F0 -1 0 0 0 0

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 -1 0
0 0 0 1 0 0
0 0 0 0 0 1

V
[K](3) = 103F 12.592 0 1133.33 -12.592 0 1133.333

0 1275 0 0 -1275 0
1133.33 0 136000 -1133.333 0 68000
-12.592 0 -133.333 12.59 0 -1133.333

0 -1275 0 0 1275 0
1133.333 0 68000 -1133.33 0 136000

V
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[M](3) = 0.0024F 0 1 0 0 0 0
-1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 -1 0 0
0 0 0 0 0 1

V
F140 0 0 70 0 0

0 156 3960 0 54 -2340
0 3960 129600 0 2340 -97200

70 0 0 140 0 0
0 54 2340 0 156 -3960
0 -2340 -97200 0 -3960 129600

V F0 -1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 -1 0
0 0 0 1 0 0
0 0 0 0 0 1

V
[M](3) = 0.0024F 156 0 3960 54 0 -2340

0 140 0 0 70 0
3960 0 129600 2340 0 -97200
54 0 2340 156 0 -39600
0 70 0 0 140 0

-2340 0 -97200 -3960 0 129600

V
The stiffness values for element (2) are

 
AE
L

=
(7.68 in2)(30 * 106 lb/in2)

(20 ft)(12 in/ft)
= 960,000 lb/in

 
12EI

L3 =
(12)(30 * 106 lb/in2)(301 in4)

((20 ft)(12 in/ft))3 = 7838 lb/in

 
6EI
L2 =

(6)(30 * 106 lb/in2)(301 in4)

((20 ft)(12 in/ft))2 = 940,625 lb

 
2EI
L

=
(2)(30 * 106 lb/in2)(301 in4)

(20 ft)(12 in/ft)
= 75,250,000 lb.in

 
4EI
L

=
(4)(30 * 106 lb/in2)(301 in4)

(20 ft)(12 in/ft)
= 150,500,000 lb.in

For element (2), the local and the global frames of reference are aligned in the same 
direction; therefore, the stiffness matrix is
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[K](2) =   

AE
L

0 0 -
AE
L

0 0

0
12EI

L3

6EI
L2 0 -

12EI
L3

6EI
L2

0
6EI
L2

4EI
L

0 -
6EI
L2

2EI
L

-
AE
L

0 0
AE
L

0 0

0 -
12EI

L3 -
6EI
L2 0

12EI
L3 -

6EI
L2

0
6EI
L2

2EI
L

0 -
6EI
L2

4EI
L

  =

103 F 960 0 0 -960 0 0
0 7.838 940.625 0 -7.838 940.625
0 940.625 150500 0 -940.625 75250

-960 0 0 960 0 0
0 -7.838 -940.625 0 7.838 -940.625
0 940.625 75250 0 -940.625 150500

V
The mass matrix for element (2) is

[M](2) =
gL

420
 F140 0 0 70 0 0

0 156 22L 0 54 -13L
0 22L 4L2 0 13L -3L2

70 0 0 140 0 0
0 54 13L 0 156 -22L
0 -13L -3L2 0 -22L 4L2

V =
(0.0056 lb.s2/in2)(20 ft)(12 in/ft)

420

F140 0 0 70 0 0
0 156 (22)(20)(12) 0 54 -(13)(20)(12)
0 (22)(20)(12) (4)((20)(12))2 0 (13)(20)(12) - (3)((20)(12))2

70 0 0 140 0 0
0 54 (13)(20)(12) 0 156 -(22)(20)(12)
0 -(13)(20)(12) -(3)((20)(12))2 0 -(22)(20)(12) (4)((20)(12))2

V
[M](2) = 0.0032F140 0 0 70 0 0

0 156 5280 0 54 -3120
0 5280 230400 0 3120 -172800

70 0 0 140 0 0
0 54 3120 0 156 -5280
0 -3120 -172800 0 -5280 230400

V

I 	 Y

M11_MOAV4303_04_GE_C11.INDD   683 27/11/14   10:13 AM

www.FreeEngineeringbooksPdf.com



684    Chapter 11    Dynamic Problems

Next, we will construct the global stiffness and mass matrices.

[K](G) = 103   

12.59 0 -1133.333 -12.59 0 -1133.333
0 1275 0 0 -1275 0

-1133.333 0 136000 1133.333 0 68000
-12.59 0 113.333 972.59 0 1133.33

0 -1275 0 0 1282.84 940.63
-1133.333 0 68000 1133.333 940.63 286500

0 0 0 -960 0 0
0 0 0 0 -7.84 -940.63
0 0 0 0 940.63 75250
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

-960 0 0 0 0 0
0 -7.84 940.63 0 0 0
0 -940.63 75250 0 0 0

972.59 0 1133.33 -12.59 0 1133.333
0 1282.84 -940.63 0 -1275 0

1133.33 -940.63 286500 -1133.33 0 68000
-12.59 0 -1133.33 12.59 0 -1133.333

0 -1275 0 0 1275 0
1133.33 0 68000 -1133.33 0 136000

[M](G) =   

0.37 0 -9.50 0.13 0 5.62
0 0.34 0 0 0.17 0

-9.50 0 311.04 -5.62 0 -233.28
0.13 0 -5.62 0.82 0 9.50

0 0.17 0 0 0.84 16.90
5.62 0 -233.28 9.50 16.90 1048.32

0 0 0 0.22 0 0
0 0 0 0 0.17 9.98
0 0 0 0 -9.98 -552.96
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

   

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0.22 0 0 0 0 0
0 0.17 -9.98 0 0 0
0 9.98 -552.96 0 0 0

0.82 0 9.50 0.13 0 -5.62
0 0.84 -16.90 0 0.17 0

9.50 -16.90 1048.32 5.62 0 -233.28
0.13 0 5.62 0.37 0 -9.50

0 0.17 0 0 0.34 0
-5.62 0 -233.28 -9.50 0 311.04

Applying the boundary conditions, the global stiffness and mass matrices reduce to

[K](G) = 103F 972.59 0 1133.33 -960 0 0
0 1282.84 940.63 0 -7.84 940.63

1133.33 940.63 286500 0 -940.63 75250
-960 0 0 972.59 0 1133.33

0 -7.84 -940.63 0 1282.84 -940.63
0 940.63 75250 1133.33 -940.63 286500

V

I
Y

I 	 Y
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[M](G) = F0.82 0 9.50 0.22 0 0
0 0.84 16.90 0 0.17 -9.98

9.50 16.90 1048.32 0 9.98 -552.96
0.22 0 0 0.82 0 9.50

0 0.17 9.98 0 0.84 -16.90
0 -9.98 -552.96 9.50 -16.90 1048.32

V
And solving [M]-1[K]5U6 = v25U6  for the eigenvalues, we get

 v1 = 95 rad/s  v2 = 355 rad/s  v3 = 893 rad/s

 v4 = 1460 rad/s  v5 = 1570 rad/s  v6 = 2100 rad/s

11.6 E xamples Using ANSYS

In this section, ANSYS is used to solve two problems. First we revisit Example 11.7 and 
then consider the natural oscillation of a straight member with a rectangular cross-
section. As the formulations in the previous sections showed, the stiffness matrix for 
oscillating rods, beam, and frame elements are the same as those for static problems. 
However, you must include density values in the material models for calculation of mass 
matrices. Therefore, when modeling dynamic problems, the preprocessing phase includ-
ing element selection is identical to that of static problems. It is during the solution phase 
that the correct dynamic analysis type must be selected.

Example 11.7  Revisited

Consider the frame from Example 11.7 shown in Figure 11.31. The frame is made of steel, 
with E = 30 * 106lb/in2. The cross-sectional areas and second moment of areas for the 
members are shown in the figure. The frame is fixed as shown, and we are interested in 
determining the natural frequencies using the three-element model shown. Members 
(1) and (3) are W12 * 26 steel beams, while member (2) is a W16 * 26 steel beam.

15 ft

20 ft

1

2

3

I = 204 in4

A = 7.65 in2

depth = 12.22 in

I = 301 in4

A = 7.68 in2

depth = 15.69 in
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686    Chapter 11    Dynamic Problems

Enter ANSYS program by using the Launcher. Type Osciframe (or a file name of 
your choice) in the Jobname entry field of the dialog box. Pick Run to start the Graphic 
User Interface (GUI).

Create a title for the problem.

utility menu: File S ChangeTitle . . .

main menu: Preprocessor S Element Type S Add/Edit/Delete

OK
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main menu: Preprocessor S Sections S Beams S Common Sections
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Close

main menu: Preprocessor S Material Props S Material Models
S Structural S Linear S Elastic S Isotropic

OK

main menu: Preprocessor S Material Props S Material Models
S Structural S Density

OK

Note, here, density 
is equal to mass per 
unit volume.
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ANSYS Toolbar: SAVE_DB

main menu: Preprocessor S Modeling S Create S Nodes S In Active CS

Apply

Apply
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Apply

OK

main menu: Preprocessor S Modeling S Create S Elements S
Auto Numbered S Thru Nodes

Pick Nodes 1 and 2 and Apply, then pick Nodes 4 and 3. OK

main menu: Preprocessor S Modeling S Create S Elements S
Elem Attributes

OK

main menu: Preprocessor S Modeling S Create S Elements S
Auto Numbered S Thru Nodes
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Pick nodes 2 and 3

main menu: Solution S Define Loads S Apply S Structural S
Displacement S On Nodes

Pick nodes 1 and 4

main menu: Solution S Analysis Type S New Analysis

main menu: Solution S Analysis Type S Analysis Options

As we mentioned previously, we use modal analysis to obtain the natural frequencies 
and the mode shapes of a vibrating system. Moreover, you should recall that when a 
natural frequency of a system matches the excitation frequency, resonance will occur.
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You must perform a new analysis each time you change boundary conditions. After 
you select the Modal in the New Analysis window, you need to choose a mode extrac-
tion method. ANSYS offers the following extraction methods: Block Lanczos (default), 
Subspace, Powerdynamics, Reduced, Unsymmetric, Damped, and QR Damped. You use 
the Block Lanczos method to solve large symmetrical eingenvalue problems. It uses sparse 
matrix solver and has a fast convergence rate. You can also use the Subspace method to 
solve large symmetrical problems. This method offers several solution controls to manage 
the iteration process. The Powerdynamics method is used for models with over 100,000 
degrees of freedom and makes use of lumped mass approximation. As the name implies 
the Reduced method uses reduced system matrices to extract frequencies. It is not as 
accurate as the Subspace method but it has a faster convergence rate. Typically, you use 
the Unsymmetric method for problems dealing with fluid-structure interactions whose 
matrices are unsymmetrical. The Damped method is used for problems for which damping 
must be included in the model. The QR Damped method has a faster convergence rate 
than the Damped method. It uses the reduced modal damped matrix to calculate frequen-
cies. If you choose the Reduced, Unsymmetic, or the Damped methods, then you must 
specify the number of modes to expand—the reduced solution is expanded to include 
the full degrees of freedom. In ANSYS, expansion also means writing the mode shapes to 
result files. When using the Reduced method, you need to define the master degrees of 
freedom—you choose at least twice as many master degrees of freedom as there are num-
ber of modes of interest. Additional modal analysis options include specifying a frequency 
range for mode extraction. For most cases you don’t need to specify the range and use the 
ANSYS’s default setting. When using the Reduced method you need to specify the num-
ber of reduced modes to be listed. Finally, if you are planning to perform spectrum analysis, 
then you need to normalize the mode shapes with respect to mass—the default setting.
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main menu: Solution S Solve S Current LS

Close (the solution is done!) window.

Close (the/STAT Command) window.

main menu: General Postproc S Results Summary

Note frequency 
values are given 
in hertz.
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Example 11.8 

In this example problem we use ANSYS to study the natural oscillation of an alu-
minum strip with a rectangular cross section. The strip is 3 cm wide, 0.5 mm thick, and 
10 cm long. It has a density of 2800 kg/m3, a modulus of elasticity of E = 73 GPa, 
and a Poisson’s ratio of 0.33. We assume the strip to be fixed at one end.

Enter the ANSYS program by using the Launcher. Type Oscistrip (or a file 
name of your choice) in the Jobname entry field of the dialog box. Pick Run to 
start the GUI.

Create a title for the problem.

utility menu: File S Change Title . . .

Type in the title of your choice

main menu: Preprocessor S Element Type S Add/Edit/Delete

Apply

OK
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Close

main menu: Preprocessor S Material Props S Material Models S
Structural S Linear S Elastic S Isotropic

OK
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OK

ANSYS Toolbar: SAVE_DB

main menu: Preprocessor S Modeling S Create S Areas S
Rectangle S By 2 Corners

OK

main menu: Preprocessor S Meshing S Size Cntrls S Smart Size S Basic
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OK

main menu: Preprocessor S Meshing S Mesh S Areas S Free

First click on Pick All, then press OK. If you get a warning, it is ok; proceed. The 
purpose of this example is to show how to animate different modes of oscillation 
(using a coarse mesh).

main menu: Preprocessor S Modeling S Operate S
Extrude S Elem Ext Opts

Choose Element type number 2 SOLID185. Also in the Element sizing options 
for extrusion, VAL1 No. Elem divs field type the value 10.

OK

main menu: Preprocessor S Modeling S Operate S Extrude S
Areas S By XYZ Offset

Pick All
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OK
utility menu: Plot Ctrls S Pan, Zoom, Rotate . . .

Choose ISO

utility menu: Select S Entities

Then select the nodes to apply the zero displacement boundary conditions. Select 
Nodes, By Location, pick Z coordinates, type 0 in the Min, Max, and pick From 
Full set.

Select Elements, By Attributes, pick Elem type num, type 
1 in the Min, Max, Inc field, and pick Unselect.

Apply
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Apply

main menu: Solution S Define Loads S Apply S Structural S
Displacement S On Nodes

Pick All

OK
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utility menu: Select S Everything . . .

main menu: Solution S Analysis Type S New Analysis

OK

main menu: Solution S Analysis Type S Analysis Options
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OK

Use the help menu to obtain information on Block Lanczos method.

main menu: Solution S Solve S Current LS

Close (the solution is done!) window.

Close (the /STAT Command) window.

Close
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main menu: General Postproc S Read Results S First Set

utility menu: PlotCtrls S Animate S Mode Shape

OK
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Look at the next mode by issuing the commands

main menu: General Postproc S Read Results S Next Set

utility menu: PlotCtrls S Animate S Mode Shape

Exit from ANSYS.
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Summary

At this point you should

	 1.	 have a good grasp of the fundamental concepts and governing equations of 
motions for a particle, a rigid body, and a dynamic system.

	 2.	 have a good understanding of fundamental definitions and concepts of vibration 
of mechanical and structural systems.

	 3.	 understand the formulation and natural vibration behavior for a system with single 
and multiple degrees of freedom.

	 4.	 understand the formulation and forced vibration behavior for a system with single 
and multiple degrees of freedom system.

	 5.	 understand the finite element formulation of axial members, beams, and frames.
	 6.	 know how to use ANSYS to solve some dynamic problems.

References

Beer, F. P., and Johnston, E. R., Vector Mechanics for Engineers, 5th ed., New York, McGraw-Hill, 1988.
Steidel, R., An Introduction to Mechanical Vibrations, 3rd ed., New York, John Wiley and Sons, 1971.
Timoshenko, S., Young, D. H., and Weaver, W., Vibration Problems in Engineering, 4th ed., New 

York, John Wiley and Sons, 1974.

Problems

	 1.	 A simple dynamic system is modeled by a single degree of freedom with m = 10 kg and 
kequivalent = 100 N/cm. Calculate the frequency and period of oscillation. Also, determine the 
maximum velocity and acceleration of the system. (y(0) = 5 mm)

	 2.	 The system described in Problem 1 is subjected to a sinusoidal forcing function 
F(t) = 20 sin(20t) in Newtons. Calculate the amplitude, maximum velocity, and acceleration 
of the system.

	 3.	 Derive the equations of motion for the system shown in the accompanying figure. What is 
the natural frequency of the system?

k1

L/2

L/2

C

2k1
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	 4.	 Derive the response of a single degree of freedom mass spring system to a suddenly applied 
force F0, as shown in the accompanying figure. Plot the response. Compare the response of 
the system to a situation where the force F0 is applied as a ramp function. Also compare the 
response of the system to a suddenly applied force to a situtation where the force F0 is applied 
statically.

F(t)
F(t)

F0

t

y

k

m

	 5.	 Derive the response of a single degree of freedom mass spring system to a suddenly applied 
force F0 that decays with time according to F(t) = F0e

- c1t, as shown in the accompanying 
figure. The value of c1 defines the rate of decay. Plot the response of the system for different 
values of c1. Compare the response of the system to a situation where the force F0 is applied 
statically.

F(t)

F(t) = F0e-c1t

F(t)
F0

t

y

k

m

	 6.	 Derive the response of the system shown in the accompanying figure to the excitation shown.

y1

m

k1
2

k1
2

k2

y2 =Y0 sinvt
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	 7.	 Using both Newton’s second law and Lagrange’s equations, formulate the equations of 
motion for the system shown in the accompanying figure.

k2

k1

L

L

L

	 8.	 Using both Newton’s second law and Lagrange’s equations, formulate the equations of 
motion for the system shown in the accompanying figure.

k1 k2

L1 L2

G

	 9.	 Using both Newton’s second law and Lagrange’s equations, formulate the equations of 
motion for the system shown in the accompanying figure.

x3m3

m2

k2

k3

k1

k2

k3

k1

m1

x2

x1
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	 10.	 Determine the first two natural frequencies of the axial members shown in the accom-
panying figure. Members are made from structural steel with a modulus of elasticity of 
E = 29 * 106 lb/in2 and a mass density of 15.2 slugs/ft3.

Ac = 0.75 in2
Ac = 0.5 in2

Ac = 1 in2

12– 12–9–

	 11.	 Determine the first two natural frequencies of the axial member shown in the accom-
panying figure. Member is made from aluminum alloy with a modulus of elasticity of 
E = 10 * 106 lb/in2 and a mass density of 5.4 slugs/ft3.

5 ft

Ac = 0.5 in2

	 12.	 Determine the first three natural frequencies of the post shown. The post is made of structural 
steel with a modulus of elasticity of E = 29 * 106 lb/in2 and a mass density of 15.2 slugs/ft3. 
Consider only the axial oscillation.

Ac = 0.75 in2

Ac = 2.15 in2

Ac = 2.95 in210 ft

5 ft

5 ft

	 13.	 The cantilevered beam shown in the accompanying figure is a W18 * 50. Determine its first 
two natural frequencies.

15 ft
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	 14.	 The cantilevered beam shown in the accompanying figure is a W16 * 31. Determine its first 
three natural frequencies.

15 ft 7 ft

	 15.	 The simply supported beam shown in the accompanying figure is a W6 * 15. Determine its 
first two natural frequencies.

20 ft

	 16.	 Determine the first two natural frequencies of the simply supported beam with the rectan-
gular cross section shown in the accompanying figure.

5 m

r = 700 kg/m3, E = 10 GPa

7 cm

15 cm

	 17.	 Consider the overhang frame shown in the accompanying figure. The cross-sectional areas 
and second moment of areas for each W12 * 26 member are shown in the figure. Determine 
the first three natural frequencies of the system.

10 ft

9 ft

A = 7.65 in2

I = 204 in4
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	 18.	 Consider the overhang frame shown in the accompanying figure. The members of the frame 
are W5 * 16. Determine the first three natural frequencies of the system.

20 ft

12 ft

7 ft

	 19.	 Re-solve Example 11.7 for the case where all members of the frame are W12 * 26.

	 20.	 Using ANSYS, determine the first three natural frequencies of the frame shown in the accom-
panying figure.

30 ft

W5 * 16

W4 * 1310 ft
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	 21.	 Using ANSYS, determine the first three natural frequencies of the frame shown in the accom-
panying figure.

20 ft

15 ft

W10 * 112 W10 * 112

W8 * 58W8 * 58

455 455

	 22.	 Re-solve Example 11.8 for the case where thickness of the strip is 1 mm, and 2 mm. Compare 
results and discuss your findings.
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Analysis of Fluid Mechanics 
Problems

The main objective of this chapter is to introduce you to the analysis of fluid mechanics 
problems. First, we will discuss the direct formulation of pipe-​network problems. Then, 
we consider finite element formulation of ideal fluid behavior (inviscid flow). Finally, 
we briefly look at the flow of fluid through porous media and finite element formula-
tion of underground seepage flows. The main topics discussed in Chapter 12 include 
the following:

	 12.1	 Direct Formulation of Flow Through Pipes

	 12.2	 Ideal Fluid Flow

	 12.3	 Groundwater Flow

	 12.4	 Examples Using ANSYS

	 12.5	 Verification of Results

12.1  Direct Formulation of Flow Through Pipes

We begin by reviewing fundamental concepts of fluid flow through pipes. The internal 
flow through a conduit may be classified as laminar or turbulent flow. In laminar flow 
situations, a thin layer of dye injected into a pipe will show as a straight line. No mixing 
of fluid layers will be visible. This situation does not hold for turbulent flow, in which the 
bulk mixing of adjacent fluid layers will occur. Laminar and turbulent flow are depicted 
in Figure 12.1. Laminar flow typically occurs when the Reynolds number of the flowing 
fluid is less than 2100. The Reynolds number is defined as

	 Re =
rVD
m

	 (12.1)

where r and m are the density and the dynamic viscosity of the fluid respectively. V rep-
resents the average fluid velocity, and D represents the diameter of the pipe. The flow is 
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said to be in a transition region when the Reynolds number is typically between 2100 and 
4000. The behavior of the fluid flow is unpredictable in the transition region. The flow is 
generally considered to be turbulent when the Reynolds number is greater than 4000. The 
conservation of mass for a steady flow requires that the mass flow rate at any section of 
the pipe remains constant according to the equation

	 m1
∙ = m2

∙ = r1V1A1 = r2V2A2 = constant	 (12.2)

Again, r is the density of the fluid, V is the average fluid velocity at a section, and A 
represents the cross-​sectional area of the flow as shown in Figure 12.2.

(a) Laminar �ow in a pipe

(b) Turbulent �ow in a pipe

Dye

Dye

Figure 12.1  Laminar and turbulent flows.

Section 1

r1 V1 A1 r2 V2 A2

Section 2

Flow

Figure 12.2  Flow of fluid through a 
conduit with variable cross section.

M12_MOAV4303_04_GE_C12.INDD   712 27/11/14   10:15 AM

www.FreeEngineeringbooksPdf.com



Section 12.1    Direct Formulation of Flow Through Pipes    713

For an incompressible flow—​a flow situation where the density of the fluid remains 
constant—​the volumetric flow rate Q through a conduit at any section of the conduit 
is also constant:

	 Q1 = Q2 = V1A1 = V2A2	 (12.3)

For a fully developed laminar flow, there exists a relationship between the volumetric 
flow rate and the pressure drop P1 - P2 along a pipe of length L. This relationship is 
given by

	 Q =
pD4

128m
 ¢P1 - P2

L
≤	 (12.4)

The pressure drop for a turbulent flow is commonly expressed in terms of head loss, 
which is defined as

	 Hloss =
P1 - P2

rg
= f  

L
D

 
V2

2g
	 (12.5)

where f is the friction factor, which depends on the surface roughness of the pipe and 
the Reynolds number. For turbulent flows, we can also obtain a relationship between 
the volumetric flow rate and the pressure drop by substituting for V in terms of the flow 
rate in Eq. (12.5) and rearranging terms:

	 Q2 =
1
f

 
p2D5

8r
 ¢P1 - P2

L
≤	 (12.6)

When we compare turbulent flow to laminar flow, we note that for turbulent flow, the 
relationship between the flow rate and pressure drop is nonlinear.

Pipes in Series

For flow of a fluid through a piping network consisting of a series of pipes with respec-
tive diameters D1, D2, D3, c, as shown in Figure 12.3, the conservation of mass (conti-
nuity equation) requires that under steady-​state conditions, the mass flow rate through 
each pipe be the same:

	 m1
∙ = m2

∙ = m3
∙ = c = constant	 (12.7)

D1 D2 D3Flow

Figure 12.3  Pipes in series.
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Moreover, for an incompressible flow, the volumetric flow rate through each pipe that 
is part of a piping network in series is constant. That is,

	 Q1 = Q2 = Q3 = c = constant	 (12.8)

Expressing the flow rates in terms of the average fluid velocity in each pipe, we obtain

	 V1D1
2 = V2D2

2 = V3D3
2 = c = constant	 (12.9)

For pipes in series, the total pressure drop through a network is determined from the 
sum of the pressure drops in each pipe:

	 ∆Ptotal = ∆P1 + ∆P2 + ∆P3 + c	 (12.10)

Pipes in Parallel

For flow of a fluid through a piping network consisting of pipes in parallel arrangement, 
as shown in Figure 12.4, the conservation of mass (continuity equation) requires that

	 mtotal
∙ = m1

∙ + m2
∙ 	 (12.11)

Moreover, for an incompressible flow,

	 Qtotal = Q1 + Q2	 (12.12)

For pipes in parallel configuration, the pressure drop in each parallel branch is the same, 
and is related according to

	 ∆Ptotal = ∆P1 = ∆P2	 (12.13)

Finite Element Formulation

Consider an incompressible laminar flow of a viscous fluid through a network of piping 
systems, as shown in Figure 12.5. We start by subdividing the problem into nodes and ele-
ments. This example may be represented by a model that has four nodes and four elements.

m•
1

m•
2 Figure 12.4  Pipes in parallel.

i + 1i (e)

Q

Qi + 1Qi

Figure 12.5  A network problem: an incompressible laminar flow of a viscous fluid through 
a network of piping systems.
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The behavior of the fluid flow inside a pipe section is modeled by an element with 
two nodes. The elemental description is given by the relationship between the flow rate 
and the pressure drop as given by Eq. (12.4), such that

	 Q =
pD4

128m
 ¢Pi - Pi + 1

L
≤ = C(Pi - Pi + 1)	 (12.14)

where the flow-​resistance coefficient C is given by

	 C =
pD4

128Lm
	 (12.15)

Because there are two nodes associated with each element, we need to create two equa-
tions for each element. These equations must involve nodal pressure and the element’s 
flow resistance. Consider the flow rates Qi and Qi + 1 and the nodal pressures Pi and Pi + 1 
of an element, which are related according to the equations

	 Qi  = C(Pi - Pi + 1)	

	  Qi + 1 = C(Pi + 1 - Pi)	 (12.16)

The equations given by (12.16) were formulated such that the conservation of mass is 
satisfied as well. The sum of Qi and Qi + 1 is zero, which implies that under steady-​state 
element conditions, what flows into a given element must flow out. Equations (12.16) 
can be expressed in matrix form by

	 b Qi

Qi + 1
r = J C -C

-C C
R b Pi

Pi + 1
r = E pD4

128Lm
-

pD4

128Lm

-
pD4

128Lm

pD4

128Lm

U b Pi

Pi + 1
r 	 (12.17)

The element’s flow-​resistance matrix is then given by

	 [R](e) = E pD4

128Lm
-

pD4

128Lm

-
pD4

128Lm

pD4

128Lm

U 	 (12.18)

Applying the elemental description given by Eq. (12.17) to all elements and assembling 
them will lead to the formation of the global flow matrix, the flow-​resistance matrix, 
and the pressure matrix.

Example 12.1 

Oil with dynamic viscosity of m = 0.3N ∙s/m2 and density of r = 900 kg/m3 flows 
through the piping network shown in Figure 12.6. The 2–4–5 branch was added in par-
allel to the 2–3–5 branch to allow for the flexibility of performing maintenance on one 
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branch while the oil flows through the other branch. The dimensions of the piping sys-
tem are shown in Figure 12.6. Determine the pressure distribution in the system if both 
branches are on line. The flow rate at node 1 is 5 * 10-4 m3/s. The pressure at node 1 is 
39182 Pa (g) and the pressure at node 6 is -3665 Pa (g). For the given conditions, the 
flow is laminar throughout the system. How does the flow divide in each branch?

The elemental flow resistance is given by Eq. (12.18) as

[R](e) = D pD4

128Lm
-

pD4

128Lm

-
pD4

128Lm

pD4

128Lm

T
We model the given network using six elements and six nodes. Evaluating the respective 
resistance matrices for elements (1)–(6), we obtain

[R](1) = 10-9J 115.70  -115.70
-115.70 115.70

R1
2

	 [R](2) = 10-9 J 50.76  -50.76
-50.76 50.76

R  
2
3

[R](3) = 10-9 J 51.77 -51.77
-51.77 51.77

R  
2
4

	 [R](4) = 10-9 J 9.50 -9.50
-9.50 9.50

R  
3
5

[R](5) = 10-9 J 7.23 -7.23
-7.23 7.23

R  
4
5

	 [R](6) = 10-9 J 136.35 -136.35
-136.35 136.35

R  
5
6

L = 60 m
D = 10 cm

L = 50 m
D = 7.5 cm

1

2

3

4
5 6

(1)

(2)

(3)
(4)

(5)

(6)

L = 70.71 m
D = 10 cm

L = 50.99 m
D = 7.5 cm

L = 53.85 m
D = 5 cm

L = 70.71m
D = 5 cm

Figure 12.6  The piping network of Example 12.1.
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Note that in order to aid us in assembling the elemental resistance matrices into the 
global resistance matrix, the corresponding nodes are shown alongside of each element’s 
resistance matrix. So, we have

10-9F 115.7  -115.7 0 0 0 0
-115.7 115.7 + 50.76 + 51.77  -50.76  -51.77 0 0

0  -50.76 50.76 + 9.50 0  -9.50 0
0  -51.77 0 51.77 + 7.23  -7.23 0
0 0  -9.50  -7.23 9.50 + 7.23 + 136.35  -136.35
0 0 0 0  -136.35 136.35

V1
2
3
4
5
6

Applying the boundary conditions P1 = 39182 and P2 = -3665, we obtain

F 1 0 0 0 0 0
-115.7 218.23  -50.76  -51.77 0 0

0  -50.76 60.26 0  -9.50 0
0  -51.77 0 59.0  -7.23 0
0 0  -9.50  -7.23 153.08  -136.35
0 0 0 0 0 1

V f P1

P2

P3

P4

P5

P6

v = f 39182
0
0
0
0

-3665

v
Solving the systems of equations simultaneously results in the nodal pressure values:

[P]T = [39182 34860 29366 30588 2  -3665]Pa

The flow rate in each branch is determined from Eq. (12.14):

Q  =
pD4

128m
 ¢Pi - Pi + 1

L
≤ = C(Pi - Pi + 1)

 Q(2) = 50.76 * 10-9 (34860 - 29366) = 2.79 * 10-4 m3/s

 Q(3) = 51.77 * 10-9 (34860 - 30588) = 2.21 * 10-4 m3/s

 Q(4) = 9.50 * 10-9 (29366 - 2) = 2.79 * 10-4 m3/s

 Q(5) = 7.23 * 10-9(30588 - 2) = 2.21 * 10-4 m3/s

The verification of these results is discussed in Section 12.5.
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Example 12.1  Revisited

We will now show how to use Excel to set up and solve Example 12.1.
	 1.	 In cell A1 type Example 12.1, and in cell A3 type M=  as shown. After inputting 

the value of m in cell B3, select B3 and in the “Name Box” type Mu and hit the 
Return key. Next, create the table shown with element and node numbers, length, 
diameter, and the fluid viscosity for each member. In cells D6:D11 input the length 
for each element and name them Length1, Length2, Length3, Length4, Length5, 
and Length6, respectively. Also, name the values in E6:E11, Diameter1, Diameter2, 
Diameter3, Diameter4, Diameter5, and Diameter6.

	 2.	 Next compute the constant portion of the flow resistance coefficient, that is 
the value, p>128m, for the [R1] matrix, as shown and name the selected range 
Celement1. In a similar way create the constant terms for [R2], [R3], [R4], [R5], 
and [R6] and name the selected ranges Celement2, Celement3, Celement4, 
Celement5, Celement6.
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	 3.	 Next, create the [A1] matrix and name it Aelement1, as shown. If you have forgot-
ten what the A matrices represent, see Section 2.5, Eq. (2.9). The nodal pressures 
P1, P2, P3, P4, P5, P6 and Pi andPj are shown alongside the [A1] matrix to aid us 
observe the contribution of node to its neighboring elements. Similarly, create the 
[A2], [A3], [A4], [A5], and [A6] matrices and name them Aelement2, Aelement3, 
Aelment4, Aelement5, Aelement6, as shown. 

	 4.	 We now create the [R]1G, [R]2G, [R]3G, [R]4G, [R]5G, and [R]6G (with their proper 
positions in the global matrix) and name them K1G, K2G, K3G, K4G, K5G, and 
K6G (note they cannot be named R1G, R2G, etc., since they are not valid Excel 
names). For example, to create [R]1G, select B36:G37 and type

= MMULT(TRANSPOSE(Aelement1),MMULT(((Diameter1^4>Length1)*

Celement1),Aelement1))

and while holding down the Ctrl and Shift keys, hit the Return key. In a similar 
way, create [R]2G, [R]3G, [R]4G, [R]5G, and [R]6G as shown.
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	 5.	 The final global matrix is created next. Select the range B101:G106 and type 

= K1G+K2G+K3G+K4G+K5G+K6G

and while holding down the Ctrl and Shift keys hit the Return key. Name the range 
B101:G106, RG. Apply the boundary conditions. Copy the appropriate portion 
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of the RG matrix and paste it in the range C109:H114 as values only. Name the 
range RwithappliedBC. Similarly, create the corresponding load matrix in the 
range C116:C121 and name it FwithappliedBC.

	 6.	 Select the range C123:C128 and type

= MMULT(MINVERSE(RwithappliedBC),FwithappliedBC)

and while holding down the Ctrl and Shift keys hit the Return key.
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The complete Excel sheet is shown next.
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12.2 Id eal Fluid Flow

All fluids have some viscosity; however, in certain flow situations it may be reasonable 
to neglect the effects of viscosity and the corresponding shear stresses. The assumption 
may be made as a first approximation to simplify the behavior of real fluids with rela-
tively small viscosity. Also, in many external viscous flow situations, we can divide the 
flow into two regions: (1) a thin layer close to a solid boundary—​called the boundary 
layer region—​where the effects of viscosity are important and (2) a region outside the 
boundary layer where the viscous effects are negligible, in which the fluid is considered 
to be inviscid. This concept is demonstrated for the case of the flow of air over an airfoil 
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in Figure 12.7. For inviscid flow situations, the only forces considered are those resulting 
from pressure and the inertial forces acting on a fluid element.

Before discussing finite element formulation of ideal fluid problems, let us 
review some fundamental information. For a two-​dimensional flow field, the fluid 
velocity is

	 V
S

= nxi
u

+ nyj
u

	 (12.19)

where nx and ny are the x-​ and y-​components of the fluid’s velocity vector, respectively. 
The conservation of mass (continuity equation) for a two-​dimensional incompressible 
fluid can be expressed in the differential form in terms of fluid’s velocity components as

	
0nx

0x
+

0ny

0y
= 0	 (12.20)

The derivation of Equation (12.20) is shown in Figure 12.8.

The Stream Function and Streamlines

For a steady flow, a streamline represents the trajectory of a fluid particle. The stream-
line is a line that is tangent to the velocity of a fluid particle. Streamlines provide a 
means for visualizing the flow patterns. The stream function c(x, y) is defined such 
that it will satisfy the continuity equation Eq. (12.20) according to the following 
relationships:

	 nx =
0c
0y
 and ny = -

0c
0x

	 (12.21)

Note that upon substitution of Eq. (12.21) into Eq. (12.20), the conservation of mass is 
satisfied. Along a line of constant c(x, y), we have

	 dc = 0 =
0c
0x

 dx +
0c
0y

 dy = -ny dx + nx dy	 (12.22)

Boundary-layer region

An airfoil

Boundary-layer region

Inviscid region

Inviscid region

Free-stream velocity

Figure 12.7  The flow of air over an airfoil.
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or

	
dy

dx
=

ny

nx
	 (12.23)

Equation (12.23) can be used to determine the stream function for a specific flow. 
Moreover, Eq. (12.23) gives the relationship between the slope at any point along a 
streamline and the fluid velocity components. This relationship is shown in Figure 12.9. 
To shed more light on the physical meaning of Eq. (12.23), consider Figure 12.10 in 

Figure 12.8  The derivation of continuity equation for an incompressible fluid.

(rv)y + dy

(rv)x + dx(rv)x

(rv)y

dx

dy

First, we begin by applying the conservation of mass to a small region (differential control volume) in 
the flow field.

min
∙ - mout

∙ =
dmcontrol volume

dt

rnx dy - ¢r +
0r
0x

 dx≤ ¢nx +
0nx

0x
 dx≤dy + rny dx -¢r +

0r
0y

 dy≤ ¢ny +
0ny

0y
 dy≤dx =

0r
0t

 dxdy

Simplifying, we get

 - ¢nx 
0r
0x

 dx + r 
0nx

0x
 dx≤dy - ¢ny 

0r
0y

 dy + r 
0ny

0y
 dy≤dx =

0r
0t

 dxdy

 -
0rnx

0x
 dxdy -

0rny

0y
 dxdy =

0r
0t

 dxdy

Canceling out the dxdy terms and assuming incompressible fluid (r = constant),

0nx

0x
+

0ny

0y
= 0

M12_MOAV4303_04_GE_C12.INDD   725 27/11/14   10:16 AM

www.FreeEngineeringbooksPdf.com



726    Chapter 12    Analysis of Fluid Mechanics Problems

Vvy

vx

Vvy

vx

Streamline

Figure  12.9  The relationship between 
the slope at any point along a streamline 
and the fluid velocity components.

x

y

(x1, y2)

(x2, y1)

B (x2, y2)

A

C
c2

c1

Figure 12.10  The flow of fluid around 
a sharp corner.

which the flow of a fluid around a sharp corner is shown. For this flow situation, the 
velocity field is represented by

V
S

= cxi
u

- cy
u

j

To obtain the expression for the stream function, we make use of Eq. (12.23):

ny

nx
=

dy

dx
=

-cy
cx

Integrating, we have

L
dy
y

= - L
dx
x

Evaluating the integral results in the stream function, which is given by

xy = constant

or

c = xy
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To visualize the trajectory of fluid particles we can plot the streamlines by assigning 
various values to c as shown in Figure 12.10. Note that the individual assigned val-
ues of streamlines are not important; it is the difference between their values that is 
important. The difference between the values of two streamlines provides a measure 
of volumetric flow rate between the streamlines. To demonstrate this idea, let us refer 
back to Figure 12.10. Along, the A–B section, we can write

	
Q
w

= L
y2

y1

nx dy = L
y2

y1

 
0c
0y

 dy = L
c2

c1

dc = c2 - c1	 (12.24)

Similarly, along the B–C section, we have

	
Q
w

= L
x2

x1

-ny dx = L
x2

x1

 
0c
0x

 dx = L
c2

c1

dc = c2 - c1	 (12.25)

Therefore, the difference between the values of the streamlines represents the volume
tric flow rate per unit width w.

The Irrotational Flow, Potential Function, and Potential Lines

As mentioned earlier, there are many flow situations for which the effects of viscos-
ity may be neglected. Moreover at low speeds, the fluid elements within inviscid flow 
situations may have an angular velocity of zero (no rotation). These types of flow situ-
ations are referred to as irrotational flows. A two-​dimensional flow is considered to be 
irrotational when

	
0ny

0x
-

0nx

0y
= 0	 (12.26)

We can also define a potential function f such that the spatial gradients of the potential 
function are equal to the components of the velocity field:

	 nx =
0f
0x
  ny =

0f
0y

	 (12.27)

Along a line of constant potential function, we have

	 df = 0 =
0f
0x

 dx +
0f
0y

 dy = nx dx + ny dy = 0	 (12.28)

	
dy

dx
= -

nx

ny
	 (12.29)

By comparing Eqs. (12.29) and (12.23), we can see that the streamlines and the veloc-
ity potential lines are orthogonal to each other. It is clear that the potential function 
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complements the stream function. Using the relationships in Eq. (12.27) to substitute 
for nx and ny in the continuity equation Eq. (12.20), we have

	
02f

0x2 +
02f

0y2 = 0	 (12.30)

Using the definitions of stream functions as given by Eq. (12.21) and substituting for nx 
and ny in Eq. (12.26), we have

	
02c

0x2 +
02c

0y2 = 0	 (12.31)

Equations (12.30) and (12.31), which are forms of Laplace’s equation, govern the motion 
of an ideal irrotational flow. Typically, for potential flow situations, the boundary condi-
tions are the known free-​stream velocities, and at the solid surface boundary, the fluid 
cannot have velocity normal to the surface. The latter condition is given by the equation

	
0f
0n

= 0	 (12.32)

Here, n represents a direction normal to the solid surface. Comparing the differential 
equation governing the irrotational flow behavior of an inviscid fluid, Eq. (12.30), to the 
heat diffusion equation, Eq. (9.8), we note that both of these equations have the same 
form; therefore, we can apply the results of Sections 9.2 and 9.3 to the potential flow 
problems. However, when comparing the differential equations for irrotational flow 
problems, we let C1 = 1, C2 = 1, and C3 = 0. Later in this chapter, we will use ANSYS 
to analyze the flow of an ideal fluid around a cylinder.

Now, let us briefly discuss the analysis of viscous flows. As mentioned earlier, all 
real fluids have viscosity. The analysis of a complex viscous flow is generally performed 
by solving the governing equations of motion for a specific boundary condition using the 
finite differencing approach. However, in recent years, we have made some advances in 
the finite element formulation of viscous fluid flow problems. Bathe (1996) discusses a 
Galerkin procedure for the analysis of the two-​dimensional laminar flow of an incom-
pressible fluid. For more details on the formulation of viscous laminar flows, also see 
the theory volume of ANSYS documents.

Example 12.2 

Consider Figure 12.11, in which a simple uniform flow (constant velocity) in the hori-
zontal direction is shown. As you would expect, for such flow, the fluid particles follow 
straight horizontal lines and thus the streamlines should be straight parallel lines. We are 
interested in using the theory discussed in the previous sections to obtain the equations 
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for the stream and potential functions and plot a number of streamlines and potential 
lines.

Recognizing that for this problem, nx = 2 m/s and ny = 0, we can then obtain the 
equation for the stream function from Eq. (12.21).

nx =
0c
0y

= 2 1 c = 2y m2/s

We can find the equation for the potential function using Eq. (12.27)

nx =
0f
0x

= 2 1 f = 2x m2/s

We have plotted three streamlines and three potential lines by letting x = 1, x = 2, 
and x = 3, and y = 1, y = 2, and y = 3, as shown in Figure 12.11. Note that as we 
discussed earlier, the individual values of streamlines are not significant; it is the dif-
ference between their values that is significant. Recall that the difference between the 
values of streamlines represents the volumetric flow rate per unit width, for example, 
c3 - c1 = 6 - 2 = 4 m2/s represents the volumetric flow per unit width between 
streamlines c3 and c1. Also note that the streamlines and the velocity potential lines 
are orthogonal to each other.

12.3 G roundwater Flow

The study of fluid flow and heat transfer in porous media is important in many engi-
neering applications, including problems related to oil-​recovery methods, groundwater 
hydrology, solar energy storage, and geothermal energy. The flow of fluid through an 

y

j

i x

V = 2 m/s  i

y

1 x2 3

1

2

3

f1 f2 f3

c3 = 6 m2/s

c2 = 4 m2/s

c1 = 2 m2/s

Figure 12.11  The velocity, streamlines, and the potential lines for Example 12.2.
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unbounded porous medium is governed by Darcy’s law. Darcy’s law relates the pressure 
drop to the mean fluid velocity according to the relationship

	 UD = -
k
m

 
dP
dx

	 (12.33)

where UD is the mean fluid velocity, k is the permeability of the porous medium, m is 

the viscosity of the fluid, and 
dP
dx

 is the pressure gradient. For two-​dimensional flows, 

it is customary to use the hydraulic head f to define the components of the fluid veloci-
ties. Consider the seepage flow of water under a dam, as shown in Figure 12.12.

The two-​dimensional flow of fluid through the soil is governed by Darcy’s law, 
which is given by

	 kx 
02f

0x2 + ky 
02f

0y2 = 0	 (12.34)

The components of the seepage velocity are

	 nx = -kx 
0f
0x
 and ny = -ky 

0f
0y

	 (12.35)

where kx and ky are the permeability coefficients and f represents the hydraulic 
head. Comparing the differential equation governing the groundwater seepage flow,  
Eq. (12.34), to the heat diffusion equation, Eq. (9.8), we note that both of these equations 
have the same form; therefore, we can apply the results of Sections 9.2 and 9.3 to the 
groundwater flow problems. However, when comparing the differential equations for 
the groundwater seepage flow problems, we let C1 = kx, C2 = ky, and C3 = 0.

Porous medium

Concrete dam

Water

Water

f = H1 f = H2

H2

H1

Figure 12.12  The seepage flow of water through a porous medium under a dam.
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The permeability matrix for a rectangular element is

	 [K](e) =
kx w
6/

 D 2  -2  -1 1
-2 2 1  -1
-1 1 2  -2
1  -1  -2 2

T +
ky /

6w

 D 2 1  -1  -2
1 2  -2  -1

-1  -2 2 1
-2  -1  1 2

T 	 (12.36)

where w and / are the length and the width, respectively, of the rectangular element, as 
shown in Figure 12.13. In addition, for a typical seepage flow problem, the magnitude of 
the hydraulic head is generally known at certain surfaces, as shown in Figure 12.12. The 
known hydraulic head will then serve as a given boundary condition.

The nodal values of a hydraulic head for a triangular element are depicted in 
Figure 12.14. For triangular elements, the permeability matrix is

	 [K](e) =
kx

4A
 C bi

2 bibj bibk

bibj bj
2 bjbk

bibk bjbk bk
2

S +
ky

4A
 C d i

2 didj didk

didj d j
2 djdk

didk djdk dk
2

S 	 (12.37)

where the area A of the triangular element and the a@, b@, and d@terms are given by

 2A = Xi(Yj - Yk) + Xj(Yk - Yi) + Xk(Yi - Yj)

 ai = XjYk - XkYj bi = Yj - Yk di = Xk - Xj

 aj = XkYi - XiYk bj = Yk - Yi dj = Xi - Xk

 ak = XiYj - XjYi  bk = Yi - Yj dk = Xj - Xi

Next, we discuss ANSYS elements.

fn

fmfj

fi

f

Y

X

i j

mn

x

y

w

/ Figure  12.13  Nodal values of a hydraulic 
head for a rectangular element.
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12.4 E xamples Using ANSYS

As the theory in the previous sections suggested, because of the similarities among the 
governing differential equations, in addition to ANSYS’s fluid elements, you can use 
thermal solid elements (e.g., PLANE35, a six-​node triangular element; PLANE55, a 
four-​node quadrilateral element; or PLANE77, an eight-​node quadrilateral element) 
to model irrotational fluid flow or groundwater flow problems. However, when using 
the solid thermal elements, make sure that the appropriate values are supplied to the 
property fields. Examples 12.3 and 12.4 demonstrate this point.

Example 12.3 

Consider an ideal flow of air around a cylinder, as shown in Figure 12.15. The radius of 
the cylinder is 5 cm, and the velocity of the approach is U = 10 cm/s. Using ANSYS, 
determine the velocity distribution around the cylinder. Assume that the free-​stream 
velocity remains constant at a distance of five diameters downstream and upstream of 
the cylinder.

U = approach velocity

Figure 12.15  An ideal flow of air around a cylinder.

fk

(Xj ,Yj)

(Xk ,Yk)

(Xi ,Yi)
i

k

j

fj

fi

X

Y

f

Figure 12.14  Nodal values of a hydraulic 
head for a triangular element.
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Enter the ANSYS program by using the Launcher. Type FlowCYL (or a file 
name of your choice) in the Jobname entry field of the dialog box. Pick Run to 
start the GUI.

Create a title for the problem. This title will appear on ANSYS display windows 
to provide a simple way of identifying the displays. So, issue the following com-
mand sequence:

utility menu: File S Change Title . . . 

main menu: Preprocessor S Element Type S Add/Edit/Delete
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main menu: Preprocessor S Material Props S Material Models
S Thermal S Conductivity S Isotropic
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ANSYS Toolbar: SAVE_DB

Set up the graphics area (i.e., workplane, zoom, etc.) with the following commands:

utility menu: Workplane S WP Settings . . .

Toggle on the workplane by using the command:

utility menu: Workplane S Display Working Plane

Bring the workplane to view by using the command:

utility menu: PlotCtrls S Pan, Zoom, Rotate c
Click on the small circle until you bring the workplane to view. Then, create the 
geometry with the following commands:

main menu: Preprocessor S Modeling S Create S Areas
S Rectangle S By 2 Corners

	 [WP = 0,0]

	 [Expand the rubber up 50 and right 50]

OK
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Create the cross section of the cylinder to be removed later:

main menu: Preprocessor S Modeling S Create S Areas S Circle
S Solid Circle

	 [WP = 25, 25]

	 [Expand the rubber to r = 5.0]

OK

main menu: Preprocessor S Modeling S Operate S Booleans
S Subtract S Areas

Pick Area1 (the rectangle) and apply; then, pick Area2 (the circle) and apply.

OK

We now want to mesh the area to create elements and nodes, but first, we need to 
specify the element sizes. So, issue the following commands:

main menu: Preprocessor S Meshing S Size Cntrls S Manual Size S
Global S Size

main menu: Preprocessor S Meshing S Mesh S Areas S Free
Pick All

Apply boundary conditions with the following commands:

main menu: Solution S Define Loads S Apply S Thermal S Heat Flux
S On Lines
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Pick the left vertical edge of the rectangle.

OK

OK

main menu: Solution S Define Loads S Apply S Thermal S Heat Flux
S On Lines

Pick the right vertical edge of the rectangle.

OK
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OK

utility menu: PlotCtrls S Symbols . . .
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utility menu: Plot S Lines

ANSYS Toolbar: SAVE_DB

Solve the problem:

main menu: Solution S Solve S Current LS

OK

Close (the solution is done!) window.

Close (the/STAT Command) window.

Postprocessing phase, obtain information such as velocities (see Figure 12.16):

main menu: General Postproc S Plot Results S Vector Plot
S Predefined
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utility menu: Plot S Areas

main menu: General Postproc S Path Operations S Define Path
S On Working Plane

Figure 12.16  The velocity vectors.
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Pick the two points along the line marked A–B, as shown in Figure 12.17.

main menu: General Postproc S Path Operations S Map onto Path

A

B

C D

Figure 12.17  Defining the path for path 
operation.
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Now, plot the results (see Figure 12.18):

main menu: General Postproc S Path Operations 
S Plot Path Item S On Graph

Figure 12.18  The variation of fluid velocity along path A–B.
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utility menu: Plot S Areas

main menu: General Postproc S Path Operations S Define Path
S On Working Plane

Pick the two points along the line marked as C–D, as shown in Figure 12.17.

OK

main menu: General Postproc S Path Operations S Map onto Path
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Now, plot the results (see Figure 12.19):

main menu: General Postproc S Path Operations S Plot Path Item
S On Graph

Exit and save the results:

ANSYS Toolbar: QUIT

Figure 12.19  The variation of fluid velocity along the C–D section.
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Example 12.4 

Consider the seepage flow of water under the concrete dam shown in Figure 12.20. 
The permeability of the porous soil under the dam is approximated as k = 15 m/day. 
Determine the seepage velocity distribution in the porous soil.

Porous medium

1 m

Assume to be
impermeable

Assume to be
impermeable

Water

Water
0.5 m

7 m5 m

Concrete
dam

10 m

Assume to be impermeable

4 m

5 m

Figure 12.20  The seepage flow of water through a porous medium under a concrete dam.

Enter the ANSYS program by using the Launcher. Type DAM (or a file name 
of your choice) in the Jobname entry field of the dialog box. Pick Run to start 
the GUI.

Create a title for the problem. This title will appear on ANSYS display windows to 
provide a simple way of identifying the displays. So, issue the following commands:

utility menu: File S Change Title . . .

main menu: Preprocessor S Element Type S Add/Edit/Delete
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Assign the permeability of the soil with the following commands:

main menu: Preprocessor S Material Props S Material Models
S Thermal S Conductivity S Isotropic
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ANSYS Toolbar: SAVE_DB

Set up the graphics area (i.e., workplane, zoom, etc.) with the commands

utility menu: Workplane S WP Settings . . .
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Toggle on the workplane by using the following command:

utility menu: Workplane S Display Working Plane

Bring the workplane to view by using the following command:

utility menu: PlotCtrls S Pan, Zoom, Rotate . . .

Click on the small circle until you bring the workplane to view. Then, create the 
geometry:

main menu: Preprocessor S Modeling S Create S Areas S Rectangle
S By 2 Corners

	 [WP = 0,0]

	 [Expand the rubber up 5 and right 16]

	 [WP = 5,4]

	 [Expand the rubber up 1 and right 4]

OK

main menu: Preprocessor S Modeling S Operate S Booleans
S Subtract S Areas

Pick Area1 (the large rectangle) and Apply; then, pick Area2 (the small rectangle) 
and Apply.

OK

We now want to mesh the areas to create elements and nodes, but first, we need 
to specify the element sizes:

main menu: Preprocessor S Meshing S Size Cntrls
S Manual Size S Global S Size
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main menu: Preprocessor S Meshing S Mesh S Areas S Free

Pick All

Apply boundary conditions with the following commands:

main menu: Solution S Define Loads S Apply S Thermal
S Temperature S On Nodes

Using the box picking mode, pick all of the nodes attached to the left top edge of 
the rectangle. Hold down the left button while picking.

OK

main menu: Solution S Define Loads S Apply S Thermal
S Temperature S On Nodes

Using the box picking mode, pick all of the nodes attached to the right top edge 
of the rectangle:

OK

ANSYS Toolbar: SAVE_DB
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Solve the problem:

main menu: Solution S Solve S Current LS

OK

Close (the solution is done!) window.

Close (the/STAT Command) window.

For the postprocessing phase, obtain information such as velocities (see 
Figure 12.21):

main menu: General Postproc S Plot Results S Vector Plot
S Predefined
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utility menu: Plot S Areas

main menu: General Postproc S Path Operations S Define Path
S On Working Plane

Pick the two points along the line marked as A–B, as shown in Figure 12.22.

Figure 12.21  The seepage-​velocity distribution within the soil.

A B

Figure 12.22  Defining the path for path operation.
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OK

main menu: General Postproc S Path Operations S Map onto Path

Now, plot the results (see Figure 12.23):

main menu: General Postproc S Path Operations S Plot Path Item
S On Graph

Exit and save the results:

ANSYS Toolbar: QUIT
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Figure 12.23  The variation of the seepage velocity along path A–B.

12.5 V erification of Results

There are various ways by which you can verify your findings. Consider the flow rate 
results of Example 12.1, shown in Table 12.1.

Referring to Figure 12.6, elements (2) and (4) are in series; therefore, the flow 
rate through each element should be equal. Comparing Q(2) to Q(4), we find that this 
condition is true. Elements (3) and (5) are also in series, and the computed flow rates 
for these elements are also equal. Moreover, the sum of the flow rates in elements  
(2) and (3) should equal the flow rate in element (1). This condition is also true.

Let us now turn our attention to Example 12.3. One way of checking for the 
validity of your FEA findings is to consider the variation of air velocity along path 
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A–B, as shown in Figure 12.18. The fluid velocity is at its maximum value at point A, 
and it decreases along path A–B, approaching the free-​stream value. Another check 
on the validity of our results could come from examining the fluid velocity variation 
along path C–D, as shown in Figure 12.19. The air velocity changes from its free-​stream 
value to zero at the forward stagnation point of the cylinder. These results are certainly 
consistent with the results obtained from applying Euler’s equation to an inviscid flow 
of air around a cylinder.

The results of Example 12.4 can be visually verified in a similar fashion. Consider 
Figure 12.23, which shows the variation of the seepage velocity along path A–B. It is 
clear that the seepage velocities are higher near point A than they are near point B. This 
difference is attributed to the fact that point A lies on the path of the least resistance to 
the flow, and consequently, more fluid flows near point A than near point B. The other 
check on the validity of the result could come from comparing the seepage flow rates 
on the dam’s upstream side to the seepage flow on the downstream side; of course, they 
must be equal.

Summary

At this point you should

	 1.	 know how to solve laminar flow network problems. You should also know that the 
resistance matrix for laminar pipe flow is given by

[R](e) = E pD4

128Lm
-

pD4

128Lm

-
pD4

128Lm

pD4

128Lm

U
	 2.	 know the definitions of streamline and stream function, as well as what they physi-

cally represent.
	 3.	 know what an irrotational flow is.
	 4.	 know that the inviscid flow matrix for a rectangular element is

Table 12.1  �Summary of flow rate  
results for Example 12.1

Element Flow Rate (m3>s)

1 5.0 * 10-4

2 2.79 * 10-4

3 2.21 * 10-4

4 2.79 * 10-4

5 2.21 * 10-4

6 5.0 * 10-4
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[K](e) =
w

6/
 D 2  -2  -1 1

-2 2 1  -1
-1 1 2  -2
1  -1  -2 2

T +
/

6w

 D 2 1  -1  -2
1 2  -2  -1

-1  -2 2 1
-2  -1 1 2

T
and that the inviscid flow matrix for a triangular element is

[K](e) =
1

4A
 C bi

2 bibj bibk

bibj bj
2 bjbk

bibk bjbk bk
2

S +
1

4A
 C d i

2 didj didk

didj d j
2 djdk

didk djdk dk
2

S
	 5.	 know that the permeability matrix for seepage flow problems is similar to the 

conductance matrix for two-​dimensional conduction problems. The permeability 
matrix for a rectangular element is

[K](e) =
kxw

6/
 D 2  -2  -1 1

-2 2 1  -1
-1 1 2  -2
1  -1  -2 2

T +
ky/

6w

 D 2 1  -1  -2
1 2  -2  -1

-1  -2 2 1
-2  -1 1 2

T
and the permeability matrix for a triangular element is

[K](e) =
kx

4A
 C bi

2 bibj bibk

bibj bj
2 bjbk

bjbk bjbk bk
2

S +
ky

4A
 C d i

2 didj didk

didj d j
2 djdk

didk djdk dk
2

S
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Problems

	 1.	 Oil with dynamic viscosity of m = 0.3 N∙s/m2 and density of r = 900 kg/m3 flows through 
the piping network shown in the accompanying figure. Determine the pressure distribution 
in the system if the flow rate at node 1 is 20 * 10-4 m3/s. For the given conditions, the flow 
is laminar throughout the system. How does the flow divide in each branch?

L = 100 m
D = 29.51 cm

L = 175 m
D = 19.78 cm

L = 75 m
D = 29.51 cm

L = 160 m
D = 19.78 cm

L = 120 m
D = 14.93 cm

1

	 2.	 Consider the flow of air through the diffuser shown in the accompanying figure. Neglecting 
the viscosity of air and assuming uniform velocities at the inlet and exit of the diffuser, use 
ANSYS to compute and plot the velocity distribution within the diffuser.

15 cm/s

305

305

40 cm

15 cm

20 cm

	 3.	 Consider the flow of air through a 90° elbow. Assuming ideal flow behavior for air and uni-
form velocities at the inlet and outlet sections, use ANSYS to compute and plot the velocity 
distribution within the elbow. The elbow has a uniform depth. Use the continuity equation 
to obtain the velocity at the outlet.
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0.55 m

20 cm/s 1 m

0.65 m

1.5 m

	 4.	 Consider the flow of air through the elbow in the accompanying figure. The corners of the 
elbow are rounded as shown in the figure. Assuming ideal flow behavior for air and uniform 
velocities at the inlet and outlet sections, use ANSYS to compute and plot the velocity dis-
tribution within the elbow. The elbow has a uniform depth. Use the continuity equation to 
obtain the velocity at the outlet.

r = 15 cm

10 cm/s

0.65 m

1.5 m

1 m

r = 15 cm

0.55 m

	 5.	 Using ANSYS, plot the velocity distributions for the transition-​duct fitting shown in the 
accompanying figure. Plot the results for the combinations of the area ratios and transition 
angles given in the accompanying table.
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A2/A1 u

0.1 10 20 45

0.25 10 45 60

0.5 20 45 60

u
V2V1

A1

A2

	 6.	 Consider the inviscid flow of air past the rounded equilateral triangle shown in the accom-
panying figure. Perform numerical experiments by changing the velocity of the upstream air 
and the r/L ratio (for r/L = 0, r/L = 0.1, and r/L = 0.25) and obtaining the corresponding 
air velocity distributions over the triangle. Discuss your results.

r
L

	 7.	 Consider the inviscid flow of air past the square rod with rounded corners shown in the accom-
panying figure. Perform numerical experiments by changing the velocity of the upstream air 
and the r/L ratio (for r/L = 0, r/L = 0.1, and r/L = 0.25) and obtaining the corresponding 
air velocity distributions over the square. Discuss your results.
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r

L

	 8.	 Consider the inviscid flow of air past a NACA symmetric airfoil. Abbot and Von Doenhoff 
(1959) provide detailed information about NACA symmetric airfoil shapes, including geo-
metric data for NACA symmetric airfoils. Using their geometric data, obtain the velocity 
distribution over the NACA 0012-​airfoil shown in the accompanying figure. Perform numeri-
cal experiments by changing the angle of attack and obtaining the corresponding air velocity 
distributions over the airfoil. Discuss your results.

Angle of attack

Free stream air velocity

Chord

	 9.	 Consider the seepage flow of water under the concrete dam shown in the accompanying 
figure. The permeability of the porous soil under the dam is approximated as k = 45 ft/day. 
Determine the seepage velocity distribution in the porous soil.
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Porous medium

6 ft

Assume to be
impermeable

Assume to be
impermeable

Water

Water4 ft

15 ft 20 ft

Concrete
dam

40 ft

20ft

30 ft

Assume to be impermeable

	 10.	 Consider the seepage flow of water under the concrete dam shown in the accompanying 
figure. The permeability of the porous soil under the dam is approximated as k = 15 m/day. 
Determine the seepage velocity distribution in the porous soil.

2 m

Assume to be
impermeable

Assume to be
impermeable

Concrete
dam

Water

Water
2 m

7 m 7 m

Assume to be impermeable

30 m

12 m

10 m

Porous medium
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Three-​Dimensional Elements

The main objective of this chapter is to introduce three-​dimensional elements. First, we 
discuss the four-​node tetrahedral element and the associated shape functions. Then, we 
consider the analysis of structural solid problems using the four-​node tetrahedral ele-
ment, including the formulation of an element’s stiffness matrix. This section is followed 
by a discussion of the eight-​node brick element and higher order tetrahedral and brick 
elements. Structural and thermal elements used by ANSYS will be covered next. This 
chapter also presents basic ideas regarding top-​down and bottom-​up solid-​modeling 
methods. Finally, hints regarding how to mesh your solid model are given. The main 
topics of Chapter 13 include the following:

	 13.1	 The Four-​Node Tetrahedral Element

	 13.2	 Analysis of Three-​Dimensional Solid Problems Using Four-​Node Tetrahedral 
Elements

	 13.3	 The Eight-​Node Brick Element

	 13.4	 The Ten-​Node Tetrahedral Element

	 13.5	 The Twenty-​Node Brick Element

	 13.6	 Examples of Three-​Dimensional Elements in ANSYS

	 13.7	 Basic Solid-​Modeling Ideas

	 13.8	 A Thermal Example Using ANSYS

	 13.9	 A Structural Example Using ANSYS

13.1 T he Four-​Node Tetrahedral Element

The four-​node tetrahedral element is the simplest three-​dimensional element used in 
the analysis of solid mechanics problems. This element has four nodes, with each node 
having three translational degrees of freedom in the nodal X-, Y-, and Z-​directions. 
A typical four-​node tetrahedral element is shown in Figure 13.1.

In order to obtain the shape functions for the four-​node tetrahedral element, 
we will follow a procedure similar to the one we followed in Chapter 7 to obtain the 
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triangular shape functions for two-​dimensional problems. We begin by representing the 
displacement field by the following equations:

	  u = C11 + C12X + C13Y + C14Z	 (13.1)

	 v  = C21 + C22X + C23Y + C24Z	

	  w = C31 + C32X + C33Y + C34Z	

Considering the nodal displacements, we must satisfy the following conditions:

 u = uI  at  X = XI  Y = YI  and Z = ZI

 u = uJ  at  X = XJ  Y = YJ  and Z = ZJ

 u = uK  at  X = XK  Y = YK  and Z = ZK

 u = uL  at  X = XL  Y = YL  and Z = ZL

Similarly, we must satisfy the following requirements:

v = vI at X = XI Y = YI and Z = ZI

f f f f f f
w = wL at X = XI Y = YI and Z = ZI

Substitution of respective nodal values into Eqs. (13.1) results in 12 equations and 
12 unknowns:

	  uI = C11 + C12XI + C13YI + C14ZI	 (13.2)

	  uJ = C11 + C12XJ + C13YJ + C14ZJ	

	  f	

	  wL = C31 + C32XL + C33YL + C34ZL	

Z

L

I

J

K

Y

X

Figure 13.1  A four-​node tetrahedral element.
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Solving for the unknown C-​coefficients, substituting the results back into Eq. (13.1), and 
regrouping the parameters, we obtain

	  u = S1uI + S2uJ + S3uK + S4uL 	 (13.3)

	  v = S1vI + S2vJ + S3vK + S4vL 	

	  w = S1wI + S2wJ + S3wK + S4wL	

The shape functions are

	 S1 =
1

6V
 (aI + bIX + cIY + dIZ)	 (13.4)

	 S2 =
1

6V
 (aJ + bJX + cJY + dJZ)	

	 S3 =
1

6V
 (aK + bKX + cKY + dKZ)	

	 S4 =
1

6V
 (aL + bLX + cLY + dLZ)	

where V, the volume of the tetrahedral element, is computed from

	 6V = det 4 1 XI YI ZI

1 XJ YJ ZJ

1 XK YK ZK

1 XL YL ZL

4 	 (13.5)

the aI, bI, cI, dI, c , and dL@terms are

	 aI = det 3 XJ YJ ZJ

XK YK ZK

XL YL ZL

3   bI = -det 3 1 YJ ZJ

1 YK ZK

1 YL ZL

3 	 (13.6)

	 cI = det 3 XJ 1 ZJ

XK 1 ZK

XL 1 ZL

3   dI = -det 3 XJ YJ 1
XK YK 1
XL YL 1

3 	
We can represent the aJ, bJ, cJ, dJ,  c, and dL@terms using similar determinants by rotat-
ing through the I, J, K, and L subscripts using the right-​hand rule. For example,

aJ = det 3 XK YK ZK

XL YL ZL

XI YI ZI

3
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It is important to note here that for thermal problems, we associate only a single 
degree of freedom with each node of the four-​node tetrahedral element—​namely, 
temperature. The variation of temperature over a four-​node tetrahedral element is 
expressed by

	 T = TIS1 + TJS2 + TKS3 + TLS4	 (13.7)

13.2 �An alysis of Three-​Dimensional Solid Problems 
Using Four-​Node Tetrahedral Elements

You may recall from Chapter 10 that only six independent stress components are needed 
to characterize the general state of stress at a point. These components are

	 [S]
T = csxx syy szz txy tyz txz d 	 (13.8)

where sxx, syy, and szz are the normal stresses and txy, tyz, and txz are the shear-​stress 
components. Moreover, we discussed the displacement vector that measures the changes 
occurring in the position of a point within a body when the body is subjected to a 
load. You may also recall that the displacement vector d

u

 can be written in terms of its 
Cartesian components as

	 d
u

= u(x, y, z)i
u

+ v(x, y, z)j
u

+ w(x, y, z)k
u

	 (13.9)

The corresponding state of strain at a point was also discussed in Chapter 10. The gen-
eral state of strain is characterized by six independent components as given by

	 [E]
T

= c exx eyy ezz gxy gyz gxz d 	 (13.10)

where exx, eyy, and ezz are the normal strains and gxy, gyz, and gxz are the shear-​strain 
components. As previously discussed, the relationship between the strain and the dis-
placement is represented by

	  exx =
0u
0x
 eyy =

0v

0y
 ezz =

0w

0z
	 (13.11)

 gxy =
0u
0y

+
0v

0x
 gyz =

0v

0z
+

0w

0y
 gxz =

0u
0z

+
0w

0x

Equations (13.11) can be represented in matrix form as

	 5E6 = LU	 (13.12)
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where

5E6 = f exx

eyy

ezz

gxy

gyz

gxz

v
and

LU =  

0u
0x
0v

0y
0w

0z
0u
0y

+
0v

0x

0v

0z
+

0w

0y
0w

0x
+

0u
0z

L is commonly referred to as the linear-​differential operator.
Over the elastic region of a material, there also exists a relationship between the 

state of stresses and strains, according to the generalized Hooke’s law. This relationship 
is given by the following equations:

	 exx  =
1
E

 [sxx - n(syy + szz)] 	 (13.13)

	 eyy  =
1
E

 [syy - n(sxx + szz)] 	

	 ezz  =
1
E

 [szz - n(sxx + syy)] 	

	 gxy =
1
G

 txy gyz =
1
G

 tyz gzx =
1
G

 tzx	

The relationship between the stress and strain can be expressed in a compact-​matrix 
form as

	 5S6  = [N]5E6 	 (13.14)

y y
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where

5S6  = g sxx

syy

szz

txy

tyz

txz

w

[N] =
E

1 + n
  

1 - n

1 - 2n
n

1 - 2n
n

1 - 2n
0 0 0

n

1 - 2n
1 - n

1 - 2n
n

1 - 2n
0 0 0

n

1 - 2n
n

1 - 2n
1 - n

1 - 2n
0 0 0

0 0 0
1
2

0 0

0 0 0 0
1
2

0

0 0 0 0 0
1
2

5E6  = g exx

eyy

ezz

gxy

gyz

gxz

w
For a solid material under triaxial loading, the strain energy Λ is

	 Λ(e) =
1
2 LV

(sxxexx + syyeyy + szzezz + txygxy + txzgxz + tyzgyz) dV	 (13.15)

Or, in a compact-​matrix form,

	 Λ(e) =
1
2 LV

[S]T5E6dV	 (13.16)

QQ
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Substituting for stresses in terms of strains using Hooke’s law, Eq. (13.15) can be writ-
ten as

	 Λ(e) =
1
2 LV

5E6T[N]5E6dV	 (13.17)

We will now use the four-​node tetrahedral element to formulate the stiffness 
matrix. Recall that this element has four nodes, with each node having three transla-
tional degrees of freedom in the nodal x-, y-, and z-​directions. The displacements u, v, 
and w in terms of the nodal values and the shape functions are represented by

	 5u6 = [S]5U6 	 (13.18)

where

 5u6 = c u
v

w

s
 [S] = CS1 0 0 S2 0 0 S3 0 0 S4 0 0

0 S1 0 0 S2 0 0 S3 0 0 S4 0
0 0 S1 0 0 S2 0 0 S3 0 0 S4

S
 5U6 =  

uI

vI

wI

uJ

vJ

wJ

uK

vK

wK

uL

vL

wL

The next few steps are similar to the steps we took to derive the stiffness matrix 
for plane-​stress situations in Chapter 10, except that more terms are involved in this 
case. We begin by relating the strains to the displacement field and, in turn, to the nodal 
displacements through the shape functions. We need to take the derivatives of the com-
ponents of the displacement field with respect to the x-, y-, and z-​coordinates according 
to the strain-​displacement relations given by Eq. (13.12). The operation results in:

y y

Section 13.2    Analysis of Three-​Dimensional Solid Problems    767

M13_MOAV4303_04_GE_C13.INDD   767 27/11/14   10:19 AM

www.FreeEngineeringbooksPdf.com



768    Chapter 13    ­Three-­Dimensional  Element

g exx

eyy

ezz

gxy

gyz

gxz

w  =  
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0
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0 0
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0 0
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0x
0
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0y
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0x
0

0
0S1

0z

0S1

0y
0

0S2

0z

0S1

0y
0S1

0z
0

0S1

0x

0S2

0z
0

0S2

0x

  

0S3

0x
0 0

0S4

0x
0 0

0
0S3

0y
0 0

0S4

0y
0

0 0
0S3

0z
0 0

0S3

0z
0S3

0y

0S3

0x
0

0S4

0y

0S4

0x
0

0
0S3

0z

0S3

0y
0

0S4

0z

0S4

0y
0S3

0z
0

0S3

0x

0S4

0z
0

0S4

0x

  

uI

vI

wI

uJ

vJ

wJ

uK

vK

wK

uL

vL

wL

      (13.19)

Substituting for the shape functions using the relations of Eq. (13.4) and differentiating, 
we have

	 5E6 = [B]5U6 	 (13.20)

where

[B] =  
1

6V
 GbI 0 0 bJ 0 0 bK 0 0 bL 0 0

0 cI 0 0 cJ 0 0 cK 0 0 cL 0
0 0 dI 0 0 dJ 0 0 dK 0 0 dL

cI bI 0 cJ bJ 0 cK bK 0 cL bL 0
0 dI cI 0 dJ cJ 0 dK cK 0 dL cL

dI 0 bI dJ 0 bJ dK 0 bK dL 0 bL

 W
and the volume V and the b-, c-, and d-​terms are given by Eqs. (13.5) and (13.6). 
Substituting into the strain energy equation for the strain components in terms of the 
displacements, we obtain

	 Λ(e) =
1
2 LV

5E6T[N]5E6dV =
1
2 LV

[U]T[B]T[N][B][U]dV	 (13.21)

Differentiating with respect to the nodal displacements yields

	
0Λ(e)

0Uk
=

0
0Uk

 ¢1
2 LV

[U]T[B]T[N][B][U]dV≤ for k = 1, 2, c , 12	 (13.22)

Evaluation of Eq. (13.22) results in the expression [K](e)5U6  and, subsequently, the 
expression for the stiffness matrix, which is

	 [K](e) = LV

[B]T[N][B]dV = V[B]T[N][B]	 (13.23)

QQ y y
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Section 13.3  T  he Eight-Node Brick Element    769

where V is the volume of the element. Note that the resulting stiffness matrix will have 
the dimensions of 12 * 12.

Load Matrix

The load matrix for three-​dimensional problems is obtained by using a procedure simi-
lar to the one described in Section 10.2. The load matrix for a tetrahedral element is a 
12 * 1 matrix. For a concentrated-​loading situation, the load matrix is formed by plac-
ing the components of the load at appropriate nodes in appropriate directions. For a 
distributed load, the load matrix is computed from the equation

	 5F6 (e) = LA

[S]T5p6dA	 (13.24)

where

5p6  = c px

py

pz

s
and A represents the surface over which the distributed-​load components are acting. 
The surfaces of the tetrahedral element are triangular in shape. Assuming that the dis-
tributed load acts on the I–J–K surface, the load matrix becomes

	 5F6(e) =
AI - J - K

3
   

px

py

pz

px

py

pz

px

py

pz

0
0
0

	 (13.25)

The load matrix for a distributed load acting on the other surfaces of the tetrahe-
dral element is obtained in a similar fashion.

13.3 T he Eight-​Node Brick Element

The eight-​node brick element is the next simple three-​dimensional element used in the 
analysis of solid mechanics problems. Each of the eight nodes of this element has three 
translational degrees of freedom in the nodal x-, y-, and z-​directions. A typical eight-​
node brick element is shown in Figure 13.2.

y y
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770    Chapter 13    ­Three-­Dimensional  Element

The element’s displacement field in terms of the nodal displacements and the 
shape functions can be written as

	  u =
1
8

 (uI(1 - s)(1 - t)(1 - r) + uJ(1 + s)(1 - t)(1 - r)) 	 (13.26)

	  +
1
8

 (uK(1 + s)(1 + t)(1 - r) + uL(1 - s)(1 + t)(1 - r)) 	

	  +
1
8

 (uM(1 - s)(1 - t)(1 + r) + uN(1 + s)(1 - t)(1 + r)) 	

	  +
1
8

 (uO(1 + s)(1 + t)(1 + r) + uP(1 - s)(1 + t)(1 + r)) 	

	 v  =
1
8

 (vI(1 - s)(1 - t)(1 - r) + vJ(1 + s)(1 - t)(1 - r)) 	 (13.27)

	  +
1
8

 (vK(1 + s)(1 + t)(1 - r) + vL(1 - s)(1 + t)(1 - r)) 	

	  +
1
8

 (vM(1 - s)(1 - t)(1 + r) + vN(1 + s)(1 - t)(1 + r)) 	

	  +
1
8

 (vO(1 + s)(1 + t)(1 + r) + vP(1 - s)(1 + t)(1 + r)) 	

	 w =
1
8

 (wI(1 - s)(1 - t)(1 - r) + wJ(1 + s)(1 - t)(1 - r)) 	 (13.28)

	  +
1
8

 (wK(1 + s)(1 + t)(1 - r) + wL(1 - s)(1 + t)(1 - r))	

Z, w

Y, v

X, u

t

s

r

L

K

P

O

J
I

N
M

Figure 13.2  An eight-​node brick element.
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	  +
1
8

 (wM(1 - s)(1 - t)(1 + r) + wN(1 + s)(1 - t)(1 + r))	

	  +
1
8

 (wO(1 + s)(1 + t)(1 + r) + wP(1 - s)(1 + t)(1 + r))	

In a similar fashion, for thermal problems, the spatial variation of temperature 
over an element is represented by

	 T =
1
8

 (TI(1 - s)(1 - t)(1 - r) + TJ(1 + s)(1 - t)(1 - r)) 	 (13.29)

	  +
1
8

 (TK(1 + s)(1 + t)(1 - r) + TL(1 - s)(1 + t)(1 - r)) 	

	  +
1
8

 (TM(1 - s)(1 - t)(1 + r) + TN(1 + s)(1 - t)(1 + r))	

	  +
1
8

 (TO(1 + s)(1 + t)(1 + r) + TP(1 - s)(1 + t)(1 + r)) 	

13.4 T he Ten-​Node Tetrahedral Element

The ten-​node tetrahedral element, shown in Figure 13.3, is a higher order version of the 
three-​dimensional linear tetrahedral element. When compared to the four-​node tetra-
hedral element, the ten-​node tetrahedral element is better suited for and more accurate 
in modeling problems with curved boundaries.

For solid problems, the displacement field is represented by

u = uI(2S1 - 1)S1 + uJ(2S2 - 1)S2 + uK(2S3 - 1)S3 + uL(2S4 - 1)S4	 (13.30)

	  + 4(uMS1S2 + uNS2S3 + uOS1S3 + uPS1S4 + uQS2S4 + uRS3S4)	

v = vI(2S1 - 1)S1 + vJ(2S2 - 1)S2 + vK(2S3 - 1)S3 + vL(2S4 - 1)S4	 (13.31)

	  + 4(vMS1S2 + vNS2S3 + vOS1S3 + vPS1S4 + vQS2S4 + vRS3S4)

L

R

N
M

Q

P

O
I

J

K

Z

Y

X

Figure 13.3  A ten-​node tetrahedral element.
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w = wI(2S1 - 1)S1 + wJ(2S2 - 1)S2 + wK(2S3 - 1)S3 + wL(2S4 - 1)S4	 (13.32)

	  + 4(wMS1S2 + wNS2S3 + wOS1S3 + wPS1S4 + wQS2S4 + wRS3S4)	

In similar fashion, the spatial distribution of temperature over an element is given by

T  = TI(2S1 - 1)S1 + TJ(2S2 - 1)S2 + TK(2S3 - 1)S3 + TL(2S4 - 1)S4	 (13.33)

	  + 4(TMS1S2 + TNS2S3 + TOS1S3 + TPS1S4 + TQS2S4 + TRS3S4)	

13.5 T he Twenty-​Node Brick Element

The twenty-​node brick element, shown in Figure 13.4, is a higher order version of the 
three-​dimensional eight-​node brick element. This element is more capable and more 
accurate for modeling problems with curved boundaries than the eight-​node brick 
element.

For solid mechanics problems, the displacement field is given by

 u =
1
8

 (uI(1 - s)(1 - t)(1 - r)( - s - t - r - 2) + uJ(1 + s)(1 - t)(1 - r)(s - t - r - 2))

+
1
8

 (uK(1 + s)(1 + t)(1 - r)(s + t - r - 2) + uL(1 - s)(1 + t)(1 - r)( - s + t - r - 2))

+
1
8

 (uM(1 - s)(1 - t)(1 + r)( - s - t + r - 2) + uN(1 + s)(1 - t)(1 + r)(s - t + r - 2))

+
1
8

 (uO(1 + s)(1 + t)(1 + r)(s + t + r - 2) + uP(1 - s)(1 + t)(1 + r)( - s + t + r - 2))

Z, w

Y, v

X, u

M

Y

I

T L
S

Z

Q J
R

K

s
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O

t

V
N

BU

X
P

W

r

Figure 13.4  A twenty-​node brick element.
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	  +
1
4

 (uQ(1 - s2)(1 - t)(1 - r) + uR(1 + s)(1 - t2)(1 - r))	

	  +
1
4

 (uS(1 - s2)(1 + t)(1 - r) + uT(1 - s)(1 - t2)(1 - r))	

	  +
1
4

 (uU(1 - s2)(1 - t)(1 + r) + uV(1 + s)(1 - t2)(1 + r))	

	  +
1
4

 (uW(1 - s2)(1 + t)(1 + r) + uX(1 - s)(1 - t2)(1 + r))	

	  +
1
4

 (uY(1 - s)(1 - t)(1 - r2) + uZ(1 + s)(1 - t)(1 - r2))	

	  +
1
4

 (uA(1 + s)(1 + t)(1 - r2) + uB(1 - s)(1 + t)(1 - r2))	 (13.34)

The v-​ and w-​components of the displacement are similar to the u-​component:

 v =
1
8

 (vI(1 - s)(1 - t)(1 - r)( - s - t - r - 2) + vJ(1 + s)(1 - t)(1 - r)(s - t - r - 2))

 +
1
8

 (vK(1 + s)(1 + t)(1 - r)(s + t - r - 2) + c )

  c

w =
1
8

 (wI(1 - s)(1 - t)(1 - r)( - s - t - r - 2) + wJ(1 + s)(1 - t)(1 - r)(s - t - r - 2))

 +
1
8

 (wK(1 + s)(1 + t)(1 - r)(s + t - r - 2) + c )	 (13.35)

  c

For heat transfer problems, the spatial variation of temperature over an element is 
given by

 T =
1
8

 (TI(1 - s)(1 - t)(1 - r)(- s - t - r - 2) + TJ(1 + s)(1 - t)(1 - r)(s - t - r - 2))

 +
1
8

 (TK(1 + s)(1 + t)(1 - r)(s + t - r - 2) + c )	 (13.36)

  c

M13_MOAV4303_04_GE_C13.INDD   773 27/11/14   10:19 AM

www.FreeEngineeringbooksPdf.com



774    Chapter 13    ­Three-­Dimensional  Element

13.6 E xamples of Three-​Dimensional Elements in Ansys*

ANSYS offers a broad variety of elements for the analysis of three-​dimensional prob-
lems. Some examples of three-​dimensional elements in ANSYS are presented next.

Thermal-​Solid Elements

SOLID70 is a three-​dimensional element used to model conduction heat transfer 
problems. It has eight nodes, with each node having a single degree of freedom—​
temperature—​as shown in Figure 13.5. The element’s faces are shown by the circled 
numbers. Convection or heat fluxes may be applied to the element’s surfaces. In addi-
tion, heat-​generation rates may be applied at the nodes. This element may be used to 
analyze steady-​state or transient problems.

The solution output consists of nodal temperatures and other information, such 
as average face temperature, temperature-​gradient components, the vector sum at the 
centroid of the element, and the heat-​flux components.

SOLID90 is a twenty-​node brick element used to model steady-​state or transient 
conduction heat transfer problems. This element is more accurate than the SOLID70 
element, but it requires more solution time. Each node of the element has a single degree 
of freedom—​temperature—​as shown in Figure 13.6. This element is well suited to model 
problems with curved boundaries. The required input data and the solution output are 
similar to the data format of the SOLID70 elements.

Structural-​Solid Elements

SOLID185 is a three-​dimensional brick element used to model isotropic solid problems. 
It has eight nodes, with each node having three translational degrees of freedom in the 
nodal x-, y-, and z-​directions, as shown in Figure 13.7 (The element’s faces are shown by 

*Materials were adapted with permission from ANSYS documents.
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Figure 13.5  The SOLID70 element used by ANSYS.
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the circled numbers.) It allows for prism, tetrahedral, and pyramid degeneration when 
used in irregular regions. Distributed surface loads (pressures) may be applied to the 
element’s surfaces. This element may be used to analyze large-​deflection, large-​strain, 
plasticity, and creep problems.

The solution output consists of nodal displacements. Examples of additional ele-
mental output include normal components of the stresses in x-, y-, and z-​directions; 
shear stresses; and principal stresses. The element’s stress directions are parallel to the 
element’s coordinate systems.

SOLID65 is used to model reinforced-​concrete problems or reinforced composite 
materials, such as fiberglass. This element is similar to the SOLID45 elements, and it 
has eight nodes, with each node having three translational degrees of freedom in the 
nodal x-, y-, and z-​directions, as shown in Figure 13.8. The element may be used to 
analyze cracking in tension or crushing in compression. The element can also be used 
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Figure 13.6  The SOLID90 element 
used by ANSYS.
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Figure 13.7  The SOLID185 element 
used by ANSYS.
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to analyze problems with or without reinforced bars. Up to three rebar specifications 
may be defined. The rebars are capable of plastic deformation and creep. The element 
has one solid material and up to three rebar materials. Rebar specifications include the 
material number; the volume ratio, which is defined as the ratio of the rebar volume to 
the total element volume; and the orientation angles. The rebar orientation is defined by 
two angles measured with respect to the element’s coordinate system. The rebar capabil-
ity is removed by assigning a zero value to the rebar material number.

The solution output consists of nodal displacements. Examples of additional ele-
mental output include the normal components of the stresses in x-, y-, and z-​directions, 
shear stresses, and principal stresses. The element’s stress directions are parallel to the 
element’s coordinate system.

SOLID285 is a four-​node tetrahedral structural solid with nodal pressure element, 
with each node having three translational degrees of freedom in the nodal x-, y-, and 
z-​directions, as well as one hydrostatic pressure, as shown in Figure 13.9. As in previous 
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Figure 13.8  The SOLID65 element 
used by ANSYS.
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Figure 13.9  The SOLID285 element 
used by ANSYS.
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examples, the element’s faces are shown by the circled numbers. Distributed surface 
loads (pressures) may be applied to the element’s surfaces.

The solution output is similar to that of other structural-​solid elements.
SOLID186 is a 3-​D 20-​node structural element that has three translational degrees 

of freedom in the nodal x-, y-, and z-​directions, as shown in Figure 13.10. It is the higher 
order version of SOLID185. The input data and the solution output are similar to those 
of elements discussed previously.

SOLID187 is a ten-​node tetrahedral element. Each node has three translational 
degrees of freedom in the nodal x-, y-, and z-​directions, as shown in Figure 13.11. This 
element may be used to analyze large-​deflection, large-​strain, plasticity, and creep 
problems.
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Figure 13.10  The SOLID186 element 
used by ANSYS.
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Figure 13.11  The SOLID187 element 
used by ANSYS.
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13.7 B asic Solid-​Modeling Ideas*

There are two ways to create a solid model of an object under investigation: bottom-​
up modeling and top-​down modeling. With bottom-​up modeling, you start by defining 
keypoints first, then lines, areas, and volumes in terms of the defined keypoints. You 
can define keypoints on the working plane by the picking method or you can enter, in 
appropriate fields, the coordinates of the keypoints in terms of the active coordinate 
system. The keypoints menu is shown in Figure 13.12, and the command for creating 
keypoints is

main menu: Preprocessor S Modeling S Create S Keypoints

Lines, next in the hierarchy of bottom-​up modeling, are used to represent the edges 
of an object. ANSYS provides four options for creating lines, as shown in Figure 13.13. 
With the splines options, you can create a line of arbitrary shape from a spline fit to a 
series of keypoints. You can then use the created line(s) to generate a surface with an 
arbitrary shape. The command for creating lines is:

main menu: Preprocessor S Modeling S Create S Lines

Using bottom-​up modeling, you can define areas using the Area-​Arbitrary sub-
menu, as shown in Figure 13.14. The command for defining areas is:

main menu: Preprocessor S Modeling S Create S Areas S Arbitrary

There are five other ways by which you can create areas: (1) dragging a line along 
a path, (2) rotating a line about an axis, (3) creating an area fillet, (4) skinning a set of 
lines, and (5) offsetting areas. With the drag and rotate options, you can generate an 
area by dragging (sweeping) a line along another line (path) or by rotating a line about 
another line (axis of rotation). With the area-​fillet command, you can create a constant-​
radius fillet tangent to two other areas. You can generate a smooth surface over a set of 

*Materials were adapted with permission from ANSYS documents.

By picking on the working plane
By typing in coordinate values

Figure 13.12  The Keypoints menu.
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lines by using the skinning command. Using the area-​offset command, you can generate 
an area by offsetting an existing area. These operations are all shown in Figure 13.15.

You can define volumes using the bottom-​up method by selecting the Volume 
submenu, as shown in Figure 13.16. The command for defining volume is:

main menu: Preprocessor S Modeling S Create S Volumes S Arbitrary

As with areas, you can also generate volumes by dragging (sweeping) an area along a 
line (path) or by rotating an area about a line (axis of rotation).

With top-​down modeling, you can create three-​dimensional solid objects using 
volume primitives. ANSYS provides the following three-​dimensional primitives: block, 
prism, cylinder, cone, sphere, and torus, as shown in Figure 13.17.

Keep in mind that when you create a volume using primitives, ANSYS auto-
matically generates and assigns numbers to areas, lines, and keypoints that bound the 
volume.

Truly straight line, regardless of active coordinate system
“Straight” within the active coordinate system

Figure 13.13  The Lines menu.

Two commonly used methods

Figure 13.14  The Area-​Arbitrary 
sub-​menu.
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Regardless of how you generate areas or volumes, you can use Boolean operations 
to add or subtract entities to create a solid model.

Meshing Control

So far, you have been using global element size to control the size of elements in your 
model. The GLOBAL-​ELEMENT-​SIZE dialog box allows you to specify the size of 
an element’s edge length in the units of your model’s dimensions. Let us consider other 
ways of controlling not only the size of elements, but also their shapes. Setting the ele-
ment shape prior to meshing is important when using elements that can take on two 
shapes. For example, PLANE183 can take on triangular or quadrilateral shapes. Use the 
following command to see the dialog box for the meshing options (see Figure 13.18):

main menu: Preprocessor S Meshing S Mesher Opts

Area �lletDragging linesRotating lines

Skinning (area “skinned”
over lines L1, L2, and L3)

Offsetting areas (cylindrical  area
“in�ated” and “de�ated”)

Rotation axis

line

Drag path

line New �llet area (A3)

A2

A3

L1

L2

L3

L1

L2

L3

Figure 13.15  Additional area-​generation methods.

Figure 13.16  The Volume submenu.
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Free Meshing Versus Mapped Meshing

Free meshing uses either mixed-​area element shapes, all triangular-​area elements, or all 
tetrahedral-​volume elements. You may want to avoid using lower order triangular and 
tetrahedral elements (those without midside nodes) in analysis of structures, when pos-
sible. On the other hand, mapped meshing uses all quadrilateral-​area elements and all 
hexahedral-​volume elements. Figure 13.19 illustrates the difference between free and 
mapped meshing.

There are, however, some requirements that need to be met for mapped meshing. 
The mapped-​area mesh requires that the area has three or four sides, equal numbers 
of elements on opposite sides, and an even number of elements for three-​sided areas. 
If an area is bounded by more than four lines, then you need to use the combine com-
mand or the concatenate command to combine (reduce) the number of lines to four. The 
mapped-​volume requirements are that the volume must be bound by four, five, or six 
sides, have an equal number of elements on the opposite side, and have an even num-
bers of elements if a five-​sided prism or tetrahedron volume is involved. For volumes, 
you can add or concatenate areas to reduce the number of areas bounding a volume. 
Concatenation should be the last step before meshing. You cannot perform any other 
solid-​modeling operations on concatenated entities. To concatenate, issue the following 
command (see Figure 13.20):

main menu: Preprocessing S Meshing S Concatenate

Figure 13.17  Examples of three-​dimensional primitives.
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Figure 13.18  The dialog box for element shape.

Free meshing Mapped meshing

Figure 13.19  An illustration of the 
difference between free and mapped 
meshing.
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Figure 13.21 shows an example of free and mapped meshing for an area. As a general 
rule, you want to avoid meshing poorly shaped regions and avoid creating extreme 
element-​size transitions in your model. Examples of these situations are given in 
Figure 13.22.

If you are unhappy with the results of a meshed region, you can use the clear com-
mand to delete the nodes and elements associated with a corresponding solid-​model 
entity. To issue the clear command, use the following sequence:

main menu: Preprocessor S Meshing S Clear

With the aid of an example, we will now demonstrate how to create a solid model 
of a heat sink, using area and extrusion commands.

Example 13.1 

Aluminum heat sinks are commonly used to dissipate heat from electronic devices. 
Consider an example of a heat sink used to cool a personal-​computer microprocessor 
chip. The front view of the heat sink is shown in Figure 13.23. Using ANSYS, generate 
the solid model of the heat sink. Because of the symmetry, model only a quarter of the 
heat sink by extruding the shown frontal area by 20.5 mm.

Figure 13.20  Concatenate dialog box.

L7

L6

L11

Concatenated line

Five-sided area Four-sided area

Figure 13.21  An example of free meshing and mapped meshing for an area.
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Enter the ANSYS program by using the Launcher. Type Fin (or a file name of 
your choice) in the Jobname entry field of the dialog box. Pick Run to start the 
Graphic User Interface (GUI).

Create a title for the problem. This title will appear on ANSYS display windows 
to provide a simple way of identifying the displays. To create a title, issue the fol-
lowing command:

New volume
1

Volume 1

Sharp corner
causes tetrahedron

meshing failure

Extreme size transition causes
tetrahedron meshing failure

Milder size transition
meshes successfully

All volume 1
meshes successfully

Figure 13.22  Examples of undesirable meshing situations.

1 mm
1 mm
1 mm

4 mm

1 mm

1 mm

2 mm 2 mm

6 mm
6 mm

Figure 13.23  The front view of the heat sink in Example 13.1.
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utility menu: File S Change Title . . .

Set up the graphics area (i.e., workplane, zoom, etc.) with the following commands:

utility menu: Workplane S Wp Settings . . .

Toggle on the workplane by using the following command:

utility menu: Workplane S Display Working Plane

Bring the workplane to view by using the following command:

utility menu: PlotCtrls S Pan, Zoom, Rotate . . .

Click on the small circle until you bring the workplane to view. Then, create the 
geometry with the following command:

main menu: Preprocessor S Modeling S Create S Areas S Rectangle
S By 2 Corners
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On the work plane, pick the following locations or type the values in WP X, WP Y, 
Width, and Height fields:

  [WP = 4, 0]

  [Expand the rubber band up 2.5 and right 16.5]

  [WP = 0, 1]

  [Expand the rubber band up 1.0 and right 4.0]

  [WP = 0, 3]

  [Expand the rubber band up 1 and right 4.0]

  [WP = 4, 2.5]

  [Expand the rubber band up 1.5 and right 6.0]

  [WP = 4, 4]

  [Expand the rubber band up 6 and right 2]

  [WP = 8, 4]

  [Expand the rubber band up 6.0 and right 2.0]

  [WP = 11, 2.5]

  [Expand the rubber band up 6.0 and right 1.0]
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  [WP = 13, 2.5]

  [Expand the rubber band up 6.0 and right 1.0]

  [WP = 15, 2.5]

  [Expand the rubber band up 6.0 and right 1.0]

  [WP = 17, 2.5]

  [Expand the rubber band up 6.0 and right 1.0]

  [WP = 19, 2.5]

  [Expand the rubber band up 6.0 and right 1.0]

OK

main menu: Preprocessor S Modeling S Operate S Booleans S Add
S Areas

Pick All

main menu: Preprocessor S Modeling S Operate S Extrude S Areas
S Along Normal

Pick or enter the area to be extruded, and then press the Apply button:
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utility menu: PlotCtrls S Pan, Zoom, Rotate . . .

Press the Iso (Isometric view) button. You should then see the image in Figure 13.24.

Figure 13.24  Isometric view of the heat sink.
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Exit and save your results:

ANSYS Toolbar: QUIT

This example has demonstrated how to extrude an area along a normal direction to 
create a volume.

13.8 A  Thermal Example Using ANSYS

Example 13.2 

A section of an aquarium wall with a viewing window has the dimensions shown in 
Figure 13.25. The wall is constructed from concrete and other insulating materials, 
with an average thermal conductivity of k = 0.81 Btu/hr # ft # 5F. The section of the 
wall has a viewing window that is made of a six-​inch-​thick clear plastic with a thermal 
conductivity of k = 0.195 Btu/hr # ft # 5F. The inside air temperature is kept at 705F, 
with a corresponding heat transfer coefficient of h = 1.46 Btu/hr # ft2 # 5F. Assuming 
a water-​tank temperature of 505F and a corresponding heat transfer coefficient of 
h = 10.5 Btu/hr # ft2 # 5F, use ANSYS to plot the temperature distribution within the 
wall section. Note that the main purpose of this example is to show the selection capa-
bilities of ANSYS and to show how to move the working plane when constructing three-​
dimensional models. Recall that the heat loss through such a wall may be obtained with 
reasonable accuracy from the equation q = Uoverall(Tinside - Twater) and by calculating 
the overall U-​factor for the wall.
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Enter the ANSYS program by using the Launcher. Type Wall (or a file name 
of your choice) in the Jobname entry field of the dialog box. Pick Run to start 
the GUI.

To create a title, issue the following command:

utility menu: File S Change Title . . .

2.5 ft

1.5 ft

6 in

18 in

Clearplastic

0.5 ft
7 ft

3 
ft

3.
5 

ft

Figure 13.25  Dimensions of the wall 
and the clear-​plastic viewing window of 
Example 10.2.
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main menu: Preprocessor S Element Types S Add/Edit/Delete
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Assign thermal conductivity values for concrete and plastic with the following 
commands:

main menu: Preprocessor S Material Props S Material Models
S Thermal S Conductivity S Isotropic

From the Define Material Model behavior window:

Material S New Model . . .

Double click on Isotropic and assign thermal Conductivity of Plastic
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ANSYS Toolbar: SAVE_DB

Set up the graphics area (i.e., workplane, zoom, etc.) with the following commands:

utility menu: Workplane S WP Settings . . .

Toggle on the workplane by using the following command:

utility menu: Workplane S Display Working Plane

Bring the workplane to view by using the following command:

utility menu: PlotCtrls S Pan, Zoom, Rotate . . .

Click on the small circle until you bring the workplane to view. Then, press the Iso 
(Isometric view) button. Next, create the geometry with the following commands:

main menu: Preprocessor S Modeling S Create S Volumes S Block
S By 2 Corners&Z

  [WP = 0, 0]

  [Expand the rubber up 7 and right 2.5]

M13_MOAV4303_04_GE_C13.INDD   793 27/11/14   10:19 AM

www.FreeEngineeringbooksPdf.com



794    Chapter 13    ­Three-­Dimensional  Element

  [Expand the rubber band in the negative Z-​direction to −1.5]

Create a volume, to be removed later, for the plastic volume:

OK

main menu: Preprocessor S Modeling S Operate S Booleans
S Subtract S Volumes

Pick Volume1 and Apply; then pick Volume2 and Apply.

OK

utility menu: Plot S Volumes

Create the plastic volume with the following command:

utility menu: WorkPlane S Offset WP by Increments . . .

In the X, Y, Z Offsets box, type in [0, 0, −0.5].
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OK

Now, issue the following commands:

main menu: Preprocessor S Modeling S Create
S Volumes S Block S By 2 Corners & Z
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OK

main menu: Preprocessor S Modeling S Operate S Booleans
S Glue S Volumes

Pick All

We now want to mesh the volumes to create elements and nodes, but first, we need 
to specify the element sizes. So, issue the following commands:

main menu: Preprocessor S Meshing S Size Cntrls S Manual Size
S Global S Size
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We also need to specify material attributes for the concrete and the plastic vol-
umes before we proceed with meshing. To do so, we issue the following commands:

main menu: Preprocessor S Meshing S Mesh Attributes
S Picked Volumes

  [Pick the concrete part of the wall volume]

  [Apply anywhere in the ANSYS graphics window]

main menu: Preprocessor S Meshing S Mesh Attributes
S PickedVolumes

  [Pick the plastic volume]

  [Apply anywhere in the ANSYS graphics window]
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ANSYS Toolbar: SAVE_DB

We can proceed to mesh by issuing the following commands:

main menu: Preprocessor S Meshing S Mesh S Volumes S Free

Pick All

If you exceed the maximum number of elements allowed in the educational ver-
sion of ANSYS try the following:

main menu: Preprocessor S Meshing S Size Cntrls S Smart Size S Basic

Now try to mesh the volumes again. To apply the boundary conditions, we first 
select the interior surfaces of the wall, including the clear plastic:

utility menu: Select S Entities . . .

In the Min, Max field, type [0, −0.5], see Select Entities window. Choose all 
appropriate fields as shown.
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OK

utility menu: Plot S Areas

main menu: Solution S Define Loads S Apply S Thermal

S Convection S On Areas

Pick All
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utility menu: Select S Everything . . .

utility menu: Select S Entities . . .

In the Min, Max field, type: [−1.0, −1.5]
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OK

utility menu: Plot S Areas

main menu: Solution S Define Loads S Apply
S Thermal S Convection S On Areas

Pick All to specify the convection coefficient and temperature:

To see the applied boundary conditions, use the following commands:

utility menu: PlotCntrls S Symbols c
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utility menu: Select S Everything . . .

utility menu: Plot S Areas

ANSYS Toolbar: SAVE_DB

Solve the problem:

main menu: Solution S Solve S Current LS

OK
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Close (the solution is done!) window.

Close (the /STAT Command) window.

For the postprocessing phase, obtain information such as nodal temperatures and 
heat fluxes with the following commands (see Figure 13.26 and Figure 13.27):

main menu: General Postproc S Plot Results S Contour Plot
S Nodal Solu

main menu: General Postproc S Plot Results
S Vector Plot S Predefined
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Exit and save your results:

ANSYS Toolbar: QUIT
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Figure 13.26  Temperature contour plot.

Figure 13.27  The heat flow vectors.
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13.9 A  Structural Example Using ANSYS

Example 13.3 

The bracket shown in Figure 13.28 is subjected to a distributed load of 50 lb/in2 on the 
top surface. It is fixed around the hole surfaces. The bracket is made of steel, with a 
modulus elasticity of 29 * 106 lb/in2 and n = 0.3. Plot the deformed shape. Also, plot 
the von Mises stress distribution in the bracket.

1 in

r = 0.25 in

X
Z

Y

3 in
2 in

3 in1 in

1 in

1/8 in

Figure 13.28  Dimensions of the bracket in Example 13.3.

The following steps demonstrate how to create the geometry of the problem: choose 
the appropriate element type, apply boundary conditions, and obtain nodal results:

Enter the ANSYS program by using the Launcher. Type Brack3D (or a file name 
of your choice) in the Jobname entry field of the dialog box. Pick Run to start 
the GUI.

Create a title for the problem.

utility menu: File S Change Title . . .
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main menu: Preprocessor S Element Type S Add/Edit/Delete
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Assign the modulus of elasticity and Poisson’s ratio with the following commands:

main menu: Preprocessor S Material Props S Material Models
S Structural S Linear S Elastic S Isotropic

ANSYS Toolbar: SAVE_DB

Set up the graphics area (i.e. workplane, zoom, etc.) with the following commands:

utility menu: Workplane S WP Settings . . .
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Toggle on the workplane by using the following command:

utility menu: Workplane S Display Working Plane

Bring the workplane to view by using the following command:

utility menu: PlotCtrls S Pan, Zoom, Rotate . . .

Click on the small circle until you bring the workplane to view. Then, press the Iso 
(Isometric view) button. Next, create the vertical plate by issuing the following 
commands:

main menu: Preprocessor S Modeling S Create S Volumes S Block
S By 2 Corners & Z

  [WP = 0,0]

  [Expand the rubber band up 3.0 and to the right 2.0]

  [Expand the rubber band in the negative Z-​direction by 0.125]

OK

To create the holes, first we must create two cylinders, with the following commands:

main menu: Preprocessor S Modeling S Create S Volumes
S Cylinder S Solid Cylinder

On the workplane, pick the following locations or type the values in WP X, WP Y, 
Radius, and Depth fields:

  [WP = 1,1]

  [Expand the circle to rad = 0.25]

  [Expand the cylinder to a length of 0.125 in the negative Z-​direction]

  [WP = 1,2]
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  [Expand the circle to rad = 0.25]

  [Expand the cylinder to a length of 0.125 in the negative Z-​direction]

OK

Now, create the holes by subtracting from the vertical plate the volume of cylin-
ders, with the following commands:

main menu: Preprocessor S Modeling S Operate
S Booleans S Subtract S Volumes

Pick Volume-​1 (the vertical plate) and Apply; then, pick Volume-​2 and Volume-​3 
(the cylinders) and Apply.

OK

utility menu: Plot S Volumes

ANSYS Toolbar: SAVE_DB

Move and rotate the workplane and create the top plate with the following 
command:

utility menu: Workplane S Offset WP by Increments . . .
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In the X, Y, Z Offsets box, type in [0, 3.0, −0.125], and then Apply. To rotate the 
WP, move the Degrees Slider bar to 90 and then press the +X rotation button.

OK

utility menu: PlotCtrls S  Pan, Zoom, Rotate . . .

Press the Bot (bottom view) button and issue the following commands:

main menu: Preprocessor S Modeling S Create S Volumes S Block
S By 2 Corners & Z

  [WP = 0,0]

  [In the active workplane, expand the rubber band to 3.0 and 2.0]
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  [Expand the rubber band in the negative Z-​direction by 0.125]

OK

utility menu: WorkPlane S Align WP With S Global Cartesian

utility menu: Plot S Volumes

utility menu: WorkPlane S Offset WP by Increments . . .

In the X, Y, Z Offsets box, type in [0, 0, −0.125], then Apply. Rotate the work-
plane about the Y-​axis. Move the Degrees Slider bar to 90 and then press the 
-Y rotation button.

OK

utility menu: PlotCtrls S Pan, Zoom, Rotate . . .
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Change the view to Left and issue the following commands:

main menu: Preprocessor S Modeling S Create S Volumes
S Prism S By Vertices

  [WP = 0,0]

  [WP = 0, 3.125]

  [WP = 3, 3.125]

  [WP = 3.0, 3.0]

  [WP = 0.125, 0]

  [WP = 0,0]

Change the view to the isometric view by pressing the Iso button:

  [Stretch the rubber band 0.125 in the Z-​direction]

OK

utility menu: Plot S Volumes

utility menu: PlotCtrls S Pan, Zoom, Rotate . . .

Toggle on the dynamic mode; hold down the right button on the mouse and rotate 
the object as desired. Then, issue the following commands:

main menu: Preprocessor S Modeling S Operate S Booleans
S Add S Volumes

Pick All

We now want to mesh the volumes to create elements and nodes, but first, we need 
to specify the element sizes. So, issue the following commands:

main menu: Preprocessor S Meshing S Size Cntrls S Smart Size S Basic
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ANSYS Toolbar: SAVE_DB

main menu: Preprocessor S Meshing S Mesh S Volumes S Free

Pick All

Close

ANSYS Toolbar: SAVE_DB

Now, we need to apply boundary conditions. First, we will fix the periphery of the 
holes by using the following command:

utility menu: PlotCtrls S Pan, Zoom, Rotate . . .

Choose the Front view and issue the following commands:

main menu: Solution S Define Loads S Apply S Structural
S Displacement S On Keypoints

Change the picking mode to “circle” by toggling on the •Circle feature. Now, start-
ing at the center of the holes, stretch the rubber band until you are just outside 
the holes and Apply:
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Choose the isometric view and issue the following commands:

utility menu: Select S EntitiesN

In the Min, Max field, type [3.125, 3.125].

OK

utility menu: Plot S Areas

main menu: Solution S Define Loads S Apply S Structural S Pressure
S On Areas

Pick All to specify the distributed load (pressure) value:
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To see the applied boundary conditions, use the following commands:

utility menu: PlotCtrls S SymbolsN
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utility menu: Select S Everything . . .

utility menu: Plot S Areas

ANSYS Toolbar: SAVE_DB

Solve the problem:

main menu: Solution S Solve S Current LS

OK

Close (the solution is done!) window.

Close (the /STAT Command) window.

In the postprocessing phase, first plot the deformed shape by using the following 
commands (see Figure 13.29):

main menu: General Postproc S Plot Results S Deformed Shape

Figure 13.29  The deformed shape of the bracket.
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Plot the von Mises stresses by using the following commands (see Figure 13.30):

main menu: General Postproc S Plot Results
S ContourPlot S Nodal Solu

Figure 13.30  The von Mises stress distribution within the bracket.
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Exit and save your results:

ANSYS Toolbar: QUIT

Summary

At this point you should

	 1.	 know how the shape functions for a tetrahedral element are derived.
	 2.	 know how the stiffness matrix and load matrix for a tetrahedral element are 

derived.
	 3.	 be familiar with the eight-​node brick element and its higher order counterpart, the 

twenty-​node brick element.
	 4.	 be familiar with some of the structural-​solid and thermal elements available 

through ANSYS.
	 5.	 understand the difference between the top-​down and bottom-​up solid-​modeling 

methods.
	 6.	 be able to find ways to verify your FEA results.
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Problems

	 1.	 For a tetrahedral element, derive an expression for the stress components in terms of the 
nodal displacement solutions. How are the three principal stresses computed from the cal-
culated stress component values?

Chapter 13    Problems    819
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820    Chapter 13    ­Three-­Dimensional  Element

	 2.	 Use ANSYS to create the solid model of the object shown in the accompanying figure. Use 
the dynamic-​mode option to view the object from various directions. Plot the solid object in 
its isometric view.

0.25 in

r = 0.5

r = 0.25 hole all the way through

r = 0.75

r = 0.75

0.5 in

0.25 in

r = 1.5

r = 1.5

6 in

	 3.	 Use ANSYS to create a solid model of a foot-​long section of a pipe with the internal longi-
tudinal fins shown in the accompanying figure. Use the dynamic-​mode option to view the 
object from various directions. Plot the object in its isometric view.

r1

1 ft

r2

t

H

 r1 = 2 in

 r2 = 21
4 in

 t = 3
4  in

 H = 3
4 in

	 4.	 Use ANSYS to create the solid model of the wall-​mount piping support bracket shown in the 
accompanying figure. Use the dynamic-​mode option to view the object from various direc-
tions. Plot the solid object in its isometric view.
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0.5 in

0.125 in

1.5 in

1.5 in

1.75 in

1.5 in

r = 0.125 holes

	 5.	 Use ANSYS to create the solid model of the heat exchanger shown in the accompanying 
figure. Use the dynamic-​mode option to view the object from various directions. Plot the 
model of the heat exchanger in its isometric view.

1"

Plate thickness =   1"
16
—

r2 = 0.5625"  

r1 =  0.5"

r2

r1

2"

2"

2"

2"

2" 2" 2" 2"
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	 6.	 Use ANSYS to create the solid model of the wheel shown in the accompanying figure. Use 
the dynamic-​mode option to view the object from various directions. Plot the object in its 
isometric view.

Dimensions are in inches.

R 0.8

R 0.7

x

z

y

R 0.7

R 0.8

8 holes
1.0 dia.

1.0

2.0
5.25

6.75
9.0

10.0

4.25

CL

6.0
7.0

2.0

	 7.	 Use ANSYS to create a solid model of a 100-​mm-​long section of a pipe with the internal 
longitudinal fins shown in the accompanying figure. Use the dynamic-​mode option to view 
the object from various directions. Plot the object in its isometric view.

Water

50 mm5 mm

17.5
mm

12.5
mm

5 mm

Ethylene glycol
solution

	 8.	 Using ANSYS, calculate and plot the principal stress distributions in the support component 
shown in the accompanying figure. The bracket is made of steel. It is fixed around the hole 
surfaces.
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2 cm

5 mm

5 mm

100 N/cm2

Fillet radius = 5 mm

Holes centered with r = 5 mm

4 cm

6 cm

6 cm

7 cm

	 9.	 Using ANSYS, calculate and plot the von Mises stress distribution in the traffic signpost 
shown in the accompanying figure. The post is made of steel, and the sign is subjected to a 
wind gust of 60 miles/hr. Use the drag force relation FD = CDA1

2rU2 to calculate the load 
caused by the wind, where FD is the load, CD = 1.18, r represents the density of air, U is the 
wind speed, and A gives the frontal area of the sign. Distribute the load on the section of the 
post covered by the sign. Could you model this problem as a simple cantilever beam and thus 
avoid creating an elaborate finite element model? Explain.

1/8 in

D = 3/8 in
3/4 in

1.5 in

1.5 in

1 in

2 ft

2 ft

4 ft

SIGN
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	 10.	 Determine the temperature distribution inside the aluminum heat sink in Example 13.1 if the 
surrounding air is at 255C, with a corresponding heat transfer coefficient h = 20 W/m2 # K. 
The heat sink sits on a chip that dissipates approximately 2000 W/m2. Extrude the frontal 
area shown in the accompanying figure 20.5 mm to create a quarter model of the heat sink.

1 mm
1 mm
1 mm

4 mm

1 mm

1 mm

2 mm 2 mm

6 mm
6 mm

The front view of the heat sink in Problem 10.

	 11.	 Imagine that by mistake, an empty coffee pot has been left on a heating plate. Assuming 
that the heater puts approximately 20 Watts into the bottom of the pot, determine the tem-
perature distribution within the glass if the surrounding air is at 255C, with a corresponding 
heat transfer coefficient h = 15 W/m2 # K. The pot is cylindrical in shape, with a diameter of 
14 cm and height of 14 cm, and the glass is 3 mm thick. Could you solve this problem using a 
one-​dimensional conduction and thus avoid creating an elaborate three-​dimensional model?

Heating plate

	 12.	 Using ANSYS, generate a three-​dimensional model of a socket wrench. Take measurements 
from an actual socket. Use solid-​cylinder, hexagonal-​prism, and block primitives to construct 
the model. Make reasonable assumptions regarding loading and boundary conditions, and 
perform stress analysis. Plot the von Mises stresses. Discuss the type and magnitude of loading 
that could cause failure.
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	 13.	 During the winter months, the inside air temperature of a room is to be kept at 705F. However, 
because of the location of a heat register under the window, the temperature distribution of 
the warm air along the window base is nonuniform. Assume a linear temperature variation 
from 805F to 905F (over a foot long section) with a corresponding heat transfer coefficient 
h = 1.46 Btu/hr # ft2 # 5F. Also, assume an outside air temperature of 105F and a correspond-
ing h = 6 Btu/hr # ft2 # 5F. Using ANSYS, determine the temperature distribution in the win-
dow assembly, as shown in the accompanying figure. What is the overall heat loss through 
the window assembly?

Aluminum

1 in

7 in 3 in

1/4 in

1 in

3/4 in

36 in

24 in

11.75 in

Glass

Concrete

Tf varies 80 to 905F,  
h = 1.46 Btu/hr · ft2 · F

	 14.	 Using ANSYS, calculate and plot the principal stress distributions in the link component 
shown in the accompanying figure. The link is made of steel.
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R = 1/8"

2000 lb

2000 lb

1/4" 1/4"

1/4"

0.5"

0.5"

1/4"

1" 1" 1"

2"1"

1"

3"

	 15.	 Design Problem Referring to one of the design problems in Chapter 10 (Problem 15), each 
student is to design and construct a structural model from a 3

8
″ * 6″ * 6″ sheet of plexiglas 

material that adheres to the specifications and rules given in Problem 15. Additionally, for this 
project, the model may have any cross-​sectional shape. Examples of some common sections 
are shown in the accompanying figure.

Examples of cross-section A–A

P

A A

d

b

b

P

Holes parallel to
and at an angle of 90
to the axis of loading

aa

W

h/
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	 16.	 Design Problem Using a three-​dimensional beam element in ANSYS, you are to size the 
cross sections of members of the frame shown in the accompanying figure. Use hollow tubes. 
The frame is to support the weight of a traffic light and withstand a wind gust of 80 miles/hr. 
Write a brief report discussing your final design.

24"6'6'6'6' 6'

30'

18' 10"

30"
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C h a p t e r   1 4

Design and Material Selection*

Engineers are problem solvers. In this chapter, we introduce you to the engineering 
design process. Engineers apply physical and chemical laws and principles along with 
mathematics to design millions of products and services that we use in our everyday 
lives: products such as cars, computers, aircraft, clothing, toys, home appliances, surgical 
equipment, heating and cooling equipment, health care devices, tools and machines that 
make various products, and so on. In recent years, the use of finite element analysis as 
a design tool has grown rapidly. As you have seen so far, finite element methods can be 
used to obtain solutions to a large class of engineering problems.

In this chapter, we look more closely at what the term design means and learn 
more about how engineers go about designing products. We discuss the basic steps that 
most engineers follow when designing a component or system.

As a design engineer, whether you are designing a machine part, a toy, a frame for 
a car, or a structure, the selection of material is an important design decision. There are a 
number of factors that engineers consider when selecting a material for a specific appli-
cation. For example, they consider properties of material such as density, ultimate 
strength, flexibility, machinability, durability, thermal expansion, electrical and thermal 
conductivity, and resistance to corrosion. They also consider the cost of the material 
and how easily it can be repaired. Engineers are always searching for ways to use 
advanced materials to make products lighter and stronger for different applications.

In this chapter, we also look more closely at materials that are commonly used in 
various engineering applications. We discuss some of the basic physical characteristics of 
materials that are considered in design. We examine solid materials, such as metals and 
their alloys, plastics, glass, and wood, and those that solidify over time, such as concrete. 
We also investigate in more detail basic fluids, such as air and water, that not only are 
needed to sustain life, but also play important roles in engineering. Did you ever stop 
to think about the important role that air plays in food processing, driving power tools, 
or in your car’s tire to provide a cushiony ride? You may not think of water as an engi-
neering material either, but we not only need water to live, among other applications, 
we also need water to generate electricity in steam and hydroelectric power plants, and 

*Materials were adapted with permission from Engineering Fundamentals by Moaveni (2002).
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Section 14.1    Engineering Design Process    829

we use high pressurized water, which functions like a saw, to cut materials. The main 
topics discussed in Chapter 14 are

	 14.1	 Engineering Design Process

	 14.2	 Material Selection

	 14.3	 Electrical, Mechanical, and Thermophysical Properties of Materials

	 14.4	 Common Solid Engineering Materials (light metals, copper and its alloys, iron and 
steel, concrete, wood, plastics, glass, composite materials)

	 14.5	 Common Fluid Materials (air and water)

14.1 E ngineering Design Process

Let us begin by emphasizing what we said earlier about what engineers do. Engineers 
apply physical laws, chemical laws and principles, and mathematics to design millions 
of products and services that we use in our everyday lives. These products include cars, 
computers, aircraft, clothing, toys, home appliances, surgical equipment, heating and 
cooling equipment, health care devices, tools and machines that make various products, 
and so on. Engineers consider important factors such as cost, efficiency, reliability, and 
safety when designing the products. Engineers perform tests to make certain that the 
products they design withstand various loads and conditions. Engineers are continuously 
searching for ways to improve already existing products as well. Engineers continuously 
develop new advanced materials to make products lighter and stronger for different 
applications. Let us now look more closely at what constitutes the design process. These 
are the basic steps that engineers, regardless of their background, follow to arrive at 
solutions to problems. The steps include

	 1.	 recognizing the need for a product or a service
	 2.	 defining and understanding the problem (the need) completely
	 3.	 doing preliminary research and preparation
	 4.	 conceptualizing ideas for possible solutions
	 5.	 synthesizing the findings
	 6.	 evaluating good ideas in more detail
	 7.	 optimizing solutions to arrive at the best possible solution
	 8.	 presenting the final solution

Keep in mind that these steps, which we will discuss soon, are not independent of 
one another and do not necessarily follow one another in the order they are presented. In 
fact, engineers often need to return to steps 1 and 2 when clients decide to change design 
parameters. Quite often, engineers are also required to give oral and written progress 
reports on a regular basis. Therefore, be aware that even though we listed presenting the 
final solution as step 8, it could well be an integral part of many other design steps. Let 
us now take a closer look at each step, starting with the need for a product or a service.

Step 1.	 Recognizing the need for a product or a service. All you have to do is look 
around to realize the large number of products and services—​designed by engineers—​
that you use every day. Most often we take these products and services for granted 
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until, for some reason, there is an interruption in the services they provide. Some of 
these existing products are constantly being modified to take advantage of new tech-
nologies. For example, cars and home appliances are constantly being redesigned to 
incorporate new technologies. In addition to the products and services already in use, 
new products are being developed every day for the purpose of making our lives more 
comfortable, more pleasurable, and less laborious. There is also that old saying that 
every time someone complains about a situation, or about a task, or curses a product, 
right there is an opportunity for a product or a service. As you can tell, the need for 
products and services exists; what one needs to do is to identify them. The need may 
be identified by you, the company that you may eventually (or already) work for, or by 
a third-​party client that needs a solution to a problem or a new product to make what 
they do easier and more efficient.

Step 2.	 Defining and understanding the problem. One of the first things you need to 
do as a design engineer is to fully understand the problem. This is the most important 
step in any design process. If you do not have a good grasp of what the problem is or of 
what the client wants, you will not come up with a solution that is relevant to the need 
of the client. The best way to fully understand a problem is by asking many questions. 
You may ask the client questions such as

How much money are you willing to spend on this project?

Are there restrictions on the size or the type of materials that can be used?

When do you need the product or the service?

How many of these products do you need?

Questions often lead to more questions that will better define the problem. Moreover, 
keep in mind that engineers generally work in a team environment where they consult 
each other to solve complex problems. They divide up the task into smaller, manage-
able problems among themselves; consequently, productive engineers must be good 
team players. Good interpersonal and communication skills are increasingly impor-
tant now because of the global market. You need to make sure you clearly understand 
your portion of the problem and how it fits with the other problems. For example, 
various parts of a product could be made by different companies located in different 
states or countries. In order to assure that all components fit and work well together, 
cooperation and coordination are essential, which demands good teamwork and strong 
communication skills. Make sure you understand the problem, and make sure that the 
problem is well defined before you move on to the next step. This point can not be 
emphasized enough. Good problem solvers are those who first fully understand what 
the problem is.

Step 3.	 Doing preliminary research and preparation. Once you fully understand the 
problem, as a next step you need to collect useful information. Generally speaking, a 
good place to start is by searching to determine if a product already exists that closely 
meets the need of your client. Perhaps a product, or components of a product, already 
have been developed by your company that you could modify to meet the need. You do 
not want to reinvent the wheel! As mentioned earlier, depending on the scope of project, 
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some projects require collaboration with other companies, so you need to find out what 
is available through these other companies as well. Try to collect as much information as 
you can. This is where you spend lots of time not only with the client, but also with other 
engineers and technicians. Internet search engines are becoming increasingly important 
tools to search for such information. Once you have collected all pertinent information, 
you must then review it and organize the information in a suitable manner.
Step 4.	 Conceptualizing ideas for possible solutions. During this phase of design you 
need to generate some ideas or concepts that could offer reasonable solutions to your 
problem. In other words, without performing any detailed analysis, you need to come up 
with some possible ways of solving the problem. You need to be creative and perhaps 
develop several alternative solutions. At this stage of design, you do not need to rule 
out any reasonable working concept. If the problem consists of a complex system, you 
need to identify the components of the system. You do not need to look at details of 
each possible solution yet, but you need to perform enough analysis to see whether the 
concepts that you are proposing have merits. Simply stated, you need to ask yourself the 
following question: Would the concepts be likely to work if they were pursued further? 
Throughout the design process, you must also learn to budget your time. Good engineers 
have time management skills that enable them to work productively and efficiently. 
You must learn to create a milestone chart detailing your time plan for completing the 
project. You need to show the time periods and the corresponding tasks that are to be 
performed during these time periods.
Step 5.	 Synthesizing the findings. Good engineers have a firm grasp of the fundamental 
principles of engineering, which they can use to solve many different problems. Good 
engineers are analytical, detail-​oriented, and creative. During this stage of design, you 
begin to consider details. You need to perform calculations, run computer models, nar-
row down the materials to be used, size the components of the system, and answer ques-
tions about how the product is going to be fabricated. You will consult pertinent codes 
and standards, and make sure that your design will be in compliance with them.
Step 6.	 Evaluating good ideas. Analyze the problem in more detail. You may have to 
identify critical design parameters and consider their influence in your final design. At 
this stage, you need to make sure that all calculations are performed correctly. If there 
are some uncertainties in your analysis, you must perform experimental investigation. 
When possible, working models must be created and tested. At this stage of the design 
procedure, the best solution must be identified from alternatives. Details of how the 
product is to be fabricated must be fully worked out.
Step 7.	 Optimizing solutions. Optimization means minimization or maximization. 
There are two broad types of design: a functional design and an optimized design. 
A functional design is one that meets all of the preestablished design requirements, 
but allows for improvement to be made in certain areas of design. We discuss design 
optimization in Chapter 15.
Step 8.	 Presenting the final solution. Now that you have a final solution, you need to 
communicate your solution to the client, who may be your boss, another group within 
your company, or an outside customer. You may have to prepare not only an oral pre-
sentation but also a written report. A reminder again—​although we have listed the 
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presentation as step 8 of the design process, quite often engineers are required to give 
oral and written progress reports on a regular basis to various groups. Consequently, 
presentation could well be an integral part of many other design steps.

14.2  Material Selection

Design engineers, when faced with selecting materials for their products, often ask ques-
tions such as

How strong will the material be when subjected to an expected load?

Would it fail, and if not, how safely would the material carry the load?

How would the material behave if its temperature were changed?

Would the material remain as strong as it would under normal conditions if its 
temperature is increased?

How much would it expand when its temperature is increased?

How heavy and flexible is the material?

What are its energy absorbing properties?

Would the material corrode?

How would it react in the presence of some chemicals?

How expensive is the material?

Would it dissipate heat effectively?

Would the material act as a conductor or as an insulator to the flow of electricity?

It is important to note that we have posed only a few generic questions; we could 
have asked additional questions had we considered the specifics of the application. For 
example, when selecting materials for implants in bioengineering applications, one must 
consider many additional factors, including

Is the material toxic to the body?

Can the material be sterilized?

When the material comes into contact with body fluid, will it corrode or deteriorate?

Because the human body is a dynamic system, we should also ask how the material 
would react to mechanical shock and fatigue?

Are the mechanical properties of the implant material compatible with those of 
bone to ensure appropriate stress distributions at contact surfaces?

These are examples of additional specific questions that one could ask to find 
suitable material for a specific application.

By now it should be clear that material properties and material cost are impor-
tant design factors. In general, mechanical and thermophysical properties of a material 
depend on its phase. For example, as you know from your everyday experience, the 
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density of ice is different from liquid water (the ice cubes float in liquid water), and the 
density of liquid water is different from that of steam. Moreover, the properties of a 
material in a single phase could depend on its temperature and the surrounding pres-
sure. For example, if you were to look up the density of liquid water in the temperature 
range of, say, 45 C to 1005 C, under standard atmospheric pressure, you would find that 
its density decreases with increasing temperature in that range. Therefore, properties of 
materials depend not only on their phase but also on their temperature and pressure. 
This is another important fact to keep in mind when selecting materials.

14.3 �E lectrical, Mechanical, and Thermophysical 
Properties of Materials

As we have been explaining up to this point, when selecting a material for an applica-
tion, as an engineer you need to consider a number of material properties. In general, 
the properties of a material may be divided into three groups: electrical, mechanical, 
and thermal properties. In electrical and electronic applications, the electrical resis-
tivity of materials is important. How much resistance to flow of electricity does the 
material offer? In many mechanical, civil, and aerospace engineering applications, the 
mechanical properties of materials are important. These properties include modulus 
of elasticity, modulus of rigidity, tensile strength, compression strength, the strength-​to-​
weight ratio, modulus of resilience, and modulus of toughness. In applications dealing 
with fluids (liquids and gases), thermophysical properties such as thermal conductivity, 
heat capacity, viscosity, vapor pressure, and compressibility are important properties. 
Thermal expansion of a material, whether solid or fluid, is also an important design 
factor. Resistance to corrosion is another important factor that must be considered 
when selecting materials.

Material properties depend on many factors, including how the material was pro-
cessed, its age, its exact chemical composition, and any nonhomogeneity or defect within 
the material. Material properties also change with temperature and time as the material 
ages. Most companies that sell materials will provide upon request information on the 
important properties of their manufactured materials. Keep in mind that when practic-
ing as an engineer, you should use the manufacturer’s material property values in your 
design calculations. The property values given in this and other textbooks should be used 
as typical values—​not as exact values.

Electrical resistivity—​The value of electrical resistivity is a measure of resistance 
of material to flow of electricity. For example, plastics and ceramics typically have 
high resistivity, whereas metals typically have low resistivity, and among the best 
conductors of electricity are silver and copper.

Density—​Density is defined as mass per unit volume; it is a measure of how com-
pact the material is for a given volume. For example, the average density of alumi-
num alloys is 2700 kg/m3, and compared to steel density of 7850 kg/m3, aluminum 
has a density which is approximately 1/3 of the density of steel.
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Modulus of elasticity (Young’s modulus)—Modulus of elasticity is a measure of 
how easily a material will stretch when pulled (subject to a tensile force) or how 
well the material will shorten when pushed (subject to a compressive force). The 
larger the value of the modulus of elasticity is, the larger the required force would 
be to stretch or shorten the material. For example, the modulus of elasticity of 
aluminum alloy is in the range of 70 to 79 GPa, whereas steel has a modulus of 
elasticity in the range of 190 to 210 GPa; therefore, steel is approximately three 
times stiffer than aluminum alloys.

Modulus of rigidity (shear modulus)—Modulus of rigidity is a measure of how 
easily a material can be twisted or sheared. The value of modulus of rigidly, also 
called shear modulus, shows the resistance of a given material to shear deforma-
tion. Engineers consider the value of shear modulus when selecting materials for 
shafts or rods that are subjected to twisting torques. For example, the modulus 
of rigidity or shear modulus for aluminum alloys is in the range of 26 to 36 GPa, 
whereas the shear modulus for steel is in the range of 75 to 80 GPa. Therefore, steel 
is approximately three times more rigid in shear than aluminum.

Tensile strength​—The tensile strength of a piece of material is determined by mea-
suring the maximum tensile load a material specimen in the shape of a rectangular 
bar or cylinder can carry without failure. The tensile strength or ultimate strength 
of a material is expressed as the maximum tensile force per unit cross-​sectional 
area of the specimen. When a material specimen is tested for its strength, the 
applied tensile load is increased slowly. In the very beginning of the test, the mate-
rial will deform elastically, meaning that if the load is removed, the material will 
return to its original size and shape without any permanent deformation. The point 
to which the material exhibits this elastic behavior is called the yield point. The 
yield strength represents the maximum load that the material can carry without 
any permanent deformation. In certain engineering design applications (especially 
involving brittle materials), the yield strength is used as the tensile strength.

Compression strength​—Some materials are stronger in compression than they 
are in tension; concrete is a good example. The compression strength of a piece of 
material is determined by measuring the maximum compressive load a material 
specimen in the shape cube or cylinder can carry without failure. The ultimate 
compressive strength of a material is expressed as the maximum compressive force 
per unit cross-​sectional area of the specimen. Concrete has a compressive strength 
in the range of 10 to 70 MPa.

Modulus of resilience​—Modulus of resilience is a mechanical property of a mate-
rial that shows how effective the material is in absorbing mechanical energy with-
out going through any permanent damage.

Modulus of toughness​—Modulus of toughness is a mechanical property of a 
material that indicates the ability of the material to handle overloading before it 
fractures.

Strength-​to-​weight ratio​—As the term implies, it is the ratio of strength of the 
material to its specific weight (weight of the material per unit volume). Based on 
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the application, engineers use either the yield or the ultimate strength of the mate-
rial when determining the strength-​to-​weight ratio of a material.

Thermal expansion​—The coefficient of linear expansion can be used to determine 
the change in the length (per original length) of a material that would occur if the 
temperature of the material were changed. This is an important material property 
to consider when designing products and structures that are expected to experi-
ence a relatively large temperature swing during their service lives.

Thermal conductivity​—Thermal conductivity is a property of material that shows 
how good the material is in transferring thermal energy (heat) from a high tem-
perature region to a low temperature region within the material.

Heat capacity​—Some materials are better than others in storing thermal energy. 
The value of heat capacity represents the amount of thermal energy required 
to raise the temperature 1 kilogram mass of a material by 15C or using  U.S. 
Customary units, the amount of thermal energy required to raise one pound mass 
of a material by 15F. Materials with large heat capacity values are good at storing 
thermal energy.

Viscosity, vapor pressure, and bulk modulus of compressibility are additional fluid 
properties that engineers consider in design.

Viscosity​—The value of viscosity of a fluid represents a measure of how easily the 
given fluid can flow. The higher the viscosity value is, the more resistance the fluid 
offers to flow. For example, it requires less energy to transport water in a pipe than 
it does to transport motor oil or glycerin.

Vapor pressure​—Under the same conditions, fluids with low vapor pressure val-
ues will not evaporate as quickly as those with high values of vapor pressure. For 
example, if you were to leave a pan of water and a pan of glycerin side by side in 
a room, the water will evaporate and leave the pan long before you would notice 
any changes in the level of glycerin.

Bulk modulus of compressibility​—A fluid bulk modulus represents how com-
pressible the fluid is. How easily can one reduce the volume of the fluid when the 
fluid pressure is increased? For example, it would take a pressure of 2.24 * 107 N/m2 
to reduce 1 m3 volume of water by 1%, or said another way, to final volume of 
0.99 m3.

In this section, we explained the meaning and significance of some of the physical 
properties of materials. Mechanical and thermophysical properties of some materials 
are given in Appendices A and B. In the following sections, we examine the application 
and chemical composition of some common engineering materials.

14.4  Common Solid Engineering Materials

In this section we will briefly examine the chemical composition and common appli-
cation of some solid materials. We will discuss light metals, copper and its alloys, iron 
and steel, concrete, wood, plastics, silicon, glass, and composite materials. Most of you 
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may have already taken a class in materials science and have an in-​depth knowledge 
of atomic structure of various materials. Here our intent is to provide a quick review to 
materials and their applications.

Lightweight Metals

Aluminum, titanium, and magnesium, because of their small densities (relative to 
steel), are commonly referred to as lightweight metals. Because of their relatively high 
strength-​to-​weight ratios, lightweight metals are used in many structural and aerospace 
applications.

Aluminum and its alloys have densities that are approximately 1/3 the density of 
steel. Pure aluminum is very soft; thus it is generally used in electronics applications and 
in making reflectors and foils. Because pure aluminum is soft and has a relatively small 
tensile strength, it is alloyed with other metals to make it stronger, easier to weld, and to 
increase its resistance to corrosive environments. Aluminum is commonly alloyed with 
copper (Cu), zinc (Zn), magnesium (Mg), manganese (Mn), silicon (Si), and lithium (Li). 
Generally speaking, aluminum and its alloys resist corrosion; they are easy to mill and 
cut, and can be brazed or welded. Aluminum parts can also be joined using adhesives. 
They are good conductors of electricity and heat, and thus have relatively high thermal 
conductivity and low electrical resistance values. American National Standards Institute 
(ANSI) assigns designation numbers to specify aluminum alloys.

Aluminum is fabricated in sheets, plates, foil, rod, and wire, and is extruded into 
window frames or automotive parts. You are already familiar with everyday examples 
of common aluminum products, including beverage cans, household aluminum foil, non-​
rust staples in tea bags, building insulation, and so on.

Titanium has an excellent strength-​to-​weight ratio. Titanium is used in applica-
tions where relatively high temperatures exceeding 4005C up to 6005C are expected. 
Titanium alloys are used in the fan blades and the compressor blades of the gas turbine 
engines of commercial and military airplanes. In fact, without the use of titanium alloys, 
the engines on the commercial airplanes would have not been possible. Like aluminum, 
titanium is alloyed with other metals to improve its properties. Titanium alloys show 
excellent resistance to corrosion. Titanium is quite expensive compared to aluminum. 
It is heavier than aluminum, having a density which is roughly 12 that of steel. Because of 
their relatively high strength-​to-​weight ratios, titanium alloys are used in both commer-
cial and military airplane airframes (fuselage and wings) and landing gear components. 
Titanium alloys are becoming a metal of choice in many products; you can find them in 
golf clubs, bicycle frames, tennis racquets, and spectacle frames. Because of their excel-
lent corrosion resistance, titanium alloys have been used in the tubing used in desalina-
tion plants as well. Titanium hips and other joints are examples of other applications 
where titanium is currently being used.

Magnesium is another lightweight metal that looks like aluminum. It has a silvery 
white appearance, but it is lighter than aluminum, having a density of approximately of 
1700 kg/m3. Pure magnesium does not provide good strength for structural applications 
and because of this, it is alloyed with other elements such as aluminum, manganese, and 
zinc to improve its mechanical characteristics. Magnesium and its alloys are used in 
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nuclear applications, in drycell batteries, and in aerospace applications and some auto-
mobile parts as sacrificial anodes to protect other metals from corrosion.

Copper and Its Alloys

Copper is a good conductor of electricity and because of this property is commonly used 
in many electrical applications, including home wiring. Copper and many of its alloys are 
also good conductors of heat, and this thermal property makes copper a good choice for 
heat exchanger applications in air conditioning and refrigeration systems. Copper alloys 
are also used as tubes, pipes, and fittings in plumbing and heating applications. Copper 
is alloyed with zinc, tin, aluminum, nickel, and other elements to modify its properties. 
When copper is alloyed with zinc, it is commonly called brass. The mechanical properties 
of brass depend on the exact composition of percent copper and percent zinc. Bronze 
is an alloy of copper and tin. Copper is also alloyed with aluminum, referred to as 
aluminum bronze. Copper and its alloys are also used in water tubes, heat exchangers, 
hydraulic brake lines, pumps, and screws.

Iron and Steel

Steel is a common material that is used in the framework of buildings, bridges, the body 
of appliances such as refrigerators, ovens, dishwashers, washers and dryers, and cooking 
utensils. Steel is an alloy of iron with approximately 2% or less carbon. Pure iron is soft 
and thus not good for structural applications, but the addition of even a small amount 
of carbon to iron hardens it and gives steel better mechanical properties, such as greater 
strength. The properties of steel can be modified by adding other elements such as 
chromium, nickel, manganese, silicon, and tungsten. For example, chromium is used to 
increase the resistance of steel to corrosion. In general, steel can be classified into three 
broad groups: (1) the carbon steels containing approximately 0.015% to 2% carbon, 
(2) low-​alloy steels having a maximum of 8% alloying elements, and (3) high-​alloy steels 
containing more than 8% of alloying elements. Carbon steels constitute most of the 
world’s steel consumption; thus, you will commonly find them in the body of appliances 
and cars. The low-​alloy steels have good strength and are commonly used as machine or 
tool parts and as structural members. The high-​alloy steels such as stainless steels could 
contain approximately 10% to 30% chromium and could contain up to 35% nickel. 
The 18/8 stainless steels, which contain 18% chromium and 8% nickel, are commonly 
used for tableware and kitchenware products. Finally, cast iron is also an alloy of iron 
that has 2% to 4% carbon. Note that the addition of extra carbon to the iron changes 
its properties completely. In fact, cast iron is a brittle material, whereas most iron alloys 
containing less than 2% carbon are ductile.

Concrete

Today concrete is commonly used in construction of roads, bridges, buildings, tunnels, 
and dams. What is normally called concrete consists of three main ingredients: aggregate, 
cement, and water. Aggregate refers to materials such as gravel and sand, and cement 
refers to the bonding material that holds the aggregates together. The type and size (fine 
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to coarse) of aggregate used in making concrete varies depending on application. The 
amount of water used in making concrete could also influence the strength of concrete. 
Of course, the mixture must have enough water so that the concrete can be poured and 
have a consistent cement paste that completely wraps around all aggregates. The ratio 
of amount of cement to aggregate used in making concrete also affects the strength and 
durability of concrete. Another factor that could influence the cured strength of con-
crete is the temperature of its surrounding when concrete is poured. Calcium chloride is 
added to cement when the concrete is poured in cold climates. The addition of calcium 
chloride will accelerate the curing process to counteract the effect of low temperature 
of the surrounding. You may have also noticed as you walk by newly poured concrete 
for driveways or sidewalks that water is sprayed onto the concrete for some time after 
it is poured. This is to control the rate of contraction of concrete as it sets.

Concrete is a brittle material, which can support compressive loads much better 
than it does tensile loads. Because of this, concrete is commonly reinforced with steel 
bars or steel mesh that consist of thin metal rods to increase its load bearing capacity, 
especially in the sections where tensile stress are expected. Concrete is poured into 
forms that contain the metal mesh or steel bars. Reinforced concrete is used in founda-
tions, floors, walls, and columns. Another common construction practice is the use of 
precast concrete. Precast concrete slabs, blocks, and structural members are fabricated in 
less time with less cost in factory settings where surrounding conditions are controlled. 
The precast concrete parts are then moved to the construction site and are erected at 
site. This practice saves time and money. As we mentioned above, concrete has a higher 
compressive strength than tensile strength. Because of this, concrete is also prestressed 
in the following manner. Before concrete is poured into forms that have the steel rods 
or wires, the steel rods or wires are stretched; after the concrete has been poured and 
after enough time has elapsed, the tension in the rods or wires is released. This process, 
in turn, compresses the concrete. The prestressed concrete then acts as a compressed 
spring, which will become uncompressed under the action of tensile loading. Therefore, 
the prestressed concrete section will not experience any tensile stress until the section 
has been completely uncompressed. It is important to note once again the reason for 
this practice is that concrete is weak under tension.

Wood

Throughout history, wood, because of its abundance in many parts of the world, has been 
a material of choice for many applications. Wood is a renewable source, and because 
of its ease of workability and its strength, it has been used to make many products. 
Today, wood is used in a variety of products ranging from telephone poles to toothpicks. 
Common examples of wood products include hardwood flooring, roof trusses, furniture 
frames, wall supports, doors, decorative items, window frames, trimming in luxury cars, 
tongue depressors, clothespins, baseball bats, bowling pins, fishing rods, and wine barrels. 
Wood is also the main ingredient that is used to make various paper products. Whereas 
a steel structural member is susceptible to rust, wood, on the other hand, is prone to 
fire, termites, and rotting. Wood is anisotropic material, meaning that its properties are 
direction-​dependent. For example, as you may already know, under axial loading (when 
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pulled), wood is stronger in a direction parallel to a grain than it is in a direction across 
the grain. However, wood is stronger in a direction normal to the grain when it is bent. 
The properties of wood also depend on its moisture content; the lower the moisture 
content, the stronger the wood is. Density of wood is generally a good indication of how 
strong the wood is. As a rule of thumb, the higher the density of wood, the higher its 
strength. Moreover, any defects, such as knots, would affect the load carrying capacity 
of wood. Of course, the location of the knot and the extent of defect will directly affect 
its strength.

Timber is commonly classified as softwood and hardwood. Softwood timber is 
made from trees that have cones (coniferous), such as pine, spruce, and Douglas fir. 
Hardwood timber is made from trees that have broad leaves or have flowers. Examples 
of hardwoods include walnut, maple, oak, and beech. This classification of wood into 
softwood and hardwood should be used with caution, because there are some hardwood 
timbers that are softer than softwoods.

Plastics

In the latter part of the 20th century, plastics have become increasingly the material of 
choice for many applications. They are very lightweight, strong, inexpensive, and easily 
made into various shapes. Over 100 million metric tons of plastic are produced annually 
worldwide. Of course this number increases as the demand for inexpensive, durable, 
disposable material grows. Most of you are already familiar with examples of plastic 
products, including grocery and trash bags, plastic soft drink containers, home cleaning 
containers, vinyl sidings, polyvinyl chloride (PVC) piping, valves, and fittings that are 
readily available in home improvement centers. Styrofoam™ plates and cups and plastic 
forks, knives, spoons, and sandwich bags are other examples of plastic products that are 
consumed every day.

Polymers are the backbones of what we call plastics. They are chemical com-
pounds that have very large molecular chainlike structures. Plastics are often clas-
sified into two categories: thermoplastics and thermosetting. When heated to certain 
temperatures, the thermoplastics can be molded and remolded. For example, when you 
recycle Styrofoam dishes, they can be heated and reshaped into cups or bowls or other 
shaped dishes. By contrast, thermosets cannot be remolded into other shapes by heat-
ing. The application of heat to thermosets does not soften the material for remolding; 
instead, the material will simply break down. There are many other ways of classifying 
plastics; for instance, they may be classified on the basis of their chemical composi-
tion, molecular structure, or the way molecules are arranged or their densities. For 
example, based on their chemical composition, polyethylene, polypropylene, polyvinyl 
chloride, and polystyrene are the most commonly produced plastics. A grocery bag is 
an example of a product made from high-​density polyethylene (HDPE). However, note 
that in a broader sense, for example, polyethylene and polystyrene are thermoplastics. 
In general, the way molecules of a plastic are arranged will influence its mechanical 
and thermal properties. Plastics have relatively small thermal and electrical conduc-
tivity values. Some plastic materials, such as Styrofoam cups, are designed to have air 
trapped in them to reduce the heat conduction even more. Plastics are easily colored 
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by using various metal oxides. For example, titanium oxide and zinc oxide are used 
to give a plastic sheet its white color. Carbon is used to give plastic sheets their black 
color, as is the case in black trash bags. Depending on an application, other additives are 
also added to the polymers to obtain specific characteristics such as rigidity, flexibility, 
enhanced strength, or a longer lifespan that excludes any change in the appearance 
or mechanical properties of the plastic over time. As with other materials, research is 
being performed every day to make plastics stronger and more durable and to control 
its aging process, to make plastics less susceptible to sun damage, and to control water 
and gas diffusion through them. The latter is especially important when the goal is to 
add shelf life to food that is wrapped in plastics.

Silicon

Silicon is a nonmetallic chemical element that is used quite extensively in the manu-
facturing of transistors, and various electronic and computer chips. Pure silicon is not 
found in nature; it is found in the form of silicon dioxide in sands and rocks or found 
combined with other elements such as aluminum or calcium or sodium or magnesium 
in the form commonly referred to as silicates. Silicon, because of its atomic structure, is 
an excellent semiconductor. A semiconductor is a material whose electrical conductivity 
properties can be changed to act either as a conductor of electricity or as an insulator 
(preventing electricity flow). Silicon is also used as an alloying element with other ele-
ments, such as iron and copper, to give steel and brass certain desired characteristics. 
Make sure not to confuse silicon with silicones, which are synthetic compounds consist-
ing of silicon, oxygen, carbon, and hydrogen. You find silicones in lubricants, varnishes, 
and waterproofing products.

Glass

Glass is commonly used in products such as windows, light bulbs, housewares such as 
drinking glasses, chemical containers, beverage and beer containers, and decorative 
items. The composition of the glass depends on its application. The most widely used 
form of glass is soda-​lime-​silica glass. The materials used in making soda-​lime-​silica glass 
include sand (silicon dioxide), limestone (calcium carbonate), and soda ash (sodium 
carbonate). Other materials are added to create desired characteristics for specific appli-
cations. For example, bottle glass contains approximately 2% aluminum oxide, and glass 
sheets contain about 4% magnesium oxide. Metallic oxides are also added to give glass 
various colors. For example, silver oxide gives glass a yellowish stain, and copper oxide 
gives glass its bluish, greenish color, depending on the amount added to the composi-
tion of glass. Optical glasses have very specific chemical compositions and are quite 
expensive. The composition of optical glass will influence its refractive index and its 
light dispersion properties. Glass that is made completely from silica (silicon dioxide) 
has properties that are sought after by many industries, such as fiber optics, but it is quite 
expensive to manufacture because the sand has to be heated to temperatures exceeding 
17005C. Silica glass has a low coefficient of thermal expansion, high electrical resistivity, 
and high transparency to ultraviolet light. Because silica glass has a low coefficient of 
thermal expansion, it can be used in high-​temperature applications.
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Ordinary glass has a relatively high coefficient of thermal expansion; therefore, 
when its temperature is changed suddenly, it could break easily due to thermal stresses 
developed by the temperature rise. Cookware glass contains boric oxide and aluminum 
oxide to reduce its coefficient of thermal expansion.

Fiberglass.  Silica glass fibers are commonly used in fiber optics, the branch of 
science that deals with transmitting data, voice, and images through thin glass or plastic 
fibers. Every day, copper wires are being replaced by transparent glass fibers in telecom-
munications to connect computers together in networks. The glass fibers typically have 
an outer diameter of 0.125 mm (12 micron) with an inner transmitting core diameter of 
0.01 mm (10 micron). Infrared light signals in the wavelength ranges of 0.8 to 0.9 m or 
1.3 to 1.6 m; wavelengths are generated by light-​emitting diodes or semiconductor lasers 
and travel through the inner core of glass fiber. The optical signals generated in this 
manner can travel to distances as far as 100 km without any need to amplify the optical 
signals again. Plastic fibers made of polymethylmethacrylate, polystyrene, or polycar-
bonate are also used in fiber optics. These plastic fibers are in general cheaper and more 
flexible than glass fibers. But when compared to glass fibers, plastic fibers require more 
amplification of signals due to their greater optical losses. They are generally used in 
networking computers in a building.

Composites

Because of their light weight and good strength, composite materials are becoming 
increasingly the materials of choice for a number of products and aerospace applica-
tions. Today you will find composite materials in military planes, helicopters, satellites, 
commercial planes, fast-​food restaurant tables and chairs, and many sporting goods. They 
are also commonly used to repair bodies of automobiles. In comparison to conventional 
materials, such as metals, composite materials can be lighter and stronger. For this rea-
son, composite materials are used extensively in aerospace applications. Composites are 
created by combining two or more solid materials to make a new material that has prop-
erties that are superior to those of individual components. Composite materials consist of 
two main ingredients: matrix material and fibers. Fibers are embedded in matrix materi-
als, such as aluminum or other metals, plastics, or ceramics. Glass, graphite, and silicon 
carbide fibers are examples of fibers used in construction of composite materials. The 
strength of fibers is increased when embedded in a matrix material, and the composite 
material created in this manner is lighter and stronger. Moreover, in a single material, 
once a crack starts due to either excessive loading or imperfections in the material, the 
crack will propagate to the point of failure. On the other hand, in a composite material, 
if one or a few fibers fail, it does not necessarily lead to failure of other fibers or the 
material as a whole. Furthermore, the fibers in a composite material can be oriented in a 
certain direction or many directions to offer more strength in the direction of expected 
loads. Therefore, composite materials are designed for specific load applications. For 
instance, if the expected load is uniaxial, meaning that it is applied in a single direction, 
then all the fibers are aligned in the direction of the expected load. For applications 
expecting multidirection loads, the fibers are aligned in different directions to make the 
material equally strong in various directions.
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Depending upon what type of host matrix material is used in creating the compos-
ite material, the composites may be classified into three classes: (1) polymer-​matrix com-
posites, (2) metal-​matrix composites, and (3) ceramic-​matrix composites. We discussed 
the characteristics of matrix materials earlier when we covered metals and plastics.

14.5  Some Common Fluid Materials

Fluid refers to both liquids and gases. Air and water are among the most abundant 
fluids on earth. They are important in sustaining life and are used in many engineering 
applications. We briefly discuss them next.

Air

We all need air and water to sustain life. Because air is readily available to us, it is also 
used in engineering as a cooling and heating medium in food processing, in controlling 
thermal comfort in buildings, as a controlling medium to turn equipment on and off, 
and to drive power tools. Understanding the properties of air and how it behaves is 
important in many engineering applications, including understanding the lift and the 
drag forces. Better understanding of how air behaves under certain conditions leads to 
design of better planes and automobiles. The Earth’s atmosphere, which we refer to as 
air, is a mixture of approximately 78% nitrogen, 21% oxygen, and less than 1% argon. 
Small amounts of other gases are present in Earth’s atmosphere, as shown in Table 14.1.

There are other gases present in the atmosphere, including carbon dioxide, sulfur 
dioxide, and nitrogen oxide. The atmosphere also contains water vapor. The concentra-
tion level of these gases depends on the altitude and geographical location. At higher 
altitudes (10 km to 50 km), the Earth’s atmosphere also contains ozone. Even though 
these gases make up a small percentage of Earth’s atmosphere, they play a significant 
role in maintaining a thermally comfortable environment for us and other living species.

Table 14.1  The composition of dry air

Gases Volume by Percent

Nitrogen (N2) 78.084
Oxygen (O2) 20. 946
Argon (Ar) 0. 934

Small amounts of other gases are present in 
atmosphere, including:

Neon (Ne) 0.0018
Helium (He) 0.000524
Methane (CH4) 0.0002
Krypton (Kr) 0.000114
Hydrogen (H2) 0.00005
Nitrous oxide (N2O) 0.00005
Xenon (Xe) 0.0000087
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Humidity.  There are two common ways of expressing the amount of water vapor 
in air: absolute humidity (or humidity ratio) and relative humidity. The absolute humidity 
is defined as the ratio of mass of water vapor in a unit mass of dry air, according to

	 absolute humidity =
mass of water vapor (kg)

mass of dry air (kg)
	 (14.1)

For humans, the level of a comfortable environment is better expressed by rela-
tive humidity, which is defined as the ratio of the amount of water vapor or moisture in 
the air to the maximum amount of moisture that air can hold at a given temperature. 
Therefore, relative humidity is defined as

	 relative humidity =
amount of moisture in the air (kg)

maximum amount of moisture that air can hold (kg)
	 (14.2)

Most people feel comfortable when the relative humidity is around 30% to 50%. 
The higher the temperature of air, the more water vapor the air can hold before it is fully 
saturated. Because of its abundance, air is commonly used in food processing, especially 
in food drying processes to make dried fruits, spaghetti, cereals, and soup mixes. Hot 
air is transported over the food to absorb water vapors and thus remove them from the 
source.

Understanding how air behaves at given pressures and temperatures is also impor-
tant when designing cars to overcome air resistance or designing buildings to withstand 
wind loading.

Water

You already know that every living thing needs water to sustain life. In addition to 
drinking water, we also need water for washing, laundry, grooming, cooking, and fire 
protection. You may also know that 2/3 of the Earth’s surface is covered with water, but 
most of this water cannot be consumed directly: it contains salt and other minerals that 
must be removed first. Radiation from the Sun evaporates water; water vapors form 
into clouds and eventually, under favorable conditions, water vapors turn into liquid 
water or snow and fall back on land and the ocean. On land, depending on the amount 
of precipitation, part of water infiltrates the soil, part of it may be absorbed by vegeta-
tion, and part runs as streams or rivers and collects into natural reservoirs called lakes. 
Surface water refers to water in reservoirs, lakes, rivers, and streams. Groundwater, on 
the other hand, refers to the water that has infiltrated the ground; surface and ground 
waters eventually return to the ocean, and the water cycle is completed. As we said ear-
lier, everyone knows that we need water to sustain life, but what you may not realize is 
that water could be thought of as a common engineering material! Water is used in all 
steam-​power generating plants to produce electricity. In a power plant, fuel is burned 
in a boiler to generate heat, which in turn is added to liquid water to change its phase to 
steam; steam passes through turbine blades, turning the blades, which in effect runs the 
generator connected to the turbine, creating electricity. The low-​pressure steam liquefies 
in a condenser and is pumped through the boiler again, closing a cycle.
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Water is also used as a cutting tool. High-​pressure water containing abrasive par-
ticles is used to cut marble or metals. Water is commonly used as a cooling or cleaning 
agent in a number of food processing plants and industrial applications. Thus, water 
is not only transported to our homes for our domestic use, but it is also used in many 
engineering applications. So you see, understanding the properties of water and how it 
can be used to transport thermal energy, or what it takes to transport water from one 
location to the next, is important to mechanical engineers, civil engineers, manufacturing 
engineers, agricultural engineers, and so on.

Summary

At this point you should

	 1.	 know the basic design steps that all engineers follow, regardless of their back-
ground, to design products and services. These steps are (1) recognizing the need 
for a product or a service, (2) defining and understanding the problem (the need) 
completely, (3) doing the preliminary research and preparation, (4) conceptual-
izing ideas for possible solutions, (5) synthesizing the results, (6) evaluating good 
ideas in more detail, (7) optimizing the solutions to arrive at the best possible 
solution, (8) and presenting the solution.

	 2.	 realize that economics plays an important role in engineering decision making.
	 3.	 understand that engineers select materials for an application based on charac-

teristics of materials, such as strength, density, corrosion resistance, durability, 
toughness, the ease of machining, and manufacturability. Moreover, you need to 
understand that material cost is also an important selection criterion.

	 4.	 be familiar with common applications of basic materials, such as light metals and 
their alloys, steel and its alloys, composite materials, and building materials such 
as concrete, wood, and plastics.

	 5.	 be familiar with the application of fluids, such as air and water, in engineering. 
You should also be familiar with the composition of air and what the term humid-
ity means.
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Problems

	 1.	 Investigate the use of various materials in construction of bicycle frames. Choose a bike 
frame and create a finite element model of it. Assume boundary conditions and loading, and 
perform stress analysis of the frame using various materials. Write a report discussing your 
findings.

	 2.	 Investigate the use of various materials in construction of tennis racquets. Choose a tennis 
racquet and create a finite element model of it. Assume boundary conditions and loading, 
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and perform stress analysis of the racquet using various materials. Write a report discussing 
your findings.

	 3.	 Investigate the design of hip implants, including material characteristics. Create a finite ele-
ment model of a hip and perform stress analysis of it. Write a report discussing your findings.

	 4.	 Investigate the design of wooden roof and floor trusses. Visit a lumberyard and obtain draw-
ings of a roof, a floor truss, or both. Make a finite element model, including appropriate 
loading and boundary conditions for the truss, and perform stress analysis. Write a report 
discussing your findings, including appropriate materials that are commonly used.

	 5.	 Investigate the design of aluminum fins in applications dealing with dissipating heat from 
electronic devices. Obtain a heat sink used to cool a PC microprocessor, and generate a finite 
element model of it. Make appropriate boundary and heat load assumptions, and look at 
the thermal performance of the heat sink. Write a report discussing your findings, including 
appropriate materials for this application.

	 6.	 Investigate the design of window frames with and without thermal breaks. Generate a finite 
element model of a window frame with and without thermal breaks. Make assumptions for 
appropriate boundary conditions and thermal loads. Write a report discussing your findings.

	 7.	 Visit a hardware store and look at the design of shelf brackets. Create a finite element model 
of a bracket, and perform stress analysis. Make appropriate assumptions for the boundary 
conditions and loading. Write a report discussing your findings.

	 8.	 Investigate the design of ski lifts. Create a finite element model of a frame used in a ski lift 
after you have made appropriate assumptions for boundary conditions and loading. Perform 
stress analysis and write a report discussing your findings.

	 9.	 Generate a model of a tool such as a wrench. Take actual measurements and create a finite 
element model after you have made appropriate assumptions for the boundary conditions 
and loading. Write a report discussing your findings.

	 10.	 Investigate the design of an exercise machine, such as a universal weight machine. Create a 
finite element model of the frame or a component. Perform stress analysis after you have 
made appropriate boundary conditions and loading. Write a report discussing material 
options and your other findings.

Chapter 14    Problems    845
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Design Optimization

The objectives of this chapter are to introduce the basic design optimization ideas and 
the parametric design language of ANSYS. The main topics discussed in Chapter 15 
include the following:

	 15.1	 Introduction to Design Optimization

	 15.2	 The Parametric Design Language of ANSYS

	 15.3	 Examples of Batch Files

15.1  Introduction to Design Optimization

Optimization means minimization or maximization. There are two broad types of design: 
a functional design and an optimized design. A functional design is one that meets all 
of the preestablish design requirements, but allows for improvements to be made in 
certain areas of the design. To better understand the concept of a functional design, we 
will consider an example. Let us assume that we are to design a 10-​foot-​tall ladder to 
support a person who weighs 300 pounds with a certain factor of safety. We will come 
up with a design that consists of a steel ladder that is ten feet tall and can safely support 
the load of 300 lb at each step. The ladder would cost a certain amount of money. This 
design would satisfy all of the requirements, including those of the strength and the size 
and, thus, constitutes a functional design. Before we can consider improving our design, 
we need to ask ourselves what criterion should we use to optimize the design? Design 
optimization is always based on some criterion such as cost, strength, size, weight, reli-
ability, noise, or performance. If we use the weight as an optimization criterion, then 
the problem becomes one of minimizing the weight of the ladder. For example, we may 
consider making the ladder from aluminum. We could also perform stress analysis on 
the new ladder to see if we could remove material from certain sections of the ladder 
without compromising the loading and factor of safety requirements.

Another important fact to keep in mind is that while an engineering system consists 
of various components, optimizing individual components that make up a system does 
not necessarily lead to an optimized system. For example, consider a thermal-​fluid sys-
tem such as a refrigerator. Optimizing the individual components independently—​such 
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Section 15.1    Introduction to Design Optimization    847

as the compressor, the evaporator, or the condenser—​with respect to some criterion 
does not lead to an optimized overall system.

This chapter presents some basic ideas in design optimization of a component. We 
will focus only on weight as an optimization criterion. Traditionally, improvements in a 
design come from the process of starting with an initial design, performing an analysis, 
looking at results, and deciding whether or not we can improve the initial design. This 
procedure is shown in Figure 15.1.

In the past few decades, the optimization process has grown into a discipline that 
ranges from linear to nonlinear programming techniques. As is the case with any disci-
pline, the optimization field has its own terminology. We will use the next two examples 
to introduce the fundamental concepts of optimization and its terminology.

Example 15.1 

Assume that you have been asked to look into purchasing some storage tanks for your 
company, and for the purchase of these tanks, you are given a budget of $1,680. After 
some research, you find two tank manufacturers that meet your requirements. From 
Manufacturer A, you can purchase 16@ft3@capacity tanks that cost $120 each. Moreover, 
this type of tank requires a floor space of 7.5 ft2. Manufacturer B makes 24@ft3@capacity 
tanks that cost $240 each and that require a floor space of 10 ft2. The tanks will be placed 
in a section of a lab that has 90 ft2 of floor space available for storage. You are looking 

Yes

No

Modify
design

Can the design
be improved?

Evaluate
results

of analysis

Perform
analysis

Initial
design

Final
design

Figure 15.1  An optimization procedure.
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for the greatest storage capability within the budgetary and floor-​space limitations. How 
many of each tank (x1, x2) must you purchase?

First, we need to define the objective function, which is the function that we will 
attempt to minimize or maximize. In this example, we want to maximize storage capacity. 
We can represent this requirement mathematically as

	 Maximize Z = 16x1 + 24x2	 (15.1)

subject to the following constraints:

	  120x1 + 240x2 … 1680	 (15.2)

	  7.5x1 + 10x2 … 90 	 (15.3)

	  x1 Ú 0 	 (15.4)

	  x2 Ú 0 	 (15.5)

In Eq. (15.1), Z is the objective function, while the variables x1 and x2 are called design 
variables. The limitations imposed by the inequalities in (15.2)–(15.5) are referred to as 
a set of constraints. Although there are specific techniques that deal with solving lin-
ear programming problems (the objective function and constraints are linear), we will 
solve this problem graphically to illustrate some additional concepts. The inequalities 
in (15.2)–(15.5) are plotted in Figure 15.2.

The shaded region shown in Figure 15.2 is called a feasible solution region. Every 
point within this region satisfies the constraints. However, our goal is to maximize the 

(8,3)

(0,9)

(0,7)

(0,0) (12,0)

(14,0)
x1

x2

Feasible solution region

Figure 15.2  The feasible solution region for Example 15.1.
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objective function given by Eq. (15.1). Therefore, we need to move the objective function 
over the feasible region and determine where its value is maximized. It can be shown 
that the maximum value of the objective function will occur at one of the cornerpoints 
of the feasible region. By evaluating the objective function at the cornerpoints of the 
feasible region, we see that the maximum value occurs at x1 = 8 and x2 = 3. This evalu-
ation is shown in Table 15.1.

Thus, we should purchase eight of the 16@ft3 tanks from Manufacturer A and three 
of the 24@ft3 tanks from Manufacturer B to maximize the storage capacity within the 
given constraints.

Let us now consider a nonlinear example to demonstrate some additional terms.

Example 15.2 

Consider a wooden cantilever beam with rectangular cross section subject to the point 
loads shown in Figure 15.3. To satisfy safety requirements, the average stress in the beam 
is not to exceed a value of 30 MPa. Furthermore, the maximum deflection of the beam 
must be kept under 1 cm. Additional spatial restrictions limit the size of the cross section 
according to the limits 5 cm … x1 … 15 cm and 20 cm … x2 … 40 cm. We are interested 
in sizing the cross section so that it results in a minimum weight of the beam.

This problem is modeled by the objective function:

	 Minimize W = rgx1x2L	 (15.6)

500 N 500 N

x2

x1

2.5 m 2.5 m

L

Figure 15.3  A schematic of the beam in Example 15.2.

Table 15.1  �Value of the objective function at the  
cornerpoints of the feasible region

Cornerpoints (x1, x2) Value of Z = 16x1 + 24x2

  0,0     0
  0,7 168
12,0 192
  8,3 200 (max.)
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Assuming constant material density, the problem then becomes one of minimizing the 
volume:

	 Minimize V = x1x2L	 (15.7)

The constraints for this problem are

	  smax … 30 MPa 	 (15.8)

	  dmax … 1 cm 	 (15.9)

	  5 cm … x1 … 15 cm	 (15.10)

	  20 cm … x2 … 40 cm	 (15.11)

For this example, the variables x1 and x2 are called design variables; the s@variable for 
stress and the d@variable for deflection are called state variables. Next, let us look at 
the parametric design language, how to create a batch file, and optimization routines 
of ANSYS.

15.2 �T he Parametric Design Language  
of ANSYS*

You can define your own variables or choose one of the ANSYS-​supplied parameters. 
User-​named parameters, however, must adhere to the following rules: (1) User-​named 
parameters must consist of one to eight characters and must begin with a letter; (2) a 
parameter may be assigned a numeric value, a character value, or another parameter, as 
long as the value of the other parameter is currently known to ANSYS; and (3) param-
eters can be of a scalar type or represent an array of values. Scalar parameters may be 
defined by using the following command:

utility menu: Parameters S Scalar Parameters

To use a parameter, input the parameter’s name in the field where ANSYS expects a 
value. For example, to assign a modulus of elasticity value of 29 * 106 lb/in2 to a machine 
part made of steel, you can define a parameter with the name STEEL and assign a value 
of 29e6 to it.

ANSYS allows the user to define up to 400 parameters. You can define character 
parameters by placing the characters in single quotes. For example, if you want to define 
a parameter by the name of Element and assign the characters PLANE35 to it, you can 
do so by typing: Element = ‘PLANE 35’. You can obtain predefined parameters by 
using the following commands:

utility menu: Parameters S Get Scalar Data S Parameters

*Materials were adapted with permission from ANSYS documents.
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You can also use thousands of ANSYS-​supplied values as parameters. For example, you 
can retrieve nodal coordinates, node numbers, nodal displacements, nodal stresses, an 
element volume, and so on, and assign them to parameters. You can access the ANSYS-​
supplied parameters by using the command

utility menu: Parameters S Get Scalar Data

or by using the command

utility menu: Parameters S Get Array Data

You can list the parameters that have been defined by using the following command:

utility menu: List S Status S Parameters S Named Parameters

You can use already-​defined parameters to form an expression—​for example: 
Area = Length* Width. When using parametric expressions in a command field, use 
parentheses to force operations to occur in the desired order. ANSYS also offers built-​in 
functions that are a set of mathematical operations that return a single value. Examples 
include SIN, COS, LOG, EXP, SQRT, ABS. To make use of these functions, use the fol-
lowing command:

utility menu: Parameters S Array Operations S Vector Functions

Once you define the model in terms of design parameters, then you can run 
ANSYS’s design-​optimization routines interactively with the Graphical User Interface 
or by using a batch file. The batch mode is generally preferable because it offers a much 
quicker way to perform analyses. Up to this point, we have been running ANSYS inter-
actively using the GUI. Using a text editor, you can also create an ANSYS batch file 
with all of the necessary commands to generate a model. The batch file is then submitted 
to ANSYS as a batch job. The usual procedure for design optimization consists of the 
following eight main steps:

	 1.	 Create an analysis file to be used during looping. You begin by initializing the 
design variables, building the model parametrically, and obtaining a solution. You 
then need to retrieve and assign to parameters the values that will be used as state 
variables and objective functions.

	 2.	 Enter OPT and specify the analysis file. At this point, you are ready to enter the 
OPT processor to begin optimization.

	 3.	 Declare optimization variables. Here, you define the objective function and specify 
which variables are design variables and which are state variables. ANSYS allows 
you to define only one objective function. You can use up to 60 design variables 
and up to 100 state variables in your model.

	 4.	 Choose an optimization procedure. The ANSYS program offers several differ-
ent optimization procedures. The procedures are divided into methods and tools. 
The optimization methods of ANSYS deal with minimizing a single objective 
function. On the other hand, the optimization tools are techniques to measure 
and understand the design space of a problem. For a complete list of procedures 
available with ANSYS, along with the relevant theory behind each procedure, see 
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ANSYS online documents. You can also supply your own external procedure to 
ANSYS to be used during the optimization phase.

	 5.	 Specify optimization looping controls. Here, you specify the maximum number of 
iterations to be used with an optimization procedure.

	 6.	 Initiate optimization analysis.
	 7.	 Review the resulting design sets and postprocess results.

Throughout the book, up to this point, we have explained how to use ANSYS 
interactively. We now introduce the required steps to create a batch file. We then create 
batch files for Examples 3.1, 6.4, Problem 10 in Chapter 9, Problem 1 in Chapter 10, and 
Problem 6 in Chapter 13.

Batch Files

You may recall from studying Chapter 8 that when you first enter ANSYS, you are at 
the Begin Level. From the Begin level, you can enter one of the ANSYS processors. 
Commands that give you entry to a processor always start with a slash (/). For example, 
the /PREP7 command gives general access to the ANSYS preprocessor. You gain access 
to the general postprocessor by issuing the command /POST1. To move from one pro-
cessor to another, you must first return to the Begin Level by exiting the processor you 
are currently in. Only then can you access another processor. To leave a processor and 
return to the Begin Level, you must issue the FINISH command.

The fundamental tool used to enter data and control the ANSYS program is the 
command. Some commands can be used only at certain places in your batch file, while 
others may be used in other processors. For example, you cannot use the /PREP7 model-​
generating commands in other processors. The command format consists of one or more 
fields separated by commas. The first field always contains the command name. A com-
mand argument may be skipped by not specifying any data between the commas. In such 
cases, ANSYS substitutes the default data for the argument.

For long programs and to keep track of the flow of the batch file, you can docu-
ment the batch file by placing comments within the file. A comment is indicated by 
exclamation mark (!), and thus, information beyond the exclamation point is interpreted 
as comments by ANSYS. Now, we will use the following examples to show how to create 
batch files. To better understand batch files, you are encouraged to duplicate the follow-
ing batch files on your own.

15.3 E xamples of Batch Files

Use a plain text editor (without formats) to create your batch files. Note that ANSYS 
commands are case insensitive. After you have created a batch file, you can run it using 
ANSYS’s Batch option or by using the Interactive option. If you decide to use the 
Interactive option then issue the following command:

utility menu: File S Read Input From . . .
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then choose the text file (batch file) which contains the ANSYS commands. After run-
ning a batch file, see filename.out for output information. If you need more information 
about how to utilize a command, use ANSYS’s Help menu.

Chapter 3, Example 3.1

/Title, Chapter 3, Example 3.1 

/Prep7 !To begin preprocessing (define the model)

Et, 1, link180 !Element type, 3-​d truss element

R, 1, 8 !Real constant, the value of area for this problem

Mp, ex, 1, 1.9e6 !Material property, Modulus of Elasticity

Mp, nuxy, 1, .3 !Material property, Poisson’s ratio

N, 1, 0, 0 !Node 1 at 0, 0

N, 2, 36, 0 !Node 2 at 36, 0

N, 3, 0, 36 !Node 3 at 0, 36

N, 4, 36, 36 !Node 4 at 36, 36

N, 5, 72, 36 !Node 5 at 72, 36

/Pnum, node, 1 !Show numbers of the nodes for displays

Nplot !Plot the nodes

E, 1, 2 !Element 1 defined by nodes 1 and 2

E, 2, 3 !Element 2 defined by nodes 2 and 3

E, 3, 4 !Element 3 defined by nodes 3 and 4

E, 2, 4 !Element 4 defined by nodes 2 and 4

E, 2, 5 !Element 5 defined by nodes 2 and 5

E, 4, 5 !Element 6 defined by nodes 4 and 5

/Pnum, elem, 1 !Show numbers of the elements for displays

Eplot !Plot the elements

Finish !Exit Prep7 processor

/Solu !To begin the solution phase

D, 1, all, 0 !Displacement of node 1 in all directions is zero

D, 3, all, 0 !Displacement of node 3 in all directions is zero

F, 4, fy, -500 !A force of 500 lb at node 4 in the negative y-​dir.

F, 5, fy, -500 !A force of 500 lb at node 5 in the negative y-​dir.

/Pbc, all, 1 !Show boundary conditions for displays

Eplot !Plot the elements (model) with the boundary conditions

Solve !Solve

Finish !Exit the Solution processor
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/Post1 !To begin postprocessing

Etable, axforce, smisc, 1 !Make an element table containing axial forces

Etable, axstress, ls, 1 !Make an element table containing axial stresses

/Pbc, all, 1

pldisp, 1 !Plot the deformed shape

Pletab, axstress !Plot the axial stresses

Prnsol, u, comp !Print nodal displacements

Prrsol !Print reaction forces (solution)

Pretab !Print element table results

Finish !Exit the general postprocessor

/EOF !End of File

An edited version of the output is shown next.

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP=1 SUBSTEP=1
TIME=1.0000 LOAD CASE=0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN GLOBAL 
COORDINATES

NODE UX UY UZ
1 0.0000 0.0000 0.0000
2 -0.35526E-​02 -0.10252E-​01 0.0000
3 0.0000 0.0000 0.0000
4 0.11842E-​02 -0.11436E-​01 0.0000
5 0.23684E-​02 -0.19522E-​01 0.0000

MAXIMUM ABSOLUTE VALUES
NODE	 2	 5	 0	 5
VALUE -0.35526E-​02-​0.19522E-​01  0.0000  0.19665E-​01

***** POST1 TOTAL REACTION SOLUTION LISTING *****

LOAD STEP=	 1 SUBSTEP=1
TIME=1.0000 	 LOAD CASE=0
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THE FOLLOWING X,Y,Z SOLUTIONS ARE IN GLOBAL COORDINATES

NODE FX FY
1 1500.0 0.0000
3 1500.0 1000.0

TOTAL VALUES
VALUE 0.22737E-​12 1000.0

***** POST1 ELEMENT Table LISTING *****

STAT 
ELEM

CURRENT 
AXFORCE

CURRENT 
AXSTRESS

1 -1500.0 -187.50
2 1414.2 176.78
3 500.00 62.500
4 -500.00 -62.500
5 -707.11 -88.388
6 500.00 62.500

MINIMUM VALUES
ELEM 1 1
VALUE -1500.0 -187.50

MAXIMUM VALUES
ELEM 2 2
VALUE 1414.2 176.78

Chapter 6, Example 6.4

/Title, Chapter 6, Example 6.4

/Prep7

ET, 1, 33 !Conduction element

ET, 2, 34 !Convection element

R, 1, 1 !Real constant, Unit area

R, 2, 1

MP, KXX, 1, 0.08 !�Material Property, the value of thermal conductivity in the 
first layer

MP, KXX, 2, 0.074 !�Material Property, the value of thermal conductivity in the 
second layer

MP, KXX, 3, 0.72 !�Material Property, the value of thermal conductivity in the 
third layer
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MP, HF, 1, 40 !The value of heat transfer coefficient

N, 1,0,0

N, 2,0.05,0

N, 3,0.2,0

N, 4,0.3,0

N, 5,0.3,0

/pnum, node, 1

nplot

Type,1 !You need to define the element type before defining elements

Mat,1 !Material type 1

Real,1

E, 1, 2

Mat,2

E,2,3

Type,1

Mat,3

E,3,4

Type,2

Real,2

Mat,1

E,4,5

/pnum, elem, 1

Eplot

Finish

/solu

antype,0,new

solcontrol,0

NT, 1, TEMP, 200 !Temperature at node 1 is set at 200 C

NT, 5, TEMP, 30 !Convective temperature at node 5 is set at 30 C

/Pbc, all

Eplot

solve

Finish

/POST1

Nlist
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Elist

Mplist

Prnsol

FINISH

/Eof

An edited version of the output is shown next.

NODE X Y Z
1 0.0000 0.0000 0.0000
2 0.50000E-​01 0.0000 0.0000
3 0.20000 0.0000 0.0000
4 0.30000 0.0000 0.0000
5 0.30000 0.0000 0.0000

LIST ALL SELECTED ELEMENTS. (LIST NODES)

ELEM MAT TYP REL NODES

1 1 1 1 1 2
2 2 1 1 2 3
3 3 1 1 3 4
4 1 2 2 4 5

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP=1 SUBSTEP=1
TIME=1.0000 LOAD CASE=0

NODE TEMP
1 200.00
2 162.27
3 39.894
4 31.509
5 30.000

Chapter 9, Problem 10

/PREP7

/Title, Chapter 9, Problem 10

ET, 1, plane77 !Element Type, PLANE 77

MP, KXX, 1, 168 !Material Property, Thermal Conductivity
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k, 1, 0, 0

k, 2, 0, 0.05

k, 3, 0.1,0.05

k, 4, 0.1, 0

L, 1, 2 !Defining lines by connecting keypoints

L, 2, 3

L, 3, 4

L, 4, 1

AL, 1, 2, 3, 4 !Defining an area by connecting lines 1, 2, 3, 4, 5

ESIZE,,10 !This command defines the number of element divisions

AMESH, ALL !This command generates nodes and area elements

FINISH

/solu

NSEL,S,LOC, X,0.1 !Selects a subset of nodes at X = 0.1

D, All,Temp,80

ALLSEL !Selects everything before applying the other boundary

condition and solving

SFL,2,Conv,50,20 !This command applies the convective boundary condition on 
line 2

solve

FINISH

/POST1

SET, 1

plnsol, temp !Plot nodal solution

prnsol, temp !Prints nodal solution

FINISH

/eof

An edited version of the output (partial solution) is shown next.

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP=1	 SUBSTEP=1
TIME=1.0000	 LOAD CASE=0

NODE TEMP

  1 78.410
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  2 77.979

  3 78.406

  4 78.393

  5 78.371

  6 78.341

  7 78.302

  8 78.255

  9 78.199

10 78.134

11 78.061

12 80.000

13 77.996

14 78.048

15 78.135

16 78.257

17 78.416

18 78.612

19 78.849

20 79.135

21 79.478

22 80.000

23 80.000

24 80.000

25 80.000

26 80.000

27 80.000

28 80.000

29 80.000

30 80.000

31 80.000

32 79.732

33 79.474

34 79.234

35 79.021

36 78.836
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37 78.684

38 78.564

39 78.479

Chapter 10, Problem 1

/Title, Chapter 10, Problem 1

length=6. !Defining variable length

height=6. !Defining variable height

radius=.5 !Defining variable radius

load=-1000. !Load in psi

/PREP7

ET, 1, plane182 !2-​D plane element

MP, EX, 1, 30E6

MP, NUXY, 1, 0.3

K, 1, length, 0 !Defining keypoints

k, 2, length, height

K, 3, 0, height

K, 4, 0, radius

K, 5, radius, 0

K, 6, 0, 0

L, 1, 2 !Defining the lines connecting the keypoints

L, 2, 3

L, 3, 4

LARC, 4, 5, 6, radius !Defining a circular arc

!Larc, P1, P2, Pc, Rad
!P1: Keypoint at one end of circular arc line
!P2: Keypoint at other end of circular arc line
!Pc: Keypoint defining plane of arc and center of curvature side
!Rad: Radius of curvature of the arc

L, 5, 1

AL, 1, 2, 3, 4, 5 !Defining an area by connecting lines 1, 2, 3, 4, 5

ESIZE,,6 !This command defines the number of element divisions

AMESH, ALL !This command meshes the area and generates nodes 
and area elements

M15_MOAV4303_04_GE_C15.INDD   860 27/11/14   10:21 AM

www.FreeEngineeringbooksPdf.com



Section 15.3  E  xamples of Batch Files    861

FINISH

/solu

dl, 3, 1, symm !This command specifies symmetry surfaces on a line 
segment

!dl, line, area, lab
!line: line number
!area: area (number) containing the line
!lab: symmetry label

dl, 5, 1, symm

nsel, x, length, length !This command selects subset of nodes

sf, all, pres, load !This command is used to define a pressure load

nall

solve

FINISH

/POST1

SET, 1

/pnum, kpoi, 1

/pnum, line, 1

/pnum, element, 1

/WIND, 1, LTOP !Window 1 at left top corner

kplot

/NOERASE !Overlays displays

/WIND, 1, OFF !TURN WINDOW 1 OFF

/wind, 2, rtop !Window 2 at right top corner

lplot

/wind, 2, off

/WIND, 3, lbot !Window 3 at left bottom

eplot

/wind, 3, off

/wind, 4, rbot

/pnum, element, 0

plnsol, s, x !Plots the nodal solution

nsel, x, 0, 0

Prnsol, s, comp !Prints the nodal solution result

FINISH

/Eof
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Chapter 13, Problem 6 (partial solution, without the eight holes)

/Prep7

/Title, Chapter 13, Problem 6

K,1,0,1 !Keypoint 1 at x=0 and y=1

K,2,10,1 !Keypoint 2 at x=10 and y=1

Kgen, 2, all,,,0,1,0 !�The Kgen command generates additional keypoints from 
an existing pattern

!kgen, Itime, Np1, Np2, Ninc, DX, DY, DZ, Kinc, Noelem, Imove
!Itime: number of sets to be generated including the original set
!Np1, Np2, Ninc: set of keypoints defining pattern to be copied
!If Np1=all, Np2 and Ninc are ignored and the pattern is all selected keypoints
!DX, DY, DZ: geometric increments in active coordinate system between sets
!Kinc: keypoint increment between generated sets.
!Noelem: specifies if elements and nodes are also to be generated;
!0=generate them; 1=do not generate
!Imove: specifies whether keypoints will be moved or newly defined.

K,,5.25,2 !�When keypoint number is left blank, the lowest avail-
able number is used

K,, 6.75, 2

Kgen, 2, -2,,,0, 4, 0

K,, 2, 6

K,, 9, 6

Kgen, 2, -2,,, 0, 1, 0

/Pnum, kpoi, 1

kplot !Plot keypoints

L, 1, 2 !Defines a line between two keypoints

L, 2, 4

L, 4, 6

L, 6, 8

L, 8, 10

L, 10, 12

L, 12, 11

L, 11, 9

L, 9, 7

L, 7, 5

L, 5, 3

L, 3, 1

/pnum, line, 1
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Chapter 15    Summary    863

Lplot !Plot lines

Lfillt, 9, 10, .8 !Generates a fillet line between two intersecting lines

!Lfillt,Nl1,Nl2,Rad,Pcent
!Nl1: number of the first intersecting line
!Nl2: number of the second intersecting line
!Rad: radius of the fillet
!Pcent: number to be assigned to generated keypoint at fillet arc center

Lfillt, 11, 10, .8

Lfillt, 3, 4, .7

Lfillt, 5, 4, .7

Lplot

kgen, 2, 1, 2,, 0, -1, 0

kplot

arotat, 1, 2, 3, 15, 4, 16, 22, 21, 360 !Arotat generates areas by rotating a line pattern 
about an axis

!Arotat,Nl1,Nl2,Nl3,Nl4,Nl5,Nl6,Pax1,Pax2,Arc
!Nl1,Nl2,...,Nl6: list of lines (maximum of 6 lines) to be rotated
!Pax1,Pax2: keypoints defining the axis about which the line pattern is to 
be rotated
!Arc: Arc length in degrees

arotat, 5, 6, 7, 8, 9, 13, 22, 21, 360

arotat, 10, 14, 11, 12,,, 22, 21, 360

nummrg, kpoi !Merges keypoints

/view, 1, 5, 2, 5 !Defines the viewing direction

!View,Wn,Xv,Yv,Zv

!Wn: Window number

!Xv,Yv,Zv: The object is viewed along the line from point Xv,Yv,Zv in the global 
coords to global origin

aplot

finish

/eof

Summary

At this point you should

	 1.	 have a good understanding of the fundamental concepts in design optimization, 
including the definitions of objective function, constraints, state variables, and 
design variables. You should also know what is meant by a feasible solution region.
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864    Chapter 15    Design Optimization

	 2.	 know how to define and retrieve user-​defined and ANSYS-​supplied parameters.
	 3.	 know the basic steps involved in the optimization process of ANSYS.
	 4.	 be familiar with the creation of batch files.

References

ANSYS User’s Manual: Introduction to ANSYS, Vol. I, Swanson Analysis Systems, Inc.
ANSYS User’s Manual: Procedures, Vol. I, Swanson Analysis Systems, Inc.
ANSYS User’s Manual: Commands, Vol. II, Swanson Analysis Systems, Inc.
ANSYS User’s Manual: Elements, Vol. III, Swanson Analysis Systems, Inc.
Hillier, F. S., and Lieberman, G. J., Introduction to Operations Research, 6th ed., New York, 

McGraw-​Hill, 1995.
Rekaitis, G. V., Ravindran A., and Ragsdell, K. M., Engineering Optimization—​Methods and 

Applications, New York, John Wiley and Sons, 1983.

Problems

	 1.	 Solve Problem 9 in Chapter 3 using a batch file.

	 2.	 Solve Problem 15 in Chapter 3 using a batch file.

	 3.	 Solve Problem 7 in Chapter 4 using a batch file.

	 4.	 Solve Problem 15 in Chapter 4 using a batch file.

	 5.	 Solve Problem 22 in Chapter 4 using a batch file.

	 6.	 Solve Problem 7 in Chapter 6 using a batch file.

	 7.	 Solve Problem 12 in Chapter 9 using a batch file.

	 8.	 Solve Problem 17 in Chapter 9 using a batch file.

	 9.	 Solve Problem 5 in Chapter 10 using a batch file.

	 10.	 Solve Problem 17 in Chapter 11 using a batch file.

	 11.	 Solve Problem 18 in Chapter 11 using a batch file.

	 12.	 Solve Problem 4 in Chapter 13 using a batch file.
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A p p e n d i x  B

Thermophysical Properties 
of Some Materials

TABLE B.1  Thermophysical Properties of Some Materials (at room temperature or at the specified temperature) (SI units)

Material
Density  
(kg/m3)

Specific  
Heat (J/kg # K)

Thermal  
Conductivity (W/m # K)

Aluminum (alloy 1100) 2740   896 221
Asphalt 2110   920 0.74
Cement 1920   670 0.029
Clay 1000   920
Concrete (stone) 2300   653 1.0
Fireclay Brick 1790 @ 373 K   829 1.0 @ 473 K
Glass (soda lime) 2470   750 1.0 @ 366 K
Glass (lead) 4280   490 1.4
Glass (pyrex) 2230   840 1.0 @ 366 K
Iron (cast) 7210   500 47.7 @ 327 K
Iron (wrought) 7700 @ 373 K 60.4
Paper   930 1300 0.13
Soil† 2050 1840 0.5
Steel (mild) 7830   500 45.3
Wood (ash)   690 0.172 @ 323 K
Wood (mahogany)   550 0.13
Wood (oak)   750 2390 0.176
Wood (pine)   430 0.11

† Reference: Incropera, F., and Dewitt D., Fundamentals of Heat and Mass Transfer, 4th ed., New York, John Wiley and Sons, 1996.
Reference: ASHRAE Handbook: Fundamental Volume, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 
Atlanta, 1993.
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A p p e n d i x  C

Properties of Common Line 
and Area Shapes

Table C.1  Centroids of line segments

C
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r

x

a

a

Arc segment

C C

x
y

Quarter and semi-circular arcs
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872    Appendix C    Properties of Common Line and Area Shapes

Table C.2  Centroids and second moments of area of common shapes

Shape Centroid

----

----

Area Moments of Inertia
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y

x

y
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3
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Ix = Iy = 16
r4

Jc = 8
r4

y = 4r
3

y = 
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h
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x
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3 Ix = 12

bh3
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Ix = 12
bh3

Jc = (b2 + h2)12
bh

C

p

pp

p

p

p

x

Z03_MOAV4303_04_GE_APP3.INDD   872 27/11/14   10:24 AM

www.FreeEngineeringbooksPdf.com



Appendix C    Properties of Common Line and Area Shapes    873

Table C.3  Mass moments of inertia of common shapes

L

x

y

z

Slender rod

r

x
z

y
Thin disk

L

y

x

r
z

Cylinder

z L
x

y

Thin plate

b

A rectangular bar

a

x

z

y

b

L

Sphere

x

y

r

z

Iy = Iz = mL2
12
1

Iy = Iz = mr2
4
1

 Ix = mr2
2
1

Iy = Iz = m(3r2 + L2)12
1

 Ix = mr2
2
1

Ix = m(b2 + L2)12
1

 Iy = mL2
12
1

 Iz = mb2
12
1

Ix = m(b2 + L2)12
1

Iy = m(L2 + a2)12
1

Iz = m(a2 + b2)12
1

Ix = Iy = Iz = mr2
5
2r
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A p p e n d i x  D

Geometrical Properties 
of Structural Steel Shapes

TABLE D.1  Wide-flange sections or W shapes

Designation*

Flange x–x axis y–y axis

Area
A

Depth
d

Web  
thickness

tw

Width
b

Thickness
tf I S r I S r

in2 in in in in in4 in3 in in4 in3 in

W24 * 104 30.6 24.06 0.500 12.750 0.750 3100 258 10.1 259 40.7 2.91
W24 * 94 27.7 24.31 0.515 9.065 0.875 2700 222 9.87 109 24.0 1.98
W24 * 84 24.7 24.10 0.470 9.020 0.770 2370 196 9.79 94.4 20.9 1.95
W24 * 76 22.4 23.92 0.440 8.990 0.680 2100 176 9.69 82.5 18.4 1.92
W24 * 68 20.1 23.73 0.415 8.965 0.585 1830 154 9.55 70.4 15.7 1.87
W24 * 62 18.2 23.74 0.430 7.040 0.590 1550 131 9.23 34.5 9.80 1.38
W24 * 55 16.2 23.57 0.395 7.005 0.505 1350 114 9.11 29.1 8.30 1.34

W18 * 65 19.1 18.35 0.450 7.590 0.750 1070 117 7.49 54.8 14.4 1.69
W18 * 60 17.6 18.24 0.415 7.555 0.695 984 108 7.47 50.1 13.3 1.69
W18 * 65 16.2 18.11 0.390 7.530 0.630 890 98.3 7.41 44.9 11.9 1.67
W18 * 50 14.7 17.99 0.355 7.495 0.570 800 88.9 7.38 40.1 10.7 1.65
W18 * 46 13.5 18.06 0.360 6.060 0.605 712 78.8 7.25 22.5 7.43 1.29
W18 * 40 11.8 17.90 0.315 6.015 0.525 612 68.4 7.21 19.1 6.35 1.27
W18 * 35 10.3 17.70 0.300 6.000 0.425 510 57.6 7.04 15.3 5.12 1.22

W16 * 57 16.8 16.43 0.430 7.120 0.715 758 92.2 6.72 43.1 12.1 1.60
W16 * 50 14.7 16.26 0.380 7.070 0.630 659 81.0 6.68 37.2 10.5 1.59
W16 * 45 13.3 16.13 0.345 7.035 0.565 586 72.7 6.65 32.8 9.34 1.57
W16 * 36 10.6 15.86 0.295 6.985 0.430 448 56.5 6.51 24.5 7.00 1.52
W16 * 31 9.12 15.88 0.275 5.525 0.440 375 47.2 6.41 12.4 4.49 1.17
W16 * 26 7.68 15.69 0.250 5.500 0.345 301 38.4 6.26 9.59 3.49 1.12

W14 * 53 15.6 13.92 0.370 8.060 0.660 541 77.8 5.89 57.7 14.3 1.92
W14 * 43 12.6 13.66 0.305 7.995 0.530 428 62.7 5.82 45.2 11.3 1.89
W14 * 38 11.2 14.10 0.310 6.770 0.515 385 54.6 5.87 26.7 7.88 1.55
W14 * 34 10.0 13.98 0.285 6.745 0.455 340 48.6 5.83 23.3 6.91 1.53
W14 * 30 8.85 13.84 0.270 6.730 0.385 291 42.0 5.73 19.6 5.82 1.49
W14 * 26 7.69 13.91 0.255 5.025 0.420 245 35.3 5.65 8.91 3.54 1.08
W14 * 22 6.49 13.74 0.230 5.000 0.335 199 29.0 5.54 7.00 2.80 1.04

* Reported with a W, then the nominal depth in inches and the weight per foot.
Source: Mechanics of Materials, 2nd ed., R. C. Hibbeler, Macmillan, New York.
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Designation*

Flange x–x axis y–y axis

Area
A

Depth
d

Web  
thickness

tw

Width
b

Thickness
tf I S r I S r

in2 in in in in in4 in3 in in4 in3 in

W12 * 87 25.6 12.53 0.515 12.125 0.810 740 118 5.38 241 39.7 3.07
W12 * 50 14.7 12.19 0.370 8.080 0.640 394 64.7 5.18 56.3 13.9 1.96
W12 * 45 13.2 12.06 0.335 8.045 0.575 350 58.1 5.15 50.0 12.4 1.94
W12 * 26 7.65 12.22 0.230 6.490 0.380 204 33.4 5.17 17.3 5.34 1.51
W12 * 22 6.48 12.31 0.260 4.030 0.425 156 25.4 4.91 4.66 2.31 0.847
W12 * 16 4.71 11.99 0.220 3.990 0.265 103 17.1 4.67 2.82 1.41 0.773
W12 * 14 4.16 11.91 0.200 3.970 0.225 88.6 14.9 4.62 2.36 1.19 0.753

W10 * 100 29.4 11.10 0.680 10.340 1.120 623 112 4.60 207 40.0 2.65
W10 * 54 15.8 10.09 0.370 10.030 0.615 303 60.0 4.37 103 20.6 2.56
W10 * 45 13.3 10.10 0.350 8.020 0.620 248 49.1 4.32 53.4 13.3 2.01
W10 * 30 8.84 10.47 0.300 5.810 0.510 170 32.4 4.38 16.7 5.75 1.37
W10 * 39 11.5 9.92 0.315 7.985 0.530 209 42.1 4.27 45.0 11.3 1.98
W10 * 19 5.62 10.24 0.250 4.020 0.395 96.3 18.8 4.14 4.29 2.14 0.874
W10 * 15 4.41 9.99 0.230 4.000 0.270 68.9 13.8 3.95 2.89 1.45 0.810
W10 * 12 3.54 9.87 0.190 3.960 0.210 53.8 10.9 3.90 2.18 1.10 0.785

W8 * 67 19.7 9.00 0.570 8.280 0.935 272 60.4 3.72 88.6 21.4 2.12
W8 * 58 17.1 8.75 0.510 8.220 0.810 228 52.0 3.65 75.1 18.3 2.10
W8 * 48 14.1 8.50 0.400 8.110 0.685 184 43.3 3.61 60.9 15.0 2.08
W8 * 40 11.7 8.25 0.360 8.070 0.560 146 35.5 3.53 49.1 12.2 2.04
W8 * 31 9.13 8.00 0.285 7.995 0.435 110 27.5 3.47 37.1 9.27 2.02
W8 * 24 7.08 7.93 0.245 6.495 0.400 82.8 20.9 3.42 18.3 5.63 1.61
W8 * 15 4.44 8.11 0.245 4.015 0.315 48.0 11.8 3.29 3.41 1.70 0.876

W6 * 25 7.34 6.38 0.320 6.080 0.455 53.4 16.7 2.70 17.1 5.61 1.52
W6 * 20 5.87 6.20 0.260 6.020 0.365 41.4 13.4 2.66 13.3 4.41 1.50
W6 * 15 4.43 5.99 0.230 5.990 0.260 29.1 9.72 2.56 9.32 3.11 1.46
W6 * 16 4.74 6.28 0.260 4.030 0.405 32.1 10.2 2.60 4.43 2.20 0.966
W6 * 12 3.55 6.03 0.230 4.000 0.280 22.1 7.31 2.49 2.99 1.50 0.918
W6 * 9 2.68 5.90 0.170 3.940 0.215 16.4 5.56 2.47 2.19 1.11 0.905

y

y

b

d x x

tf

tw

TABLE D.1  Wide-flange sections or W shapes (continued )
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y

d

tf

x x

y

tw

bf

TABLE D.2  American standard channels or C shapes

Designation*

Area
A

Depth
d

Web  
thickness

tw

Flange x-x axis y-y axis

Width
bf

Thickness
tf I S r I S r

in2 in in in in in4 in3 in in4 in3 in

C15 * 50 14.7 15.00 0.716 11⁄16 3.716 33⁄4 0.650 5⁄8 404 53.8 5.24 11.0 3.78 0.867
C15 * 40 11.8 15.00 0.520 1⁄2 3.520 31⁄2 0.650 5⁄8 349 46.5 5.44 9.23 3.37 0.886
C15 * 33.9 9.96 15.00 0.400 3⁄8 3.400 33⁄8 0.650 5⁄8 315 42.0 5.62 8.13 3.11 0.904

C12 * 30 8.82 12.00 0.510 1⁄2 3.170 31⁄8 0.501 1⁄2 162 27.0 4.29 5.14 2.06 0.763
C12 * 25 7.35 12.00 0.387 3⁄8 3.047 3 0.501 1⁄2 144 24.1 4.43 4.47 1.88 0.780
C12 * 20.7 6.09 12.00 0.282 5⁄16 2.942 3 0.501 1⁄2 129 21.5 4.61 3.88 1.73 0.799

C10 * 30 8.82 10.00 0.673 11⁄16 3.033 3 0.436 7⁄16 103 20.7 3.42 3.94 1.65 0.669
C10 * 25 7.35 10.00 0.526 1⁄2 2.886 27⁄8 0.436 7⁄16 91.2 18.2 3.52 3.36 1.48 0.676
C10 * 20 5.88 10.00 0.379 3⁄8 2.739 23⁄4 0.436 7⁄16 78.9 15.8 3.66 2.81 1.32 0.692
C10 * 15.3 4.49 10.00 0.240 1⁄4 2.600 25⁄8 0.436 7⁄16 67.4 13.5 3.87 2.28 1.16 0.713

C9 * 20 5.88 9.00 0.448 7⁄16 2.648 23⁄8 0.413 7⁄16 60.9 13.5 3.22 2.42 1.17 0.642
C9 * 15 4.41 9.00 0.285 5⁄16 2.485 21⁄2 0.413 7⁄16 51.0 11.3 3.40 1.93 1.01 0.661
C9 * 13.4 3.94 9.00 0.233 1⁄4 2.433 23⁄8 0.413 7⁄16 47.9 10.6 3.48 1.76 0.962 0.669

C8 * 18.75 5.51 8.00 0.487 1⁄2 2.527 21⁄2 0.390 3⁄8 44.0 11.0 2.82 1.98 1.01 0.599
C8 * 13.75 4.04 8.00 0.303 5⁄16 2.343 23⁄8 0.390 3⁄8 36.1 9.03 2.99 1.53 0.854 0.615
C8 * 11.5 3.38 8.00 0.220 1⁄4 2.260 21⁄4 0.390 3⁄8 32.6 8.14 3.11 1.32 0.781 0.625

C7 * 14.75 4.33 7.00 0.419 7⁄16 2.299 21⁄4 0.366 3⁄8 27.2 7.78 2.51 1.38 0.779 0.564
C7 * 12.25 3.60 7.00 0.314 5⁄16 2.194 21⁄4 0.366 3⁄8 24.2 6.93 2.60 1.17 0.703 0.571
C7 * 9.8 2.87 7.00 0.210 3⁄16 2.090 21⁄8 0.366 3⁄8 21.3 6.08 2.72 0.968 0.625 0.581

C6 * 13 3.83 6.00 0.437 7⁄16 2.157 21⁄8 0.343 5⁄16 17.4 5.80 2.13 1.05 0.642 0.525
C6 * 10.5 3.09 6.00 0.314 5⁄16 2.034 2 0.343 5⁄16 15.2 5.06 2.22 0.866 0.564 0.529
C6 * 8.2 2.40 6.00 0.200 3⁄16 1.920 17⁄8 0.343 5⁄16 13.1 4.38 2.34 0.693 0.492 0.537

C5 * 9 2.64 5.00 0.325 5⁄16 1.885 17⁄8 0.320 5⁄16 8.90 3.56 1.83 0.632 0.450 0.489
C5 * 6.7 1.97 5.00 0.190 3⁄16 1.750 13⁄4 0.320 5⁄16 7.49 3.00 1.95 0.479 0.378 0.493

C4 * 7.25 2.13 4.00 0.321 5⁄16 1.721 13⁄4 0.296 5⁄16 4.59 2.29 1.47 0.433 0.343 0.450
C4 * 5.4 1.59 4.00 0.184 3⁄16 1.584 15⁄8 0.296 3⁄16 3.85 1.93 1.56 0.319 0.283 0.449

C3 * 6 1.76 3.00 0.356 3⁄8 1.596 15⁄8 0.273 1⁄4 2.07 1.38 1.08 0.305 0.268 0.416
C3 * 5 1.47 3.00 0.258 1⁄4 1.498 11⁄2 0.273 1⁄4 1.85 1.24 1.12 0.247 0.233 0.410
C3 * 4.1 1.21 3.00 0.170 3⁄16 1.410 13⁄8 0.273 1⁄4 1.66 1.10 1.17 0.197 0.202 0.404

*Reported with a C, then the nominal depth in inches and the weight per foot.
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y

y

x

y
x x

z

z

TABLE D.3  Angles having equal legs

Size and thickness

Weight  
per  

Foot
Area 

A

x–x axis y–y axis z–z axis

I S r y I S r x r

in. lb in2 in4 in3 in in in4 in3 in in in

8 * 8 * 1 51.0 15.0 89.0 15.8 2.44 2.37 89.0 15.8 2.44 2.37 1.56
8 * 8 * 3/4 38.9 11.4 69.7 12.2 2.47 2.28 69.7 12.2 2.47 2.28 1.58

8 * 8 * 1/2 26.4 7.75 48.6 8.36 2.50 2.19 48.6 8.36 2.50 2.19 1.59

6 * 6 * 1 37.4 11.0 35.5 8.57 1.80 1.86 35.5 8.57 1.80 1.86 1.17
6 * 6 * 3/4 28.7 8.44 28.2 6.66 1.83 1.78 28.2 6.66 1.83 1.78 1.17

6 * 6 * 1/2 19.6 5.75 19.9 4.61 1.86 1.68 19.9 4.61 1.86 1.68 1.18

6 * 6 * 3/8 14.9 4.36 15.4 3.53 1.88 1.64 15.4 3.53 1.88 1.64 1.19

5 * 5 * 3/4 23.6 6.94 15.7 4.53 1.51 1.52 15.7 4.53 1.51 1.52 0.975

5 * 5 * 1/2 16.2 4.75 11.3 3.16 1.54 1.43 11.3 3.16 1.54 1.43 0.983

5 * 5 * 3/8 12.3 3.61 8.74 2.42 1.56 1.39 8.74 2.42 1.56 1.39 0.990

4 * 4 * 3/4 18.5 5.44 7.67 2.81 1.19 1.27 7.67 2.81 1.19 1.27 0.778

4 * 4 * 1/2 12.8 3.75 5.56 1.97 1.22 1.18 5.56 1.97 1.22 1.18 0.782

4 * 4 * 3/8 9.8 2.86 4.36 1.52 1.23 1.14 4.36 1.52 1.23 1.14 0.788

4 * 4 * 1/4 6.6 1.94 3.04 1.05 1.25 1.09 3.04 1.05 1.25 1.09 0.795

31/2 * 31/2 * 1/2 11.1 3.25 3.64 1.49 1.06 1.06 3.64 1.49 1.06 1.06 0.683

31/2 * 31/2 * 3/8 8.5 2.48 2.87 1.15 1.07 1.01 2.87 1.15 1.07 1.01 0.687

31/2 * 31/2 * 1/4 5.8 1.69 2.01 0.794 1.09 0.968 2.01 0.794 1.09 0.968 0.694

3 * 3 * 1/2 9.4 2.75 2.22 1.07 0.898 0.932 2.22 1.07 0.898 0.932 0.584

3 * 3 * 3/8 7.2 2.11 1.76 0.833 0.913 0.888 1.76 0.833 0.913 0.888 0.587

3 * 3 * 1/4 4.9 1.44 1.24 0.577 0.930 0.842 1.24 0.577 0.930 0.842 0.592

21/2 * 21/2 * 1/2 7.7 2.25 1.23 0.724 0.739 0.806 1.23 0.724 0.739 0.806 0.487

21/2 * 21/2 * 3/8 5.9 1.73 0.984 0.566 0.753 0.762 0.984 0.566 0.753 0.762 0.487

21/2 * 21/2 * 1/4 4.1 1.19 0.703 0.394 0.769 0.717 0.703 0.394 0.769 0.717 0.491

2 * 2 * 3/8 4.7 1.36 0.479 0.351 0.594 0.636 0.479 0.351 0.594 0.636 0.389

2 * 2 * 1/4 3.19 0.938 0.348 0.247 0.609 0.592 0.348 0.247 0.609 0.592 0.391

2 * 2 * 1/8 1.65 0.484 0.190 0.131 0.626 0.546 0.190 0.131 0.626 0.546 0.398
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Conversion Factors

TABLE E.1  Conversion Factors

Quantity SI S  US Customary US Customary S  SI

Length 1 mm = 0.03937 in 1 in = 25.4 mm
1 mm = 0.00328 ft 1 ft = 304.8 mm
1 cm = 0.39370 in 1 in = 2.54 cm
1 cm = 0.0328 ft 1 ft = 30.48 cm
1 m = 39.3700 in 1 in = 0.0254 m
1 m = 3.28 ft 1 ft = 0.3048 m

Area 1 mm2 = 1.55E-3 in2 1 in2 = 645.16 mm2

1 mm2 = 1.0764E-5 ft2 1 ft2 = 92903 mm2

1 cm2 = 0.155 in2 1 in2 = 6.4516 cm2

1 cm2 = 1.07E-3 ft2 1 ft2 = 929.03 cm2

1 m2 = 1550 in2 1 in2 = 6.4516E-4 m2

1 m2 = 10.76 ft2 1 ft2 = 0.0929 m2

Volume 1 mm3 = 6.1024E-5 in3 1 in3 = 16387 mm3

1 mm3 = 3.5315E-8 ft3 1 ft3 = 28.317E6 mm3

1 cm3 = 0.061024 in3 1 in3 = 16.387 cm3

1 cm3 = 3.5315E-5 ft3 1 ft3 = 28317 cm3

1 m3 = 61024 in3 1 in3 = 1.6387E-5 m3

1 m3 = 35.315 ft3 1 ft3 = 0.028317 m3

Second Moment 1 mm4 = 2.402E-6 in4 1 in4 = 416.231E3 mm4

of Area (length)4
1 mm4 = 115.861E-12 ft4 1 ft4 = 8.63097E9 mm4

1 cm4 = 24.025E-3 in4 1 in4 = 41.623 cm4

1 cm4 = 1.1586E-6 ft4 1 ft4 = 863110 cm4

1 m4 = 2.40251E6 in4 1 in4 = 416.231E-9 m4

1 m4 = 115.86 ft4 1 ft4 = 8.631E-3 m4

continued
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Quantity SI S  US Customary US Customary S  SI

Mass 1 kg = 68.521E-3 slug 1 slug = 14.593 kg
1 kg = 2.2046 lbm 1 lbm = 0.4536 kg

Density 1 kg/m3 = 0.001938 slug/ft3 1 slug/ft3 = 515.7 kg/m3

1 kg/m3 = 0.06248 lbm/ft3 1 lbm/ft3 = 16.018 kg/m3

Force 1 N = 224.809E-3 lbf 1 lbf = 4.448 N

Moment 1 N∙m = 8.851 in ∙ lb 1 in ∙ lb = 0.113 N∙m
1 N∙m = 0.7376 ft ∙ lb 1 ft ∙ lb = 1.356 N∙m

Pressure, Stress, 1 Pa = 145.0377E-6 lb/in2 1 lb/in2 = 6.8947E3 Pa
Modulus of Elasticity, 1 Pa = 20.885E-3 lb/ft2 1 lb/ft2 = 47.880 Pa
Modulus of Rigidity 1 KPa = 145.0377E-6 Ksi 1 Ksi = 6.8947E3 KPa

Work, Energy 1 J = 0.7375 ft ∙ lb 1 ft ∙ lb = 1.3558 J
1 KW ∙hr = 3.41214E3 Btu 1 Btu = 293.071E-6

Power 1 W = 0.7375 ft ∙ lb/s 1 ft ∙ lb/s = 1.3558 W
1 KW = 3.41214E3 Btu/hr 1 Btu/hr = 293.07E-6 KW
1 KW = 1.341 hp 1 hp = 0.7457 KW

Temperature
°C =

5
9

 (°F - 32) °F =
9
5

°C + 32

TABLE E.1  Conversion Factors (continued)
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A p p e n d i x  F

An Introduction to MATLAB

In this Appendix we will introduce MATLAB, which is mathematical software avail-
able in most university computational labs today. MATLAB is a very powerful tool, 
especially for manipulating matrices; in fact, it was originally designed for that purpose. 
Many good textbooks discuss MATLAB’s capabilities for solving a full range of prob-
lems. Here our intent is to introduce only some basic ideas so that you can perform 
some essential operations. Before the introduction of electronic spreadsheets and math-
ematical software such as MATLAB, engineers wrote their own computer programs to 
solve engineering problems. Even though engineers still write computer codes to solve 
complex problems, they take advantage of built-in functions of solvers that are readily 
available with computational tools such as MATLAB. MATLAB is also versatile enough 
that you can use it to write your own program.

We begin by discussing MATLAB’s basic makeup. We will explain how to input 
data or a formula in MATLAB and how to carry out some typical engineering computa-
tions. We will also explain the use of MATLAB’s mathematical, statistical, and logical 
functions. Next we will discuss MATLAB’s conditional statements and repetitive loops, 
and plotting the results of an engineering analysis using MATLAB. Finally, we will 
briefly discuss MATLAB’s curve fitting and symbolic capabilities.

MATLAB—Basic Ideas

We begin by explaining some basic ideas; then once you have a good understanding of 
these concepts, we will use MATLAB to solve some engineering problems. As is the 
case with any new software you explore, MATLAB has its own syntax and terminol-
ogy. A typical MATLAB Window is shown in Figure F.1. The main components of the 
MATLAB window in the default mode are marked by arrows and numbered as shown 
in Figure F.1.

	 1.	 Menu Tabs/bar: contains the commands you can use to perform certain tasks, for 
example to save your Workspace, or import data.

	 2.	 Current Directory: shows the active directory, but you can also use it to change 
the directory.
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882    Appendix F    An Introduction to MATLAB

	 3.	 Current Folder: shows all files, their types, sizes, and description in the Current 
Directory.

	 4.	 Command Window: This is where you enter variables and issue MATLAB 
commands.

	 5.	 Command History: shows the time and the date at which commands were issued 
during the previous MATLAB sessions. It also shows the history of commands in 
the current (active) session.

	 6.	 Workspace: shows variables you created during your MATLAB session.

As shown in Figure F.1, MATLAB’s desktop layout, in default mode, is divided into 
three windows: the Current Directory, the Command Window, and the Command 
History. You type (enter) commands in the Command Window. For example, you 
can assign values to variables or plot a set of variables. The Command History win-
dow shows the time and the date of the commands you issued during the previous 
MATLAB sessions. It also shows the history of commands in the current (active) ses-
sion. You can also transfer old commands, which you issued during previous sessions, 
from the Command History window to the Command Window. To do this, move your 
mouse pointer over the command you want to move and then click the left button, and 
while holding down the button drag the old command line into the Command Window. 
Alternatively, when you strike the up-arrow key, the previously executed command 
will appear again. You can also copy and paste commands from the current Command 
Window, edit them, and use them again. To clear the contents of the Command Window, 
type clc.

Once in the MATLAB environment you can assign values to a variable or define 
elements of a matrix. For example, as shown in Figure F.2, to assign a value 5 to the 

1

4

2

6

5

3

Figure F.1  The desktop layout for MATLAB.
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variable x, in the Command Window, after the prompt sign W , you simply type x = 5. 
The basic MATLAB’s scalar (arithmetic) operations are shown in Table F.1.

Figure F.2  Examples of assigning values or defining elements of a matrix in MATLAB.

Table F.1  MATLAB’s basic scalar (arithmetic) operators

Operation Symbol Example: x = 5 and  y = 3 Result

Addition + x + y   8
Subtraction - x - y   3
Multiplication * x * y 15
Division / (x + y)/2   4
Raised to a power ^ x ^ 2 25

To define the elements of a matrix, for example [A] = £
1 5 0
8 3 7
6 2 9

§  you type

A=[1 5 0;8 3 7;6 2 9]

Note that in MATLAB the elements of the matrix are enclosed in brackets [ ] and are 
separated by blank spaces, and the elements of each row are separated by a semicolon (;).

The format, disp, and fprintf Commands

MATLAB offers several commands to display the results of your calculation. The 
MATLAB format command allows you to display values in certain ways. For example, 
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if you define x = 2/3, then MATLAB will display x = 0.6667. By default, MATLAB 
will display 4 decimal digits. If you want more decimal digits displayed, then you type 
format long. Now if you type x again, the value of x is displayed with 14 decimal digits, 
that is x = 0.66666666666667. You can control the way the value of x is displayed in 
several other ways as shown in Table F.2. Note that the format command does not affect 
the number of digits maintained when calculations are carried out by MATLAB. It only 
affects the way the values are displayed.

Table F.2  The format command options

MATLAB Command
How the Result of  

x = 2>3 is Displayed Explanation

format short 0.6667 Shows four decimal digits—default format
format long 0.66666666666667 Shows 14 decimal digits
format rat 2/3 Shows as fractions of whole numbers
format bank 0.67 Shows two decimal digits
format short e 6.6667e-001 Shows scientific notation with four  

  decimal digits
format long e 6.666666666666666e-001 Shows scientific notation with 14 decimal  

  digits
format hex 3fe5555555555555 Shows hexadecimal
format + + Shows +, - or blank based on whether the  

  number is positive, negative, or zero.
format compact It suppresses the blank lines in the output.

The disp command is used to display text or values. For example, given 
x = [1 2 3 4 5], then the command disp(x) will display 1 2 3 4 5. Or the command  
disp('Result =  ') will display Result = . Note that the text that you want displayed must 
be enclosed within a set of single quotation marks.

The fprintf command offers a great deal of flexibility. You can use it to print text 
and/or values with a desired number of digits. You can also use special formatting char-
acters such as \n and \t to produce linefeed and tabs. The following example will dem-
onstrate the use of the fprintf command.

Example F.1

In the MATLAB command window, type the following commands as shown.

x=10

fprintf('The value of x is %g \n', x)

The MATLAB will display

The value of x is 10

A screen capture of the command window for Example F.1 is shown in the accom-
panying figure.
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Note that the text and formatting code are enclosed within a set of single quota-
tion marks. Also note that the %g is the number format character and is replaced by  
x value, 10. It is also important to note that MATLAB will not produce an output 
until it encounters the \n. Additional capabilities of disp and fprintf commands will be 
demonstrated using other examples later.

Saving Your Matlab Workspace

You can save the workspace to a file by issuing the command: save your_filename. The 
your_filename is the name that you would like to assign to the workspace. Later you 
can load the file from the disk to memory by issuing the command: load your_filename. 
Over time, you may create many files; then you can use the dir command to list the 
contents of the directory. For simple operations you can use the Command Window to 
enter variables and issue MATLAB commands. However, when you write a program 
that is longer than a few lines, you use an M-file. Later in this appendix, we will explain 
how to create, edit, run, and debug an M-file.

Generating a Range of Values

When creating, analyzing, or plotting data, it is often convenient to create a range of num-
bers. To create a range of data or a row matrix, you need to specify only the starting num-
ber, the increment, and the end number. For example, to generate a set of x values in the 
range of 0 to 100 in increments of 25 (i.e., 0 25 50 75 100), in the Command Window, type

x=0:25:100

Note that in MATLAB language, the range is defined by a starting value, followed by 
a colon (:), the increment followed by another colon, and the end value. As another 
example, if you were to type

Countdown=5:@1:0

then the Countdown row matrix would consist of values: 5 4 3 2 1 0.

Z06_MOAV4303_04_GE_APP6.INDD   885 27/11/14   10:30 AM

www.FreeEngineeringbooksPdf.com



886    Appendix F    An Introduction to MATLAB

Creating Formulas in Matlab

You can use MATLAB to input engineering formulas and compute the results. When 
typing your formula, use parentheses to dictate the order of operation. For example, in 
MATLAB’s command window, if you were to type count=100+5*2, MATLAB would 
perform the multiplication first, which results in a value of 10, and then this result would 
be added to 100, which would yield an overall value of 110 for the variable count. If, 
however, you want MATLAB to add the 100 to 5 first and then multiply the resulting 
105 by 2, you should place parentheses around the 100 and 5 in the following manner 
count=(100+5)*2, which results in a value of 210. The basic MATLAB arithmetic 
operations are shown in Table F.3.

Table F.3  The basic MATLAB arithmetic operations.

Operation Symbol
Example: x = 10 

and y = 2
z, the result of the formula 

given in the example

Addition + z = x + y + 20 32
Subtraction - z = x - y   8
Multiplication * z = (x * y) + 9 29
Division / z = (x>2.5) + y   6
Raised to a power ^ z = (x ^ y) ^ 0.5 10

Element by Element Operation

In addition to basic scalar (arithmetic) operations, MATLAB provides element-by-
element operations and matrix operations. MATLAB’s symbols for element-by-element 
operations are shown in Table F.4. To better understand their use, suppose you have mea-
sured and recorded the mass (kg) and speed (m/s) of 5 runners who are running along a 
straight path: m =[60 55 70 68 72] and s=[4 4.5 3.8 3.6 3.1]. Note that the mass m array 
and speed s array, each have 5 elements. Now suppose you are interested in determining 
the magnitude of each runner’s momentum. We can calculate the momentum for each 
runner using MATLAB’s element-by-element multiplication operation in the following 
manner: momentum=m.*s, resulting in momentum=[240 247.5 266 244.8 223.2]. Note 
the multiplication symbol (.*) for element-by-element operation.

Table F.4  MATLAB’s element by element operations.

Operation Arithmetic Operations
Equivalent Element-by-Element 

Symbol for the Operation

Addition + +
Subtraction - -
Multiplication * .*
Division / ./
Raised to a power ^ .^
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To improve your understanding of the element-by-element operations, in 
MATLAB’s Command Window type a=[7 4 3 −1] and b=[1, 3, 5, 7] and then try the 
following operations.

W a+b

ans = 8 7 8 6

W a-b

ans = 6 1 -2 -8

W 3*a

ans = 21 12 9 -3

W 3.*a

ans = 21 12 9 -3

W a.*b

ans = 7 12 15 -7

W  b.*a

ans = 7 12 15 -7

W 3.^a

ans = 1.0e+003 *

2.1870  0.0810  0.0270  0.0003

W a.^b

ans = 7 64 243 -1

W b.^a

ans = 1.0000 81.0000 125.0000 0.1429

Try the following example on your own.

Example F.2

The following example will show how the density of standard air changes with tempera-
ture. It also makes use of MATLAB’s element-by-element operations. The density of 
standard air is a function of temperature and may be approximated using the ideal gas 
law according to

r =
P

RT

where

P = standard atmospheric pressure (101.3 kPa)

R K gas constant and its value for air is a286.9 a J
kg # K

b b
T K air temperature in Kelvin
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Using MATLAB, we want to create a table that shows the density of air as a 
function of temperature in the range of 05C (273.15 K) to 505C (323.15 K) in increments 
of 55C.

In MATLAB’s command window we type the following commands:

>> Temperature = 0:5:50;
>> Density = 101300. /((286.9)*(Temperature+273));
>> fprintf('\n\n');disp('Temperature(C)  Density(kg/m\^3)');

disp([Temperature', Density'])

In the commands shown above, the semicolon (;) suppresses MATLAB’s auto-
matic display action. If you type Temperature = 0:5:50 without the semicolon at the 
end, MATLAB will display the values of Temperature in a row. It will show

Temperature = 0  5  10  15  20  25  30  35  40  45  50

The ./ is a special element-by-element division operation that tells MATLAB to 
carry the division operation for each of the temperature values.

In the disp command, the prime or the single quotation mark over the variables 
Temperature' and Density' will change the values of Temperature and Den-
sity, which are stored in rows, to column format before they are displayed. As 
explained in Chapter 2, in matrix operation the process of changing the rows into 
columns is called Transpose of matrix. The final results for Example F.2 are shown 
in Figure F.3. Note that the values of Temperature and Density are shown in col-
umns. Also note the use of the fprintf and disp commands.

Figure F.3  The result of Example F.2.
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In the above example, we used the element-by-element division operation. Other 
MATLAB element-by-element operation symbols are given in Table F.4.

Matrix Operations

MATLAB offers many tools for matrix operations and manipulations. Table F.5 shows 
examples of these capabilities. Later in this appendix we will demonstrate a few 
MATLAB matrix operations with the aid of Examples F.9 and F.10.

Table F.5  Examples of MATLAB’s matrix operations

Operation
Symbols or  
Commands

Example: A and B are matrices 
that you have defined

Addition + A+B
Subtraction - A-B
Multiplication * A*B
Transpose matrix name' A'
Inverse inv(matrix name) inv(A)
Determinant det(matrix name) det(A)
Eigenvalues eig(matrix name) eig(A)
Matrix left division \ see Example F.10
 � (uses Gauss elimination 

to solve a set of linear 
equations)

Example F.3

Using MATLAB, create a table that shows the relationship between interest earned and 
the amount deposited, as shown in Table F.6.

Table F.6  �The relationship between interest earned and the 
amount deposited

Dollar Amount Interest Rate

    0.06 0.07 0.075     0.08
1000   60 70 75   80
1250   75 87.5 93.75 100
1500   90 105 112.5 120
1750 105 122.5 131.25 140
2000 120 140 150 160
2250 135 157.5 168.75 180
2500 150 175 187.5 200
2750 165 192.5 206.25 220
3000 180 210 225 240
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To create a table that is similar to Table F.6, we type the following commands:

>> format bank
>> Amount = 1000:250:3000;
>> Interest_Rate = 0.06:0.01:0.08;
>> Interest_Earned =  (Amount')*(Interest_Rate);
>> fprintf(' \n\n\t\t\t\t\t\t\t Interest Rate');fprintf(' \n\t Amount\t\t');. . .
fprintf(' \t\t %g',Interest_Rate);fprintf('\n');disp([Amount',Interest_Earned])

On the last command line, note the three periods . . . (an ellipsis) represent a con-
tinuation marker in MATLAB. The ellipsis means there is more to follow on this com-
mand line. Note the use of fprintf and disp commands. The final result for Example F.3 
is shown in Figure F.4.

Figure F.4  The commands and result for Example F.3.
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Using Matlab Functions

MATLAB offers a large selection of built-in functions that you can use to analyze data. 
The MATLAB functions are available in various categories including mathematical and 
trigonometric, statistical, and logical functions. In this appendix we will discuss some 
of the common functions. MATLAB offers a help menu that you can use to obtain 
information on various commands and functions. You can also type help followed by a 
command name to learn how to use the command.

Some examples of commonly used MATLAB functions, along with their proper 
use and descriptions, are shown in Table F.7. Refer to Example F.4 when studying 
Table F.7.

Example F.4

The following set of values will be used to introduce some of MATLAB’s built-in func-
tions. Mass = [102 115 99 106 103 95 97 102 98 96] .

When studying Table F.7, the results of the executed functions are shown under the 
“result of the example” column.

Table F.7  Some MATLAB functions that you may use in engineering analyses.

Function Description of the Function Example Result of the Example

sum It sums the values in a given array sum(Mass) 1013
mean It calculates the average value of the  

  data in a given array.
mean(Mass) 101.3

max It determines the largest value in the  
  given array

max(Mass) 115

min It determines the smallest value in the  
  given array

min(Mass) 95

std It calculates the standard deviation for  
  the values in the given array

std(Mass) 5.93

sort It sorts the values in the given array in  
  ascending order

sort(Mass) 95 96 97 98 99 102 
102 103 106 115

pi It returns the value of p,  
  3.14151926535897. . .

pi 3.14151926535897. . .

tan It returns tangent value of the  
  argument. The argument must be  
  in radians.

tan(pi/4) 1

cos It returns cosine value of the  
  argument. The argument must be in  
  radians.

cos(pi/2) 0

sin It returns sine value of the argument.  
  The argument must be in radians.

sin(pi/2) 1

More examples of MATLAB’s Functions are shown in Table F.8.
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Example F.5

Using MATLAB, compute the average (arithmetic mean) and the standard deviation 
of the density of water data given in Table F.9.

Table F.8  More examples of MATLAB functions.

sqrt(x) Returns the square root of value x.
factorial(x) Returns the value of factorial of x. For example, factorial(5) will return:  

  (5)(4)(3)(2)(1) = 120.

Trigonometric Functions
acos(x) This is the inverse cosine function of x. It is used to determine the value of an angle  

  when its cosine value is known.
asin(x) This is the inverse sine function of x. It is used to determine the value of an angle when  

  its sine value is known.
atan(x) This is the inverse tangent of x function. It is used to determine the value of an angle  

  when its tangent value is known.

Exponential and Logarithmic Functions
exp(x) Returns the value of ex.
log(x) Returns the value of natural logarithm of x. Note that x must be greater than 0.
log10(x) Returns the value of common (base 10) logarithm of x.
log2(x) Returns the value of base 2 logarithm of x.

Table F.9  Data for Example F.5

Group-A  
Findings  
r(kg>m3)

Group-B  
Findings  
r(kg>m3)

1020   950

1015   940

  990   890

1060 1080

1030 1120

  950   900

  975 1040

1020 1150

  980   910

  960 1020

The final results for Example F.5 are shown in Figure F.5.
The MATLAB commands leading to results follow:

>> Density_A = [1020 1015 990 1060 1030 950 975 1020 980 960];
>> Density_B = [950 940 890 1080 1120 900 1040 1150 910 1020];
>> Density_A_Average = mean(Density_A)
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Density_A_Average =
1000.00

>> Density_B_Average = mean(Density_B)
Density_B_Average =

1000.00
>> Standard_Deviation_For_Group_A = std(Density_A)
Standard_Deviation_For_Group_A =

34.56
>> Standard_Deviation_For_Group_B = std(Density_B)
Standard_Deviation_For_Group_B =

95.22
>>

The Loop Control—for and while Commands

When writing a computer program, often it becomes necessary to execute a line or a 
block of your computer code many times. MATLAB provides for and while commands 
for such situations.

Figure F.5  MATLAB’s Command Window for Example F.5.
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The for loop

Using the for loop, you can execute a line or a block of code a specified (defined) num-
ber of times. The syntax of a for loop is

for index = start@value : increment : end-value
a line or a block of your computer code

end

For example, suppose you want to evaluate the function y = x2 + 10 for x values of 
22.00, 22.50, 23.00, 23.50, and 24.00. This operation will result in corresponding y values 
of 494.00, 516.25, 539.00, 562.25, and 586.00. The MATLAB code for this example then 
could have the following form:

x = 22.0;
for i = 1:1:5

y=x^2+10;
disp([x',y'])
x = x + 0.5;

end

Note that in the preceding example, the index is the integer i and its start-value is 1, 
it is incremented by a value of 1, and its end-value is 5.

The while Loop

Using the while loop, you can execute a line or a block of code until a specified condition 
is met. The syntax of a while loop is

while controlling-expression
a line or a block of your computer code

end

With the while command, as long as the controlling expression is true, the line or a block 
of code will be executed. For the preceding example, the MATLAB code using the while 
command becomes:

x = 22.0;
while x <= 24.00

y=x^2+10;
disp([x',y'])
x = x + 0.5;

end

In the preceding example the 6 =  symbol denotes less than or equal to. It is called a 
relational or comparison operator. We will explain MATLAB’s logical and relational 
operators next.

Z06_MOAV4303_04_GE_APP6.INDD   894 27/11/14   10:31 AM

www.FreeEngineeringbooksPdf.com



Appendix F    An Introduction to MATLAB    895

Using Matlab Relational Operators and 
Conditional Statements

In this section we will look at some of MATLAB’s relational operators and conditional 
statements. The relational or comparison operators allow for testing of relative magni-
tude of various arguments. These relational operators are shown in Table F.10. We will 
use Example F.6 to demonstrate the use of MATLAB’s conditional statements and 
relational operators.

Table F.10  MATLAB’s relational operators and their descriptions.

Relational Operator Its Meaning

6 Less than
6 = Less than or equal to
= = Equal to
7 Greater than
7 = Greater than or equal to
~= Not equal to

The Conditional Statements—if, else

When writing a computer program, sometimes it becomes necessary to execute a line 
or a block of code based on whether a condition or a set of conditions is met (true). 
MATLAB provides if and else commands for such situations.

The if Statement

The if statement is the simplest form of a conditional control. Using the if statement, 
you can execute a line or a block of your program as long as the expression following 
the if statement is true. The syntax for the if statement is

if expression
a line or a block of your computer code

end

For example, suppose we have a set of ten scores for an exam: 85, 92, 50, 77, 80, 59, 65, 
97, 72, 40. We are interested in writing a code that shows that scores below 60 indicate 
failing. The MATLAB code for this example then could have the following form:

scores=[85 92 50 77 80 59 65 97 72 40];
for i=1:1:10
if scores (i) <60
fprintf('\t %g \t\t\t\t\t FAILING\n', scores (i))

end
end
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The if, else Statement

The else statement allows us to execute other line(s) of computer code(s) if the expres-
sion following the if statement is not true. For example, suppose we are interested in 
showing not only the scores that indicate failing, but also the scores that show passing. 
We can then modify our code in the following manner:

scores=[85 92 50 77 80 59 65 97 72 40];
for i=1:1:10

if scores (i) >=60
fprintf('\t %g \t\t\t\t\t PASSING\n', scores (i));

else
fprintf('\t %g \t\t\t\t\t FAILING\n', scores (i))

end
end

In MATLAB’s Command Window, try the following examples on your own.
MATLAB also provides the elseif command that could be used with the if and 

else statements. Try MATLAB’s help menu: type help elseif to learn about the elseif 
statement.

Example F.6

The pipeline shown in Figure F.6 is connected to a control (check) valve that opens 
when the pressure in the line reaches 20 psi. Various readings were taken at different 
times and recorded. Using MATLAB’s relational operators and conditional statement, 
create a list that shows the corresponding open and closed position of the check valve.

Check Valve

Figure F.6  A schematic diagram for Example F.6.

The solution to Example F.6 is shown in Figure F.7. The commands leading to  
the solution follow:

>> pressure=[20 18 22 26 19 19 21 12];
>> fprintf('\t Line Pressure (psi) \t Valve Position\n\n');for i=1:8
if pressure(i)+=20
fprintf('\t %g \t\t\t\t\t OPEN\n',pressure(i))
else
fprintf('\t %g \t\t\t\t\t CLOSED\n',pressure(i))
end
end
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The M-File

As explained previously, for simple operations you can use MATLAB’s Command 
Window to enter variables and issue commands. However, when you write a program 
that is more than few lines long, use an M-file. It is called an M-file because of its  
.m extension. You can create an M-file using any text editor or using MATLAB’s Editor/
Debugger. To create an M-file, open the M-file Editor and MATLAB opens a new 
window in which to type your program. As you type your program, you will notice that 
MATLAB assigns line numbers in the left column of the window. The line numbers are 
quite useful for debugging your program. To save the file, simply click File S Save and 
type in the filename. The name of your file must begin with a letter and may include 
other characters such as underscore and digits. Be careful not to name your file the 
same as a MATLAB command. To see if a filename is used by a MATLAB command,  
type exist ('file-name') in the MATLAB’s Command Window. To run your program, 
click on Debug S Run (or use the function key F5). Don’t be discouraged to find mis-
takes in your program the first time you attempt to run it. This is quite normal! You can 
use the Debugger to find your mistakes. To learn more about debugging options, type 
help debug in the MATLAB’s Command window.

Figure F.7  The solution of Example F.6.
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Example F.7

It has been said that when Pascal was 7 years old, he came up with the formula 
n(n + 1)

2  
to determine the sum of 1, 2, 3, . . . , through n. The story suggests that one day he was 
asked by his teacher to add up numbers 1 through 100, and Pascal came up with the 
answer in few minutes. It is believed that Pascal solved the problem in the following 
manner:

First, on one line he wrote the numbers 1 through 100, similar to

1    2    3    4 . . . . . . . . . . . . 99    100

Then on the second line he wrote the numbers backward

100    99    98    97 . . . . . . . . . . 2    1

Then he added up the numbers in the two lines, resulting in one hundred identical 
values of 101

101    101    101    101 . . . . . . . . . 101    101

Pascal also realized that the result should be divided by 2—since he wrote down 

the numbers 1 through 100 twice—leading to the answer: 
100(101)

2 = 5050. Later, he 

generalized his approach and came up with the formula 
n(n + 1)

2 .
Next, we will write a computer program using an M-file that asks a user to input 

a value for n and computes the sum of 1 through n. To make the program interesting, 
we will not make use of Pascal’s formula; instead, we will use a for loop to solve the 
problem. We have used MATLAB’s Editor to create the program and have named it 
For_Loop_Example.m, as shown in Figure F.8. In the shown program, the % symbol 
denotes comments. MATLAB will treat any text following the % symbol as comments. 
Also, note that you can find the Line (Ln) and Column (Col) numbers corresponding 

Figure F.8  The M-file for Example F.7.
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to a specific location in your program by moving the cursor. The line and the column 
numbers are  shown in the right-side bottom corner of the Editor window. As you 
will see, the knowledge of line and column numbers are useful for debugging your 
program. We run the program by clicking on Debug S Run, and the result is shown in 
Figure F.9.

Figure F.9  The results of Example F.7.

Plotting with Matlab

MATLAB offers many choices for creating charts. For example, you can create x-y 
charts, column charts (or histograms), contour, or surface plots. However, as an engineer-
ing student, and later as a practicing engineer, most of the charts that you will create 
will be x-y type charts. Therefore, we will explain in detail how to create an x-y chart.

Example F.8

Starting with a 10 cm by 10 cm sheet of paper, what is the largest volume you can create 
by cutting out x cm by x cm from each corner of the sheet and then folding up the sides? 
This problem has a simple analytical solution, however, to demonstrate MATLAB’s 
plotting features, we will use MATLAB to obtain the solution.

The volume created by cutting out x cm by x cm from each corner of the 10 cm by 
10 cm sheet of paper is given by volume = (10 - 2x)(10 - 2x)x. Moreover, we know 
that for x =  0  and   x =  5 the volume will be zero. Therefore, we need to create a range 
of x values from 0 to 5 using some small increments such as 0.1. We then plot the volume 
versus x and look for the maximum value of volume. The MATLAB commands that 
lead to the solution follow:

>> x = 0:0.1:5;
>> volume = (10−2*x).*(10−2*x).*x;
>> plot (x,volume)
>> title ('Volume as a function of x')
>> xlabel ('x (cm)')
>> ylabel ('Volume (cm^3)')
>> grid minor
>>
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The MATLAB command window for Example F.8 is shown in Figure F.10. The 
plot of volume versus x is shown in Figure F.11.

Figure F.10  The MATLAB command window for Example F.8.

Figure F.11  The plot of volume versus x for Example F.8.
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Let us now discuss the MATLAB commands that are commonly used when plot-
ting data. The plot(x,y) command plots y values versus x values. You can use various line 
types, plot symbols or colors with the command plot(x,y,s) where s is a character string 
that defines a particular line type, plot symbol, or line color. The s can take on one of 
the properties shown in Table F.11.

Table F.11  MATLAB line and symbol properties

S Color S Data Symbol S Line Type

b Blue . Point - Solid
g Green O Circle : Dotted
r Red x x-mark -. Dash-dot
c Cyan + Plus -- Dashed
m Magenta * Star
y Yellow s Square
k Black d Diamond

v Triangle (down)
^ Triangle (up)
< Triangle (left)
> Triangle (right)

For example, if you issue the command plot(x,y, 'k*-'), MATLAB will plot the 
curve using a black solid line with * marker shown at each data point. If you do not 
specify a line color, MATLAB automatically assigns a color to the plot.

Using title('text') command, you can add text on top of the plot. The xlabel('text') 
creates the title for the X-axis. The text that you enclose between single quotation marks 
will be shown below the X-axis. Similarly, the ylabel('text') command creates the title 
for the Y-axis. To turn on the grid lines, type the command grid on (or just grid). The 
command grid off removes the grid lines. To turn on the minor grid lines as shown in 
Figure F.11, type the command grid minor.

Generally, it is easier to use the graph property editor. For example, to make the 
curve line thicker, change the line color, and to add markers to the data points, with the 
mouse pointer on the curve, double-click the left mouse button. Make sure you are in 
the picking mode first. You might need to click on the arrow next to the print icon to 
activate the picking mode. After double-clicking on the line, you should see the line and 
the marker editor window. As shown in Figure F.12, we increased the line thickness from 
0.5 to 2, changed the line color to black, and set the data point marker style to Diamond. 
These new settings are reflected in Figure F.13.

Next, we will add an arrow pointing to the maximum value of volume by selecting 
the Text Arrow under the Insert option (see Figure F.13), and add the text “Maximum 
volume occurs at x = 1.7 cm”.  These additions are reflected in Figure F.14.

We can also change the font size and style and make the title or the axes labels 
boldface. To do so we pick the object that we want to modify and then from the menu 
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Figure F.12  The plot of Example F.8 with modified properties.

bar select Edit and then Current Object Properties. . . . Then using the property edi-
tor shown in Figure F.15 we can modify the properties of the selected object. We have 
changed the font size and the font weight of the title and the labels for Example F.8 and 
shown the changes in Figure F.16.

With MATLAB you can generate other types of plots including contour and sur-
face plots. You can also control the x- and y-axis scales. For example, the MATLAB’s 
loglog(x,y) uses the base 10 logarithmic scales for x- and y-axes. Note that x and y are 
the variables that you want to plot. The command loglog(x,y) is identical to the plot(x,y), 
except it uses logarithmic axes. The command semilogx(x,y) or semilogy(x,y) creates a 
plot with base 10 logarithmic scales for either only x-axis or y-axis. Finally, note that you 
can use the hold command to plot more than one set of data on the same chart.

Z06_MOAV4303_04_GE_APP6.INDD   902 27/11/14   10:31 AM

www.FreeEngineeringbooksPdf.com



Appendix F    An Introduction to MATLAB    903

Figure F.13  Using the Insert Text Arrow or Insert Text options, you can add 
arrows or text to the plot.

Figure F.14  The solution of Example F.8.
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Figure F.16  The result of 
Example F.8.

Figure F.15  MATLAB’s 
Property Editor.
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A reminder: When creating an engineering chart, whether you are using MATLAB, 
Excel, other drawing software, or freehand, an engineering chart must contain proper 
labels with proper units for each axis. The chart must also contain a figure number with 
a title that explains what the chart represents. If more than one set of data is plotted on 
the same chart, the chart must also contain a legend or list that shows symbols used for 
different data sets.

Example F.2 (revisited)

Using the results of Example F.2, create a graph showing the value of air density as a 
function of temperature.

The command window and the plot of density of air as a function of temperature 
are shown in the accompanying figures.
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Importing Excel and Other Data Files into Matlab

At times, it might be convenient to import data files that were generated by other 
programs, such as Excel, into MATLAB for additional analysis. To demonstrate how 
to import a data file into MATLAB, consider the Excel file shown in Figure F.17. 
The Excel file was created for Example F.8, with two columns, the x values and the 
corresponding volume. To import this file into MATLAB, from Home Tab we select 
Import Data and then go to the appropriate directory and open the file we want. The 
MATLAB will import the data and will save them as x and volume variables.

Figure F.17  The Excel data file used in the example.

Figure F.18  MATLAB’s Import Wizard.
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Now let’s say that we want to plot volume as a function of x. We then simply type 
the MATLAB commands that are shown in Figure F.19. The resulting plot is shown in 
Figure F.20.

Figure F.19  The commands leading to the plot shown in Figure F.20.

Figure F.20  Plot of volume versus x using data imported from an Excel file.
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Matrix Computations with Matlab

As explained earlier, MATLAB offers many tools for matrix operations and manipu-
lations. Table F.5 shows examples of these capabilities. We will demonstrate a few of 
MATLAB’s matrix commands with the aid of the following examples.

Example F.9

Given the following matrices: [A] = £
0 5 0
8 3 7
9 -2 9

§ , [B] = £
4 6 -2
7 2 3
1 3 -4

§ , and {C} = •
-1

2
5
¶ ,

using MATLAB, perform the following operations:

(a) [A] + [B] = ?, (b) [A] - [B] = ?, (c) 3[A] = ?, (d) [A][B] = ?, (e) [A]{C} = ?,  
(f)  determinate of [A].

The solution to this problem follows. When studying these examples, note that the 
response given by MATLAB is shown in regular typeface. Information that the user 
need to type is shown in boldface.

>> A=[0 5 0;8 3 7;9 −2 9]

A =

0 5 0
8 3 7
9 -2 9

>> B=[4 6 −2;7 2 3;1 3 −4]

B =

4 6 -2
7 2 3
1 3 -4

>> C=[−1;2;5]

C =

-1
2
5

>> A+B

ans =

4 11 -2
15 5 10
10 1 5
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>> A−B

ans =

-4 -1 2
1 1 4
8 -5 13

>> 3*A

ans =

0 15 0
24 9 21
27 -6 27

>> A*B

ans =

35 10 15
60 75 -35
31 77 -60

>> A*C

ans =

10
33
32

>> det(A)

ans  =

-45
W

Example F.10

Solve the following set of equations using the Gauss elimination and by inverting the 
[A] matrix (the coefficients of unknowns) and multiplying it by the {b} matrix (the values 
on the right-hand side of equations).

 2x1 + x2 + x3 = 13

 3x1 + 2x2 + 4x3 = 32

 5x1 - x2 + 3x3 = 17
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For the above problem, the coefficient matrix [A] and the right-hand side matrix 
{b} are

[A] = £
2 1 1
3 2 4
5 -1 3

§ and {b} = •
13
32
17
¶

We will first use the MATLAB matrix left division operator \ to solve this problem. 
The \ operator solves the problem using Gauss elimination. We then solve the problem 
using the inv command.

>> A = [2 1 1;3 2 4;5 −1 3]

A =

2 1 1
3 2 4
5 -1 3

>> b=[13;32;17]

b =
13
32
17

>> x=A\b

x =
2.0000
5.0000
4.0000

>> x= inv(A)*b

x =
2.0000
5.0000
4.0000

Note if you substitute the solution x1 = 2, x2 = 5, and  x3 = 4 into each equation, 
you find that they satisfy them. That is, 2(2) + 5 + 4 = 13,  3(2) + 2(5) + 4(4) = 32, 
and  5(2) - 5 + 3(4) = 17.
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Curve Fitting with Matlab

MATLAB offers a variety of curve fitting options. We will use Example F.11 to show how 
you can also use MATLAB to obtain an equation that closely fits a set of data points. For 
Example F.11, we will use the command polyfit(x, y, n), which determines the coefficients 
(c0, c1, c2, . . . , cn) of a polynomial of order n that best fits the data according to:

y = c0 xn + c1xn - 1 + c2xn - 2 + c3xn - 3 + . . . + cn

Example F.11

Find the equation that best fits the following set of data points:

X Y

0.00 2.00
0.50 0.75
1.00 0.00
1.50 - 0.25
2.00 0.00
2.50 0.75
3.00 2.00

The plot of data points reveals that the relationship between y and x is quadratic 
(second order polynomial). To obtain the coefficients of the second order polynomial 
that best fits the given data, we will type the following sequence of commands: 

>>format compact
>> x=0:0.5:3
>> y = [2 0.75 0 −0.25 0 0.75 2]
>> Coefficients = polyfit(x,y,2)

The MATLAB command window for Example F.11 is shown in Figure F.21. 
Upon execution of polyfit command, MATLAB will return the following coefficients, 
c0 = 1,  c1 = -3,  and  c2 = 2, which leads to the equation y = x2 - 3x + 2.

Figure F.21  The command window for Example F.11.
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Symbolic Mathematics with Matlab

In the previous sections, we discussed how to use MATLAB to solve engineering prob-
lems with numerical values. In this section we briefly explain the symbolic capabilities of 
MATLAB. In symbolic mathematics, as the name implies, the problem and the solution 
are presented using symbols such as x instead of numerical values. We will demonstrate 
MATLAB’s symbolic capabilities using the following examples.

Example F.12

We will use the following functions to perform the MATLAB’s symbolic operations 
shown in Table F.12:

 f1(x) = x2 - 5x + 6

 f2(x) = x - 3

 f3(x) = (x + 5)2

 f4(x) = 5x - y + 2x - y

Table F.12  Examples of MATLAB’s symbolic operations

Function Description of the Function Example Result of the Example

sym It creates a symbolic function F1x = sym('x^2-5*x+6') F1x = x^2-5*x+6
F2x = sym('x-3') F2x = x-3
F3x = sym('(x+5)^2') F3x = (x+5)^2
F4x = sym('5*x-y+2*x-y') F4x = 5*x-y+2*x-y

factor When possible, it factorizes the  
  function into simpler terms

factor(Fx1) (x-2)*(x-3)

simplify It simplifies the function simplify(F1x/F2x) x-2
expand It expands the function expand(F3x) x^2+10*x+25
collect It simplifies a symbolic expression  

  by collecting like coefficients
collect(F4x) 7*x-2*y

solve It solves the expression for its  
  values

solve(F1x) x = 2  and  x = 3

ezplot(f, min,  
  max)

It plots the function f in the range  
  of min and max

ezplot(F1x,0,2) See Figure F.22.

Solutions of Simultaneous Linear Equations

In this section we will show how you can use MATLAB’s symbolic solvers to obtain 
solutions to a set of linear equations. Consider the following 3 linear equations with 
three unknowns, x, y, and z:

 2x + y + z = 13
 3x + 2y + 4z = 32
 5x - y + 3z = 17
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In MATLAB, the solve command is used to obtain solutions to symbolic algebraic 
equations. The basic form of the solve command is solve('eqn1','eq2', . . ,'eqn'). As 
shown below, we define each equation first and then use the solve command to obtain 
the solution.

>> equation_1= '2*x+y+z=13';
>> equation_2= '3*x+2*y+4*z=32';
>> equation_3= '5*x−y+3*z=17';
>> [x,y,z]=solve(equation_1,equation_2,equation_3)

The solution is given by x = 2,  y = 5, and  z = 4. The MATLAB Command 
Window for this example is shown in Figure F.23.

Figure F.22  The ezplot for Example F.12; see the last row in Table F.12.
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Figure F.23  The solution of the set of linear equations discussed in the example.

As we said at the beginning of this appendix, there are many good textbooks that 
discuss the capabilities of MATLAB to solve a full range of problems. Here our intent 
was to introduce only some basic ideas so that you can perform some essential opera-
tions or write a simple program to solve for the solution of your finite element model.
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Absolute humidity, 843
Adiabatic lines, 458, 548
Adiabatic surface, 457–458
Air, 842–843
Aluminum, 836
Aluminum bronze, 837
American National Standards 

Institute (ANSI), 836
Angles having equal legs, 875
Anisotropic material, 838
ANSYS

applications for, 26, 27
backward Euler and, 507
basic concepts of, 175
batch files and, 852
Begin level, 407
boundary conditions, 424–426
creating finite element model 

with, 410–424
databases and files, 408–410
degree of freedom and, 425
dialog box, 174–175, 411
dynamic problems using, 685–703
error-estimation procedures, 

435–437
examples using, 181–212, 437–451
fluid mechanics problems using, 

732–753
graphical picking and, 179–180
Graphical User Interface and, 

176–177
graphics capabilities, 433–435
heat transfer problems using, 

508–547

help system, 180
h-method, 424
input command, 409
loads, 424–426
main menu for, 176–177
meshing, 421–424, 780
method to enter, 173–175
in one-dimensional problems, 321, 

351–366
overview of, 26
parametric design language of, 

850–852
plotting model entities, 421–422
p-method, 424
postprocessing, 427–431
Processor level, 407
selection options, 432–433
solution, 427
stress component distribution, 595
structural example using, 806–819
three-dimensional beam element, 

262–287
time integration and, 506–507
two-dimensional elements, 398–

399
two-dimensional solid mechanics 

problems using, 596–618
utility menu for, 177–178
verification of results on, 213–214, 

287–289, 548, 618, 753–754
ANSYS element types/options

BEAM188, 262–275
BEAM189, 262
KEOPTs, 410, 411
LINK180, 181
LINK31, 321
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LINK33, 321
LINK34, 321
PLANE35, 398, 507, 596, 732
PLANE55, 507–508, 597, 732
PLANE77, 399, 508, 597, 732
PLANE182, 399, 410, 411, 596
PLANE183, 399, 410–411, 439, 596
SOLID45, 775
SOLID65, 775–776
SOLID70, 774
SOLID90, 774–775
SOLID185, 774, 777
SOLID186, 777
SOLID187, 777
SOLID285, 776

ANSYS files
Jobname.DB, 198, 409, 432
Jobname.EMAT, 410
Jobname.ERR, 409
Jobname.GRPH, 410
Jobname.LOG, 409
Jobname.OUT, 409
Jobname.RMG, 410
Jobname.RST, 410
Jobname.RTH, 410

ANSYS finite element model
creation of, 410–424
element real constants, 411–412
element types, 410–411
material properties, 412–413
meshing, 421–424
model geometry, 413–417

ANSYS processors
OPT, 408
POST1, 175, 407, 427, 451, 852
POST26, 175, 427, 430
PREP7, 175, 407–408, 451, 852
solution, 175, 407

ANSYS working plane
coordinate system, 418
display options, 418
explanation of, 417–418
grid control, 419–420
location status, 421

offset buttons, 420
offset dialog input, 420–421
offset slider, 420
snap options, 418

Area moments of inertia, 870
Axial members, finite element 

formulation of, 662–671
Axisymmetric elements

explanation of, 389
rectangular, 391–394
triangular, 390–391

Axisymmetric formulation
formulation of stiffness matrix 

using, 593–595
of three-dimensional problems, 

490–497

B

Backward Euler, 507
Banded matrix, 88
Basic failure theories, for structural 

solid analysis, 595–596
Batch files

examples of, 852–863
explanation of, 852
optimization, 852–863

Beams
deflection and, 233–237
finite element formulation of, 

238–241, 671–673
function of, 233–234
load matrices and, 241–243
stiffness matrix and, 246–247, 255
strain energy and, 230–231
stresses in, 233, 237, 239, 261–262
three-dimensional, 260–262

Bilinear rectangular elements, 380
Biot number, 499–500, 506
Boolean operations, in solid-

modeling approach, 414
Boundary conditions, 69

ANSYS, 424–427, 447
in conduction problems, 456–459

ANSYS element types/options (cont.)
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convective, 467–468, 474, 478–479, 
496

derivative, 467
differential heat equation, 500
in elemental resistance matrices, 

717
in elemental stiffness matrices, 

152, 159–160, 173, 191, 205
in engineering problems, 22, 25, 

32–33, 35, 37, 39, 42, 46–47, 51,  
54, 61

in finite element analysis, 424–427
global coordinate system, 312
global load matrix and, 232, 242, 

244, 248, 251, 570
in heat transfer problems, 329–331, 

336–339, 456–458, 471, 480, 504
in linear equations, 106
stiffness matrix for an axial 

element, 665, 668, 684, 692, 698
weighted residual methods, 63–64

Boundary layer region, 723–724
Brass, 837
Brick elements

eight-node, 769–771
twenty-node, 772–773

Bronze, 837
Bulk modulus of compressibility, 835

C

Calcium chloride, 838
Carbon, 840
Centroids, 870
Chain rule, 334, 461, 473, 491, 493
Circular frequency, 646–647
Collocation method, 64–65
Column matrix, 87
Common shapes, 870–871
Composite materials, 841–842
Composite walls, 345–347
Compression strength, 834
Concatenation, 781
Concrete, 837–838

Conductance matrix
for axisymmetric triangular 

element, 496–497
explanation of, 44, 47, 336–337

Conduction, 453–454
Conduction problems

boundary conditions in, 456–459
steady-state two-dimensional, 

 456
Conservation of energy

explanation of, 455–456
heat transfer problems and,  

491–492
Convective heat transfer, 41, 42, 

454–455
Conversion factors, 876–877
Cooling, 303
Copper, 837
Cramer’s rule, 102
Crank-Nicholson, 507
C shapes, 874
Cubic elements, 309–312
Cubic shape functions, natural  

one-dimensional, 315

D

Darcy’s law, 730
Deflection, linear approximation of, 

226–227
Deflection equations, 235–237
Degrees of freedom

ANSYS, 425
dynamic problems and, 643,  

648–649
explanation of, 643
forced vibration of single,  

648–649
multiple, 655–660
nodal, 246, 255

Density, 833
Design optimization

batch files and, 852–863
examples of, 847–850
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overview of, 846–847
parametric design language of 

ANSYS and, 850–852
Design process

common solid engineering 
materials and, 835–842

fluid materials and, 842–844
material properties and, 833–835
material selection and, 832–833
overview of, 828–829
steps in, 829–832

Design variables, 848, 850
Determinants

examples using, 104–106
of matrices, 101–106
properties of, 103
of square matrix, 101

Diagonal, principal, 88
Diagonal matrix, 87–88
Differential equations, 22, 25
Direct expansion, 102–103
Direct formulation

of flow through pipes, 711–723
heat transfer problem using,  

40–49
postprocessing phase in, 37–40
preprocessing phase in, 28–35
solution phase in, 36–37
stress distribution problem using, 

52–55
torsional problem using, 49–52

Direct generation, 413
Discretization, 25
Displacement matrix, 32–35, 39
Displacement results, 62–63
Distortion-energy theory, 595
Dynamic problems

ANSYS used for, 685–703
degree of freedom, 643, 648–649
forced vibration and unbalanced 

rotating mass and, 650–651
forces transmitted to foundation 

and, 652–654
Lagrange’s equations and, 660–662

multiple degrees of freedom, 
655–660

support excitation and, 654–655
Dynamics

finite element formulation of axial 
members and, 662–671

finite element formulation of 
beams and frames and, 671–685

kinematics of particles and,  
630–632

kinematics of rigid body and, 
636–638

kinetics of particles and, 633–635
kinetics of rigid body and, 638–643

Dynamic systems
examples of, 644
explanation of, 629–630
period and frequency for, 646
properties of, 643

E

Eigenvalues, 118
Eigenvectors

explanation of, 118
method to obtain, 119–121

Eight-node brick element, 769–771
Elastically coupled system, 119, 655
Elastic energy, 230
Elasticity

fundamental concepts of,  
578–584

Hooke’s law and, 580–582, 593
modulus of, 565, 581, 834

Electrical networks, 24, 25
Electrical resistivity, 833
Elemental flow resistance, 718
Element real constants, 411–413
Elements

axisymmetric, 389–394
beam, 671–685
cubic, 309–312
eight-node brick, 769–771
four-node tetrahedral, 761–769

Design optimization (cont.)
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frame, 254–260, 673–676
isoparametric, 314–316, 394–396
linear, 225–230
linear triangular, 380–385
one-dimensional, 227, 228,  

303–321
quadratic, 307–309
quadratic quadrilateral, 375–380, 

399
quadratic triangular, 385–389
quadrilateral, 375
rectangular, 371–375
structural-solid, 774–777
ten-node tetrahedral, 771–772
thermal-solid, 774
three-dimensional, 260–262
triangular, 383–391, 398, 471–482
twenty-node brick, 772–773
two-dimensional, 372–399

Energy conservation, 455–456
Engineering systems

parameters causing disturbances 
in, 25

physical properties characterizing, 
23–24

Engineers, 829
Error-estimation procedures, 

ANSYS, 435–437
Euler parameter, 507
Excel (Microsoft), 126–132

dynamic problem, 666–671
finite element problem, solving, 

132–140
finite element formulation 

torsional problems, 572–578
fluid mechanics problem, 718–723
formulation with triangular 

elements, 482–490
midpoint deflection, solving, 

249–254
one-dimensional heat transfer 

problem, 341–345
truss problems, solving, 163–171

Explicit finite difference method, 
501, 504

F

Factor of safety (F.S.), 595
Failure theories, for structural solid 

analysis, 595–596
Feasible solution region, 848–849
Fiberglass, 841
Fibers, 841
Finite difference method

explanation of, 25
explicit, 501, 504
for heat transfer problems,  

501–503, 506–507
implicit, 502–503, 504–506

Finite element analysis (FEA).  
See also ANSYS

examples using, 70–73
explanation of, 21
sources of error in, 68–69
verification of, 287–289, 753–754

Finite element formulation
of axial members, 662–666
of beams and frames, 238–241, 

254–260, 671–685
of fluid mechanics problems, 

716–717
of viscous fluid flow problems,  

728
Finite element method

applications for, 26
basic steps in, 26, 28
direct formulation and, 28–56
explanation of, 25
for heat transfer problems,  

506–507
historical background of, 26
minimum total potential energy 

formulation and, 57–63
numerical methods and, 25
results verification and, 68–69
for torsional problems, 562,  

564–572
for trusses, 146–171
weighted residual formulations 

and, 63–68
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Finite element modeling
of frames, 254–260
frames of reference for, 312

Finite element models (ANSYS)
element types and options,  

410–411
geometry, 413–417
grid control, 419–421
material properties definition, 

412–413
meshing, 422–424
plotting model entities, 421–422
working plane, 417–421

Finite element problems
direct formulation approach  

to, 28–56
minimum total potential energy 

formulation approach to,  
57–63

steps in, 26, 28
weighted residual formulation 

approach to, 63–68
Fins

determining temperature of, 307, 
314–315

problems involving, 337–341
transient response of, 529–547
two-dimensional function and, 

371, 372
use of, 303, 304

Fluid flow
ideal, 723–728, 732
parameters causing disturbances 

in, 25
physical properties related to, 24
in porous media, 729–730

Fluid materials
air as, 842–843
water as, 843–844

Fluid mechanics problems
ANSYS used in, 732–753
direct formulation of flow through 

pipes and, 711–723
groundwater flow and, 729–732
ideal fluid flow and, 723–728

one-dimensional, 347–351
verification of results in,  

753–754
for commands, 891
Forced vibration

caused by unbalanced rotating 
mass, 650–651

equations of motion for,  
658–660

of single degree of freedom 
system, 648–649

Foundation, forces transmitted to, 
652–654

Fourier number, 499, 506
Fourier’s law, 43, 454, 482, 492
Four-node tetrahedral element

analysis of three-dimensional solid 
problems using, 764–769

explanation of, 761–764
load matrix and, 769

Frame elements, 254–260, 673–676
Frames

finite element formulation of, 
254–260, 673–676

Free-body diagrams, 633, 635, 639, 
642

Free meshing, 781–783
free-stream velocities, 728

G

Galerkin method
for analysis of two-dimensional 

laminar flow, 728
heat transfer problems and, 460, 

473, 491
weighted residual formulations 

and, 66, 332
Gauss elimination method

explanation of, 106–108
use of, 108, 114, 125

Galerkin residuals, 491
Gauss-Legendre formula, 316, 319, 

320, 590
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Gauss-Legendre quadrature
explanation of, 316, 318–320
two-dimensional integrals and, 

397–398
General plane motion, 637–638, 640
Geometrical properties, of structural 

steel shapes, 872–875
Glass, 840–841
Global conductance matrix, 45, 46, 

475
Global load matrix, 475
Global matrix, 34, 35, 45, 47
Graphical picking, ANSYS and, 

179–180
Graphical User Interface (GUI)

ANSYS and, 175–177, 180
graphical picking, 179
layout of, 176–177

Green’s theorem, 462, 465–471,  
493, 496

Groundwater, 843
Groundwater flow, 729–732

H

Hardwood, 839
Heat capacity, 835
Heat conduction. See Conduction; 

Conduction problems
Heat diffusion equation, 456–457
Heat flow matrix, 47
Heat transfer

conduction, 453–454, 456–459
convection, 41, 454–455
fin, 337–345
Fourier’s law and, 454, 482, 492
Galerkin method and, 460, 473, 

491
Green’s theorem and, 462,  

465–471, 493, 496
modes of, 453–455
one-dimensional elements and, 

303
one-dimensional transient, 500

parameters causing disturbances 
in, 25

physical properties related to, 
23–24

unsteady, 497–500
Heat transfer problems

axisymmetric formulation of 
three-dimensional, 490–497

conduction elements used by 
ANSYS, 508–509

examples using ANSYS, 508–547
finite difference approach to, 

501–503
formulation with rectangular 

elements, 460–471
formulation with triangular 

elements, 471–482
general conduction, 453–459
implicit method for, 502–503
unsteady, 497–500
verification of results to, 448

Heisler charts, 500
Hooke’s law

stresses and strains and, 580–582, 
593

truss problems and, 146
Humidity, 843

I

Identity matrix, 88
if statement, 892
if and else statement, 893
Implicit finite difference method, 

501–503
Impulse approach, 641
Incompressible flow, 715
Input data, 408
Integral formulations, 25
Integrals, two-dimensional,  

396–398
Inviscid flow, 723–724, 727, 754
Iron, 837
Irrotational flow, 727–728
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Isoparametric elements
explanation of, 314–315, 394–396
one-dimensional natural quadratic 

and cubic shape functions and, 
315–316

Isoparametric formulation
explanation of, 314, 394
quadrilateral element and, 586–592

Isotherms, 454, 548

J

Jobname.Ext, 198, 409–410, 432

K

Kinematics
of particle, 630–632
of rigid body, 636–638

Kinetics
of particles, 633–635
rectilinear translation, 638–639
of rigid body, 638–643

L

Lagrange interpolation functions
example using, 312
explanation of, 310–311

Lagrange polynomial formula, 312
Lagrange’s equations

examples using, 660–663, 671
explanation of, 660

Laminar flow, 713, 715–716
Laplace’s equation, 728
Least-squares method, 67
Legendre polynomials, 318
Lightweight metals, 836–837
Linear approximation

of deflection, 226–227
of temperature distribution for
element, 304

Linear elements
axial loading and, 225–230
one-dimensional, 303–307

Linear triangular elements
explanation of, 380–385
limitations of using, 571–572

Line segments, centroids of, 869
Lines of symmetry, 548
Load matrices

change of, 108
direct formulation and, 32, 33,  

35, 39
formulation of nodal, 241–243
stiffness and, 230–233
three-dimensional problems  

and, 769
two-dimensional plane stress  

and, 584–586
Local coordinates, advantages  

of, 312
Locational picking, 163
Lower triangular matrix, 88
LU method

application of, 112–114
explanation of, 108–112

Lumped capacitance method,  
499

M

M-file, 894
Magnesium, 836–837
Magnetism problems, 24
Mapped meshing, 781–783
Mass moments of inertia of common 

shapes, 871
Materials

electrical, mechanical, and
thermophysical properties of, 

833–835
mechanical properties of 

engineering, 866–867
selection of, 832–833
thermophysical properties of, 868
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Mathematical models, 22, 455
MATLAB

basic ideas, 878–881
commands for, 122, 880–882, 

890–891
conditional statements, 892–893
curve fitting with, 908–909
default mode, 878–879
desktop layout, 879–880
disp command, 880–881
element by element operation, 

883–886
explanation of, 122
for and while commands, 890–891
format command, 880–881
formulas, 883
fprintf command, 880–881
functions, 888–889
generating range of values, 882
importing of Excel and other data 

to, 903–905
line and symbol properties, 898
manipulating matrices using, 

122–125
matrix computations with, 905–908
matrix operations, 122, 886
plotting with, 896–902
relational operators, 892
scalar operations, 122, 880
solutions to a set of linear 

equations, 910–912
symbolic mathematics with,  

909–910
workspace, 882

Matrices
banded, 88
column, 87
determinant of, 101–106
diagonal, 87–88, 118
elements of, 86
explanation of, 86–87
identity, 88, 118
inverse of, 114–118
lower triangular, 88
partitioning of, 93–97

row, 87
singular, 105–106
size of, 86
square, 87, 101
transpose of, 97–100
unit, 88
upper triangular, 88
using EXCEL to manipulate, 

126–132
using MATLAB to manipulate, 

122–125
Matrix addition, 89, 94
Matrix materials, 841
Matrix multiplication

example of, 91–93
multiplying by scalar quantity, 

89–90
multiplying matrix by another 

matrix, 90–91
using partitioned matrices,  

94–95
Matrix subtraction, 89, 94
Maximum-normal-stress theory, 595
Maximum-sheer-stress theory, 595
Mechanical properties, of 

engineering materials,  
866–867

Members under axial loading
linear element and, 225–230
stiffness and load matrices and, 

230–233
Meshing

ANSYS, 421–424, 780
free vs. mapped, 781–783

Microsoft Excel. See Excel 
(Microsoft)

Minimum total potential energy 
formulation, 57–63

Modal analysis, 659
Modulus of elasticity, 565, 581, 834
Modulus of resilience, 834
Modulus of rigidity, 563, 581, 834
Modulus of toughness, 834
Mohr failure criteria, 596
Momentum approach, 641
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Motion
equations of, 658–660
general plane, 637–638, 640
Newton’s second law of, 633–635, 

638–639, 645
plane curvilinear, 630–631
rectangular, 630
relative, 632
rotational, 643
translational, 642

N

Natural coordinates
advantages of, 312, 313
one-dimensional, 313–314
for triangular elements, 383–385
two-dimensional, 374–375

Natural shape functions,  
quadratic, 315

Newton’s law of cooling, 41–42
Newton’s second law of motion, 

633–635, 638–639, 645
Nodal degree of freedom, 246, 260
Nonhomogenous systems, 118
Normal coordinates, 631
Numerical integration, Gauss-

Legendre quadrature and, 316, 
318–320

Numerical methods, 25

O

Objective function, 848, 849
One-dimensional elements

in ANSYS, 321
cubic, 309–312
Gauss-Legendre quadrature and, 

316–320
global, local, and natural 

coordinates and, 312–314
isoparametric, 314–316
linear, 303–306

natural coordinates and,  
312–314

quadratic, 307–309
shape functions and, 228,  

306–307, 317
One-dimensional problems

ANSYS used for, 351–366
fluid mechanics, 351
heat transfer, 328–347
verifying results of, 366–367

One-dimensional transient heat 
transfer, 500

Optimization, 846. See also Design 
optimization

Optimization batch files, 852–863

P

Pappus-Guldinus theorem,  
494–495, 497

Parametric design language,  
850–852

Particles
explanation of, 630
kinematics of, 630–632
kinetics of, 633–635

Perfectly insulated surface, 458
Permeability matrix, 731
Pipe flow, 711–723
Pipes

in parallel, 716
in series, 715–716

Plane curvilinear motion, 630–631
Plane-strain situation, 579–580
Plane-stress formulation, 578–586
Plane-stress situation, 579
Plane truss, 145
Plastics, 839–840
Plotting, model entities with ANSYS, 

421–422
Poisson’s ratio, 581, 590, 603, 808
Polar coordinates, 631–652
Polymers, 839
Polyvinyl chloride (PVC), 839
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Postprocessing phase
ANSYS, 408, 427–431
direct formulation and, 37–40, 

48–49
of finite element method, 28
for heat transfer problems, 329

Potential function, 727–728
Potential lines, 727–728
Prandtl formulation, 564–565
Precast concrete, 838
Preprocessing phase

ANSYS, 407–408, 410–424
direct formulation and, 28–35, 

40–48
finite element method and, 26, 28
for heat transfer problems, 328
truss problems and, 152–160

Prestressed concrete, 838
Primitives, 414, 417
Principal coordinates, 659
Principal diagonal, 88

Q

Quadratic approximation, 308
Quadratic elements, 307–309
Quadratic natural shape functions, 

315
Quadratic quadrilateral elements, 

375–380, 396
Quadratic triangular elements,  

385–389, 397
Quadrilateral elements

explanation of, 375
isoparametric formulation and, 

586–592

R

Range, 132
Reaction forces, 39, 213
Reaction matrix, 32, 39
Real constants, element, 411–413

Rectangular elements
axisymmetric, 391–394
bilinear, 380, 460
explanation of, 371–374
heat transfer problems and,  

460–471
natural coordinates and, 374–375
permeability matrix for, 731

Rectangular motion, 630
Rectilinear translation, 638–639
Reinforced concrete, 838
Relative humidity, 843
Relative motion, 632
Results data, 409
Retrieval picking, 163
Reynolds number, 711–713
Rigid body

explanation of, 636
kinematics of, 636–638
kinetics of, 638–643

Rigidity, modulus of, 563, 581, 834
Rotation

about fixed axis, 639
of rigid body, 636–637

Rotational kinetic energy, 641
Rotational motion, 643
Row matrix, 87

S

Seepage velocity, 730, 745, 754
distribution in the porous soil, 

745–753
Semiconductors, 840
Shape functions

basic ideas of, 303–306
one-dimensional, 315–317
properties of, 306–307
quadratic, 312, 315
triangular, 382, 383
two-dimensional, 371–397

Shear modulus, 563, 565, 581, 834
Silicon, 840
Silicones, 840
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Simple harmonic motion, 643
Singular matrix, 105–106
Soda-lime-silica glass, 840
Softwood, 839
Solid engineering materials

composites as, 841–842
concrete as, 837–838
cooper and its alloys as, 837
glass as, 840–841
iron and steel as, 837
lightweight metals as, 836–837
plastics as, 839–840
silicon as, 840
wood as, 838–839

Solid mechanics, 23, 25
Solid mechanics problems. See  

Two-dimensional solid 
mechanics problems

Solid-modeling approach
Boolean operations, 414
bottom-up, 778, 779
explanation of, 413–415
top-down, 778

Solution phase
ANSYS, 408
direct formulation and, 36–37, 48
of finite element method, 28
for heat transfer problems, 329
truss problems and, 160–163

Space trusses
explanation of, 171–173
solution to problem with,  

198–212
Spring mass system, 654–655
Square matrix

determinant of, 101
explanation of, 87
inverse of two-dimensional, 588

St. Venant’s formulation, 564
State variables, 850
Static equilibrium, 31, 644, 645
Steel, 837
Stiffness

load matrices and, 230–233
in truss problems, 153

Stiffness matrices
beams and, 246–247, 255
direct formulation examples and, 

32–35, 39, 52, 53
in dynamics problems, 677–678, 

681–682
for a frame element, 256–260
truss, 150, 152–159, 173
using axisymmetric triangular 

elements, 593–595
Strain energy, 230–231, 581
Stream functions, 724–729
Stream lines, 724–727, 729
Strength-to-weight ratio, 834–835
Stresses

in beams, 237, 261–262
computing principle and 

maximum shear, 595–596
distribution of, 52–55, 378–380
von Mises–Hencky theory,  

595–596
Structural steel shapes, 872–875
Subdomain method, 65–66
Support excitation, 654–655
Surface water, 843
System of linear equations, 

nonhomogenous, 118

T

Tangential coordinates, 631
Temperature distribution

cubic approximation and, 309
heat transfer problems and, 453
linear approximation and, 304
quadratic approximation and,  

308
Temperature matrix, 47
Ten-node tetrahedral element, 

771–772
Tensile strength, 834
Tetrahedral elements

four-node, 761–769
ten-node, 771–772
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Thermal conductance matrix, 44
Thermal conductivity, 835
Thermal diffusivity, 499, 504
Thermal expansion, 835
Thermal radiation, 455
Thermal transmission, 41
Thermal transmittance  

coefficient, 41
Thermophysical properties of 

engineering materials, 868
Thermoplastics, 839
Thermosetting, 839
Third-order polynomials, 309
Three-dimensional elements

in ANSYS, 260–287, 774–819
beam, 260–287
eight-node brick, 769–771
four-node tetrahedral, 761–769
solid-modeling ideas and,  

778–789
structural-solid, 774–777
ten-node tetrahedral, 771–772
thermal example of, 789–805
thermal-solid, 774
twenty-node brick, 772–773

Three-dimensional solid problems, 
using four-node tetrahedral 
elements, 764–769

Three-dimensional trusses.  
See Space trusses

Timber, 839
Titanium, 836
Torsional problems

direct formulation and, 49–52
finite element method and, 562, 

564–578
finite element model to analyze, 

72–73
Total potential energy, 230
Total potential energy formulation, 

minimum, 57–63
Translation

rectilinear, 638–639
of rigid body, 636

Translational motion, 642

Triangular elements
axisymmetric, 390–391
heat transfer problems and,  

471–491, 493, 496–497
hydraulic head for, 731
linear, 380–385, 397
natural coordinates for, 383–385
permeability matrix for, 731
quadratic, 385–389, 397

Trusses
explanation of, 145–146
global and local frames of 

reference for, 148–152
space, 171–173, 198–212

Truss problems
finite element formulation and, 

146–171
space, 198–212
statistically determinate, 146, 147
statistically indeterminate, 146, 147
stiffness matrix and, 150, 152–159
using ANSYS to solve, 173–214
(See also ANSYS)

Turbulent flow, 715
Twenty-node brick element, 772–773
Two-dimensional elements

in ANSYS, 398–399
axisymmetric, 389–394
Gauss-Legendre quadrature and, 

396, 398
isoparametric, 394–396
linear triangular, 380–385, 397
quadratic quadrilateral, 375–380
quadratic triangular, 385–389, 397
rectangular, 371–375
shape functions, 371–397

Two-dimensional flows, 724, 727, 730
Two-dimensional solid mechanics 

problems
ANSYS used for, 596–618
axisymmetric formulation and, 

593–595
basic failure theories and, 595–596
isoparametric formulation and, 

586–592
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plane-stress formulation and, 
578–586

torsion of members with arbitrary 
cross-section shape and, 562–578

Two-point sampling formula, 398

U

U-factor
conductance matrix and, 44
explanation of, 41–43

Unit matrix, 88
Upper triangular matrix, 88

V

Vapor pressure, 835
Vibration, forced, 648–651
Viscosity, 723, 727–728, 730, 835
Viscous flows, 723, 728

von Mises–Hencky theory, 595–596
von Mises stresses, 596, 806, 818

W

Water, 843–844
Weighted residual formulations

collocation method and, 64–65
comparison of, 68
explanation of, 63–64
Galerkin method and, 66, 301
least-squares method and, 67–68
subdomain method and, 65–66

while command, 891
Wood, 838–839
Work-energy principle, 634, 635, 

640–641
W shapes, 872–873

Y

Young’s modulus, 565, 581, 834

Two-​dimensional solid mechanics 
problems (cont.)
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