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Preface

CHANGES IN THE FOURTH EDITION

The fourth edition, consisting of 15 chapters, includes a number of new additions and
changes that were incorporated in response to ANSYS revisions and suggestions and
requests made by professors, students, and professionals using the third edition of the
book. The major changes include:

e Explanation of the changes that were made in the ANSYS’s newest release
(Chapters 3 and 8)

e Explanation of new element type capabilities (Chapters 3, 4, 6, 8 through
13, and 15)

¢ A new comprehensive example problem that demonstrates the use of
BEAM188 element in modeling beam and frame problems (Chapter 4)

e Modification of twenty example problems to incorporate new ANSYS element
types (Chapters 3,4, 6,8 through 13, and 15)

e Eight new comprehensive example problems that show in great detail how
to use Excel to solve different types of finite element problems (Chapters 2
through 6 and 9 through 12)

e More detail on theory and expanded derivations
e Explanation of new MATLAB revisions in Appendix F

ORGANIZATION

There are many good textbooks already in existence that cover the theory of finite
element methods for advanced students. However, none of these books incorporate
ANSYS as an integral part of their materials to introduce finite element modeling
to undergraduate students and newcomers. In recent years, the use of finite element
analysis (FEA) as a design tool has grown rapidly. Easy-to-use, comprehensive pack-
ages such as ANSYS, a general-purpose finite element computer program, have
become common tools in the hands of design engineers. Unfortunately, many engi-
neers who lack the proper training or understanding of the underlying concepts have
been using these tools. This introductory book is written to assist engineering students
and practicing engineers new to the field of finite element modeling to gain a clear
understanding of the basic concepts. The text offers insight into the theoretical aspects
of FEA and also covers some practical aspects of modeling. Great care has been exer-
cised to avoid overwhelming students with theory, yet enough theoretical background
is offered to allow individuals to use ANSYS intelligently and effectively. ANSYS is an

13
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integral part of this text. In each chapter, the relevant basic theory is discussed first and
demonstrated using simple problems with hand calculations. These problems are fol-
lowed by examples that are solved using ANSYS. Exercises in the text are also presented
in this manner. Some exercises require manual calculations, while others, more complex
in nature, require the use of ANSYS. The simpler hand-calculation problems will en-
hance students’ understanding of the concepts by encouraging them to go through the
necessary steps in a FEA. Design problems are also included at the end of Chapters 3,
4,6, and 9 through 14.

Various sources of error that can contribute to incorrect results are discussed.
A good engineer must always find ways to check the results. While experimental test-
ing of models may be the best way, such testing may be expensive or time consuming.
Therefore, whenever possible, throughout this text emphasis is placed on doing a “sanity
check” to verify one’s FEA. A section at the end of each appropriate chapter is devoted
to possible approaches for verifying ANSYS results.

Another unique feature of this book is that the last two chapters are devoted to
the introduction of design, material selection, optimization, and parametric program-
ming with ANSYS.

The book is organized into 15 chapters. Chapter 1 reviews basic ideas in finite
element analysis. Common formulations, such as direct, potential energy, and weighted
residual methods, are discussed. Chapter 2 provides a comprehensive review of matrix
algebra. Chapter 3 deals with the analysis of trusses, because trusses offer economi-
cal solutions to many engineering structural problems. An overview of the ANSYS
program is given in Chapter 3 so that students can begin to use ANSYS right away.
Finite element formulation of members under axial loading, beams, and frames are
introduced in Chapter 4. Chapter 5 lays the foundation for analysis of one-dimensional
problems by introducing one-dimensional linear, quadratic, and cubic elements.
Global, local, and natural coordinate systems are also discussed in detail in Chapter 5.
An introduction to isoparametric formulation and numerical integration by Gauss—
Legendre formulae is also presented in Chapter 5. Chapter 6 considers Galerkin for-
mulation of one-dimensional heat transfer and fluid problems. Two-dimensional linear
and higher order elements are introduced in Chapter 7. Gauss—-Legendre formulae
for two-dimensional integrals are also presented in Chapter 7. In Chapter 8 the essen-
tial capabilities and the organization of the ANSYS program are covered. The basic
steps in creating and analyzing a model with ANSYS is discussed in detail. Chapter 9
includes the analysis of two-dimensional heat transfer problems with a section devoted
to unsteady situations. Chapter 10 provides an analysis of torsion of noncircular shafts
and plane stress problems. Dynamic problems are explored in Chapter 11. Review of
dynamics and vibrations of mechanical and structural systems are also given in this
chapter. In Chapter 12, two-dimensional, ideal fluid-mechanics problems are analyzed.
Direct formulation of the piping network problems and underground seepage flow are
also discussed. Chapter 13 provides a discussion on three-dimensional elements and
formulations. This chapter also presents basic ideas regarding top-down and bottom-up
solid modeling methods. The last two chapters of the book are devoted to design and
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optimization ideas. Design process and material selection are explained in Chapter 14.
Design optimization ideas and parametric programming are discussed in Chapter 15.
Examples of ANSYS batch files are also given in Chapter 15. Each chapter begins by
stating the objectives and concludes by summarizing what the reader should have gained
from studying that chapter.

The examples that are solved using ANSYS show in great detail how to use ANSYS
to model and analyze a variety of engineering problems. Chapter 8 is also written such
that it can be taught right away if the instructor sees the need to start with ANSYS.

A brief review of appropriate fundamental principles in solid mechanics, heat trans-
fer, dynamics, and fluid mechanics is also provided throughout the book. Additionally,
when appropriate, students are warned about becoming too quick to generate finite ele-
ment models for problems for which there exist simple analytical solutions. Mechanical
and thermophysical properties of some common materials used in engineering are given
in Appendices A and B. Appendices C and D give properties of common area shapes
and properties of structural steel shapes, respectively. A comprehensive introduction to
MATLAB is given in Appendix F.

Finally, a Web site at http://www.pearsonglobaleditions.com/moaveni will be main-
tained for the following purposes: (1) to share any changes in the upcoming versions of
ANSYS; (2) to share additional information on upcoming text revisions; (3) to provide
additional homework problems and design problems; and (4) although I have done my
best to eliminate errors and mistakes, as is with most books, some errors may still exist.
I will post the corrections that are brought to my attention at the site. The Web site will
be accessible to all instructors and students.

Thank you for considering this book and I hope you enjoy the fourth edition.

SAEED MOAVENI
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CHAPTER 1

Introduction

The finite element method is a numerical procedure that can be used to obtain solutions
to a large class of engineering problems involving stress analysis, heat transfer, electro-
magnetism, and fluid flow. This book was written to help you gain a clear understanding
of the fundamental concepts of finite element modeling. Having a clear understanding
of the basic concepts will enable you to use a general-purpose finite element software,
such as ANSYS, effectively. ANSYS is an integral part of this text. In each chapter, the
relevant basic theory behind each respective concept is discussed first. This discussion
is followed by examples that are solved using ANSYS. Throughout this text, empha-
sis is placed on methods by which you may verify your findings from finite element
analysis (FEA). In addition, at the end of particular chapters, a section is devoted to the
approaches you should consider to verify results generated by using ANSYS.

Some of the exercises provided in this text require manual calculations. The pur-
pose of these exercises is to enhance your understanding of the concepts by encouraging
you to go through the necessary steps of FEA. This book can also serve as a reference
text for readers who may already be design engineers who are beginning to get involved
in finite element modeling and need to know the underlying concepts of FEA.

The objective of this chapter is to introduce you to basic concepts in finite element
formulation, including direct formulation, the minimum potential energy theorem, and
the weighted residual methods. The main topics of Chapter 1 include the following:

1.1 Engineering Problems

1.2 Numerical Methods

1.3 A Brief History of the Finite Element Method and ANSYS
1.4 Basic Steps in the Finite Element Method

1.5 Direct Formulation

1.6 Minimum Total Potential Energy Formulation

1.7 Weighted Residual Formulations

1.8 Verification of Results

1.9 Understanding the Problem
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1.1 ENGINEERING PROBLEMS

In general, engineering problems are mathematical models of physical situations.
Mathematical models of many engineering problems are differential equations with
a set of corresponding boundary and/or initial conditions. The differential equations
are derived by applying the fundamental laws and principles of nature to a system or a
control volume. These governing equations represent balance of mass, force, or energy.
When possible, the exact solution of these equations renders detailed behavior of a
system under a given set of conditions, as shown by some examples in Table 1.1. The
analytical solutions are composed of two parts: (1) a homogenous part and (2) a par-
ticular part. In any given engineering problem, there are two sets of design parameters
that influence the way in which a system behaves. First, there are those parameters that

TABLE 1.1 Examples of governing differential equations, boundary conditions, initial conditions, and exact
solutions for some engineering problems

Governing Equation,
Boundary Conditions, or

Problem Type Initial Conditions Solution
A beam: £l d*y wX(L — X) Deflection of the beam Y as the
Y = functi f di X:
T w dx? P unction of distance
Boundary conditions: w
Y= (—X'+2LX - I’X
at X =0,Y = 0and 24EI( )
X E. T at X =L Y=0
L
An elastic system: d’y s The position of the mass y as the
I:I e + oy =0 function of time:
Y0 y where w2 = K Y(O) = yocos wt
v . o=
Initial conditions:
k attime ¢t = 0,y = y,and
. dy
attimetr = 0,— =0
dt
A fin: d*’T  hp Temperature distribution along
ax: E(T -T.)=0 the fin as the function of X:
@ Boundary conditions: T="T,+ (T — Tm)e'\/gx
Ac atX =0, T = Type

asL—> o, T=T,

P = Perimeter
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provide information regarding the natural behavior of a given system. These parameters
include material and geometric properties such as modulus of elasticity, thermal conduc-
tivity, viscosity, and area, and second moment of area. Table 1.2 summarizes the physical
properties that define the natural characteristics of various problems.

TABLE 1.2 Physical properties characterizing various engineering systems

Problem Type

Examples of Parameters That Characterize a System

Solid Mechanics Examples
Load

E, A

2=

=,

A truss

T

An elastic plate
Load

P
=

A beam

/‘Torque

G,J
A shaft

Modulus of elasticity, £; member length, L;
cross-sectional area, A

Modulus of elasticity, E; length, L; cross-sectional
area, A

Modulus of elasticity, £; member length, L; second
moment of area, /

Modulus of rigidity, G; member length, L; polar
moment of inertia of the area,J

Heat Transfer Examples

High e
N

temperature o i B B
T 1 1

I:I:::I:I:I
e

Heat flow PEE Lo T
IIIIIIIIIII

T 1 1

© -

IIIIIIIIIII

T 1 1

I

A wall

Low
temperature

Thermal conductivity, K; thickness, L; area, A

continued
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TABLE 1.2 Continued

Problem Type

Examples of Parameters That Characterize a System

K

Fins

Thermal conductivity, K; perimeter, P; cross-
sectional area, A

Fluid Flow Examples

pressure

pressure .
Pipe networks

Cbncrgte dam:

A concrete dam

Fluid viscosity, u; pipe roughness, e; pipe diameter,
D; pipe length, L

Soil permeability, k

Electrical and Magnetism Problems

Volt% R, R,

Electrical network

Stator
Rotor

Magnetic field of an electric motor

Resistance, R

Permeability, u
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TABLE 1.3 Parameters causing disturbances in various engineering systems

Problem Type Examples of Parameters that Produce Disturbances in a System
Solid Mechanics External forces and moments; support excitation
Heat Transfer Temperature difference; heat input
Fluid Flow and Pipe Networks Pressure difference; rate of flow
Electrical Network Voltage difference

On the other hand, there are parameters that produce disturbances in a system.
These types of parameters are summarized in Table 1.3. Examples of these parameters
include external forces, moments, temperature difference across a medium, and pressure
difference in fluid flow.

The system characteristics as shown in Table 1.2 dictate the natural behavior of a
system, and they always appear in the homogenous part of the solution of a governing
differential equation. In contrast, the parameters that cause the disturbances appear
in the particular solution. It is important to understand the role of these parameters in
finite element modeling in terms of their respective appearances in stiffness or conduc-
tance matrices and load or forcing matrices. The system characteristics will always show
up in the stiffness matrix, conductance matrix, or resistance matrix, whereas the distur-
bance parameters will always appear in the load matrix. We will explain the concepts of
stiffness, conductance, and load matrices in Section 1.5.

1.2 NUMERICAL METHODS

There are many practical engineering problems for which we cannot obtain exact solu-
tions. This inability to obtain an exact solution may be attributed to either the complex
nature of governing differential equations or the difficulties that arise from dealing with
the boundary and initial conditions. To deal with such problems, we resort to numerical
approximations. In contrast to analytical solutions, which show the exact behavior of
a system at any point within the system, numerical solutions approximate exact solu-
tions only at discrete points, called nodes. The first step of any numerical procedure
is discretization. This process divides the medium of interest into a number of small
subregions (elements) and nodes. There are two common classes of numerical meth-
ods: (1) finite difference methods and (2) finite element methods. With finite difference
methods, the differential equation is written for each node, and the derivatives are
replaced by difference equations. This approach results in a set of simultaneous linear
equations. Although finite difference methods are easy to understand and employ in
simple problems, they become difficult to apply to problems with complex geometries
or complex boundary conditions. This situation is also true for problems with noniso-
tropic material properties.

In contrast, the finite element method uses integral formulations rather than differ-
ence equations to create a system of algebraic equations. Moreover, a continuous func-
tion is assumed to represent the approximate solution for each element. The complete
solution is then generated by connecting or assembling the individual solutions, allowing
for continuity at the interelemental boundaries.
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1.3 A BRIEF HISTORY* OF THE FINITE ELEMENT

METHOD AND ANSYS

The finite element method is a numerical procedure that can be applied to obtain solu-
tions to a variety of problems in engineering. Steady, transient, linear, or nonlinear prob-
lems in stress analysis, heat transfer, fluid flow, and electromagnetism problems may be
analyzed with finite element methods. The origin of the modern finite element method
may be traced back to the early 1900s when some investigators approximated and mod-
eled elastic continua using discrete equivalent elastic bars. However, Courant (1943)
has been credited with being the first person to develop the finite element method. In
a paper published in the early 1940s, Courant used piecewise polynomial interpolation
over triangular subregions to investigate torsion problems.

The next significant step in the utilization of finite element methods was taken by
Boeing in the 1950s when Boeing, followed by others, used triangular stress elements to
model airplane wings. Yet, it was not until 1960 that Clough made the term finite element
popular. During the 1960s, investigators began to apply the finite element method to
other areas of engineering, such as heat transfer and seepage flow problems. Zienkiewicz
and Cheung (1967) wrote the first book entirely devoted to the finite element method
in 1967 In 1971, ANSYS was released for the first time.

ANSYS is a comprehensive general-purpose finite element computer program
that contains more than 100,000 lines of code. ANSYS is capable of performing static,
dynamic, heat transfer, fluid flow, and electromagnetism analyses. ANSYS has been a
leading FEA program for over 40 years. The current version of ANSYS has a completely
new look, with multiple windows incorporating a graphical user interface (GUI), pull-
down menus, dialog boxes, and a tool bar. Today, you will find ANSYS in use in many
engineering fields, including aerospace, automotive, electronics, and nuclear. In order
to use ANSYS or any other “canned” FEA computer program intelligently, it is impera-
tive that one first fully understands the underlying basic concepts and limitations of the
finite element methods.

ANSYS is a very powerful and impressive engineering tool that may be used to solve
a variety of problems (see Table 1.4). However, a user without a basic understanding of
the finite element methods will find himself or herself in the same predicament as a com-
puter technician with access to many impressive instruments and tools, but who cannot
fix a computer because he or she does not understand the inner workings of a computer!

1.4 BASIC STEPS IN THE FINITE ELEMENT METHOD

The basic steps involved in any finite element analysis consist of the following:

Preprocessing Phase

1. Create and discretize the solution domain into finite elements; that is, subdivide
the problem into nodes and elements.

*See Cook et al. (1989) for more detail.
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TABLE 1.4 Examples of the capabilities of ANSYS*

A V6 engine used in front-wheel-drive automobiles
analyses were conducted by Analysis & Design Appl.
Co. Ltd. (ADAPCO) on behalf of a major U.S.
automobile manufacturer to improve product
performance. Contours of thermal stress in the engine
block are shown in the figure above.

Large deflection capabilities of ANSYS were utilized

by engineers at Today’s Kids, a toy manufacturer, to
confirm failure locations on the company’s play slide,
shown in the figure above, when the slide is subjected to
overload. This nonlinear analysis capability is required
to detect these stresses because of the product’s
structural behavior.

Electromagnetic capabilities of ANSYS, which include
the use of both vector and scalar potentials interfaced
through a specialized element, as well as a three-
dimensional graphics representation of far-field decay
through infinite boundary elements, are depicted in

this analysis of a bath plate, shown in the figure above.
Isocontours are used to depict the intensity of the H-field.

Structural Analysis Engineering Corporation used
ANSYS to determine the natural frequency of a rotor

in a disk-brake assembly. In this analysis, 50 modes of
vibration, which are considered to contribute to brake
squeal, were found to exist in the light-truck brake rotor.

*Photographs courtesy of ANSYS, Inc., Canonsburg, PA.
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2. Assume a shape function to represent the physical behavior of an element; that is,
a continuous function is assumed to represent the approximate behavior (solution)
of an element.

3. Develop equations for an element.

4. Assemble the elements to present the entire problem. Construct the global stiff-
ness matrix.

5. Apply boundary conditions, initial conditions, and loading.
Solution Phase

6. Solve a set of linear or nonlinear algebraic equations simultaneously to obtain
nodal results, such as displacement values at different nodes or temperature values
at different nodes in a heat transfer problem.

Postprocessing Phase

7. Obtain other important information. At this point, you may be interested in values
of principal stresses, heat fluxes, and so on.

In general, there are several approaches to formulating finite element prob-
lems: (1) direct formulation, (2) the minimum total potential energy formulation, and
(3) weighted residual formulations. Again, it is important to note that the basic steps
involved in any finite element analysis, regardless of how we generate the finite element
model, will be the same as those listed above.

1.5 DIRECT FORMULATION

The following problem illustrates the steps and the procedure involved in direct
formulation.

EXAMPLE 1.1

Consider a bar with a variable cross section supporting a load P, as shown in Figure 1.1.
The bar is fixed at one end and carries the load P at the other end. Let us designate
the width of the bar at the top by w;, at the bottom by w,, its thickness by ¢, and its
length by L. The bar’s modulus of elasticity will be denoted by E. We are interested in
approximating how much the bar will deflect at various points along its length when it
is subjected to the load P. We will neglect the weight of the bar in the following analysis,
assuming that the applied load is considerably larger than the weight of the bar:

Preprocessing Phase

1. Discretize the solution domain into finite elements.
We begin by subdividing the problem into nodes and elements. In order to high-
light the basic steps in a finite element analysis, we will keep this problem simple
and thus represent it by a model that has five nodes and four elements, as shown
in Figure 1.2. However, note that we can increase the accuracy of our results by
generating a model with additional nodes and elements. This task is left as an exer-
cise for you to complete. (See Problem 1 at the end of this chapter.) The given bar
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P FIGURE 1.1 A bar under axial loading.

is modeled using four individual segments (elements), with each segment having
a uniform cross section. The cross-sectional area of each element is represented
by an average area of the cross sections at the nodes that make up (define) the
element. This model is shown in Figure 1.2.
2. Assume a solution that approximates the behavior of an element.
In order to study the behavior of a typical element, let’s consider the deflection of
a solid member with a uniform cross section A that has a length € when subjected
to a force F, as shown in Figure 1.3.
The average stress o in the member is given by

o=— (1.1)

The average normal strain ¢ of the member is defined as the change in length
A¢ per unit original length € of the member:

A¢
g =— 1.2
; (12)
L
u
¢ 1 Element 1
(53 “2 l Element 2
L 4

3
“3 l El
¢ ement 3
A 3
2 4
A 4 U l Element 4
4
T 5
P P

FIGURE 1.2 Subdividing the bar into elements and nodes.
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equivalent

FIGURE 1.3 A solid member of uniform
F F cross section subjected to a force F.

Over the elastic region, the stress and strain are related by Hooke’s law,
according to the equation

o = Ee (1.3)

where E is the modulus of elasticity of the material. Combining Egs. (1.1), (1.2),
and (1.3) and simplifying, we have

F= <Af>M (1.4)

Note that Eq. (1.4) is similar to the equation for a linear spring, F = kx.
Therefore, a centrally loaded member of uniform cross section may be modeled
as a spring with an equivalent stiffness of

Koy = = (15)

Turning our attention to Example 1.1, we note once again that the bar’s cross sec-
tion varies in the y-direction. As a first approximation, we model the bar as a series
of centrally loaded members with different cross sections, as shown in Figure 1.2.
Thus, the bar is represented by a model consisting of four elastic springs (elements)
in series, and the elastic behavior of an element with nodes i and i + 1 is modeled
by an equivalent linear spring according to the equation

(A + A)E
B 20

Ay E
¢

f= keq(”i+1 —u) = (i1 — wy) (g1 —u;)  (1.6)
where u;,; and u; are the deflections at nodes i + 1 and i, and the equivalent ele-
ment stiffness is given by

(A + A)E

keq = 20

1.7)
A; and A;,, are the cross-sectional areas of the member at nodes i and i + 1
respectively, and ¢ is the length of the element. Employing the above model, let us
consider the forces acting on each node. The free-body diagram of nodes, which
shows the forces acting on nodes 1 through 5 of this model, is depicted in Figure 1.4.
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Node 1:

Node 2:

Node 3:

Node 4:

Node 5:

Ry

key(uy —uy)

key(uy —uy)

ko (uz — 1)

ko(uz - uy)

k3 (1eg — u3)

k(g —us3)

key(uus — uy)

key(us — ug)
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FIGURE 1.4 Free body diagram of the
nodes in Example 1.1.

Static equilibrium requires that the sum of the forces acting on each node be
zero. This requirement creates the following five equations:

node 1:
node 2:
node 3:
node 4:

node 5:

Ry — ki(uy —u)) =0

ki(uy — uy) — ko(us —uy) =0
ky(us — uy) — ks(uy — u3) = 0
ky(uy — uz) — ky(us — uy) = 0

k4(u5 - l/l4) -P=0

(18)

Rearranging the equilibrium equations given by Eq. (1.8) by separating the
reaction force R; and the applied external force P from the internal forces, we

have
ki —ku,
—ku, +ku, +ku, —kous
ko, tkouy tksus  —ksuy
—kjus  tksuy, tkuuy
—kquy

_k4u5
+kqus

_R]

(19)

I
N © © o
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Presenting the equilibrium equations of Eq. (1.9) in a matrix form, we have

ko —k 0 0 0 1(u ~R,
—k, k+k,  —k 0 0 ||u 0

0 —k, ky+ky —k 0 Rusp=4 0 (1.10)
0 0 ks kst ky —ky ||, 0

0 0 0 ks kg | Lus P

It is also important to distinguish between the reaction forces and the
applied loads in the load matrix. To do so, the matrix relation of Eq. (1.10) is
written as

~R, kK, —k 0 0 0 1(u 0
0 —k, k ke —k 0 0 ||u 0
0 p=1| 0 —k,  kyt+ ks —ks 0 [Rusp—<0p (L11)
0 0 0 ks kst kg —ky || 0
0 0 0 0 ks kg | Lus P

We can readily show that under additional nodal loads and other fixed bound-
ary conditions, the relationship given by Eq. (1.11) can be put into the general
form

{R} = [K]{u} — {F} (112)
which stands for

{reaction matrix } = [stiffness matrix]{displacement matrix} — {load matrix }

Note the difference between applied load matrix { F} and the reaction force
matrix {R}.

Turning our attention to Example 1.1 again, we find that because the bar
is fixed at the top, the displacement of node 1 is zero. Hence, there are only
four unknown nodal displacement values, u,, us, uy, and us. The reaction force
atnode 1, Ry, is also unknown —all together, there are five unknowns. Because
there are five equilibrium equations, as given by Eq. (1.11), we should be able to
solve for all of the unknowns. However, it is important to note that even though
the number of unknowns match the number of equations, the system of equa-
tions contains two different types of unknowns—displacement and reaction
force. In order to eliminate the need to consider the unknown reaction force
simultaneously and focus first on unknown displacements, we make use of the
known boundary condition and replace the first row of Eq. (1.10) with a row
that reads u; = 0. The application of the boundary condition #; = 0 eliminates
the need to consider the unknown reaction force in our system of equations
and creates a set of equations with the displacements being the only unknowns.
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Thus, application of the boundary condition leads to the following matrix
equation:

1 0 0 0 0 1(u 0
—k, ki + k2 —k 0 0 ||u 0
0 —k, kot ks —ks 0 Rusp =240 (1.13)
0 0 ks kst kg —ky ||y 0
0 0 0 -k, kg | Lus P

The solution of the above matrix yields the nodal displacement values. It should be
clear from the above explanation and examining Eq. (1.13) that for solid mechanics
problems, the application of boundary conditions to the finite element formulations
transforms the system of equations as given by Eq. (1.11) to a new general form
that is made up of only the stiffness matrix, the displacement matrix, and the load
matrix:

[stiffness matrix| { displacement matrix } = {load matrix }

After we solve for the nodal displacement values, from the above relationship, we
use Eq. (1.12) to solve for the reaction force(s). In the next section, we will develop
the general elemental stiffness matrix and discuss the construction of the global
stiffness matrix by inspection.
. Develop equations for an element.
Because each of the elements in Example 1.1 has two nodes, and with each node
we have associated a displacement, we need to create two equations for each
element. These equations must involve nodal displacements and the element’s
stiffness. Consider the internally transmitted forces f; and f;,, and the end displace-
ments u; and u;,, of an element, which are shown in Figure 1.5.

Static equilibrium conditions require that the sum of f; and f;, | be zero. Note
that the sum of f; and f;, is zero regardless of which representation of Figure 1.5
is selected. However, for the sake of consistency in the forthcoming derivation, we
will use the representation given by Figure 1.5(b), so that f; and f;,, are given in

fi= keq(”i+1 —u;) ‘ fi= keq(”i —Uy1)
Node i Node i
wo§ Wy T

OR y

Nodei+1 Node i+ 1
Uy I Uity I

fm = keq(uiﬂ —u;) fin= keq(”i+1 —u;)

(@) (b)

FIGURE 1.5 Internally transmitted forces through an arbitrary element.
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the positive y-direction. Thus, we write the transmitted forces at nodesiand i + 1
according to the following equations:

fi = keq(ui - ui+1)
fir1 = keq(ui+1 - u) (1.14)
Equation (1.14) can be expressed in a matrix form by

- U el B

4. Assemble the elements to present the entire problem.
Applying the elemental description given by Eq. (1.15) to all elements and assem-
bling them (putting them together) will lead to the formation of the global stiffness
matrix. The stiffness matrix for element (1) is given by

k —k
m=—| . !
(K] [—kl Ky J

and its position in the global stiffness matrix is given by

kl _kl O 0 O Lt1

_kl kl 0 0 0 U,

KI'O=] 0 0 0 0 0]u
0 0 0 0 0]u

0 0 0 0 0] us

The nodal displacement matrix is shown alongside the position of element 1
in the global stiffness matrix to aid us to observe the contribution of a node to its
neighboring elements. Similarly, for elements (2), (3), and (4), we have

k —k
@ | 2
(K] |:_k2 ks J

and its position in the global matrix

0 0 0 0 0|y
0 k2 _k2 0 0 U,
[K](ZG) = 0 _k2 kz 0 0 us
0 0 0 0 0 u
K 0 0 0 0] us
[k, —k
KI® = 3 3
(K] kK
and its position in the global matrix
[0 0 0 0 0]y
0 0 0 0 0| u
[K]GG) = 0 0 k3 _k3 0 us
0 0 _k3 k3 0 Uy
KO 0 0 0] us
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and

k -k
“4) — 4 4
(K] [—m m]

and its position in the global matrix

000 0 0 |u
000 0 0 |u
KI“O=]0 0 0 0 0 |u
0 0 0 ki —ki|ou
0 0 0 —k, ki |us

The final global stiffness matrix is obtained by assembling, or adding together, each
element’s position in the global stiffness matrix:

[KIO = [K]') + [K[° + [K]°O + [K]*)

kl _kl 0 0 0
_kl kl + k2 _kz 0 0
K9 =] o —ky  ky+ ks —ks 0 (1.16)
0 0 _k3 k3 + k4 _k4
0 0 0 —ky ky

Note that the global stiffness matrix obtained using elemental description, as given
by Eq. (1.16), is identical to the global stiffness matrix we obtained earlier from
the analysis of the free-body diagrams of the nodes, as given by the left-hand side
of Eq. (1.10).

. Apply boundary conditions and loads.

The bar is fixed at the top, which leads to the boundary condition u; = 0. The
external load P is applied at node 5. Applying these conditions results in the fol-
lowing set of linear equations.

1 0 0 0 0 u 0
—k, k+k  —k 0 0 U 0

0 —ky ko + ks —ks 0 u; p =20 (1.17)

0 0 ks ks + kg —ky | | u 0

0 0 0 —k, kK, s P

Again, note that the first row of the matrix in Eq. (1.17) must contain a 1 followed
by four Os to read u; = 0, the given boundary condition. As explained earlier, also
note that in solid mechanics problems, the finite element formulation will always
lead to the following general form:

[stiffness matrix] { displacement matrix } = {load matrix }
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Solution Phase

6. Solve a system of algebraic equations simultaneously.
In order to obtain numerical values of the nodal displacements, let us assume that
E = 10.4 X 10°Ib/in? (aluminum),w; = 2in, w, = lin,¢ = 0.125in, L = 101in,
and P = 1000 Ib. You may consult Table 1.5 while working toward the solution.

TABLE 1.5 Properties of the elements in Example 1.1

Average Modulus of Element’s Stiffness
Cross-Sectional Elasticity Coefficient
Element Nodes Area (in?) Length (in) (Ib/in?) (Ib/in)
1 12 0.234375 25 10.4 x 10° 975 x 10°
2 2 3 0.203125 2.5 10.4 X 10° 845 x 10°
3 3 4 0.171875 25 10.4 x 10° 715 X 10°
4 4 5 0.140625 25 10.4 x 10° 585 x 10°

The variation of the cross-sectional area of the bar in the y-direction can be
expressed by:

A(y) = <w1 + (wzzwl>y>z - (2 LU 1_02)y>(0.125) =025 — 0.0125y (L18)

Using Eq. (1.18), we can compute the cross-sectional areas at each node:

A, = 0.25in? A, = 0.25 — 0.0125(2.5) = 0.21875 in?
A; =025 — 0.0125(5.0) = 0.1875in*> A, = 0.25 — 0.0125(7.5) = 0.15625 in*
As = 0.125 in?
Next, the equivalent stiffness coefficient for each element is computed from the
equations
i = (A + A)E
- 2¢
0.21875 + 0.25)(10.4 < 10° 1b
12( X )=975><103,f
2(2.5) in
0.1875 + 0.21875)(10.4 X 10°
22( X )2845><103Lb
2(2.5) in
0.15625 + 0.1875)(10.4 X 10°
3:( X )2715><103Lb
2(2.5) in
0.125 + 0.15625)(10.4 x 10° Ib
k=( X )2585><103.*

N 2(2.5) in
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and the elemental matrices are
[k k] 975 =975 ]
KI® = 1 =103
(K] L~k ki =975 975 |
[k k] [ 845  —845 ]
K|® = 2 2l =107
(K] L —ky ky | | —845 845 |
[ ks —ks | 715 =715 ]
K|® = 3 31 =108
(K] | —ks k3 | =715 715 |
[k =k ] [ 585 —585]
K@ = 4 =10
(K] L ks Ky | —585 585 |
Assembling the elemental matrices leads to the generation of the global stiffness
matrix:
975 =975 0 0 0
=975 975 + 845 —845 0 0
[K]© =10’ 0 —845 845 + 715 =715 0
0 0 =715 715 + 585 =585
0 0 0 —585 585
Applying the boundary condition u; = 0 and the load P = 1000 lb, we get
1 0 0 0 0 U 0
=975 1820  —845 0 0 U, 0
10 0 =845 1560  —-715 0 u; 0 =4 0
0 0 =715 1300  —585 Uy 0
0 0 0 —585 585 Us 10°
Because in the second row, the —975 coefficient gets multiplied by u; = 0, we

need only to solve the following 4 X 4 matrix:

1820  —845 0 0 U, 0
10° —845 1560  —715 0 us \ _ ) 0
0 =715 1300  —585 U, 0

0 0 —585 585 us 10°

The displacement solution is u; = 0,u, = 0.001026 in, u; = 0.002210 in,
u, = 0.003608 in, and us = 0.005317 in.

Postprocessing Phase

7. Obtain other information.

For Example 1.1, we may be interested in obtaining other information, such as the
average normal stresses in each element. These values can be determined from

the equation
A
) Uip) — U
=E< ’“{) ) (1.19)

ang
7(11, —
ui) B ¢ i+1

Aavg

f _ keq(ui+1 -
Aavg
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Since the displacements of different nodes are known, Eq. (1.19) could have been
obtained directly from the relationship between the stresses and strains,

o =Es= E<”“€_”> (1.20)

Employing Eq. (1.20) in Example 1.1, we compute the average normal stress for
each element as

_ 6 _
il w) _ (104X 1090001026 ~ 0) _ I
4 2.5 n
_ 6 _
Jor gt e _ (104 X 1090002210 — 0.001026) 1o
¢ 2.5 in?
_ 6 _
Jo _ pftem ) _ (104X 10(0.003608 — 0.00210) _ 1o
4 2.5 in?
_ 6 _
o E<u5 : u4> _ (104 % 10 )(0.0;)55317 0.003608) _ I
. in

In Figure 1.6, we note that for the given problem, regardless of where we cut a
section through the bar, the internal force at the section is equal to 1000 lb. So,

o = A{Vg - 0.2134(1);)75 - 4267111%
o = A{Vg - 0.21(());)?25 - %
o = A].:Vg - 0.11;);)275 - 5818%
o = A]:Vg - 0.113(())225 =7 iln%

P=10001b P P

FIGURE 1.6 The internal forces in Example 1.1.
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Ignoring the errors we get from rounding off our answers, we find that these
results are identical to the element stresses computed from the displacement
information. This comparison tells us that our displacement calculations are good
for this problem.

Reaction Forces For Example 1.1, the reaction force may be computed in a num-
ber of ways. First, referring to Figure 1.4, we note that the statics equilibrium at
node 1 requires

R, = ky(u, — uy) = 975 x 10°(0.001026 — 0) = 1000 Ib
The statics equilibrium for the entire bar also requires that
R, = P =10001b

As you may recall, we can also compute the reaction forces from the general reac-
tion equation

{R} = [K]{u} — {F}
or
{ reaction matrix } = [stiffness matrix] { displacement matrix } — {load matrix }

Because Example 1.1 is a simple problem, we do not actually need to go through
the matrix operations in the aforementioned general equation to compute the
reaction forces. However, as a demonstration, the procedure is shown here. From
the general equation, we get

R, 975 =975 0 0 0 0 0
R, —-975 1820  —845 0 0 0.001026 0
Ry p =10 0 =845 1560 =715 0 0.002210 p — § O
R, 0 0 =715 1300  —585 0.003608 0
R; 0 0 0 —585 585 0.005317 10°

where R, R,, R;, R, and R; represent the reactions forces at nodes 1 through 5
respectively. Performing the matrix operation, we have

R, —1000
R, 0
Rip=2 0
R, 0
R; 0

The negative value of R, simply means that the direction of the reaction force is
up (because we assumed that the positive y-direction points down). Of course,
as expected, the outcome is the same as in our earlier calculations because the
rows of the above matrix represent the static equilibrium conditions at each
node. When solving for reaction forces, it is important to note that you must use
the complete stiffness matrix, without the influence of boundary conditions, as
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shown in Equations (1.11) and (1.12). Next, we will consider finite element for-
mulation of a heat transfer problem. Example 1.1 also is solved using Excel. See

Section 2.11.

EXAMPLE 1.2

A typical exterior frame wall (made up of 2 X 4 studs) of a house contains the materi-
als shown in the table below. Let us assume an inside room temperature of 70°F and an
outside air temperature of 20°F, with an exposed area of 150 ft>. We are interested in
determining the temperature distribution through the wall.

U-factor
Btu/hr - ft? - °F

Resistance
Items hr - ft? - °F/Btu
1. Outside film resistance (winter, 0.17
15-mph wind)

2. Siding, wood (1/2 X 8 lapped) 0.81
3. Sheathing (1/2 in regular) 1.32
4. Insulation batt (3 — 3% in) 11.0

5. Gypsum wall board (1/2 in) 0.45
6. Inside film resistance (winter) 0.68

5.88

1.23
0.76
0.091
222
1.47

Preprocessing Phase

1. Discretize the solution domain into finite elements.
We will represent this problem by a model that has seven nodes and six elements,

as shown in Figure 1.7

2. Assume a solution that approximates the behavior of an element.
For Example 1.2, there are two modes of heat transfer (conduction and convec-
tion) that we must first understand before we can proceed with formulating the
conductance matrix and the thermal load matrix. The steady-state thermal behav-
ior of the elements (2), (3), (4), and (5) may be modeled using Fourier’s law. When
there exists a temperature gradient in a medium, conduction heat transfer occurs,
as shown in Figure 1.8. The energy is transported from the high-temperature region

Siding
T, =20°F Element 2

L R ) R

(NI P N N |

Sheathing

Element 3

PRVAVAVAVAVAVAVANIR SAVAVAVAVAVAVARP SWAVAVAVAVAVAVARP

S~ @ @

Insulation Gypsum
Batt Board
Element4 Element 5 T;=70°F

»\VVVWV_g NMVVVWWA_g AVVVWWA_

4

P — PP

o~ ~Jd——_d

4)

B 5) 6 @ 7

FIGURE 1.7 Finite element model of Example 1.2.
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k i
Ti e - (qx
-
L > X FIGURE 1.8 Heat transfer in a medium
by conduction.

to the low-temperature region by molecular activities. The heat transfer rate is
given by Fourier’s law:

qx = —kA (121)

qx is the X-component of the heat transfer rate, & is the thermal conductivity of
. . aT . .
the medium, A is the area normal to heat flow, and xS the temperature gradient.

The minus sign in Eq. (1.21) is due to the fact that heat flows in the direction of
decreasing temperature. Equation (1.21) can be written in a difference form in
terms of the spacing between the nodes (length of the element) ¢ and the respec-
tive temperatures of the nodes i and i + 1, T; and 7., according to the equation

_ kA(Ti+1 B Ti)
B ¢

In the field of heat transfer, it is also common to write Eq. (1.22) in terms
of the thermal transmittance coefficient U, or, as it is often called, the U-factor
(U = 'f). The U-factor represents thermal transmission through a unit area
and has the units of Btu/hr-ft>-°F. It is the reciprocal of thermal resistance. So,
Equation (1.22) becomes

(1.22)

q = UA(T;;y — T) (1.23)

The steady-state thermal behavior of elements (1) and (6) may be modeled
using Newton’s law of cooling. Convection heat transfer occurs when a fluid in
motion comes into contact with a surface whose temperature differs from the
moving fluid. The overall heat transfer rate between the fluid and the surface is
governed by Newton’s law of cooling, according to the equation

g = hA(T, - T) (124)
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where 4 is the heat transfer coefficient, T} is the surface temperature, and 7}
represents the temperature of the moving fluid. Newton’s law of cooling can also
be written in terms of the U-factor, such that

qg = UA(T, — T) (1.25)
where U = h, and it represents the reciprocal of thermal resistance due to con-
vection boundary conditions. Under steady-state conduction, the application of
energy balance to a surface, with a convective heat transfer, requires that the

energy transferred to this surface via conduction must be equal to the energy
transfer by convection. This principle,

oT
—kAa = hA[T\ - Tf] (126)

is depicted in Figure 1.9.

Now that we understand the two modes of heat transfer involved in this
problem, we can apply the energy balance to the various surfaces of the wall,
starting with the wall’s exterior surface located at node 2. The heat loss through
the wall due to conduction must equal the heat loss to the surrounding cold air
by convection. That is,

LA(T; — T,) = UA(T, — T))

The application of energy balance to surfaces located at nodes 3, 4, and 5 yields
the equations

UsA(Ty — T3) = A(T5 — T)
UA(Ts = T) = UA(T, — T5)
UsA(Ts — T5) = UA(Ts — T,)

For the interior surface of the wall, located at node 6, the heat loss by convection
of warm air is equal to the heat transfer by conduction through the gypsum board,
according to the equation

UA(T; — To) = UsA(Ts — Ts)

| |
| ¢ |

o ar
hA [Ts - Tf] g é 9 conduction :_kAﬁ

FIGURE 1.9 Energy balance at a surface
with a convective heat transfer.
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Separating the known temperatures from the unknown temperatures, we have

+(U;, + U,)AT, -U,AT; = UAT,
-U,AT, +(U, + U3)AT; —U,AT, = 0
—U,AT, +(U; + Uy)AT, —UATs = 0
-U,AT, +(Uy + Us)ATs —UsAT; = 0
—UsATs +(Us + Ug)ATy = UAT,
The above relationships can be represented in matrix form as
U, + U, -U, 0 0 0 T, UAT,
-U, U, + U, —U, 0 0 T, 0
A 0 —Us Us; + U, -U, 0 T, p = 0 (1.27)
0 0 -U, U, + Us —Us Ts 0
0 0 0 —Us Us + U T UAT,

Note that the relationship given by Eq. (1.27) was developed by applying the con-
servation of energy to the surfaces located at nodes 2, 3, 4, 5, and 6. Next, we will
consider the elemental formulation of this problem, which will lead to the same
results.

Develop equations for an element.

In general, for conduction problems, the heat transfer rates g; and ¢;,, and the
nodal temperatures 7; and 7;,, for an element are related according to the
equations

kA
qi = T(Ti = Tis1)
kA
qi+1 = T(TiJrl - T) (1.28)

The heat flow through nodes i and i + 1 is depicted in Figure 1.10.

Because each of the elements in Example 1.2 has two nodes, and we have
associated a temperature with each node, we want to create two equations for
each element. These equations must involve nodal temperatures and the element’s
thermal conductivity or U-factor, based on Fourier’s law. Under steady-state con-
ditions, the application of the conservation of energy requires that the sum of g;
and g, into an element be zero; that is, the energy flowing into node i + 1 must
be equal to the energy flowing out of node i. Note that the sum of g; and ¢, is
zero regardless of which representation of Figure 1.10 is selected. However, for the
sake of consistency in the forthcoming derivation, we will use the representation
given by Figure 1.10(b). Elemental description given by Eq. (1.28) can be expressed

in matrix form by
; kA| 1 -1 T;
0 R I 12
qi+1 ¢ L1 1 Tivy



44 Chapter 1 Introduction

| | |
e— e—
k k
> 7T » T
q;= ];A (Tin-T)) o q; =IZ;—A (T;=Tiy) h
— - —_— -~
T, e dit1 :]}—A (Tin—Ty) T, o dir1 :kg—A (Tin—T))
\,—/_\/_/v \,—/_\/_/v
> Y > X
(a) (b)
FIGURE 1.10 Heat flow through nodesiand i + 1.
The thermal conductance matrix for an element is
kA| 1 -1
K]© = == 1.30
K] =~ [_1 ) } (130)
. . . k
The conductance matrix can also be written in terms of the U-factor | U = 7 :
1 -1
[K]© = UA[_ L J (1.31)

Similarly, under steady-state conditions, the application of the conservation of
energy to the nodes of a convective element gives

g = hA(T; = T;1y)
giv1 = hA(Tiy — T) (1.32)

Equation (1.32) expressed in a matrix form is

: 1 -1 T;
e f =l
qi+1 -1 1 Tty
The thermal conductance matrix for a convective element then becomes
1 -1
[K]© = hA[_1 1 :| (1.33)

Equation (1.33) can also be written in terms of the U-factor (U = h):

o 1 -1
[K]© = UA[_I ) J (1.34)
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. Assemble the elements to present the entire problem.
Applying the elemental description given by Egs. (1.31) and (1.34) to all of the
elements in Example 1.2 and assembling leads to the formation of the global stiff-

ness matrix. So,
U -U
KO = A|: ! 1

and its position in the global matrix is

Ul _Ul 0 O 0 O O Tl

-U, U 0 0 0 0 0|T,

0 0 0 0 0 0 O0|T;

[K]'9 = A| 0 0 00 0 0 O0|T,
0 0 0 0 0 0 0]|T;s

0 0 0 0 0 0 0T

L0 0 00 0 0 0]T,

The nodal temperature matrix is shown along with the global thermal conductance
matrix to help you observe the contribution of a node to its neighboring elements:

0 0 0 0 0] 7,
u -U
-U, U,
0

()
o

[K]® = A[ U;] _Uﬂ and [K]®9 = A
— U2

U,

[

o O O O
o O O

S O O O o O

_l]3
dIKICO = 4
~u, U3]an K]

)
)
S O O OO OO0 O oo o oo

1

SO OO OO OO0 OO o oo oo oo oo oo

U and [K]“9 = A
_U4 U4

SO O O O O oo O o oo o oo

O O O O OO O OO0 oo oo o0 oo o ooo

O O O O O OO OO0 oo o oo oo oo oo
o3

(=R = = =)
S
|
S
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[0 0 0 0 o0 0o o7
000 0 0 0 0|71,
S 000 0 0 0 0|7y
[K]® = A[_ l; U 5} and [K]®9 =40 0 0 0 0 0 0|1,
> > 000 0 Us ~—Us 0]|Ts
000 0 -U Us 0T
00 0 0 0 0 0Ty
[0 0 0 0 0 0 0o |1
000 00 0 0 | T,
U —u 000 00 0 0 | T,
[K]©® = A[_ i‘] Uﬂ and [K]9=A4/0 0 0 0 0 0 0 | T,
o 6 00 00 0 0 0 | Ts
00 0 0 0 U ~U|Ts
L0 0 0 0 0 -U U |T,
The global conductance matrix is
[K]© = [K]"9 + [K]°? + [K]®9 + [K]*9 + [K]®9 + [K]°9
U, -U, 0 0 0 0 0 |
-U, U +U -U 0 0 0 0
0 ~U, U +U; U 0 0 0
[K]© =4 0 0 -U; U+ U, -U, 0 0 (1.35)
0 0 0 -U, U +Us; —Us 0
0 0 0 0 ~-Us Us+ U, -Us
L0 0 0 0 0 - U Us |

5. Apply boundary conditions and thermal loads.
For the given problem, the exterior of the wall is exposed to a known air tempera-
ture 7}, and the room temperature, 75, is also known. Thus, we want the first row
to read 7| = 20°F and the last row to read 7, = 70°F. So, we have

A 0 0 0 0 0 0 T, 20°F
-U, U +U —U, 0 0 0 0 T, 0
0 -U, Uy +U U 0 0 0 T, 0
Al 0 0 -U;, Us+U  -U, 0 0 T,p=X 0 (1.36)
0 0 0 -U, U +Us —Us 0 T 0
0 0 0 0 ~Us Us+ U, -Us| |Ts 0
L0 0 0 0 0 0 A |\, 70°F |




150

1
= 0 0 0 0 0 L 0F)
—-5.885.88 + 123  —1.23 0 0 0 0 T, 0

0 -123 123 +076 —0.76 0 0 0 T, 0

0 0 —-0.76  0.76 + 0.091  —0.091 0 0 T,p =14 0

0 0 0 —0.091 0.091 +222 -222 0 T 0

0 0 0 0 —222 222+ 147 -147| | T, 0

T, | 70°F
0 0 0 0 0 0 10 |
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Note that the finite element formulation of heat transfer problems will always lead
to an equation of the form

[KI{T} = {q}

[conductance matrix] { temperature matrix } = {heat flow matrix }

Also note that for Example 1.2, the heat transfer rate through each element was
caused by temperature differences across the nodes of a given element. Thus, the
external nodal heat flow values are zero in the heat flow matrix. An example
of a situation in which external nodal heat values are not zero is a heating strip
attached to a solid surface (e.g., the base of a pressing iron); for such a situation,
the external nodal heat value is equal to the amount of heat being generated by
the heating strip over the surface. Turning our attention to the matrices given by
Eq. (1.36) and incorporating the known boundary conditions into rows 2 and 6 of
the conductance matrix, we can reduce Eq. (1.36) to

u+U, -U, 0 0 0 T, UAT,
-U, U, +U  -U 0 0 T, 0
0 -U, Us+U  -U, 0 T, p = 0
0 0 -U, U, +Us —Us T, 0

0 0 0 ~U;,  Us+ Ug | T, UAT,

Keep in mind that the above matrix was obtained by assembling the elemental
description and applying the boundary conditions. Moreover, the results of this
approach are identical to the relations we obtained earlier by balancing the heat
flows at the nodes, as given by Eq. (1.27). This equality in the outcome is expected
because the elemental formulations are based on the application of energy bal-
ance as well.

Referring to the original global matrix, substituting for the U-values and
employing the given boundary conditions, we have
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Simplifying, we obtain

711 —1.23 0 0 0 T, (5.88)(20)
123 199  -0.76 0 0 T, 0

0 —076 081 —0091 0 T, p = 0

0 0 —0.091 2311 222 | | T; 0

0 0 0 222 3.69 T, (1.47)(70)

Solution Phase

6. Solve a system of algebraic equations simultaneously.
Solving the previous matrix yields the temperature distribution along the wall:

(T,) (20.00 )
T, 20.59
T, 23.41
{ T, p =X 2797 p°C
Ty 66.08
T, 67.64
L 75 ) [ 70.00 )

For problems similar to the type discussed here, the knowledge of temperature
distribution within the wall is important in determining where condensation may
occur in the wall and thus where one should place a vapor barrier to avoid mois-
ture condensation. To demonstrate this concept, let us assume that moisture can
diffuse through the gypsum board and that the inside air has a relative humid-
ity of 40%. With the help of a psychometric chart, using a dry bulb temperature
of 70°F and the value ¢ = 40%, we identify the condensation temperature to
be 44°F. Therefore, the water vapor in the air at any surface whose temperature
is 44°F or below will condense. In the absence of a vapor barrier, the water vapor
in the air will condense somewhere between surface 5 and 4 for the assumed con-

ditions in this problem.

Postprocessing Phase

7. Obtain other information.

For this example, we may be interested in obtaining other information, such as
heat loss through the wall. Such information is important in computing the heat
load for a building. Because we have assumed steady-state conditions, the heat
loss through the wall should be equal to the heat transfer through each element.

This value can be determined from the equation

q = UA(T;sy — T) (1.37)
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The heat transfer through each element is

q = UA(T., — T)) = (1.47)(150)(70 — 67.64) = (2.22)(150)(67.64 — 66.08) = - - -
Btu

= (5.88)(150)(20.59 — 20) = 520~

We also could have calculated the heat loss through the wall using the over-
all U-factor in the following manner:

1
q = UoverallA(Tinside - Toutside) - mA(Tinside - Toutside)
Bt
= (0.0693)(150)(70 — 20) = 520h—ru

This problem is just another example of how we can generate finite element
models using the direct method.

A Torsional Problem: Direct Formulation

EXAMPLE 1.3

Consider the torsion of a circular shaft, shown in Figure 1.11. Recall from your previous
study of the mechanics of materials that the angle of twist 6 for a shaft with a constant
cross-sectional area with a polar moment of inertia J and length ¢, made of homogenous
material with a shear modulus of elasticity G, subject to a torque 7T is given by

,_ Tt
JG

Using direct formulation, equilibrium conditions, and
,_ Tt
JG

we can show that for an element comprising two nodes, the stiffness matrix, the angle
of twists, and the torques are related according to the equation

JG[ 1 =1 fe) [Ty
e[—l 1“92}_{'5} (39

T

/ FIGURE 1.11 A torsion of circular shaft.
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We will discuss torsional problems in much more detail in Chapter 10. For now, let
us consider a shaft that is made of two parts, as shown in Figure 1.12. Part AB is made
of material with a shear modulus of elasticity of G, = 3.9 X 10° Ib/in? and has a dia-
meter of 1.5 in. Segment BC is made of slightly different material with a shear modulus
of elasticity of Gz = 4.0 X 10° Ib/in? and with a diameter of 1 in. The shaft is fixed at
both ends. A torque of 200 Ib - ft is applied at D. Using three elements, let us determine
the angle of twist at D and B, and the torsional reactions at the boundaries.

We will represent this problem by a model that has four nodes at A, B, C, and D,
respectively, and three elements (AD, DB, BC).

The polar moment of inertia for each element is given by

4
1 1 (15
]1 = ]2 = Ewr“ = 27T<2in> = 0497 in4
1 4
Jy=—mrt = 7T<' in> = 0.0982 in*
The stiffness matrix for each element is computed from Eq. (1.38) as
JG| 1 -1

K]© = =——

(K] 4 |:—1 1 ]
So, for element (1), the stiffness matrix is

K]V =

(0.497 in*)(3.9 X 10° Ib/in®) [ 1 —1}

|:64610 —64610 | .
(12 X 2.5)in -1 1

—64610 64610

and its position in the global stiffness matrix is

64610 —64610 0 0| 6,

K[1o = | 64610 64610 0 0|6,

0 0 0 06

0 0 0 0]e,

1.5in T=2001b - ft

l o~ lin
B Y

A D \ C

\ 4

<« 251t —»‘4—1 ft—>‘<—2 ft ——>

FIGURE 1.12 A schematic of the shaft in Example 1.3.
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Similarly, for elements (2) and (3), their respective stiffness matrices and positions in
the global stiffness matrix are as follows:

K]® = (3.9 X 10°1b/in?)(0.497 in*) [ -1 [ 161525  —161525 bei
(12 X 1.0) in 1 1 -161525 161525
0 0 0 0] e
(K]0 — 0 161525  —161525 0| 6,
0 —161525 161525 0 | 6,
0 0 0 0]e,
4.0 X 10°1b/in?)(0.0982 in -
K] = ( in’)( in [ _ [ 16367 16367 |
(12 X 2.0)in -16367 16367
0 0 0 0,
0 0 0 6
K|G0 = 2
(K] 0 0 16367 —16367 0,
0 0 —16367 16367 |6,

The final global matrix is obtained simply by assembling, or adding, elemental
descriptions:

[K](G) — [K](1G) + [K](zc) + [K](3G)

64610 —64610 0 0

(K]© = —64610 64610 + 161525 —161525 0
0 —161525 161525 + 16367 —16367
0 0 —16367 16367

Applying the fixed boundary conditions at points A and C and applying the external
torque, we have

1 0 0 0 9, 0

—64610 226135  —161525 0 0, ) —(200 x 12)1b-in
0 —161525 177892  —16367 | | 65 — 0
0 0 0 1 0, 0

Solving the above set of equations, we obtain

0, 0
6, ) —0.03020rad
0 —0.02742 rad

0, 0
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The reaction moments at boundaries A and C can be determined as follows:

{R} = [K]{6} — {T}

R, 64610  —64610 0 0 0 0

Ry | | —64610 226135 —161525 0 —0.03020 rad —(200 X 12)Ib-in
Ry 0  —161525 177892 —16367|)] —0.02742 rad( 0

Re 0 0 16367 16367 0 0

R, 1951 1b-in

Rp| 0

Ry 0

R 449 1b - in

Note that the sum of R, and R is equal to the applied torque of 2400 lb-in. Also note
that the change in the diameter of the shafts will give rise to stress concentrations that
are not accounted for by the model we used here.

EXAMPLE 1.4

A steel plate is subjected to an axial load, as shown in Figure 1.13. Approximate the
deflections and average stresses along the plate. The plate is 1/16 in thick and has a
modulus of elasticity E = 29 X 10° Ib/in®.

We may model this problem using four nodes and four elements, as shown in
Figure 1.13. Next, we compute the equivalent stiffness coefficient for each element:

_AE _ (5)(0:0625)(29 X 10%)

i — 9,062,500 Ib/in
n 1
AE  (2)(0.0625)(29 X 10°
0 4
AE  (5)(0.0625)(29 X 10°
K, = ME _ B)N0.0625) ) _ 4531250 Ib/in

¢ 2

The stiffness matrix for element (1) is

k —k
m—| kK 1
(K] |:—k1 kl ]

and its position in the global stiffness matrix is

kl _k] 0 0 uq
ki k0 O0|u
K116 = 1 ! 2
(K] 0 0 0 0]u
0O 0 0 0]u
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FIGURE 1.13 A schematic of the steel
plate in Example 1.4.

Similarly, the respective stiffness matrices and positions in the global stiffness matrix for

elements (2), (3), and (4) are

o O O O
=~
N}

S O O O
=~
0

oS O O O
oS O O O

0 0| uy
-k, 0| u
ky 0| us
0 0 u
0 0w
—k; 0| u
ky 0| us
0 0 u
0 0 | u
0 0 U,
ky  —ky | us
—ky ks | uy
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The final global matrix is obtained simply by assembling, or adding, the individual
elemental matrices:

[KI9 = [K] + [K|* + [K]°O + K]

kl _kl 0 0
[K](G) _ _kl kl + k2 + k3 _kz_k3 0
O _k2 _k3 kz + k3 + k4 _k4
0 0 _k4 k4
Substituting for the elements’ respective stiffness coefficients, the global stiffness matrix
becomes
9,062,500  —9,062,500 0 0
(K]© — —9,062,500 10,875,000  —1,812,500 0
0 —1,812,500 6,343,750 —4,531,250
0 0 —4,531,250 4,531,250
Applying the boundary condition ©; = 0 and the load to node 4, we obtain
1 0 0 0 u 0
—9,062,500 10,875,000  —1,812,500 0 wml( )0
0 —1,812,500 6,343,750 —4,531,250 U 0
0 0 —4,531,250 4,531,250 U, 800
Solving the system of equations yields the displacement solution as
uq 0
w | } 8827 x 1077 o
U 5296 X 107*
Uy 7.062 x 107
and the stresses in each element are
o= gl _ (29 % 10°)(8.827 X 107° — 0) _ 2560£
¢ 1 in’
_ 6 4 _ -5
O = o0 — g U\ _ (29 X 10°)(5.296 X 10 8,827 X 107) _ 320()&
¢ 4 in’
- 29 X 10°)(7.062 x 107* — 5.296 x 107
@ = E<”4 ; ”3> _( J 5 ) _ 2560%
in

Note that the model used to analyze this problem consisted of springs in parallel as
well as in series. The two springs in parallel could have been combined and represented
by a single spring having a stiffness equal to k, + k3 (see Problem 25). Also note that
because of the hole, the abrupt changes in the cross section of the strip will give rise to
stress concentrations with values exceeding those average values we computed here.
After you study plane-stress finite element formulation (discussed in Chapter 10), you
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4% ANSYS Graphics

FIGURE 1.14 The x-component of stress distribution for the plate in Example 1.4,
as computed by ANSYS.

will revisit this problem (see Problem 10.13) and be asked to solve it using ANSYS.
Furthermore, you will be asked to plot the components of the stress distributions in the
plate and thus identify the location and magnitude of maximum stresses.

To give you just a taste of what is to come in Chapter 10 and also to shed more light
on our discussion about the stress concentration regions, we have solved Example 1.4
using ANSYS and have determined the x-component of the stress distribution in the
plate, as shown in Figure 1.14. In the results shown in Figure 1.14, the load was applied
as a pressure over the entire right surface of the bar. Note the variation of the stresses at
section A-A from approximately 3000 psi to 3500 psi. At section B—B, the x-component
of the stresses varies from approximately 2300 psi to 2600 psi. These values are not that
far off from the average stress values obtained using the direct model. Also note that
the maximum and minimum stress values given by ANSYS could change, depending
upon how we apply the load to the bar, especially in the regions near the point of load
application and the regions near the hole. Keeping in mind Example 1.4 and Figure 1.13,
remember that in a real situation, the load would be applied over an area, not at a single
point. Thus, remember that how you apply the external load to your finite element model
will influence the stress distribution results, particularly in the region near where the load
is applied. This principle is especially true in Example 1.4 because it deals with a short
plate with a hole.

For the sake of convenience, the results of Section 1.5 is summarized in Table 1.6.
In the table, carefully examine what constitutes an element, its degrees of freedom, and
the physical balance requirements.
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TABLE 1.6 Examples of elements and nodes

Element

Degrees of Freedom

Physical Balance
Requirement

Linear Elastic El
fi

i Tui
k

i+1 T
Uiy
fin

Torsional Elastic

ement (linear spring)

fi = k(u; — ;)
finn = k(uy — wy)

Element (torsional spring)

Tii1

JG
T, = 7(91' = 0i11)
JG
T = 7(9141 - 0)

Conduction Element

— € —|

kA
T; T qi = T(Ti = Ti)
q4—>® k @<—(;y
i i+1

kA
qiv1 = T(Tiﬂ -T)

Laminar Pipe Flow Element (See Section 12.1)

Pin Oiry
0; = C(P; — Piyy)

i+1 Qi = C(Piyy — P)

Electrical Resistance Element

R =iy I =

Wﬂ
[ —>

i i

V; 1

- E(Vi - Vm)

1
liy = E(Vm -V)

Nodal displacements:

Uj, Ujyq

Nodal angle of twist:

9,-, 0i+l

Nodal temperatures:

T Ty

Nodal pressures:
Pi, Piyy

Nodal
voltages:
Vi7 Vi+l

Force balance:

fitfin=20

Torque balance:
i+ Ty =0

Energy balance:
qi + g1 =0

Flow balance:

O+ 0 =0

Electric current
balance:
L+1,=0
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1.6 MINIMUM TOTAL POTENTIAL ENERGY FORMULATION

The minimum total potential energy formulation is a common approach in generating
finite element models in solid mechanics. External loads applied to a body will cause
the body to deform. During the deformation, the work done by the external forces is
stored in the material in the form of elastic energy, called strain energy. Let us consider
the strain energy in a solid member when it is subjected to a central force F as shown
in Figure 1.15.

Also shown in Figure 1.15 is a piece of material from the member in the form of
differential volume and the normal stresses acting on the surfaces of this volume. Earlier,
it was shown that the elastic behavior of the member may be modeled as a linear spring.
In Figure 1.15 note that y’ is a variable measuring deformation of the member and its
value varies from 0 to A¢. When the member is stretched by a differential amount dy’,
the stored energy in the material is

Y Y 1 1
A= / Fdy' = / ky'dy' = Eky’2 = (2 ky’>y’ (1.39)
0 0

F:(%)M:ky'

‘4_
;—»
| !
—
~
~
<

Unstretched length (no load)

Oy

FIGURE 1.15 The elastic behavior of a member subjected to a central load.
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We can write Eq. (1.39)—for a piece of material from the member in the form of
differential volume —in terms of the normal stress (o) and strain (g):

elastic force elastic force  dy’

—t— r —— e — _ 1
dA =3 (ky') &' = S(o,dxdz) edy = 59¢dV

Therefore, for a member or an element under axial loading, the strain energy A is
obtained by adding up the stored energy in all pieces (differential volumes) making up

the member:
2
A= [an= [ TCav= [ Euy (1.40)
|4 2 |4 2

where V is the volume of the member and o = Ee. The total potential energy II for a
body consisting of n elements and m nodes is the difference between the total strain
energy and the work done by the external forces:

= YA~ > Fu (1.41)
e=1 i=1

The minimum total potential energy principle simply states that for a stable sys-
tem, the displacement at the equilibrium position occurs such that the value of the
system’s total potential energy is a minimum.

all 0 < 9 &
—=— >N~ —NFu; =0 fori=1273,...,n (L42)
ou; ou; = o, =

The following examples offer insight into the physical meaning of Eq. (1.42).

EXAMPLE 1.5

Consider the following situations: (a) We have applied a force F to a linear spring
as shown in Figure 1.16. Depending on the stiffness value of the spring, the spring
stretches by a certain amount x. The static equilibrium requires that the applied force
F be equal to the internal force in the spring kx.

F=k ==
xorxk

Now, let us consider the total potential energy of the system as defined by Eq. (1.41).
The stored elastic energy in the spring is A = % kx? and the work done by the external
force Fis Fx (force times displacement). Thus, the total potential energy of the system is

1
HZEkxz—Fx

k
l FIGURE 1.16 A linear spring subjected
F x  toaforce F.
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| } 2em—|P=12N
A G B C
@ N e TS o

k =20 N/cm

FIGURE 1.17 The rod of Example 1.5.

Minimizing II with respect to x, we have

ai _df1, , PR
dx_dx<2kx Fx>—kx F=0

F
which results in x = e

(b) The slender rod shown in Figure 1.17 weighs 8 N and is supported by a spring
with a stiffness £ = 20 N/cm. A force P = 12 N is applied to the end of the rod at
point C. We are interested in determining the deflection of the spring.

First, we solve this problem by applying the static equilibrium conditions and
then apply the minimum total potential energy concept. Static equilibrium requires
that sum of the moments of the forces acting on the rod about point A be zero.
Considering the free-body diagram of the rod shown in Figure 1.18, we find

& DM, =0 —(8N)(5cm) + F,(8cm) — (12 N)(10cm) = 0
F,=20N and kx = (20 N/em)(x) = 20 N
x=1lcm

Now, we solve the problem using the minimum total potential energy approach.
We note that elastic energy stored in the system is predominantly due to elastic energy
of the spring and is given by

1 1
A= Ekx2 = 5(20 Nicm)(x*) = 10x?

The work done by the external forces is calculated by multiplying the weight of the rod
by the displacement of point G, and force P by the displacement of endpoint C. Through

‘ 5cm } 3cm } 2 cm P=12N
A G | B | C
R
X ——C— _ 71; p— — v)T
————— T"______j X X,
_ Fgl 77~
W=8N

R

y

FIGURE 1.18 The free-body diagram of the rod in Example 1.5.
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similar triangles, we can relate the displacements of points G and C to the displacement
of the spring (point B) according to

X X6 5
g 5 O faT gt
X Xc 5
g 10 O e

Thus, the work done by the external forces is given by
> Fu; = (8 N)(Zx) + (12 N)(ix) = 5x + 15x = 20x
The total potential energy of the system is
II=DA— > Fu =10x* — 20x

and

dll d ) B _

I dx<10x 20x> 206 —20 =0

Solving the above equation for x, we find x = 1 cm. Because there is only one
unknown displacement, note that when we employed Eqgs. (1.41) and (1.42),
we replaced the displacement u; with x and the partial derivative symbol with the
ordinary symbol. We have plotted the total potential energy Il = 10x*> — 20x as a
function of displacement x in Figure 1.19. It is clear from examining Figure 1.19 that
the minimum total potential energy occurs at x = 1 cm.

Now, let us turn our attention back to Example 1.1. The strain energy for an arbi-
trary element (e) can be determined from Eq. (1.40) as

E&? AoE
A© = /2 av = ;Vj U2y + uf — 2up uy) (1.43)
v
SN
Z
= 3] /
5
4 270 | | | |
g -05 0.5 1 1.5 2 2.5
=]
Q
£ =77
=
e ~12

Displacement of Spring x (cm)

FIGURE 1.19 Total potential energy versus displacement x.
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where & = (u;4y — u;)/€,and V = A€ were substituted for the axial strain and volume
respectively. Minimizing the strain energy with respect to ; and u; . leads to

NG, _ AanE

o, Ty (W; — wi4q) (1.44)
aA(e) Aang
P Ty (i1 — wy)
and, in matrix form,
IN©
ou; k —k u;
! = . e ' 1.45
IA [_keq keq ] {MHI} ( )
oy

where k., = (A, £)/€. Minimizing the work done by the external forces at nodes i and
i + 1 of an arbitrary element (e), we get

9

Fu) = F.
o (F) = F,

(1.46)
J
%(Fiﬂuiﬂ) = Fiy

For Example 1.1, the minimum total potential energy formulation leads to a global stiff-
ness matrix that is identical to the one obtained from direct formulation:

ki —k, 0 0 0

_kl kl + kz _k2 O 0

[K](G) - 0 _k2 kz + k3 _k3 0
0 0 _k3 k3 + k4 _k4

O 0 O _k4 k4

Furthermore, application of the boundary condition and the load results in

1 0 0 0 0 u, 0
—k, ki +k,  —k 0 0 Uy 0
0 —ky  kyt+ ks —ks 0 us p =40 (1.47)
0 0 ks kst ky —ky | |u 0
0 0 0 -k, Kk s P

The displacement results will be identical to the ones obtained earlier from the direct
method, as given by Eq. (1.17). The concepts of strain energy and minimum total poten-
tial energy will be used to formulate solid mechanics problems in Chapters 4,10, and 13.
Therefore, spending a little extra time now to understand the basic ideas will benefit
you enormously later.



62

Chapter 1 Introduction

Example 1.1: Exact Solution*

In this section, we will derive the exact solution to Example 1.1 and compare the finite
element formulation displacement results for this problem to the exact displacement
solutions. As shown in Figure 1.20, the statics equilibrium requires the sum of the forces
in the y-direction to be zero. This requirement leads to the relation

P = (0,,5)A(y) =0 (1.48)

Once again, using Hooke’s law (o = Ee¢) and substituting for the average stress in terms
of the strain, we have

P — EsA(y) = 0 (1.49)

Recall that the average normal strain is the change in length du per unit original length
of the differential segment dy. So,
du

8=d7y

If we substitute this relationship into Eq. (1.49), we now have

du
P—EA(y)—=0 1.50
OFs (1.50)
Rearranging Eq. (1.50), we get
du = LY (1.51)
u= .
EA(y)
1 wy }
—|7 L (Tavg) AY)
y
~— W) —> o dy
P P

FIGURE 1.20 The relationship between the external force P and the average stresses for the bar in
Example 1.1.

*The contribution of shear stresses is neglected.
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TABLE 1.7 Comparison of displacement results

Results from the

Location of a Exact Displacement Results from the Results from the
Point Along Method (in) Direct Method Energy Method
the Bar (in) Eq. (1.53) (in) (in)

y=0 0 0 0

y= 25 0.001027 0.001026 0.001026
= 50 0.002213 0.002210 0.002210

y= 175 0.003615 0.003608 0.003608

y =10 0.005333 0.005317 0.005317

The exact solution is then obtained by integrating Eq. (1.51) over the length of the bar
u L
Pd
o= |, e
0 o EA(y)
Pdy

_ Y Pdy _ y
0= [ 2ty - | ol (=)
Al) = <w1 + <w2;wl>y>t

The deflection profile along the bar is obtained by integrating Eq. (1.52), resulting in

u(y) = }EI(JZE)L_W[III(W + <w22w1>y> —In le (1.53)

Equation (1.53) can be used to generate displacement values at various points along the
bar. It is now appropriate to examine the accuracy of the direct and potential energy
methods by comparing their displacement results with the values. Table 1.7 shows nodal
displacements computed using direct and energy methods.

It is clear from examination of Table 1.7 that all of the results are in agreement
with each other.

(1.52)

where the area is

1.7 WEIGHTED RESIDUAL FORMULATIONS

The weighted residual methods are based on assuming an approximate solution for
the governing differential equation. The assumed solution must satisfy the initial and
boundary conditions of the given problem. Because the assumed solution is not exact,
substitution of the solution into the differential equation will lead to some residuals
or errors. Simply stated, each residual method requires the error to vanish over some
selected intervals or at some points. To demonstrate this concept, let’s turn our attention
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to Example 1.1. The governing differential equation and the corresponding boundary
condition for this problem are as follows:

d
AW)E dl — P = 0 subject to the boundary condition #(0) = 0 (1.54)
y

Next, we need to assume an approximate solution. Again, keep in mind that the
assumed solution must satisfy the boundary condition. We choose

u(y) = cy + oy’ + c3y? (1.55)

where ¢, ¢,;, and ¢; are unknown coefficients. Equation (1.55) certainly satisfies the
fixed boundary condition represented by u(0) = 0. Substitution of the assumed solu-
tion, Eq. (1.55), into the governing differential equation, Eq. (1.54), yields the error
function %R:

Aly) du

o —w & (1.56)
<w1 + <2Ll>y>tE(c1 + 20y +3c)’) —P=®R

Substituting for values of w,, w,, L, t, and E in Example 1.1 and simplifying, we get

RIE = (025 — 0.0125y)(c; + 2c2y + 3¢5 %) — 96.154 X 10°°

Collocation Method

In the collocation method the error, or residual function R is forced to be zero at as
many points as there are unknown coefficients. Because the assumed solution in this
example has three unknown coefficients, we will force the error function to equal zero at
three points. We choose the error function to vanish at y = L/3,y = 2L/3,and y = L:

R(c,y)|,_L =0
Y73
10 10 10y
R = <0.25 — 0.0125<3>><c1 + 2c2< 3 > + 3c3<3> > - 96154 X 10° =0
R(c,y)| 2 =0
Y73
20 20 20 \?
R = <0.25 — 0.0125<3>><c1 + 2c2< 3 > + 3c3<3> > - 96154 X 10° =0
R(c, y) =0
y=L

P = (025 — 0.0125(10))(c; + 2¢5(10) + 3c5(10)2) — 96.154 X 10° = 0
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This procedure creates three linear equations that we can solve to obtain the unknown
coefficients ¢y, ¢,, and c;:

20 100

¢+ ?Cz + TC3 = 461.539 X 10°°
40 400

c + ?CZ + TC3 = 576.924 X 10°°

¢ + 20c, + 300c; = 769.232 X 107

Solving the above equations yields ¢; = 423.0776 X 107, ¢, = 21.65 X 107, and
c; = 1.153848 X 107°. Substitution of the c-coefficients into Eq. (1.55) yields the
approximate displacement profile:

u(y) = 423.0776 X 100y + 21.65 x 10752 + 1.153848 X 10%°  (157)

In order to get an idea of how accurate the collocation approximate results are, we will
compare them to the exact results later in this chapter.

Subdomain Method

In the subdomain method, the integral of the error function over some selected sub-
intervals is forced to be zero. The number of subintervals chosen must equal the
number of unknown coefficients. Thus, for our assumed solution, we will have three
integrals:

L
/ 3Rdy =0 (1.58)
0

L
/3[(0.25 — 0.0125y)(c; + 26,y + 3c3y%) — 96.154 X 10°%]dy = 0

0

2L

*Rdy =0
. y
3

2L

/L (025 — 0.0125y)(c; + 2,y + 3¢y?) — 96.154 X 10°]dy = 0
3
L

2L@tdy=0

3

L
/2 , [(025 = 0.0125y)(c; + 2coy + 3cyy?) — 96.154 X 10°°ldy = 0

3

Integration of equations given by Eq. (1.58) results in three linear equations that we can
solve to obtain the unknown coefficients ¢y, ¢,, and c;:

763.88889 X 10 3¢, + 2.4691358¢, + 8.1018519¢; = 320.513333 x 107
0.625¢, + 6.1728395¢, + 47.4537041c; = 3.2051333 x 10™*
0.4861111c, + 8.0246917¢, + 100.694444¢c; = 3.2051333 X 107
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Solving the above equations yields ¢; = 391.35088 X 107°, ¢, = 6.075 X 107°, and
c; = 809.61092 X 107°. Substitution of the c-coefficients into Eq. (1.55) yields the
approximate displacement profile:

u(y) = 391.35088 x 107% + 6.075 X 107%? + 809.61092 X 107%y*  (1.59)
We will compare the displacement results obtained from the subdomain method to the
exact results later in this chapter.
Galerkin Method

The Galerkin method requires the error to be orthogonal to some weighting functions
®,, according to the integral

b
/@iE’RdyZO i=12...,N (1.60)

The weighting functions are chosen to be members of the approximate solution.
Because there are three unknowns in the assumed approximate solution for
Example 1.1, we need to generate three equations. Recall that the assumed solu-
tion is u(y) = c¢;y + ¢,y* + 3% thus, the weighting functions are selected to be
®, =y, d, = y%, and ®; = y°. This selection leads to the following equations:

L
/ y[(0.25 — 0.0125y)(c; + 2coy + 3c3y%) — 96.154 X 10°ldy = 0 (1.61)
0

L
/ y?[(0.25 — 0.0125y)(c; + 2¢,y + 3c3y%) — 96.154 X 10°%]dy = 0
0
L
/ y*[0.25 — 0.0125y)(c; + 2¢,y + 3c3y?) — 96.154 X 10°6]dy = 0
0

Integration of Eq. (1.61) results in three linear equations that we can solve to
obtain the unknown coefficients c;, ¢,, and c;:

8.333333¢; + 104.1666667c, + 1125¢; = 0.0048077
52.083333¢; + 750c, + 8750c; = 0.0320513333
375¢; + 5833.3333c, + 71428.57143¢; = 0.240385

Solving the above equations yields ¢; = 400.642 X 107°, ¢, = 4.006 X 10°°, and
c; = 0.935 X 107°. Substitution of the c-coefficients into Eq. (1.55) yields the approximate
displacement profile:

u(y) = 400.642 X 107y + 4.006 X 10%2 + 0.935 x 107%? (1.62)

We will compare the displacement results obtained from the Galerkin method to the
exact results later in this chapter.
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Least-Squares Method

The least-squares method requires the error to be minimized with respect to the unknown
coefficients in the assumed solution, according to the relationship

b
Minimize< / 97%2dy>

which leads to
b
oR
/%dyZO i=12,...,N (1.63)
. 0c
Because there are three unknowns in the approximate solution of Example 1.1, Eq. (1.63)
generates three equations. Recall that the error function is
RIE = (0.25 — 0.0125y)(c; + 2¢,y + 3czy?) — 96.154 X 107°
Differentiating the error function with respect to ¢, ¢,, and c¢3 and substituting into

Eq. (1.63), we have:

R
R dcy

10
/ [(0.25 — 0.0125y)(c; + 2¢,y + 3csy?) — 96.154 X 107 (0.25 — 0.0125y) dy = 0
0

R
10 R ac,

/ [(0.25 — 0.0125y)(c; + 2,y + 3c3p?) — 96.154 X 1076 (0.25 — 0.0125y)2y dy = 0
0

R
R acy

10
/ [(0.25 — 0.0125y)(c; + 2c2y + 3c3y?) — 96.154 X 10°] (0.25 — 0.0125y)3y* dy = 0
0

Integration of the above equations results in three linear equations that we can solve to
obtain the unknown coefficients ¢, ¢,, and cs:

0.364583333¢; + 2.864583333¢, + 25¢; = 0.000180289
2.864583333¢; + 33.333333¢, + 343.75¢; = 0.001602567
25¢; + 343.75¢, + 3883.928571c; = 0.015024063

Solving the set of equations simultaneously yields ¢; = 389.773 X 107,
¢, = 6.442 X 10°%, and c; = 0.789 X 10°°. Substitution of the c-coefficients into
Eq. (1.55) yields the approximate displacement profile:

u(y) = 389.733 X 10 + 6.442 X 107 + 0.789 X 107 (1.64)

Next, we will compare the displacement results obtained from the least-squares method
and the other weighted residual methods to the exact results.
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TABLE 1.8 Comparison of weighted residual results

Location Displacement Displacement Displacement Displacement Displacement
of a Results from the Results from the Results from the Results from the Results from the
Point Exact Collocation Subdomain Galerkin Least-Squares
Along Solution Method Method Method Method
the Bar Eq. (1.53) Eq. (1.57) Eq. (1.59) Eq. (1.62) Eq. (1.64)
(in) (in) (in) (in) (in) (in)
y= 0 0 0 0 0 0
y= 25 0.001027 0.001076 0.001029 0.001041 0.001027
y= 50 0.002213 0.002259 0.002209 0.002220 0.002208
y= 175 0.003615 0.003660 0.003618 0.003624 0.003618
y =10 0.005333 0.005384 0.005330 0.005342 0.005331

Comparison of Weighted Residual Solutions

Now we will examine the accuracy of weighted residual methods by comparing their dis-
placement results with the exact values. Table 1.8 shows nodal displacements computed
using the exact, collocation, subdomain, Galerkin, and least-squares methods.

It is clear from an examination of Table 1.8 that the results are in agreement with
each other. It is also important to note here that the primary purpose of Section 1.7 was
to introduce you to the general concepts of weighted residual methods and the basic
procedures in the simplest possible way. Because the Galerkin method is one of the most
commonly used procedures in finite element formulations, more detail and an in-depth
view of the Galerkin method will be offered later in Chapters 6 and 9. We will employ
the Galerkin method to formulate one- and two-dimensional problems once you have
become familiar with the ideas of one- and two-dimensional elements. Also note that in
the above examples of the use of weighted residual methods, we assumed a solution that
was to provide an approximate solution over the entire domain of the given problem. As
you will see later, we will use piecewise solutions with the Galerkin method. That is to
say, we will assume linear or nonlinear solutions that are valid only over each element
and then combine, or assemble, the elemental solutions.

1.8 VERIFICATION OF RESULTS

In recent years, the use of finite element analysis as a design tool has grown rapidly.
Easy-to-use, comprehensive packages such as ANSYS have become a common tool in
the hands of design engineers. Unfortunately, many engineers without the proper train-
ing or a solid understanding of the underlying concepts have been using finite element
analysis. Engineers who use finite element analysis must understand the limitations of
the finite element procedures. There are various sources of error that can contribute to
incorrect results. They include

1. Wrong input data, such as physical properties and dimensions

This mistake can be corrected by simply listing and verifying physical properties
and coordinates of nodes or keypoints (points defining the vertices of an object;
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they are covered in more detail in Chapters 8 and 13) before proceeding any fur-
ther with the analysis.

2. Selecting inappropriate types of elements
Understanding the underlying theory will benefit you the most in this respect. You
need to fully grasp the limitations of a given type of element and understand to
which type of problems it applies.

3. Poor element shape and size after meshing
This area is a very important part of any finite element analysis. Inappropriate
element shape and size will influence the accuracy of your results. It is important
that the user understands the difference between free meshing (using mixed-area
element shapes) and mapped meshing (using all quadrilateral area elements or
all hexahedral volume elements) and the limitations associated with them. These
concepts will be explained in more detail in Chapters 8 and 13.

4. Applying wrong boundary conditions and loads
This step is usually the most difficult aspect of modeling. It involves taking an actual
problem and estimating the loading and the appropriate boundary conditions for a
finite element model. This step requires good judgment and some experience.

You must always find ways to check your results. While experimental testing of your
model may be the best way to do so, it may be expensive or time consuming. You should
always start by applying equilibrium conditions and energy balance to different por-
tions of a model to ensure that the physical laws are not violated. For example, for static
models, the sum of the forces acting on a free-body diagram of your model must be zero.
This concept will allow you to check for the accuracy of computed reaction forces. You
may want to consider defining and mapping stresses along an arbitrary cross section and
integrating this information. The resultant internal forces computed in this manner must
balance against external forces. In a heat transfer problem under steady-state conditions,
apply conservation of energy to a control volume surrounding an arbitrary node. Are the
energies flowing into and out of a node balanced? At the end of particular chapters in
this text, a section is devoted to verifying the results of your models. In these sections,
problems will be solved using ANSYS, and the steps for verifying results will be shown.

1.9 UNDERSTANDING THE PROBLEM

You can save lots of time and money if you first spend a little time with a piece of paper
and a pencil to try to understand the problem you are planning to analyze. Before initi-
ating numerical modeling on the computer and generating a finite element model, it is
imperative that you develop a sense of or a feel for the problem. There are many ques-
tions that a good engineer will ask before proceeding with the modeling process: Is the
material under axial loading? Is the body under bending moments or twisting moments
or a combination of the two? Do we need to worry about buckling? Can we approximate
the behavior of the material with a two-dimensional model? Does heat transfer play
a significant role in the problem? Which modes of heat transfer are influential? If you
choose to employ FEA, “back-of-the-envelope” calculations will greatly enhance your
understanding of the problem, in turn helping you to develop a good, reasonable finite
element model, particularly in terms of your selection of element types. Some practicing
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engineers still use finite element analysis to solve a problem that could have been solved
more easily by hand by someone with a good grasp of the fundamental concepts of the
mechanics of materials and heat transfer. To shed more light on this very important
point, consider the following examples.

EXAMPLE 1.6

Imagine that by mistake, an empty coffee pot has been left on a heating element.
Assuming that the heater puts approximately 20 Watts (typically, a heater creates a
lower wattage) into the bottom of the pot, determine the temperature distribution within
the glass if the surrounding air is at 25°C, with a corresponding heat transfer coefficient
h = 15 W/m?- K. The pot is cylindrical in shape, with a diameter of 14 cm and height of
14 cm, and the glass is 3 mm thick.

- )

O XOX®)

_ O
< Heating plate )

This problem is first analyzed using a finite element model. After you study three-
dimensional thermal-solid elements (discussed in Chapter 13), you will revisit this prob-
lem (see Problem 13.11) and be asked to solve it using ANSYS. As you will learn later, a
solid model of the pot is created and meshed and the appropriate boundary conditions
are applied and the temperature solutions is then obtained. The results of this analysis
is shown in Figure 1.21.

From the results of finite element analysis we find that the maximum temperature
of 113.18°C occurs at the bottom of the pot in the center location, as shown in Figure 1.21.
This is a good example of a problem that could have been solved more easily by hand
by someone with a good grasp of the fundamental concepts of heat transfer. We can
approximate the temperature of the glass by applying the energy balance to the bottom
of the pot and assuming a one-dimensional model. Because the pot is made of thin glass,
we can neglect the spatial temperature variation within the glass. Under steady-state
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SMN =25
S =113.181

34.795 54.394 73.99 93 .5585

NODAL SOLUTION AN

o) TUN 3 2002
e 10:53:17
TINE=1

TENE (VG

R5T5=0

25 44.596 64,192 893.788 103.383

113.181

FIGURE 1.21 The temperature distribution in the pot of Example 1.6.

conditions, the heat flux added into the bottom of the glass is approximately equal to the
rate of energy convected away by air. Thus, we employ Newton’s law of cooling

q" = NI, = T)
where
q" = heat flux, W/m?
h = heat transfer coefficient, W/m? - °C (W/m? - K)
T
Ty

surface temperature of the coffee pot,°C

surrounding air temperature,’C

We can estimate the heat flux into the bottom of the pot:

20 W
q" = ————— = 1299 W/m?

%(0.14 m)?

and substituting for heat flux, 4, and T into Eq. (1.65), and solving for 7,

1299 W/m? = (15 W/m-°C)(T, — 25) — T, = 111.6°C

(1.65)



72

Chapter 1 Introduction

Asyou can see, the temperature result obtained by hand calculation (7, = 111.6°C)
is very close to the result of our finite element model (7},,, = 113.18°C). Thus, there was
no need to resort to finite element formulation to solve the above problem.

EXAMPLE 1.7

Consider the torsion of a steel bar (G = 11 X 10’ ksi) having a rectangular cross sec-
tion, as shown in the accompanying figure. Under the loading shown, the angle of twist
is measured to be # = 0.0005 rad/in. We are interested in determining the location(s)
and magnitude of the maximum shear stress.

Steel bar
G =11X10>ksi

1in

A

Again, we have analyzed this problem using a finite element model. All of the steps
leading to the ANSYS solution are given in Example 10.1 (revisited). The results of this
analysis are shown in Figure 1.22.

The results of finite element analysis show that the maximum shear stress of
2558 Ib/in? occurs at the midsection of the rectangle. This is another example of a prob-
lem that could have been solved more easily by hand by someone with a good grasp of
the fundamental concepts of mechanics of materials.

As you will learn in Chapter 10, Section 10.1, there are analytical solutions that
we could employ to solve problems dealing with torsion of members with rectangular
cross-sectional area. When a torque is applied to a straight bar with a rectangular cross-
sectional area, within the elastic region of the material, the maximum shearing stress
and an angle of twist caused by the torque are given by

_r
c,wh?

Tmax —

where

Tmax = Maximum shear stress, Ib/in’
T = applied torque, 1b - in



Tmax —
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FIGURE 1.22 The shear stress distribution for the steel bar of Example 1.7

w
h

=

= width of the rectangular cross-section, in

height of the rectangular cross-section, in

0.246; see Table 10.1

and
TL

C G’I/Uh3
L = length of the bar, in
G =

shear modulus or modulus of rigidity of material, Ib/in’

(&)
see Table 10.1

a constant coefficient that depends on aspect ratio of the cross section,

a constant coefficient that depends on aspect ratio of the cross section, 0.229;

Substituting into the above equations appropriate values, we get

_TL T(1 in)

—— 3 = 0.0005 rad/in =
¢, Gwh

T
c; wh?

0.229(11 x 10°1b/in*)(1 in)(0.5 in)*
~ 15751b+in
0.246(1 in)(0.5 in)?

= 2560 Ib/in*

=T =15751b-in

When comparing 2560 Ib/in” to the FEA results of 2558 1b/in?, you see that we could
have saved lots of time by calculating the maximum shear stress using the analytical

solution and avoided generating a finite element model.
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SUMMARY

At this point you should

1. have a good understanding of the physical properties and the parameters that
characterize the behavior of an engineering system. Examples of these properties
and design parameters are given in Tables 1.2 and 1.3.

2. realize that a good understanding of the fundamental concepts of the finite ele-
ment method will benefit you by enabling you to use ANSYS more effectively.

3. know the seven basic steps involved in any finite element analysis, as discussed in
Section 1.4.

4. understand the differences among direct formulation, minimum total potential
energy formulation, and the weighted residual methods (particularly the Galerkin
formulation).

5. know that it is wise to spend some time to gain a full understanding of a problem
before initiating a finite element model of the problem. There may even exist a
reasonable closed-form solution to the problem, and thus you can save lots of time
and money.

6. realize that you must always find a way to verify your FEA results.
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PROBLEMS

1. Solve Example 1.1 using: (a) two elements, and (b) eight elements. Compare your results to
the exact values.

2. A concrete table column-support with the profile shown in the accompanying figure is
to carry a load of approximately 500 1b. Using the direct method discussed in Section 1.5,
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determine the deflection and average normal stresses along the column. Divide the column
into five elements. (E = 3.27 X 10°ksi)

500 1b

3in.

3. An aluminum strap with a thickness of 5 mm and the profile shown in the accompanying
figure is to carry a load of 2000 N. Using the direct method discussed in Section 1.5, determine
the deflection and the average normal stress along the strap. Divide the strap into three ele-
ments. This problem may be revisited again in Chapter 10, where a more in-depth analysis
may be sought. (E = 70 GPa)

} 10 cm ‘

1.5cm 12 cm

2000 N
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4. A thin steel plate with the profile shown in the accompanying figure is subjected to an
axial load. Approximate the deflection and the average normal stresses along the plate using
the model shown in the figure. The plate has a thickness of 0.125 in and a modulus of elas-
ticity £ = 28 X 10° ksi. You will be asked to use ANSYS to analyze this problem again in

Chapter 10.
4in

2lin %k]

%in

12in N ! ky Zky < ky < ks
Eln
— ——

2lin kg

500 1b 500 1b

5. Apply the statics equilibrium conditions directly to each node of the thin steel plate (using
a finite element model) in Problem 4.

6. For the spring system shown in the accompanying figure, determine the displacement of each
node. Start by identifying the size of the global matrix. Write down elemental stiffness matri-
ces, and show the position of each elemental matrix in the global matrix. Apply the boundary
conditions and loads. Solve the set of linear equations. Also compute the reaction forces.

k2:9%
=52 201b
— NWNA__¢—>» ANMA
ky=51b ks=101D
3771 5 in
> e NWWA_¢
201b k=20
m
L AMWWWA____
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A typical exterior masonry wall of a house, shown in the accompanying figure, consists of
the items in the accompanying table. Assume an inside room temperature of 68°F and an
outside air temperature of 10°F, with an exposed area of 150 ft>. Determine the temperature
distribution through the wall. Also calculate the heat loss through the wall.

Items

Resistance U-factor
hr-ft?-°F/Btu  Btu/hr - ft*- °F

1. Outside film resistance

(winter, 15-mph wind) 0.17 5.88
2. Face brick (4 in) 0.44 227
3. Cement mortar (1/2 in) 0.1 10.0
4. Cinder block (8 in) 1.72 0.581
S. Air space (3/4 in) 1.28 0.781
6. Gypsum board (1/2 in) 0.45 2.22
7. Inside film resistance (winter) 0.68 1.47

8. In order to increase the thermal resistance of a typical exterior frame wall, such as the one

10.

in Example 1.2, it is customary to use 2 X 6 studs instead of 2 X 4 studs to allow for place-
ment of more insulation within the wall cavity. A typical exterior (2 X 6) frame wall of a
house consists of the materials shown in the accompanying figure. Assume an inside room
temperature of 68°F and an outside air temperature of 20°F, with an exposed area of 150 ft*.
Determine the temperature distribution through the wall.

Resistance U-factor

Items hr-ft?+°F/Btu  Btuw/hr - ft?« °F
1. Outside film resistance

(winter, 15-mph wind) 0.17 5.88
2. Siding, wood (1/2 X 8 lapped) 0.81 1.23
3. Sheathing (1/2 in regular) 1.32 0.76
4. Tnsulation batt (5 in) 19.0 0.053
5. Gypsum wall board (1/2 in) 0.45 222
6. Inside film resistance (winter) 0.68 1.47

Assuming the moisture can diffuse through the gypsum board in Problem 8, where should
you place a vapor barrier to avoid moisture condensation? Assume an indoor air temperature
of 68°F with relative humidity of 40%.

A typical ceiling of a house consists of the items in the accompanying table. Assume an
inside room temperature of 75°F and an attic air temperature of 25°F, with an exposed area
of 1000 ft>. Determine the temperature distribution through the ceiling. Also calculate heat
loss through the ceiling.
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Resistance U-factor
Items hr-ft>-°F/Btu  Btu/hr- f* - °F
1. Inside attic film resistance 0.7 1.5
2. Insulation batt (6 in) 19.0 0.05
3. Gypsum board (1/2 in) 0.5 2.3
4. Inside film resistance
(winter) 0.7 15
11. A typical 13-in solid wood core door exposed to winter conditions has the characteristics
shown in the accompanying table. Assume an inside room temperature of S0°F and an outside
air temperature of 25°F, with an exposed area of 25 ft*. (a) Determine the inside and outside
temperatures of the door’s surface. (b) Determine heat loss through the door.
Resistance U-factor
Items hr-ft*-°F/Btu  Btu/hr - ft*+ °F
1. Outside film resistance
(winter, 15-mph wind) 0.15 6
2. 13-in solid wood core 0.4 2.5
3. Inside film resistance
(winter) 0.68 1.5
12. The concrete table column-support in Problem 2 is reinforced with three 3-in steel rods,

as shown in the accompanying figure. Determine the deflection and average normal
stresses along the column under a load of 1000 Ib. Divide the column into five elements.
(Ec = 327 X 10°ksi; E; = 29 X 10° ksi)

1000 Ib

‘<—6in—>‘

T~ g ~ Q T
. &e o
= 0.4—1111-><-11n 0. o: |
'& p & Q 3in
>
<> OQ o <> o l

13.
14.

Compute the total strain energy for the concrete table column-support in Problem 12.

A 10-in slender rod weighing 10 Ib is supported by a spring with a stiffness k = 50 1b/in.
A force P = 501b is applied to the rod at the location shown in the accompanying figure.
Determine the deflection of the spring (a) by drawing a free-body diagram of the rod and
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applying the statics equilibrium conditions, and (b) by applying the minimum total potential
energy concept.

15. In a DC electrical circuit, Ohm’s law relates the voltage drop V, — V; across a resistor to
a current / flowing through the element and the resistance R according to the equation
V2 - Vl = RI.

R
Va AAAAANAA Vi
_—
1

Using direct formulation, show that for a resistance element comprising two nodes, the con-
ductance matrix, the voltage drop, and the currents are related according to the equation

1 [ 1 =1 vl _ L
R[-1 1 v, I,
16. Use the results of Problem 15 to set up and solve for the voltage drop in each branch of the
circuit shown in the accompanying figure.

60

R ]

20 mA 12Q 18 Q)




80 Chapter 1 Introduction

17. The deformation of a simply supported beam under a distributed load, shown in the accom-
panying figure, is governed by the relationship

ey _ M)

ax? El
where M(X) is the internal bending moment and is given by
wX(L — X)

M) = =5

I .
1

E—

1
1
O i

| L |

Derive the equation for the exact deflection. Assume an approximate deflection solution of

the form Y(X) = cl[@)z B (fﬂ

Use the following methods to evaluate ¢;: (a) the collocation method and (b) the subdomain
method. Also, using the approximate solutions, determine the maximum deflection of the
beam if a W27 X 84 (wide flange shape) with a span of L = 22 ft supports a distributed
load of w = 6 kips/ft.

18. For the example problem used throughout Section 1.7 assume an approximate solution of
the form u(y) = ¢,y + > + ¢5p° + c4y*. Using the collocation, subdomain, Galerkin, and
least-squares methods, determine the unknown coefficients ¢, ¢,, c3, and ¢,. Compare your
results to those obtained in Section 1.7

19. The leakage flow of hydraulic fluid through the gap between a piston—cylinder arrangement
may be modeled as laminar flow of fluid between infinite parallel plates, as shown in the
accompanying figure. This model offers reasonable results for relatively small gaps. The dif-
ferential equation governing the flow is

Fu_dp
Mdyz dx

H
y >




20.

21.

22.
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d
where p is the dynamic viscosity of the hydraulic fluid, « is the fluid velocity, and ?i is the
pressure drop and is constant. Derive the equation for the exact fluid velocities. Assume an
v
approximate fluid velocity solution of the form u(y) = c1|:sin<15>:|. Use the following

methods to evaluate c;: (a) the collocation method and (b) the subdomain method. Compare
the approximate results to the exact solution.

Use the Galerkin and least-squares methods to solve Problem 19. Compare the approximate
results to the exact solution.

For the cantilever beam shown in the accompanying figure, the deformation of the beam
under a load P is governed by the relationship

d’y M(X)

ax? El
where M(X) is the internal bending moment and is

M(X) = —PX

Derive the equation for the exact deflection. Assume an appropriate form of a polynomial
function. Keep in mind that the assumed solution must satisfy the given boundary conditions.
Use the subdomain method and the Galerkin method to solve for the unknown coefficients
of the assumed solution.

A shaft is made of three parts, as shown in the accompanying figure. Parts AB and CD
are made of the same material with a modulus of rigidity of G = 9.8 X 10° ksi, and each
has a diameter of 1.5 in. Segment BC is made of a material with a modulus of rigidity of
G = 11.2 X 10° ksi and has a diameter of 1 in. The shaft is fixed at both ends. A torque of
24001b - in is applied at C. Using three elements, determine the angle of twist at B and C
and the torsional reactions at the boundaries.

i 2 £t i 1.5 ft i 21t i
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23.

24.

25.

For the shaft in Problem 22, replace the torque at C by two equal torques of 1500 1b - in
at B and C. Compute the angle of twist at B and C and the torsional reactions at the
boundaries.

Consider a plate with a variable cross section supporting a load of 1500 1b, as shown in the
accompanying figure. Using direct formulation, determine the deflection of the bar at loca-
tions y = 2.5in,y = 7.51in, and y = 10 in. The plate is made of a material with a modulus
of elasticity £ = 10.6 X 10° ksi.

4in ‘

_ thickness = 0.125 in
A

Sin

Sin

1500 1b

Consider the springs in parallel and in series, as shown in the accompanying figure. Realizing
that deformation of each spring in parallel is the same, and the applied force must equal the
sum of forces in individual springs, show that for the springs in parallel the equivalent spring
constant k, is

k, =k, + ko + ks

For the springs in series, realizing that the total deformation of the springs is the sum of the
deformations of the individual springs, and the force in each spring equals the applied force,
show that for the springs in series, the equivalent spring constant is
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ky ky k3 % ky

ry ~—
AAAY
K

26. Use the results of Problem 25 and determine the equivalent spring constant for the system
of the springs shown in the accompanying figure.

2k 3k

3k

27. Determine the equivalent spring constant for the cantilever beam shown in the accompanying
figure.
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28. Use the results of Problem 27 and Eq. (1.5) to determine the equivalent spring constant for
the system shown in the accompanying figure.

Ez, A2

29. Determine the equivalent spring constant for the system shown. Determine the deflection
of point A, using the minimum total potential energy concept.

Ey Ay L,

El, 11

—c—

—r

L L
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30. Neglect the mass of the connecting rod and determine the deflection of each spring for the
system shown in the accompanying figure (a) by applying the statics equilibrium conditions,
and (b) by applying the minimum total potential energy concept.

iy

L

Fﬂ =S

T
Ll



CHAPTER 2

Matrix Algebra

In Chapter 1 we discussed the basic steps involved in any finite element analysis. These
steps include discretizing the problem into elements and nodes, assuming a function
that represents behavior of an element, developing a set of equations for an element,
assembling the elemental formulations to present the entire problem, and applying the
boundary conditions and loading. These steps lead to a set of linear (nonlinear for some
problems) algebraic equations that must be solved simultaneously. A good understand-
ing of matrix algebra is essential in formulation and solution of finite element models.
As is the case with any topic, matrix algebra has its own terminology and follows a set of
rules. We provide an overview of matrix terminology and matrix algebra in this chapter.
The main topics discussed in Chapter 2 include

2.1 Basic Definitions

2.2 Matrix Addition or Subtraction

2.3 Matrix Multiplication

2.4 Partitioning of a Matrix

2.5 Transpose of a Matrix

2.6 Determinant of a Matrix

2.7 Solutions of Simultaneous Linear Equations

2.8 Inverse of a Matrix

2.9 Eigenvalues and Eigenvectors

2.10 Using MATLAB to Manipulate Matrices

2.11 Using Excel to Manipulate Matrices

2.1 BASIC DEFINITIONS

A matrix is an array of numbers or mathematical terms. The numbers or the mathemati-
cal terms that make up the matrix are called the elements of matrix. The size of a matrix
is defined by its number of rows and columns. A matrix may consist of m rows and n
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columns. For example,

IR e
[N]=] 1 26 14 [T] = .
0 0 cosf —sinf
-5 8 0 .
0 0 sinf@ cosf
(9 (x,y,2) ) L LA
ax /xdx /ydy
af(x’yvz) 0 0
Ly == m=| ) v
2 ¥
af(xayvz) /dx /dy
I — L L
0z ) L0 0 _

Matrix [N] is a 3 by 3 (or 3 X 3) matrix whose elements are numbers, [T] is a 4 X 4
that has sine and cosine terms as its elements, { L } isa 3 X 1 matrix with its elements
representing partial derivatives,and [I]is a2 X 2 matrix with integrals for its elements.
The [N],[T], and [I] are square matrices. A square matrix has the same number of rows
and columns. The element of a matrix is denoted by its location. For example, the ele-
ment in the first row and the third column of a matrix [B] is denoted by b3, and an
element occurring in matrix [A] in row 2 and column 3 is denoted by the term a,;. In
this book, we denote the matrix by a bold-face letter in brackets [| and { }, for example:
[K], [T], {F}, and the elements of matrices are represented by regular lowercase let-
ters. The { } is used to distinguish a column matrix.

Column Matrix and Row Matrix

A column matrix is defined as a matrix that has one column but could have many rows.
On the other hand, a row matrix is a matrix that has one row but could have many col-
umns. Examples of column and row matrices follow.

af(x,y,z)
1 ox
3 B 1 ) of(xy,2) .
{A} = [ {X} =4x¢p,and {L} = T are examples of column matrices,
3 . of (x,y,2)
0z )

whereas [C] =[5 0 2 —3]and[Y] = [y; y, y3]areexamples of row matrices.

Diagonal, Unit, and Band (Banded) Matrix

A diagonal matrix is one that has elements only along its principal diagonal; the ele-
ments are zero everywhere else (a; = 0 wheni # j). An example of a 4 X 4 diagonal
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matrix follows:

N
iy

[A] =

o O O

0 0 0
a 0 0
0 a3 O
0 0 ay

The diagonal along which a,, a,, a;, and a, lies is called the principal diagonal. An identity
or unit matrix is a diagonal matrix whose elements consist of a value 1. An example of

an identity matrix follows:

1 0
0 1
0 0
1] =
0 0
0 0

o o O

1
0

o

1

A banded matrix is a matrix that has a band of nonzero elements parallel to its principal
diagonal. As shown in the example that follows, all other elements outside the band are zero.

bll blZ 0

b21 b22 b23
0 b32 b33
B]=| 0 0 by
0 0 0

0 0 0

L0 0 0

Upper and Lower Triangular Matrix

0 0
0 0
by, O
bu by
bsy  bss
0 bes
0 0

An upper triangular matrix is one that has zero elements below the principal diagonal
(u; = Owheni > j),and the lower triangular matrix is one that has zero elements above
the principal diagonal (/; = 0 when i < j). Examples of upper triangular and lower

triangular matrices are shown below.

[U] =

(L] =

0 0 0
L, 0 0
l32 l33 O
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2.2 MATRIX ADDITION OR SUBTRACTION

Two matrices can be added together or subtracted from each other provided that
they are of the same size —each matrix must have the same number of rows and
columns. We can add matrix [A],,«, of dimension m by n to matrix [B],,«, of the same
dimension by adding the like elements. Matrix subtraction follows a similar rule, as

shown.

_011 ap . .y, by by . . by,

ay  Gyp . .y, by, by . . by,
[A] = [B] = +

LAn1 G2 - - Ay bi b - . by

[ (ay £ byy (ap £bp) . . (a4, T by
(ax £ by)  (an T by) . . (az £ by)

_(aml * bml) (amz + bmz) . . (amn + bmn)

The rule for matrix addition or subtraction can be generalized in the following
manner. Let us denote the elements of matrix [A] by a;; and the elements of matrix [B]
by bj;, where the number of rows i varies from 1 to m and the number of columns j varies
from 1 to n. If we were to add matrix [A] to matrix [B] and denote the resulting matrix
by [C], it follows that

and

¢ =a;+ byfori=1,2,...,mandj=1,2,...,n (2.1)

2.3 MATRIX MULTIPLICATION

In this section we discuss the rules for multiplying a matrix by a scalar quantity and by
another matrix.

Multiplying a Matrix by a Scalar Quantity

When a matrix [A] of size m X n is multiplied by a scalar quantity such as 3, the opera-
tion results in a matrix of the same size m X n, whose elements are the product of
elements in the original matrix and the scalar quantity. For example, when we multiply
matrix [A] of size m X n by a scalar quantity 3, this operation results in another matrix
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of size m X n, whose elements are computed by multiplying each element of matrix

[A] by B, as shown below.

ay  dp . . 4y Bay,  Bap, . . Pay,

ay dyp . . Oy Bay  Bay . . Pay,
BlA] =B =

[0 A Ay Baml BamZ . . Bamn

Multiplying a Matrix by Another Matrix

2.2)

Whereas any size matrix can be multiplied by a scalar quantity, matrix multiplication can
be performed only when the number of columns in the premultiplier matrix is equal to
the number of rows in the postmultiplier matrix. For example, matrix [A] of size m X n
can be premultiplied by matrix [B] of size n X p because the number of columns » in
matrix [A] is equal to number of rows » in matrix [B]. Moreover, the multiplication
results in another matrix, say [C], of size m X p. Matrix multiplication is carried out

according to the following rule:

(Al Xn[B]nXp = [C],, Xp
A_A

must match
ay  app ayy by by, blp ‘n Cn2
ay  dp ayy, by by b2p €1
[A][B] = =
A1 A2 An bnl bn2 . . bnp Cm1 Cm2

where the elements in the first column of the [C] matrix are computed from
cn = anby + apby + ...+ ayby

Cy1 = ayby + apby + ...+ ayb,

Ct = Qb + @by + o0 g b

and the elements in the second column of the [C] matrix are

Cip = apbyy, + apby + ...+ ayby,
Cpp = aybyy + apby + ..o+ ayb,
Cm2 = @by + aypby + ... + a,,b,,

clp

CZp

mp

and similarly, the elements in the other columns are computed, leading to the last col-

umn of the [C] matrix

Clp = allblp + alzbzp + ...+ alnbnp
C2P - a21b1p + a22b2p + ...+ aznbnp
Cmp - amlblp + amzbzp + ... + amnbnp
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The multiplication procedure that leads to the values of the elements in the [C] matrix
may be represented in a compact summation form by

cmp = kE amkbkp (23)
=1

When multiplying matrices, keep in mind the following rules. Matrix multiplication
is not commutative except for very special cases.

[A][B] = [B][A] (24)
Matrix multiplication is associative; that is
[A]([B[c]) = ([Al[BDI[C] (23)
The distributive law holds true for matrix multiplication; that is
([A] + [BD[C] = [A][C] + [B][C] (2.6)
or
[A]([B] + [€]) = [A][B] + [A][C] 2.7)

For a square matrix, the matrix may be raised to an integer power 7 in the following
manner:

n times

[A]" = [A][A]. .. [A] (2.8)

This may be a good place to point out that if [I] is an identity matrix and [A] is a
square matrix of matching size, then it can be readily shown that the product of
[I][A] = [A][I] = [A]. See Example 2.1 for the proof.

EXAMPLE 2.1

Given matrices

0 5 0 4 6 -2 -1
Al=|8 3 7[[Bl=|7 2 3 |and{c} =X 2
9 -2 9 1 3 —4 5

perform the following operations:

[A] + [B] = ?

[A] - [B] = ?

3A] =7

[A][B] = ?

[aj{c} =7

(AP = ?

Show that [I][A] = [A][I] = [A]

® - 0 T
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We will use the operation rules discussed in the preceding sections to answer these

questions.
a. [A] + [B] = ?
[0 5 0 4 6 -2
[A]+[B]=|8 3 7|+|7 2 3
9 -2 9 1 3 -4
[(0+4) G+6) (0+(-2) 4 11 -2
= 8+7) (B+2) (7+3) |=]15 5 10
LOO+1) (—2+3) (9+ (-4) 10 1 5
b. [A] — [B] = ?
[0 5 0 4 6 -2
[A]-[B]=|8 3 7|-|7 2 3
19 -2 9 1 3 —4
[(0-4)  (5-6) (0—(-2)) ] -4 -1 2
=1 (8-7) (3-2) (7-3) |=]1 1 4
L (9-1) (=2-3) (9—(—4)) | 8§ -5 13
c. 3[A] =7
0 5 0 0 (3)(5) 0 0 15 0
341 =318 3 7(=13®® 3B @@ |=|24 9 2
9 -2 9 3)9) B)(-2) (3)) 27 -6 27
d. [A][B] = ?
0 5 o0l[4 6 -2
[A][B]=|8 3 7|7 2 3 |=
9 -2 9|1 3 —4

0@ + G)(@) + (O)(1)
@@ + )7 + (D)
@) + (=2)7) + O1)

|

35 10
=160 75
31 77

e. [A]{C} =27
0 5
[Al{c} =|8 3
9 =2

O)©6) + ()2 + ()3  0)(=2) + G)B) + (O)(-4)
®)(6) + 32 + (NB)  B)(=2) + B)B3) + (N(=4)
9)(©) + (=2)2) + OB) O(=2) + (=2)3) + (=4

1;}
I

|

—60

-1
2
5

10
33
32

OED+G)E@ + 0)6)
@D+ 3@+ (MO)

0
7
9 OED +(=2)@) + O06)

| N&
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f. [A] =?
0 5 ol[o 5 o0 40 15 35
[A =[Al[A]=(8 3 7|8 3 7|=|8 35 84
9 -2 91{l9 -2 9 65 21 67
g. Show that [I][A] = [A][I] = [A]
1 0 o]fo 5 o] [o 5 o0
[1[A]=|0 1 o8 3 7|=|8 3 7|and
0 0 1J/9 -2 9] [9 -2 9]
o0 5 o[t o o] [o 5 o
[AjI1=|8 3 7|0 1 o|=|8 3 7
9 -2 9]0 0 1] [9 -2 9]

2.4 PARTITIONING OF A MATRIX

Finite element formulation of complex problems typically involves relatively large sized
matrices. For these situations, when performing numerical analysis dealing with matrix
operations, it may be advantageous to partition the matrix and deal with a subset of
elements. The partitioned matrices require less computer memory to perform the opera-
tions. Traditionally, dashed horizontal and vertical lines are used to show how a matrix
is partitioned. For example, we may partition matrix [A] into four smaller matrices in
the following manner:

ayp 4y gz iy s die
dyp  Qyp Gz i Oyy  Ops Ay

[A] = | a5 ay, apiay a5 ax

Ay Ay dg3 0 Qgq Q45 Qye

as;  dsp ds3 | dsqg  dss  dsg

) i Ay Ap
and in terms of submatrices [A] = |: ,
Ay Ay |
where

_ | 4 dpp a3 _ | e A5 Qg

[An] = [An] =
Ldr; Ay  dr3 | Ly ps Ay
az; 4z 4z 34 d3zs Az
[Ay] = | an  apn  ag [Ap] = | au a5 ag
Lds1 ds; ds3_| | ds4  Qss  dse

It is important to note that matrix [A] could have been partitioned in a number
of other ways, and the way a matrix is partitioned would define the size of submatrices.
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Addition and Subtraction Operations
Using Partitioned Matrices

Now let us turn our attention to matrix operations dealing with addition, subtraction,
or multiplication of two matrices that are partitioned. Consider matrix [B] having the
same size (5 X 6) as matrix [A]. If we partition matrix [B] in exactly the same way we
partitioned [A] previously, then we can add the submatrices in the following manner:

—
=
—
I
S
™
—
S
)
1
S
™
@
S
™
r
S
&
S
N
=N

where
by by by | [ by bis by |
B] = B,] =
Bl =1 py by bn) BT Ly by b
[ b3 by b | by bss b |
[By] = | by Dby by [Br] = | bua  bas Dby
| bsi  bs, bss L bss  bss  Dbse

Then, using submatrices we can write

Ay + By A+ By
[A] + [B] = [Al B. A +B
0t By Ap + By

Matrix Multiplication Using Partitioned Matrices

As mentioned earlier, matrix multiplication can be performed only when the number of
columns in the premultiplier matrix is equal to the number of rows in the postmultiplier
matrix. Referring to [A] and [B] matrices of the preceding section, because the number
of columns in matrix [A] does not match the number of rows of matrix [B], then matrix
[B] cannot be premultiplied by matrix [A]. To demonstrate matrix multiplication using
submatrices, consider matrix [C] of size 6 X 3, which is partitioned in the manner shown
below.

. Cp i C13
G Cx i O3

C1 Ce2 | Ce3_|
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where
e ] 13
[Cy] =| C2r 2 and {Cp,} =
G Cxp» C33
Cqy Cp Ca3
[Cy] = | G5t Cs2 and {Cy} = 3
Co1  Ce2 Ce3

Next, consider premultiplying matrix [C] by matrix [A]. Let us refer to the
results of this multiplication by matrix [D] of size 5 X 3. In addition to paying atten-
tion to the size requirement for matrix multiplication, to carry out the multiplication
using partitioned matrices, the premultiplying and postmultiplying matrices must be
partitioned in such a way that the resulting submatrices conform to the multiplication
rule. That is, if we partition matrix [A] between the third and the fourth columns, then
matrix [C] must be partitioned between the third and the fourth rows. However, the
column partitioning of matrix [C] may be done arbitrarily, because regardless of how
the columns are partitioned, the resulting submatrices will still conform to the mul-
tiplication rule. In other words, instead of partitioning matrix [C] between columns
two and three, we could have partitioned the matrix between columns one and two
and still carried out the multiplication using the resulting submatrices.

[Al[C] = [D] = |:A11 A1z:||:C11 C12} _ [AHCH + ACy ALCpy + Alzczz}
A21 A22 CZl C22 A21C11 + A22C21 A21C12 + A22C22

_ |:D11 D12:|
D, D,
where

[Dy] = [Au][Ci] + [A][Cx] and  [Dy] = [Ap]{Cr} + [Ap]{Cx}
[Dy1] = [An][Cii] + [A][Ca] [Dy] = [An]{Cr} + [An]{Cx}

EXAMPLE 2.2

Given the following partitioned matrices, calculate the product of [A][B] = [C] using
the submatrices shown.

s 7 2410 3 5 é 170 (5)
3 8 -3i-5 0 8 A
[A]=|1 4 0 £7 15 9 |and [B] =]~y 13
0o 10 5 {12 3 -1 5o
2 -5 2 18 —10 |
- ? L1 57|
Ay A
[A] _ All Al2}
21 22
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where
5 7 2 0O 3 5
1 4 0 7 15 9
[A]=]0 10 5 [A] =] 12 3 -1
2 -5 9 2 18 -10
and
B, BIZJ
B :[
(] B, B,
where B
2 10 0
[Bul=| 8 7 and {B,} = 5
-5 2 —4
4 8 13
[Bz]] = 3 12 and {B22} = 0
|1 5 7

[A][B] = [C] = |:A11 A12:||:B11 B12} _ [Aan + AnBy Ay By, +A12322:| _ [CN C12:|
A Az |LBn By Ay By + ApByy AyBip + AyBy G Gy

where

2 10
5 7 2
|E

= + =
[Cll] [All][Bll] [A12][le] |:3 8 _3 7
-5 2
0O 3 5 48 70 164
Tlos o0 8] 2T s
1 5
5 7 2 0
[Cio] = [Aul{Bi} + [Ap]{Bn} = B 5
3 8 3
—4
[o 3 5} 15 - {62}
-5 0 8 - |43
7
1 4 0 2 10
[Cy1] = [Ay][Bi1] + [Ap][Bx] =0 10 5 8 7
2 =5 9| -5 2
7 15 9 4 8 116 319
+ 112 3 -1 3 12| =1| 111 207
2 18 101 5 —-29 185
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[C] = [An]{ B} + [An]{B»} =|0 10 5 5

7 15 9 13 174
+|12 3 -1 0 =4 179
2 18 —10 L 7 —-105
The final result is given by
70 164 | 62
73 80 | 43

A A B B C C - :
[AllB] = [C] = [ . A”J[Bﬂ B”J = [ o C”J =| 116 319 | 174
21 22 21 22 21 22 111 207 : 179

29 185 i —105

As explained earlier, the column partitioning of matrix [B] may be done arbitrarily
because the resulting submatrices still conform to the multiplication rule. It is left as an
exercise for you (see Problem 3 at the end of this chapter) to show that we could have
partitioned matrix [B] between columns one and two and used the resulting submatrices
to compute [A][B] = [C].

2.5 TRANSPOSE OF A MATRIX

As you will see in the following chapters, the finite element formulation lends itself
to situations wherein it is desirable to rearrange the rows of a matrix into the col-
umns of another matrix. To demonstrate this idea, let us go back and consider step 4
in Example 1.1. In step 4 we assembled the elemental stiffness matrices to obtain the
global stiffness matrix. You will recall that we constructed the stiffness matrix for each
element with its position in the global stiffness matrix by inspection. Let’s recall the
stiffness matrix for element (1), which is shown here again for the sake of continuity
and convenience.

ko -k
K]V = ]i K 1:| and its position in the global matrix
L~k 1
k, —k, 0 0 0
_kl kl 0 0 O
K9 =] 0 0 0 0 0
0 0 0 0 O
. 0 0 0 0 0

Instead of putting together [K]1“) by inspection as we did, we could obtain [K]"? using
the following procedure:

[K]" = [A][K]V[A] (29)



98 Chapter2 Matrix Algebra

where

and

[AI]T =

S O o O
el el =

[A]” called the transpose of [4,], is obtained by taking the first and the second rows of
[A;] and making them into the first and the second columns of the transpose matrix. It
is easily verified that by carrying out the multiplication given by Eq. (2.9), we will arrive
at the same result that was obtained by inspection.

10 ki —k, 0 0 0
1 _k1 kl 0 0 0

[K]'9 =]0 0 [kl _li[l 0 00 0}= 0 0 0 0 0
0 olt=k kLo 1 0 0 0 o o0 0 0 o

0 0 0 0 0 0 0

Similarly, we could have performed the following operation to obtain [K]?9):

[K]%9 = [4,])'[K]?[A,]

where
01 0 0 O
A p—
[42] [o 0 1 0 0}
and
0 O
1 0
[A4]" =0 1
0 O
0 O
and
0 0
k2 _kz
[K]?9 =

o O O R O
1
|
>~
™~
=~
SN
™~
I
o O
S =
—_ O
o O
o O
L 1
Il
o O O O O
|
»
™~
K3
o O O O O
o O O O O
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As you have seen from the previous examples, we can use a positioning matrix,
such as [A] and its transpose, and methodically create the global stiffness matrix for
finite element models.

In general, to obtain the transpose of a matrix [B] of size m X n, the first row of
the given matrix becomes the first column of the [B]”, the second row of [B] becomes
the second column of [B]”, and so on, leading to the mth row of [B] becoming the mth
column of the [B]’, resulting in a matrix with the size of n X m. Clearly, if you take the
transpose of [B]’, you will end up with [B]. That is,

((B])" = [B] (2.10)

As you will see in succeeding chapters, in order to save space, we write the solu-
tion matrices, which are column matrices, as row matrices using the transpose of the
solution —another use for transpose of a matrix. For example, we represent the displace-
ment solution

U,
U,
{U} =4 U; bY[U]T:[Ul u, U, - U]j

U,

When performing matrix operations dealing with transpose of matrices, the fol-
lowing identities are true:

(A] + [B] + - + [ND" = [A]" + [B]" + --- + [N] (2.11)
([Al[B]...[N])" = [N]"...[B]"[A] (2.12)
In Eq. (2.12), note the change in the order of multiplication.

This is a good place to define a symmetric matrix. A symmetric matrix is a square
matrix whose elements are symmetrical with respect to its principal diagonal. An example
of a symmetric matrix follows:

1 4 2 =5
4 5 15 20
2 15 -3 8
-5 20 8 0

[A] =

Note that for a symmetric matrix, element a,,, is equal to a,,,. That is, a,,, = a,,, for all
values of n and m. Therefore, for a symmetric matrix, [A] = [A]".

EXAMPLE 2.3
Given the following matrices:
0 5 0 4 6 2
[A]=18 3 7 |and[B]=|7 2 3
9 -2 9 1 3 —4



100 Chapter 2 Matrix Algebra

perform the following operations:
a. [A]" = ?and [B]" = ?
b. verify that ([A] + [B])” = [A]" + [B]"
c. verify that ([A][B])" = [B]"[A]"
a. [A]" = ?and [B]" = ?

As explained earlier, the first, second, third, . . ., and the mth rows of a matrix
become the first, second, third, . .., and the mth columns of the transpose matrix
respectively.
0 8 9
A =15 3 -2
0o 7 9
Similarly,
4 7 1
B"=] 6 2
-2 3 —4
b. Verify that ([A] + [B])” = [A]" + [B]".
4 11 2 4 15 10
[A]+[B]=|15 5 10 |and([A]+[B)"'=]| 11 5 1
10 1 5 . —2 10 |
[0 8 9 4 7 1 4 15 10]
A"+ [B]'=|5 3 —2|+| 6 2 3 |=[11 5 1
L0 7 9 -2 3 —4 | -2 10 ]

Comparing results, it is clear that the given identity is true.

c. Verify that ([A][B])" = [B]"[A]".
In Example 2.2 we computed the product of [A][B]:

0 5 ol[4 6 —2 35 10 15
[A]B]=|8 3 7|7 2 3 |=|60 75 -35
(9 -2 9|[1 3 -4 31 77 —60
and using the results we get
35 60 31
(AlBD =|10 75 77
|15 —35 —60
Alternatively,
4 7 110 8 9 35 60 31
B]'[A]"=| 6 2 3 ||5 3 —2|=|10 75 77
-2 3 =410 7 9 15 —-35 —60

Again, by comparing results we can see that the given identity is true.
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2.6 DETERMINANT OF A MATRIX

Up to this point we have defined essential matrix terminology and discussed basic
matrix operations. In this section we define what is meant by a determinant of a matrix.
As you will see in the succeeding sections, determinant of a matrix is used in solving a
set of simultaneous equations, obtaining the inverse of a matrix, and forming the char-
acteristic equations for a dynamic problem (eigenvalue problem).

Let us consider the solution to the following set of simultaneous equations:

a Xy + apXy = bl (2133)
ay1Xq + AyXy, = bz (213b)

We can represent Egs. (2.13a) and (2.13b) in a matrix form by
ay a4 | JX bl}
= 2.14
|:az1 azj {xz} {bz @19

[A]{X} = {B}

To solve for the unknowns x; and x,, we may first solve for x, in terms of x;, using
Eq. (2.13b), and then substitute that relationship into Eq. (2.13a). These steps are shown
next.

or in a compact form by

_ b, — ayx n b, — axx —p
Xy = =  anpX; T ap =D
ay an

Solving for x;

biay, — ayb,
X = (2.15a)
ay1dy — Ay

After we substitute for x; in either Eq. (2.13a) or (2.13b), we get

b, — b
X, = AuP2 T Sdy (2.15b)

yay — dpdy
Referring to the solutions given by Egs. (2.15a) and (2.15b), we see that the denomina-
tors in these equations represent the product of coefficients in the main diagonal minus
the product of the coefficient in the other diagonal of the [A] matrix.
The ay,a,;, — ay,a,; is the determinant of the 2 X 2 [A] matrix and is represented
in one of following ways:

apy  dpp

Det[A] or det[A] or = ayay — apayn (216)

ay  dp

Only the determinant of a square matrix is defined. Moreover, keep in mind that the
determinant of the [A] matrix is a single number. That is, after we substitute for the
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values of aq, a,, a,,, and a,, into a;ay,, — apa,;, we get a single number. In general,
the determinant of a matrix is a single value. However, as you will see later, for dynamic
problems the determinant of a matrix resulting from equations of motions is a polyno-
mial expression.

Cramer’s rule is a numerical technique that can be used to obtain solutions to a
relatively small set of equations similar to the previous example. Using Cramer’s rule
we can represent the solutions to the set of simultaneous equations given by Egs. (2.13a)
and (2.13b) with the following determinants:

by ayp ay by
b, ax ay b,
X, = and x, = ———— (2.17)
ay  dyp ay  dpp
az; dp az; dp
Let us now consider the determinant of a 3 X 3 matrix such as
‘1 Cnn (i3
[Cl=]cu cn o3
G311 (3 Cs33
which is computed in the following manner:
Ci1 €12 Ci3 i I .
_ CiCpC33 T C1pCr3C31 T C13C21C3 — €13C20C31 218
Ca1 Cnp G| = (2.18)

— C11C23C3 T C12€621C33
C31 (3 Cs3

There is a simple procedure called direct expansion, which you can use to obtain
the results given by Eq. (2.18). Direct expansion proceeds in the following manner. First,
we repeat and place the first and the second columns of the matrix [C] next to the third
column, as shown in Figure 2.1. Then we add the products of the diagonal elements lying
on the solid arrows and subtract them from the products of the diagonal elements lying
on the dashed arrows. This procedure, shown in Figure 2.1, results in the determinant
value given by Eq. (2.18).

The direct expansion procedure cannot be used to obtain higher order determi-
nants. Instead, we resort to a method that first reduces the order of the determinant —to
what is called a minor—and then evaluates the lower order determinants. To demon-
strate this method, let’s consider the right-hand side of Eq. (2.18) and factor out ¢;;,— ¢,
and c; from it. This operation is shown below.

C11€22€C33 T C12€23C31 T €13C21C3 — €13C2C31 — €11€23C3 — C12€21C33
= cp1(Canlss — €303) — ooz — €23631) F C13(CaiCxn — €2C31)

As you can see, the expressions in the parentheses represent the determinants of
reduced 2 X 2 matrices. Thus, we can express the determinant of the given 3 X 3 matrix
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\ pad \C \ N\ s
apy 1012 11\C12 Xﬁs /011 €12
'
a21/ ax €21 ?22’ Fzsl lel €22
» N\ WX\
1 2 L3 Gl O FIGURE 2.1 Direct expansion procedure
# # N for computing the determinant of (a) 2 X 2
(a) (b) matrix, and (b) 3 X 3 matrix.

in terms of the determinants of the reduced 2 X 2 matrices (minors) in the following
manner:

Cxn (3 € (3 G1 C»

— t c3

Cn (33 G311 Cs3 G313

A simple way to visualize this reduction of a third-order determinant into three
second-order minors is to draw a line through the first row, first column, second col-
umn, and third column. Note that the elements shown in the box—the common ele-
ment contained in elimination rows and columns—are factors that get multiplied by
the lower order minors. The plus and the minus signs before these factors are assigned
based on the following procedure. We add the row and the column number of the fac-
tor, and if the sum is an even number, we assign a positive sign, and if the sum is an
odd number we assign a negative sign to the factor. For example, when deleting the
first row and the second column (1 + 2), a negative sign should then appear before
the ¢, factor.

It is important to note that alternatively to compute the determinant of [A] we
could have eliminated the second or the third row —instead of the first row—to reduce
the given determinant into three other second-order minors. This point is demonstrated
in Example 2.4.

Our previous discussion demonstrates that the order of a determinant may be
reduced into other lower order minors, and the lower order determinants may be used
to evaluate the value of the higher order determinant.

Here are two useful properties of determinants: (1) The determinant of a matrix
[A] is equal to the determinant of its transpose [A]”. This property may be readily
verified (see Example 2.4). (2) If you multiply the elements of a row or a column
of a matrix by a scalar quantity, then its determinant gets multiplied by that quantity
as well.
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EXAMPLE 2.4
Given the following matrix:
1 5 0
[A]=18 3 7
6 -2 9

calculate

a. determinant of [A]
b. determinant of [A]”

a. For this example, we use both the direct expansion and the minor methods to
compute the determinant of [A]. As explained earlier, using the direct expan-
sion method, we repeat and place the first and the second columns of the matrix
next to the third column as shown, and compute the products of the elements
along the solid arrows, then subtract them from the products of elements along
the dashed arrow.

_ (DGO + (5)(N(®) + (0)B)(=2) — (5)(8)()
—(MM(=2) = (0)3)(6) = ~109

0
7
9

-2

Next, we use the minor to compute the determinant of [A]. For this example,
we eliminate the elements in the first row and in first, second, and third columns,

as shown.
+——5—>06 +—4—>06 +—>5
i 3 7 8 } 7 8 3
-2 9 6 2 9 6 -2
1 5 0
R I
6 -2 9 -2 9 6 9 6 -2

= (IG)O)~N(=DI=GNBNN)=(7)(6)] = ~109

Alternatively, to compute the determinant of the [A] matrix, we can eliminate the
elements in the second row, and first, second, and third column as shown:

110
6 b

Ot
SER)
N O

~

o
o b —
I d
[\S]
o]

RENI
I

)

©
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1 5 0
5 0 1o _J1 s
8 3 7:—8‘ +3‘ ‘—7‘ ‘
-2 -2
e o o 9] " “le 9] 'le

= —@IBG)O)—O)(=D]+G)MO)—(O)(O)]-(NDI(D)(-2)=()(6)] = —109

b. As already mentioned, the determinant of [A]” is equal to the determinant of [A].
Therefore, there is no need to perform any additional calculations. However, as
a means of verifying this identity, we will compute and compare determinant of
[A]" to the determinant of [A]. Recall that [A]” is obtained by interchanging the
first, second, and third rows of [A] into the first, second, and third columns of the

1 8 6

[A]7, leading to [A]" = | 5 3 —2 |. Using minors, we get
0 7 9

+—8—=6 1 6

i 3 -2 5 -2 5 3 2

7 9 0 9 0o 7

1 8 6

5 3 2= 1’3 _2‘ - 8‘5 2y 6‘5 3‘

0 7 9 7 9 0 9 0 7

= MIG)O)=(=2(D]-EIB)O)=(=2)(0)] + BIG)(7)-(3)(0)] = ~109

When the determinant of a matrix is zero, the matrix is called a singular. A singular
matrix results when the elements in two or more rows of a given matrix are identical.
For example, consider the following matrix:

2 1
A]=|2 1
1 3

W oA~

whose rows one and two are identical. As shown below, the determinant of [A] is zero.
S 00 + 0w + @e6) - 1))
{3 5 —@O®WE) - @HMA) =0

Matrix singularity can also occur when the elements in two or more rows of a matrix
are linearly dependent. For example, if we multiply the elements of the second row of
matrix [A] by a scalar factor such as 7, then the resulting matrix,

2 1 4
[A]=|14 7 28
1 3 5
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is singular because rows one and two are now linearly dependent. As shown below, the
determinant of the new [A] matrix is zero.

124 ; 248 = Q)N (5) + (DH)(28)(1) + (H)(1H)(3) — (1)(14)(5)
L3 5| ~ @) -@®HMO) =0

2.7 SOLUTIONS OF SIMULTANEOUS LINEAR EQUATIONS

As you saw in Chapter 1, the finite element formulation leads to a system of algebraic
equations. Recall that for Example 1.1, the bar with a variable cross section supporting
a load, the finite element approximation and the application of the boundary condition
and the load resulted in a set of four linear equations:

1820 —845 0 0 U, 0
10° —845 1560 —715 0 us \ _ ) 0
0 =715 1300 =585 || uy 0

0 0 —585 585 us 10°

In the sections that follow we discuss two methods that you can use to obtain solu-
tions to a set of linear equations.

Gauss Elimination Method

We begin our discussion by demonstrating the Gauss elimination method using an
example. Consider the following three linear equations with three unknowns, x;, x,,

and x;.
2x; + x, + x5 =13 (2.19a)
3x; + 2x, + 4x; = 32 (2.19b)
S5x1 — xp +3xy; =17 (2.19¢)

1. We begin by dividing the first equation, Eq. (2.192a), by 2, the coefficient of x; term.
This operation leads to

1 1 13
X1 + EX2 + EX3 = 7 (220)
2. We multiply Eq. (2.20) by 3, the coefficient of x; in Eq. (2.19b).
3 3 39
3x1 + ~ X + ~ X3 = (221)

2 2 2
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We then subtract Eq. (2.21) from Eq. (2.19b). This step eliminates x; from
Eq. (2.19b). This operation leads to

3x1 + 2x2 + 4X3 =32

< 3 3 39)
- 3x1+7x2+7x:;:7

2 2 2
5 25

. Similarly, to eliminate x; from Eq. (2.19c), we multiply Eq. (2.20) by 5, the coefficient
of x; in Eq. (2.19¢)

565
27 2
We then subtract the above equation from Eq. (2.19¢), which eliminates x; from
Eq. (2.19¢). This operation leads to

5
le + EXZ + (2.23)

Sx; — xy +3x3 =17

_5 +§ _|_§ —@
X1 2.X:2 2X3—2

7 1 31
—Exz + EX3 = —? (2.24)
Let us summarize the results of the operations performed during steps 1 through 3.
These operations eliminated the x; from Egs. (2.19b) and (2.19c¢).

1 1 13
x; + Exz + 5X3 = ? (2.25a)
1 5 25
5)62 + 5X3 = ? (225b)
7 1 31
—5 X, + 5)63 = —7 (2.25C)

. To eliminate x, from Eq. (2.25¢), first we divide Eq. (2.25b) by 1/2, the coefficient
of x,.

Xy + S)C3 =25 (226)
Then we multiply Eq. (2.26) by —7/2, the coefficient of x, in Eq. (2.25c), and sub-
tract that equation from Eq. (2.25c). These operations lead to

7 1 31
-~ X + X3 = T

2 2 2

(.7 3 _ 15
22T BT T

18x, = 72 (2.27)
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Dividing both sides of Eq. (2.27) by 18, we get
X3 = 4

Summarizing the results of the previous steps, we have

1 13
X1 + 5)(2 + EX3 - ? (228)
X, + S5x3 =25 (2.29)
X5 =4 (2.30)

Note Eqs. (2.28) and (2.29) are the same as Egs. (2.25a) and (2.26), which are
renumbered for convenience. Now we can use back substitution to compute the
values of x, and x,. We substitute for x5 in Eq. (2.29) and solve for x..

x2+5(4)=25 — x2=5

Next, we substitute for x; and x, in Eq. (2.28) and solve for x;.

1 1 13
x1+5(5)+5(4)=7 - x; =2

The Lower Triangular, Upper Triangular (LU)
Decomposition Method

When designing structures, it is often necessary to change the load and consequently
the load matrix to determine its effect on the resulting displacements and stresses.
Some heat transfer analysis also requires experimenting with the heat load in reach-
ing the desirable temperature distribution within the medium. The Gauss elimination
method requires full implementation of the coefficient matrix (the stiffness or the
conductance matrix) and the right-hand side matrix (load matrix) in order to solve
for the unknown displacements (or temperatures). When using Gauss elimination,
the entire process must be repeated each time a change in the load matrix is made.
Whereas the Gauss elimination is not well suited for such situations, the LU method
handles any changes in the load matrix much more efficiently. The LU method con-
sists of two major parts: a decomposition part and a solution part. We explain the LU
method using the following three equations

a;jxy, + a Xy + a;zXz = bl (231)
ar 1 Xq + ayXy + ay3Xs = bz (232)
asz1 Xy + azX, + azzX3 = b3 (233)
or in a matrix form,
ap a4 || X b,
Ay Gy Ay [\ % ¢ = bypor[Al{x} = {b} (2.34)

az  dzp a4z X3 bs
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Decomposition Part The main idea behind the LU method is first to decom-

1 0 0
pose the coefficient matrix [A] into lower [L] = | l,; 1 0 | and upper triangular
Uy U U Ly L 1
[Ul =] 0 wuy u, | matrices so that
0 0 us
ayp dip A3 1 0 O] un wp ugs
dy Ay Gy | =L 1 0 0 upy Uy (2.35)
az 4z as Ly Ip 1 0 0 us
Carrying out the multiplication operation, we get
app ap ag 1 0 Ol un wp ugs
ay Gy ay| =L 1 0 0 uy ux
Ld3 a3z ds; Ly L 1 0 0 us
_ (2.36)
Up U U
= | by by + uy bz + ups
| Gy By + lpuy Ly + Doy + ug;

Now let us compare the elements in the first row of [A] matrix in Eq. (2.36) to the
elements in the first row of the [L][U] multiplication results. From this comparison we
can see the following relationships:

Uy = aq and Upp = ayp and Uiz = a3
Now, by comparing the elements in the first column of [A] matrix in Eq. (2.36) to
the elements in the first column of the [L][U] product, we can obtain the values of /,,
and /3

ayy ay

Ly = a - [ = = 2.37
21U11 21 21 iy any ( )
asy asy
31U11 31 31 Uy ar; ( )

Note the value of u;; was determined in the previous step. That is, u;; = a;;. We can
obtain the values of u,, and u,; by comparing the elements in the second rows of the
matrices in Eq. (2.36).

bty + upy = ay = up = ay — by (2.39)
by + s = a3 = Uy = a3 — by (2.40)

When examining Egs. (2.39) and (2.40) remember that the values of L, u;,, and u,5 are
known from previous steps. Now we compare the elements in the second columns of
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Eq. (2.36). This comparison leads to the value of /;,. Note, we already know values of
U12, lr1, Uyy, and [31 from previous steps.
as — Ly

Lyup + lpuyy = ay, — L = . (2.41)

Finally, the comparison of elements in the third rows leads to the value of us;.
Laugy + Ity + uzy = a3 = uszy = asz — Ly — Il (2.42)

We used a simple 3 X 3 matrix to show how the LU decomposition is performed.
We can now generalize the scheme for a square matrix of any size # in the following
manner:

Step 1. 'The values of the elements in the first row of the [U] matrix are obtained from

u; =a; forj=1ton (2.43)
Step 2. The unknown values of the elements in the first column of the [L] matrix are

obtained from

=2 fori=2ton (2.44)
Uy

Step 3. The unknown values of the elements in the second row of the [U] matrix are
computed from

uZ]‘ == (lzj - 121u1]' forj - 2 tO n (245)

Step 4. The values of the elements in the second column of [L] matrix are calculated from
e

[, =2t i = 3ton (2.46)
Uy

Next, we determine the unknown values of the elements in the third row of the [U]
matrix and the third column of [L]. By now you should see a clear pattern. We evaluate
the values of the elements in a row first and then switch to a column. This procedure is
repeated until all the unknown elements are computed. We can generalize the above
steps in the following way. To obtain the values of the elements in the kth row of [U]
matrix, we use

k—1
ukj = akj — Ellkpupj forj =kton (247)
p=

We will then switch to the kth column of [L] and determine the unknown values in that
column.

k—1
Ay — z_:llipupk
I, =—"——  fori=k+1ton (2.48)
Ui

Solution Part So far you have seen how to decompose a square coefficient matrix
[A] into lower and upper triangular [L] and [U] matrices. Next, we use the [L] and the
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[U] matrices to solve a set of linear equations. Let’s turn our attention back to the three
equations and three unknowns example and replace the coefficient matrix [A] with the
[L] and [U] matrices:

[Al{x} = {b} (2.49)
[LI[UJ{x} = {b} (2.50)
We now replace the product of [U]{x} by a column matrix { z } such that
4 [Ul{x} = {z} (2.51)
[LI[UN{x} = {b} —>[L]{z} = {b} (2.52)

Because [L] is a lower triangular matrix, we can easily solve for the values of the
elements in the { z} matrix, and then use the known values of the { z } matrix to solve
for the unknowns in the { x } from the relationship [U]{x} = {z}. These steps are dem-
onstrated next.

1 0 0 21 b1
121 1 O Ve = b2 (253)
Ly L 1 <3 b;

From Eq. (2.53), it is clear that

71 = by (2.54)
2, = b, — bz (2-55)
23 = by — Iyzy — lp2y (2-56)

Now that the values of the elements in the { z } matrix are known, we can solve for
the unknown matrix { x } using

Uy Uy Uz X1 21
0 up upn | =42 (2.57)
O 0 Uszs X3 23
23
Xy = — 2.58
5= (2.58)
2y — UxnX
X, = 2 B3 (2.59)
U
21 — UpXy — UpX
X = 1 12X2 13X3 (2.60)
U

Here we used a simple three equations and three unknowns to demonstrate how
best to proceed to obtain solutions; we can now generalize the scheme to obtain the
solutions for a set of n equations and n unknown.
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i—1
1 = bl and Z; = bi - EIUZ/ fori = 2, 3, 4, R (261)
j=1

n
z = 2 U
Zn j=irl
X, =— and x; =

nn il

fori=n—-1,n-2,n-3,...,3,2,1 (2.62)

Next, we apply the LU method to the set of equations that we used to demonstrate
the Gauss elimination method.

EXAMPLE 2.5

Apply the LU decomposition method to the following three equations and three
unknowns set of equations:

ZX1 + Xy + X3 = 13
3x1 + ZXZ + 4X3 =32
SX1 - Xy + 3X3 =17

2 1 1 13
[A]=|3 2 4 |and {b} =432
5 -1 3 17

Note that for the given problem,n = 3.

Decomposition Part
Step 1. The values of the elements in the first row of the [U] matrix are obtained from

ulj =

j forj=1ton

Uy = ap = 2 up = ap =1 Uz = a;z = 1

Step 2. The unknown values of the elements in the first column of the [L] matrix are
obtained from

a,
lﬂ:ui fori =2ton
11
l _@_g l _@_é
2T T2 T, 2

Step 3. The unknown values of the elements in the second row of the [U] matrix are
computed from

Uyj = Oy — lz]ll]j forj =2ton
3
Uy = ayp — by, =2 — <2>(1) =

1

2

3 5

Uy = A3 — byuyz = 4 — <2>(1) = 5
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Step 4. The unknown values of the elements in the second column of the [L] matrix
are determined from

o
=22 fori = 3t0n
Uy
5
{3
L = as, — Lyuy, o 2 - 7
2 Uy B 1 B

2
Step 5. Compute the remaining unknown elements in the [U] and [L] matrices.

k—1
ukj = akj - Ellkpup]‘ fOr] =kton
p=

Uy = ayy — (Lyugz + bottys) = 3 — <<§>(1) i (—7)<§>> -

Because of the size of this problem (n = 3) and the fact that the elements along
the main diagonal of the [L] matrix have values of 1, that is, ;3 = 1, we do not need to
proceed any further. Therefore, the application of the last step

k—1
Qi — Elipupk
=1 .
ly=—2""  fori=k+1ton
U

is omitted. We have now decomposed the coefficient matrix [A] into the following lower
and upper triangular [L] and [U] matrices:

1

0 0l 1
2 1 31 0 15
> b3 % -7 11l0 o 18

When performing this method by hand, here is a good place to check the decom-
position results by premultiplying the [L] matrix by the [U] matrix to see if the [A]
matrix is recovered.

We now proceed with the solution phase of the LU method, Eq. (2.61).

Solution Part

i—1
Zl = bl and Zi = bi - EZUZ] fori = 2t0n
j=1

3
1 = 13 = b2 — 121Z1 =32 — <2>(13) = —

73 = by — (Lyzy + Lpzp) = 17 — <<§>(13) + (=7) 225>> =172
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The solution is obtained from Eq. (2.62).

= > UiX;

j=itl

and x; = fori=n—-1,n-2,n-3,...,3,2,1

X, =
Upy Uj;

Note for this problem n = 3, therefore i = 2, 1.
23 72

= — = — = 4
BT, 18
25 5
5~ <2)(4)
= 2y T UpsX3 _ _
g U 1
2
= 21 T UppXy T UisX3 _ 13 - ((1)(5) + (1)(4)) -
! Uy 2

INVERSE OF A MATRIX

In the previous sections we discussed matrix addition, subtraction, and multiplication,
but you may have noticed that we did not say anything about matrix division. That is
because such an operation is not formally defined. Instead, we define an inverse of a
matrix in such a way that when it is multiplied by the original matrix, the identity matrix
is obtained.

[A]A] = [A]lA] = [1] (2.63)

In Eq. (2.63), [A] ! is called the inverse of [A]. Only a square and nonsingular matrix
has an inverse. In Section 2.7 we explained the Gauss elimination and the LU methods
that you can use to obtain solutions to a set of linear equations. Matrix inversion allows
for yet another way of solving for the solutions of a set of linear equations. Once again,
recall from our discussion in Chapter 1 that the finite element formulation of an engi-
neering problem leads to a set of linear equations, and the solution of these equations
render the nodal values. For instance, formulation of the problem in Example 1.1 led to
the set of linear equations given by

[K]{u} = {F} (2.64)

To obtain the nodal displacement values { u }, we premultiply Eq. (2.64) by [K] !
which leads to

7]
[K]"'[K]{u} = [K]"'{F} (2.65)
(I1{u} = [K]{F} (2.66)

and noting that [I]{u} = {u} and simplifying,
{u} = [K]'{F} (2.67)
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From the matrix relationship given by Eq. (2.67), you can see that the nodal solu-
tions can be easily obtained, provided the value of [K]" is known. This example shows
the important role of the inverse of a matrix in obtaining the solution to a set of linear
equations. Now that you see why the inverse of a matrix is important, the next question
is, How do we compute the inverse of a square and nonsingular matrix? There are a
number of established methods that we can use to determine the inverse of a matrix.
Here we discuss a procedure based on the LU decomposition method. Let us refer back
to the relationship given by Eq. (2.63), and decompose matrix [A] into lower and upper
triangular [L] and [U] matrices.

(A]
[LI[U] (AT =[] (2.68)
Next, we represent the product of [U][A] ™! by another matrix, say matrix [Y]:
[UlA]™ = [¥] (2.69)
and substitute for [U][A] " in terms of [Y] in Eq. (2.68), which leads to
[L][Y] = [1] (2.70)

We then use the relationships given by Eq. (2.70) to solve for the unknown values of
elements in matrix [¥Y], and then use Eq. (2.69) to solve for the values of the elements
in matrix [A]!. These steps are demonstrated using Example 2.6.

EXAMPLE 2.6
2 1 1

Given[A] =|3 2 4 | compute [A] "
5 -1 3

Step 1. Decompose the given matrix into lower and upper triangular matrices. In
Example 2.5 we showed the procedure for decomposing the [A] matrix into
lower and upper triangular [L] and [U] matrices.

; 00 2 1 1
-1 0 1 5
[L]=1|2 and[U]=|0 - =
5 2 2
- =7 1 0 0 18
2
Step 2. Use Eq.(2.70) to determine the unknown values of the elements in the [ ¥] matrix.
[L]
1 0 0 Y]
§ 1 0 Yu Yz Vi3 1.0 0
2 Yau Yo ysa|=|0 1 0
% 7 1 Yar Vo V33 0 0 1
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First, let us consider the multiplication results pertaining to the first column of the [Y]
matrix, as shown.

1 0 O

3 1 0 Yu 1
2 Ya (=

5 Y31 0
- =7 1

2

The solution of this system of equations leads to

3

yn =1 Yo = 75

= —13
5 Va1

Next, consider the multiplication results pertaining to the second column of [Y]:

1 0 O

é 1 0 Y12 0
2 yo (=41
5 Y32 0
- =7 1

2

The solution of this system of equation yields

Y2 =0 v =1 yn =7

Similarly, solve for the unknown values of the elements in the remaining column
of the [Y] matrix:

1 0 0

3 1 0 Y13 0
2 Yy ¢ =40
5 Y33 1
- =7 1 ;

2

yiz =0 Y3 =0 yi =1

Now that the values of elements of the [Y ] are known, we can proceed with calculation
of the values of the elements comprising the [A] !, denoted by x;;, X5, . . ., and so on,
as shown. Using the relationship given by Eq. (2.69), we have

[U][A]" = [Y]
2 1 1 1 0 0
X110 X2 X3
1
0 = é Xo1 X Xo3 | & _é 1
2 2 2
0 0 18|t T T 13 7 1
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Again, we consider multiplication results pertaining to one column at a time. Considering
the first column of the [x] matrix,

2.1 1| 1
o Losilo b )3
2 2 |0 2
X31
0 0 18 —13
1B 110
31 18 217 g 1T g
Multiplication results for the second column render
2 1 1
1 5 X12 0
RN el
0 0 18]\
X3p = T Xp =75 Xp = 4
27 g 2~ g 12 18
The multiplication results of the third column yield
2 1 1
1 5 X13 0
R Rl
0 0 18]
1 s 2
BT g 23 18 137 g
Therefore, the inverse of the [A] matrix is
1 10 -4 2
A = I 11 1 =5
-13 7 1

We can check the result of our calculations by verifying that [A][A]™ = [I].

1 2 1 1 10 -4 2 1 0 0
13 3 2 4 11 1 -5|=|0 1 0]QED.
5 -1 3| -13 7 1 0 0 1

Finally, it is worth noting that the inversion of a diagonal matrix is computed simply by
inversing its elements. That is, the inverse of a diagonal matrix is also a diagonal matrix
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with its elements being the inverse of the elements of the original matrix. For example,
the inverse of the 4 X 4 diagonal matrix

— 0 0 0
a,
1
PR 0 . 00
[A] = ’ is[A]! = ?
0 0 a O o o L o
0O 0 0 ay as
0 0 0 l
L as |

This property of a diagonal matrix should be obvious because [A] '[A] = [I].

1
;000
1
0l00a1000 1 0 0 O
[A]‘l[A]: a, 0 a O 0:0100
00l000a30 0O 0 1 O
a; 0 0 0 a 0 0 0 1
OOOl
L a, |

2.9 EIGENVALUES AND EIGENVECTORS

Up to this point we have discussed some of the methods that you can use to solve a set
of linear equations of the form

[Al{x} = {b} (2.71)
For the set of linear equations that we have considered so far, the values of the elements
of the {b} matrix were typically nonzero. This type of system of linear equations is com-
monly referred to as nonhomogenous. For a nonhomogenous system, unique solutions
exist as long as the determinant of the coefficient matrix [A] is nonzero. We now discuss
the type of problems that render a set of linear equations of the form

[A]{X} — A{X} =0 (2.72)

This type of problem, called an eigenvalue problem, occurs in analysis of buckling
problems, vibration of elastic structures, and electrical systems. In general, this class of
problems has nonunique solutions. That is, we can establish relationships among the
unknowns, and many values can satisfy these relationships. It is common practice to
write Eq. (2.72) as

[[A] — AlI]]{X} =0 (2.73)

where [I] is the identity matrix having the same dimension as the [A] matrix. In Eq. (2.73),
the unknown matrix {X} is called the eigenvector. We demonstrate how to obtain the
eigenvectors using the following vibration example.
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EXAMPLE 2.7

Consider the two degrees of freedom system shown in Figure 2.2. We are interested in
determining the natural frequencies of the system shown. We will discuss in detail the
formulation and analysis of multiple degrees of freedom systems in Chapter 11. For the
sake of presentation continuity, the derivation of the set of linear equations are shown
here as well.

Using the free-body diagrams shown, the equations of motion

myxiy + 2kx; — kx, = 0 (2.74)
myx;, — kx; + 2kx, = 0 (2.75)
or in a matrix form,
[m1 0 X N |:2k —k|)x | O
0 m||lx -k 2k ||x, 0
Note that Eqgs. (2.74) and (2.75) are second-order homogenous differential equa-
tions. Also note that these equations are coupled, because both x; and x, appear in each

equation. This type of system is called elastically coupled and may be represented in the
general matrix form by

M]{x"} + [K]{x} =0 (2.76)
where [M] and [K] are the mass and the stiffness matrices respectively. We can simplify

Eqgs. (2.74) and (2.75) by dividing both sides of each equation by the values of the respec-
tive masses:

%k

X+ milxl - Exz =0 (2.77)
ok 2%k

X5 mle + m2x2 =0 (2.78)

Assuming x, > x;

kxq
1

—kxy + k(xy — x1) =my x{
k(xy—x1)
k(xy—x)

—k(xy — x1) — kxy =my x5
k

X2

FIGURE 2.2 A schematic diagram of an elastic system with two degrees of freedom.
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Using matrix notation, we premultiply the matrix form of the equations of motion by
the inverse of the mass matrix [M] ', which leads to

{x} + [M][K]{x} =0

As a next step, we assume a harmonic solution of the form x,(f) = X, sin(wt + ¢) and
xX,(f) = X,sin(wt + ¢)—or in matrix form,{x} = {X}sin(wt + ¢)—and substitute
the assumed solutions into the differential equations of motion, Eqgs. (2.77) and (2.78),
to create a set of linear algebraic equations.

This step leads to

2k k
-’ X sin(wt + ¢) + ;Xl sin(wt + ¢) — ;Xzsin(wt +¢)=0
1 i
o k , 2k .
—w Xysin(wt + ¢) — —X; sin(wt + ¢) + —X, sin(wt + ¢) =0
m; my

After simplifying the sin(wt + ¢) terms,

2k k
X m m X 0
) R O 1 1 1l _ 2.
) k2 [lnf T o 27
my 1y
or in a general matrix form,
-’ {X} + [M]'[K]{X} =0 (2.80)

x(2)

Note that{x} = {x 0

} represents the position of each mass as the function of time,

X
the {X} = { Xl} matrix denotes the amplitudes of each vibrating mass, and ¢ is the
2

phase angle. Equation (2.79) may be written as

1
— 0
1 0|[X m 2k —k || X
2 1 1 10 _
— + = 2.81
o 1) ;L ey [ ST
m
or by
%k
my mp | 1 0 X _ 0
A R .
m,  m,

Comparing Eq. (2.82) to Eq. (2.73), [[A] — AI]]{X} = 0 we note that »* = A.
Simplifying Eq. (2.82) further, we have
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L Tm |(x
1 1 1
= 2.83
k ), 2k {X} (59
—_ _’_7
) ni,

Problems with governing equations of the type (2.73) or (2.83) have nontrivial
solutions only when the determinant of the coefficient matrix is zero. Let’s assign some
numerical values to the above example problem and proceed with the solution. Let
my = m, = 0.1 kgand k£ = 100 N/m. Forming the determinant of the coefficient matrix
and setting it equal to zero, we get

— _
w—1+002(§) " —? 1+002(z)00 N (2.84)
(—w® + 2000)(—w? + 2000) — (—1000)(—1000) = 0 (2.85)
Simplifying Eq. (2.85), we have
w*=40000 + 3,000,000 = 0 (2.86)

Equation (2.86) is called the characteristic equation, and its roots are the natural fre-
quencies of the system.

o} = A, = 1000 (rad/s)> and o, = 31.62 rad/s
w3 = A, = 3000 (rad/s)> and w, = 54.77 rad/s

Once the ” values are known, they can be substituted back into Eq. (2.83) to solve for
the relationship between X; and X,. The relationship between the amplitudes of mass
oscillating at natural frequencies is called natural modes. We can use either relationship
(rows) in Eq. (2.83).
(—w® + 2000)X; — 1000X, = 0 and substituting for w} = 1000
X

(—=1000 + 2000)X; — 1000X, = 0 - X 1
1

Or using the second row,

—1000X; + (—w’ + 2000)X, = 0 and substituting for o} = 1000
X
X,
As expected, the results are identical. The second mode is obtained in a similar manner
by substituting for w3 = 3000 in Eq. (2.83).

(—w® + 2000)X; — 1000X, = 0 and substituting for w? = 3000

X _
X,
Itis important to note again that the solution of the eigenvalue problems leads to estab-
lishing a relationship among the unknowns, not specific values.

—1000X; + (—1000 + 2000)X, = 0 — =1

(—3000 + 2000)X; — 1000X, = 0 —
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2.10 USING MATLAB TO MANIPULATE MATRICES

MATLAB is mathematical software available in most university computational labs today.
MATLAB is a very powerful tool for manipulating matrices; in fact, it was originally
designed for that purpose. There are many good textbooks that discuss the capabilities of
MATLAB to solve a full range of problems. Here, we introduce only some basic ideas so
that you can perform essential matrix operations. For more detail see Appendix F.

Once in a MATLAB environment, you can assign values to a variable or define
elements of a matrix. For example, to assign a value 5 to the variable x, you simply type

x =5
1 5 0
or to define the element of the matrix [A] = | 8 3 7 |, youtype
6 -2 9

A=[150,8376-209]

Note that the elements of the matrix are enclosed in brackets and are separated
by blank space, and the elements of each row are separated by a semicolon. The basic
scalar operations are shown in Table 2.1.

MATLAB offers many tools for matrix operations and manipulations. Table 2.2
shows examples of these capabilities. Next, we demonstrate a few MATLAB commands
with the aid of some examples.

TABLE 2.1 MATLARB’s basic scalar operators

Operation Symbol Example:x = S5andy = 3 Result
Addition + x+y 8
Subtraction — xX—y

Multiplication * x*y 15
Division / (x+y)/2 4
Raised to a power A x'2 25

TABLE 2.2 Examples of MATLAB’s matrix operations

Symbols Example: A and B are matrices
Operation or Commands that you have defined
Addition + A+ B
Subtraction - A-B
Multiplication * A*B
Transpose matrix name' A’
Inverse inv(matrix name) inv(A)
Determinant det(matrix name) det(A)
Eigenvalues eig(matrix name) eig(A)
Matrix left division (uses Gauss elimination to \ see Example 2.8

solve a set of linear equations)
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EXAMPLE 2.1 Revisited

Given the following matrices:

0 5 0 4 6 -2 -1
[A]=|8 3 7| [B]=|7 2 3 |and[C]=¢{ 2
9 —2 9 1 3 -4 5

using MATLAB, perform the following operations:
a.[A] + [B] = 2,b.[A] — [B] = ?,¢e.3[A] = 2,d.[A][B] = ?,e.[A]{C} =?
£L[A) =27

Also compute [A]7 and the determinant of [A].

A MATLAB session is shown in Figure 2.3. When studying MATLAB exam-
ples, note that the response given by MATLAB is shown in boldface. Information
that the user must type is shown in regular print. Hit the Enter key after you finish
typing data. The MATLAB’s prompt for input is >>.

> A=[050:837:9-29]
A=

0 5 0

8 3 7

9 2 9

> B=[46-2;723;13-4]
B =

FIGURE 2.3 Example of a MATLAB session.
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> A-B
ans =

4 -1 °2
1 1 °4
8§ 5 13
>>3EA

ans =

0 15 °0
24 9 21
27 °6 27
> A*B
ans =

35 10 15
60 75 -35
31 77 -60
> A*C
ans =

10

33

32

> A2
ans =

40 15 35
87 35 84
65 21 67
> A
ans =

0 8 9
5 3 2
0 7 9
>> det(A)
ans =

—45

>>

FIGURE 2.3 (Continued)
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EXAMPLE 2.8

Solve the following set of equations using the Gauss elimination and by inverting the
[A] matrix and multiplying it by the { b } matrix.

2xl+X2+X3=13
3x1 + 2)C2 + 4X3 =32

S5x, — x5 + 3x3 =17

2 1 1 13
[A]=]3 2 4 |and{b} =132
5 -1 3 17

We first use the MATLAB matrix left division operator \ to solve this problem. The \
operator solves the problem using Gauss elimination. We then solve the problem using
the inv command.

>>A=[211;324;5-13]

A:
2 1 1
3 2 4
5 1 3
>>b=[13;32;17]
b:

13

32

17

> x=A\b

X =
2.0000
5.0000
4.0000
>>x=inv(A)*b
X =
2.0000

5.0000
4.0000
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USING EXCEL TO MANIPULATE MATRICES

Using the following two examples (Example 2.1 (revisited) and Example 2.8 (revisited)),
we will show how to use Excel to perform matrix operations.

EXAMPLE 2.1 Revisited

0 5 0 4 6 -2 -1
Givenmatrices:[A] =8 3 7 |,[B]=|7 2 3 |, and{C} = 2 , Using
9 -2 9 1 3 —4 >

Excel perform the following operations.
a. [A] + [B] =? b.[A] - [B]="? c[A]B]="? d.[A]l{C}="?

1. In the cells shown in Figure 2.4 type the appropriate characters and values. Use
the Format Cells and Font option to create the bold variables as shown. Note that
you do not have to create the characters ([A]=, [B]=, and so on) and format
them to carry out the matrix operations. This is done merely as a visual aide for
presentation purposes.

2. Incell A10 type [A]+[B] =, and then using the left mouse button pick cells B9
through D11, as shown in Figure 2.5.

3. Next, in the formula bar type =B3:D5+ G3:I5 and while holding down the Ctrl
and the Shift keys press the Enter key. Note that you could also pick the range
B3:D5 or G3:15, instead of typing them. This sequence of operations will create the
result shown in Figure 2.6. You can follow similar procedure as outlined in step 2
to perform [A] — [B], except in the formula bar type =B3:D5 — G3:I5.

F13 - e
A | B | ¢ [ o JE[fL F | ¢ [ H | | 4 & | L [ ™

1
| I
ER 0 & 0 4 B A -1
|4 [Al=| 3 3 7 [Bl=| 7 2 3 {C}=
5 | 9 = g 1 3 -4 5
| B |
| 7|

8 -
W 4 » »i}\Sheetl  Shest2 / Sheetd / |4l | LIJJ
Ready A

FIGURE 2.4 Example 2.1 Revisited with Excel (step 1).
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=B3:D5+33:15
0 5 0 ! B o =
aj=| s | 3 | 7 Bl= 7 | 2 | 3| [{cy=
g = g 1 3 -4 &
EXNls)
[A]+[B]=
Sheet1

FIGURE 2.5 Example 2.1 Revisited with Excel (step 2).

[Al+[B]=

I:II:II:II:II:II:II:II:I

FIGURE 2.6 Example 2.1 Revisited with Excel (step 3).
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TOD&Y - X J A

=tMULT(EZ:D5,53:15)]

Enter

s | B |l ¢ | o |El F | H | | Jul k[ | W =
1
| 2 |
El 0 5 0 6 | -2 -
| 4 | [A&1=| & 3 7 [B]= 2 3 {C}=
| 5 9 | 2 | 9 31 4 5
|5 |
| 7|
| 5 |
El 4 [ 11 ] -2
[0 |[A1+[B]=] 15 | 5 | 10
11 10 [ 1 5
12 |
13 FEEE 2 b
14| [A]-[B]=| 1 1 4
15 g8 | 5 | 13
| 16 |
|17 |
[18] [AIB]I=| |
19| R e
20 =
4 4 » by Sheetl  sheet? £ shests / 4] | HJJ

FIGURE 2.7 Example 2.1 Revisited with Excel (step 4).

4. To carry out the matrix multiplication, first type [A][B] = in cell A18, as shown in

S.

Figure 2.7 Then pick cells B17 through D19.

In the formula bar type = MMULT(B3:D5,G3:15), and while holding down the
Ctrl and the Shift keys press the Enter key. Similarly you can perform the matrix
operation [A] {C}. First you pick cells B21 through B23 and in the formula bar
type =MMULT(B3:DS5, L3:L5), and while holding down the Ctrl and the Shift
keys press the Enter key. This sequence of operations will create the result shown

in Figure 2.8.
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Ready

17 - #
A | B |l & | D [E] F H [ JJ] K | L Mo
1
| 2 |
B 0 150 6 | 2 ]
(4| A= 8 | 2 | 7 [B]= 2 | 3 | {C)=
| 5 | 9 -2 9 3 -4 5
| B |
7
| 8 |
9| 4 |11 [ 2
[0 /[A]+[B]=] 15 | 5 | 10
11 0] 1] 5
12|
13 4 [ 1] 2
14| [A]-[B]=] 1 1 4
15 8 | 5 | 13
16 |
17| 35 | 10 | 15 —1
(18] [AlBI=| 60 | 75 | -35 |
19| 31 | 77 | 60
| 20|
21| 10
22| [AHC}=| 33
23 32
up d« » Wi Sheet1 {Sheet2 £ chests /. Kl | LIJJ

FIGURE 2.8 Example 2.1 Revisited with Excel (step 5).

EXAMPLE 2.8 Revisited

Consider the following 3 linear equations with three unknowns, x;, x,, and x3. Our intent

here is to show you how to use Excel to solve a set of linear equations.

2x1+x2+x3=13

3X1 + 2)62 + 4X3 = 32

le - Xy + 3X3 =17

1. In the cells shown in Figure 2.9 type the appropriate characters and values. Use
the Format Cells and Font option of create the bold and subscript variables.

In cell A10 type [A]! = and then using the left mouse button pick cells B9

2.

through D11 as shown in Figure 2.10.

Next, in the formula bar type = MINVERSE(B3:D5) and while holding down the
Ctrl and the Shift keys press the Enter key. This sequence of operations will create
the result shown in Figure 2.11. The inverse of matrix [A] is now computed.
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C I 11T«

FIGURE 2.9 Example 2.8 Revisited with Excel (step 1).

=MINVERZE(BT: D3)

1 % 13
[al=| 3 | 2 4 o=l % B]=| 32
5 | -1 3 ¥ 17

3.05

[A]'=

Sheet1

FIGURE 2.10 Example 2.8 Revisited with Excel (step 2).
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{=MINVERSE(E3:D5)}

[T L
_ sneOSSSE g

FIGURE 2.11 Example 2.8 Revisited with Excel (step 3).

=MULTIES: D11 k35 HE)

-0.2222

0.0556
0.3889

[AT'[B]

I S N I

FIGURE 2.12 Example 2.8 Revisited with Excel (step 4).
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113 - f

A | B [ ¢ | b JElF [ 6 [ H P J[ K] L 7
] =
2 |
| 3 | 1 1 #y 13
Ex [A]l= 3 2 4 3= x [Bl=| 22
| 5 | 1 3 ¥y 17
| 6 |
| 7
| 8 |
ER 05556 |-022221 01111
ﬂ[A]'1= 06111 | 00556 [-02778
11 | -07222)1 03689 | 0.0556 L
12
12 5 2 []
[14] O3=| % = |[A'B] =| s
15 % 4
16
17 -
M 4 ¢ #['Sheetl / Sheetz £ Sheets [4] | L|JJ
Ready L

FIGURE 2.13 Example 2.8 Revisited with Excel (step 5).

4. Type the information shown in cells A14, B13 through B15, C14, D14, and E14 as
shown in Figure 2.12.

5. Then pick cells F13 through F15 and in the formula bar type =MMULT
(B9:D11,K3:K5), and while holding down the Ctrl and the Shift keys press the
Enter key. This sequence of operations will create the result shown in Figure 2.13.
The values of x;, x,, and x; are now calculated.

EXAMPLE 2.9

Using Example 1.1, we will show how to use Excel to set up and solve a finite element
problem. Pay close attention to the way cells and a range of cells are named and used
in the formulas. When formatting, analyzing, plotting data, or using formulas it is often
convenient to select a number of cells simultaneously. The cells that are selected simul-
taneously are called a range. To define a range, begin with the first cell that you want
included in the range and then drag the mouse (while pressing down the left button) to
the last cell that should be included in the range. Note that in spreadsheet language, a
range is defined by the cell address of the top-left selected cell in the range followed by
a colon, :, and ends with the address of the bottom-right cell in the range. For example,
to select cells A3 through B10, we first select A3 and then drag the mouse diagonally to
B10. In spreadsheet language, this range is specified in the following manner — A3:B10.
There are situations where you may want to select a number of cells that are not side
by side. In such cases, you must first select the contiguous cells, and then while hold-
ing (pressing) the Ctrl key select the other noncontiguous cells by dragging the mouse
button.
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Excel allows the user to assign a name to a cell or a range (selected cells). To name
a cell or a range, first select the cell or the range as just described, and then click on the
Name box in the Formula bar and type in the name you want to assign to the range.
You can use upper- or lowercase letters along with numbers, but no spaces are allowed
between the characters or the numbers.

Let us now turn our attention to Example 1.1.

1. Incell Al type Example 1.1, and in cells A3 and A4 type E= and L = as shown.
After inputting value of E in cell B3, select B3 and in the “Name Box” type E and
press the Return key. Similarly, after inputting value of L in cell B4, select B4 and

in the “Name Box” type L and press the Return key.

E - £ | 10400000 ~
_ A B C D | =
1 Example 1.1 E
=
?‘ E= | 1.04F+07 | Ib/in"
4 L= 25 ) in.
v
M 4 » ¥| Sheatl ~Shesta ‘Sheets  ¥a 4| m | b
Ready | 2 [ R O e — (£) 4

Create the tables shown, excluding the values of the area. In cell E7, type
=0.25—-(0.0125/2) *(I7 +16)

Copy the formula in cells E8 through E10. Next, name the values in cells E7:E10
as Areal, Area2, Area3, and Area4, respectively.

[ Areal - (= £ 0.2540.0125/2*(ITHEG) o
A i C u | L | [ " | i
1 | Example 1.1 =
i
3 T— LT I07 Ihéind
4 L= 2:5 in.
5 Madez Position
5 | Llement hodei hode j Length (in.) Alinh) E {lbvin®) 1 (i
o | | 2 25 0334375 | 1oaE+07 Z 25
5 2 i 3 25 1LO4E+HT 3 3
] 3 3 4 25 1LOAF+07 1 7.5
10 4 4 3 25 1LO4E+HT 5 1w
]11'H'Sl‘wrl,"i-e-ﬁr?-.-'uhmﬁ,,";- 4] 1 3l
neady | 22 [ T e — e
Aresd - | DS IR110E) -
A B v v | £ J . G H I iz
1 Example 1.1 [
2
2 T— 1.04T0 07 Thiin’
4 L 24 i
5 Nodes Position
& | Elcment Nede Node | Length {in.) A (in.) F (Ihin") 1 ]
7 1 1 2 25 0234475 1.U4E+DT 4 ik
& 2z 2 3 25 0203125 | HF+0T 3 3
9 3 3 4 2.3 0171873 LU4EHDT 4 T
n 1 5 2 [Coiioezs | amior 3 I
|';“'<"'» ¥ | Sheetl - Shesty - chaeri 90 4] 1l v
aeety 2 [ R e — )
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3. Type in the information in rows 12 through 16 as shown. Select cells G15:H16 and
type = (Areal*E/L)*D15:E16 and while holding the Ctrl and Shift keys, press
the Return key. Name the values in G15:H16 as Kelement1.

Kelementl - fi | [-lArcal*E/L*D15:ELG] -

! ] T = | E F & ] H [ 12

1 Fxample 1.1

z :
a F 1.04F-07 héin’

4 I. 25 in.

5 hodes Paosition

i Flemenl Mo 1 Tanle § Toemglh [in.) A (‘-“_2) T []h.‘inl'] 1 [

v 1 1 2 2.5 0.234375 1.04E-07 2 5

] 2 £ 3 A 02054125 10407 3 a

A 3 3 4 2.5 AI7IRTS 1041 7 1 i A

T 4 1 5 2.3 0140628 NlnaE-07 5 10

S

2 K= Al L -1

s -1 1

193
s = Arcal*F ‘ 1 1 =
3 -1 I

T ¥
R AP v Steelt s Bhedd 5 141 — L. *
Reegy | B2 | reiage € Cuuwkid Seec JEEOI ML seex ———d—(+)

4. In asimilar way create Kelement2, Kelement3, and Kelement4 as shown. You may
copy [K1], rows 15 and 16 into rows 18 and 19; 21 and 22; and 24 and 25 and then

modify them accordingly.

Kelonend full' b |[=Wuu4“E.‘L}‘DE4-:E25] |
A B [ C [ o E F | [ | H ] I E
1 Example 1.1
2
a F 1.04F+HIT Thin? 4
a 1 25 in. 3
5 Todos Tasition
& Llement Hode i hodej Length (in) Afinh) E (Ibin®y 1 ]
7 1 1 i 25 0234375 10410 0T 2 25
a 2 2 3 25 0.203125 1040 07 3 5
4 3 3 4 25 01715875 1.04E 07 4 7.5
n 1 1 5 25 o125 [ElodR-07 5 10
n
o K- AZEL ‘ 1 2
13 -1 1
14
15 [K1= ArunlSFAL 1 1 = 475000 475000
1G -1 1 =9T5000 ST3000
17
1w [K2] Arzal®h/L 1 -1 BASO00 -RAS0O0
L) -1 1 -545000 F45000
]
A K3 = Arsal*ILiL ‘ 1 1 = ‘ 715000 715000 ‘
22 -1 1 -T15000 7150040
|23
ﬁ [K4]= Arcad#F/1. L -1 = 585000 | .-ng. I
i -
WA B sheow S Sthees 8 fid] M | a0
Aaady | B | Seeregad  Ziakd Surid ||Dll:||_2 j goomi—F——LF—(+1
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5. Next, create [A1], [A2], [A3], and [A4] matrices and name them Aelementl,
Aelement2, Aelment3, and Aelement4, as shown. See Section 2.5, Equation 2.9.
First create [A1] and then to create [A2], [A3], and [A4], copy [A1], rows 27
through 29 into rows 31 through 33; 35 through 37; and 39 through 41 and modify
them accordingly. The nodal displacement U1, U2, U3, U4, US, and Ui and Uj are
shown alongside the [A1], [A2], [A3], and [A4] matrices to aid us observe the
contribution of node to its neighboring elements.

| Acleinenil * i 1 b
| a | B | 5 0 E [ F 5 H =

1k (.4 B AMESLL 14 -1

13 ‘ & 1

14 =

1 [K1]= Areal*lyl, ‘ 1 -1 ‘ = ‘ 375000 975000 ‘

16 -1 £ -975000 D000

1/

15| [K2] Area?*EL 1 -1 343000 -B45000

1 | ‘ =1 1 ‘ ‘ -845000 245000 ‘

20

n [K3]= Araad®lyl, ‘ 1 -1 ‘ = ‘ 715000 715000 ‘

22 -1 I -715000 TLE000

i3

24 [E4] Aread*EL 1 -1 583000 -585000

75 -1 1 -SR5000 SRE000

26

S 171 172 173 1 175

28| [A1] ‘ 1 0 0 o 0 Ui

wy 0 il 1] 0 1] 1Ij

30 -

H 4 kb | Sheoll CShecls Cowds B i+ ' |

Reanly | P | dwisge 12 Toanl 10 Swee? @l: s (= - (4] o
Aglementd o & 0 ¥

A B [ i m . 5 [ 5 H e

26

2F 1 i s 133 U4 us

26| [AL] 1 0 0 0 0 Ui

L] 0 1 0 ] 0 j

0

31 1 8 4 b3 U4 s

az| [A2]= ] 14 1] 0 ] ui

33 ‘ 0 0 1 o 0 ‘Uj

31

E-) Tl Uz 13 U4 s

an| [A3]= ‘ 0 0 1 i 0 Ui

EY 0 0 0 3 0 j

3R

3y 171 B2 3 U4 s

an| [A4]= ‘ [l ) 0 1 0 Jui

a1 0 0 0 0 1 |Uj

a3

43 975000 -75000 0 0 0

a1 TS0 YTS000 0 i 0

a5 []q‘r'= (i} 0 0 o (i} -

A E v Sheli /T oW R 4 : »ii

Reanly | P | fwisge N2 Teanl 10 Swee? |: s (= - (4] o
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6.

Next, create the stiffness matrix for each element (with their proper positions in the
global matrix) and name them K1G, K2G, K3G, and K4G. See Equation 2.9. For
example, to create [K]lG, select B43:F47 and type = MMULT(TRANSPOSE
(Aelement1), MMULT (Kelement1,Aelement1)) and while holding down the Ctrl
and Shift keys, press the Return key. In a similar way, create [K]ZG, [K]3G, and
[K]4G as shown.

Wt s v sheetd shestz sheets FZ

K15 - = o [=MMULT{BANSPOSE(AC e micol L), MMUL T (Kol emenll Aclement 1)) :l
4+ T | Iz
L1 L2 s 1A s
0 0 ] 1 0 i
0 0 0 0 1 U

7.

K4G -8 & [{1=MMULT{TRANSP DSC [Aclemant4) MMULT{Kelementd,Aelementd))} v
7 G 1 I | %=
975000 975000 0 0 0
975000 973000 0 0 0
K= 0 0 0 0 0
0 0 0 0 0
0 0 0 il 0
0 0 0 0 0
0 845000 -345000 il 0
K= o BAS000 RASDHOD il 0
0 il 0 il 0
o il 0 il 0 _
0 0 0 il 0
0 il 0 il 0
KT 0 0 715000 -715000 0
0 0 -715000 T15000 0
0 0 0 0 0
b M Sheetl -Snaets Sheets %3

The final global matrix is created next. Select the range B67:F71 and type
=K1G +K2G +K3G +K4G and while holding down the Ctrl and Shift keys, press
the Return key. Name the range B67:F71, KG.
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KG ~ {8 | {=K1G-K2GHIGHKAG) g
] -

535000 -535000
11 it it =SRS000 SHI000

T
W4 b H Sheptl moestr sheerd FJ 7

s A

8. Create the load matrix as shown and name it FG.

1 - = & ~
4 [r——— © T n I F [ F a H | | 3 e
[
67 GTS0N0 =ATE000 n n n
(i} =A7AN0N [&2000n -RA5000 n ]
| ea | [KJ‘:— i -RA5000 | SE0000 =FEnon n
[ 4 i o =TLE000 1E0000U -SE5000
|4 o i L -FBE000 SEIOUD
A

/ i

ml-i_

b

W 4 v 0| Shast) Shests | CShests BT
CE RN

&=

9. Apply the boundary conditions. Copy the appropriate portion of the KG matrix
and paste it in the range C79:F82 as values only. Name the range KwithappliedBC.
Similarly, create the corresponding load matrix in the range C84:C87 and name it

FwithappliedBC.

KwithapplieddC = [~ A& | 1320000 |.\r
A T 3 T < TR F TR |~

0
®= ;
0
0
1000 1b
[K with applied BC]"

W 4 1 vi| Sheetl -Shaetz ~Sheets 3
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Faithappliedd - ':;' f o
a & | 2 [T — o) E F s H [
B -845000 1560000 715000 0
a1 K with appled BC®= i 715000 1300000 -SRSUD0
ar il i -SESI00 IR0
a3
il
IF with applied B3
E
It
a3 -
v b sheetl Shestr Enestn o - NN 1 K

10. Select the range C89:C92 and type =MMULT(MINVERSE (KwithappliedBC),
FwithappliedBC) and while holding down the Ctrl and Shift keys press the Return

key.
] - i Fo [=MMULTMINVERSERwilhopplicdBO) Fwithapplicdel))
A b [ —— i [ L [ | o 1" [
| 33 0
55 {F with applicd BC) = 0
26 0
57 1000 b
0.001025641 in.
(U partial) = ! in.
i, =
m.
9%
v Uk W Sheetl - Shestd oheety 13
| Reaci | 3 |

11. As shown, select cells C94:C98, and copy the values of U partial and add the

U1l = 0. Name this matrix, UG.

us - {8 & u g
4 | 5 T——] D [ T r G M =
an
|23 DOO25E11 in.
N U partial} — DOUZIOINTS in
ez 0003607674 in
| 92 0.005317076 i
23
i
- in
i =
i B
22 b
b W] Sheeld S She® 9 (4] . Al
Feacy = | | AVEraGeI0C0I3IS8S LMD mvmwm.ﬁﬂlﬂ 0w o
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12. Calculate the reaction forces. Select the range C100:C104 and type
= (MMULT(KG,UG)-FG) and while pressing the Ctrl and Shift keys press the
Return key.

[ 11] - = B =ML TG UG-G |+
4 I A —— n | F F @ H 1 e
93
91 i
o5 0001025611 in
a6 iy 0002209075 in.
i 0003007674 n.
g 0005517076 in.
uy
Iz
R} =
108 =
COV M Sheell o Shedd Sheel) Fg |4 ' ¥
——  pwerage: UL Laumt s Sums -2G00 |ﬁ£ﬂﬂ] g - Ll ]
The complete Excel sheet is shown next.
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SUMMARY

At this point you should

1. know the essential matrix terminology and the basic matrix operations.

2. know how to construct the transpose of a matrix.
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w9

. know how to evaluate the determinant of a matrix.

PN

. know how to use Cramer’s rule, Gauss elimination, and the LU decomposition
methods to solve a set of linear equations.

wn

. know how to compute the inverse of a matrix.

=)

. be familiar with the solution of an eigenvalue problem.
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PROBLEMS

1. Identify the size and the type of the given matrices. Denote whether the matrix is a square,
column, diagonal, row, unit (identity), triangular, banded, or symmetric.

13 0 a .
a3 7 8| biP, c.[o 4} [l p p* P
0 8 3 p4
p
21 0 0 O 1 4 4 4
1 0 O 4 0 5 0 O 01 2 2
e.|]0 1 O .10 3 1 3 0 g 00 1 3
0 0 1 0O 0 8 2 4 00 0 1
000 0 8 7
pr 0 0 0
W0 00
0 0 p; O
0 0 0 ps
2. Given matrices
4 2 1 1 2 -1 1
[Al=]7 0 =7 |[B]l=|5 3 3 |,and{C}=q -2
1 -5 3 4 5 =7 4

perform the following operations:

a. [A]+ [B] =7?
b. [A] — [B] =?
c. 3[A] =7

d. [A][B] =?
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e. [A]{C} ="
f. [A]* =7
g. Show that [I][A] = [A][I] = [A]
3. Given the following partitioned matrices, calculate the product of [A][B] = [C] using the
submatrices given.

210
5 7 2 .0 3 5 g 7 5
3.8 -3 -5 0 8 o 2
[Al=|1 4 0 7 15 9 |and[B]=| s
0 10 5 i12 3 -1 3;12 0
2 - 2 1 -1 :
> 9 8 0 L 1: 5 7 ]
4. Given the matrices
1 5 0 0o 6 -1
[A]=(3 9 6 |and[B]=|-4 7 5
08 -3 1 2 =2
perform the following operations:
a. [A]"=?and [B]T =?
b. verify that ([A] + [B])T = [A]” + [B]”
c. verify that ([A][B])" = [B]"[A]"
5. Given the following matrices
2 10 0 2 10 0
[A]=|16 6 14|, [B]=|4 20 0
12 -4 18 12 -4 18

calculate

a. determinant of [A] and [B] by direct expansion and by minor lower order determinants
methods.

b. determinant of [A]”
c¢. determinant of 5[A]
Which matrix is singular?

6. Given the following matrix:

0 5 0
[A]=]3 9 6
3 -8 3

calculate determinant of [A] and determinant of [A]”.
7. Solve the following set of equations using the Gauss elimination method, and compare your
answer to the results of Example 1.4.
10875000  —1812500 0 u, 0
—1812500 6343750  —4531250 [uz p =4 O
0 —4531250 4531250 uy 800



10.

11.

12.

13.

14.

15.
16.
17.
18.
19.
20.
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Decompose the coefficient matrix in problem 6 into lower and upper triangular matrices.

Solve the following set of equations using the LU method, and compare your answer to the
results of Example 1.4.

10875000  —1812500 0 u 0
—1812500 6343750  —4531250 [uz p =4 O
0 —4531250 4531250 uy 800

Solve the following set of equations by finding the inverse of the coefficient matrix first.
Compare your answer to the results of Example 1.4.

10875000  —1812500 0 i, 0
—1812500 6343750  —4531250 [u; p =4 O
0 —4531250 4531250 uy 800

Solve the following set of equations (a) using the Gaussian method, (b) using the LU decom-
position method, and (c) by finding the inverse of the coefficient matrix.

11 1(x 6
2 5 1[{xp =415
-3 1 5]lx 14

Determine the inverse of the following matrices:

2 11 -2
2 2
4 0 2 1 ki ki
Al = Bl = =
Al=13 5 5 o | B _38i (€] [kzl kx
13 2 -1

Show that if we multiply the elements of a 4 X 4 matrix by a scalar quantity «, then the value
of the determinant of the original matrix gets multiplied by o*. That is:

app Ay Az Ay app Ay Az Adu

dyp Ay A3 Ay dy Ay A3 Ay
det| « = o

az; Az A4z A4y az; Az A4z Ay

aq Qg dg3 Ay Ay Qg A3 Ay

Also, show that if we multiply the elements of a 3 X 3 matrix by the same scalar quantity «,
then the value of the determinant of the original matrix gets multiplied by «*? How would
you generalize the results of this example?

Determine the natural frequencies and the natural modes for the example problem in Section
2.9 for m; = 0.1 kg, m, = 0.2 kg, k = 100 N/m.

Solve Problem 2 using MATLAB and Excel.
Solve Problem 4 using MATLAB and Excel.
Solve Problem 5 using MATLAB.
Solve Problem 6 using MATLAB.
Solve Problem 7 using MATLAB.
Solve Problem 8 using MATLAB.
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21.
22,
23.
24.
25.

26.

27.

28.

29.

30.
31.
32.
33.
34.
3s.
36.

Solve Problem 9 using MATLAB.

Solve Problem 10 using MATLAB and Excel.
Solve Problem 11 using MATLAB.

Solve Problem 13 using MATLAB.

Solve the following set of equations, resulting from a model of composite wall, using
MATLAB by employing the matrix left division command:
711 —1.23 0 0 0 T, (5.88)(20)
-123 199 -0.76 0 0 T, 0
0 -0.76 0851  —0.091 0 T, = 0
0 0 -0.091 231 =222 || Ts 0
0 0 0 -222  3.69 Ts (1.47)(70)

and compare your solution to the results of Example 1.2.

Using MATLAB, solve Problem 25 by first finding the inverse of the coefficient matrix and
carrying out the necessary operations afterward.

Using MATLAB, solve Problem 25 by first decomposing the coefficient matrix into lower
and upper triangular matrices and carrying out the necessary operations afterward.

Solve the following set of equations, resulting from a model of a fin, using MATLAB:
1 0 0 0 0 T, 200
-0.04 0.09 —0.04 0 0 T, 0.15
0 -0.04 009 —0.04 0 T, p =4 0.15
0 0 -0.04 0.09 -0.04 || T, 0.15
0 0 0 —0.04 0.045 T 0.08

Solve the following set of equations, resulting from a model of a truss, using MATLAB, and
compare your solution to the results of Example 3.1:
[ 72 0 0 0 —149 —149 |( Uy 0
0 7.2 0 —422 —-149 —-149 || U,y 0
10° 0 0 8.44 0 —4.22 0 Uix | _ 0
0 —4.22 0 4.22 0 0 Uy =500
—-1.49 —-149 -422 0 5.71 1.49 Usy 0
| —1.49 —-1.49 0 0 1.49 1.49 |\ Usy =500

Solve Problem 14 using MATLAB.

Solve Problem 25 using Excel.

Solve Problem 28 using Excel.

Solve Problem 29 using Excel.

Use Excel and the method shown in Example 2.9 to setup and solve Example 1.2.
Use Excel and the method shown in Example 2.9 to setup and solve Example 1.3.

Use Excel and the method shown in Example 2.9 to setup and solve Example 1.4.
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Trusses

The objectives of this chapter are to introduce the basic concepts in finite element
formulation of trusses and to provide an overview of the ANSYS program. A major
section of this chapter is devoted to the Launcher, the Graphical User Interface, and
the organization of the ANSYS program. The main topics discussed in Chapter 3 include
the following:

3.1 Definition of a Truss

3.2 Finite Element Formulation

3.3 Space Trusses

3.4 Overview of the ANSYS Program
3.5 Examples Using ANSYS

3.6 Verification of Results

3.1 DEFINITION OF A TRUSS

A truss is an engineering structure consisting of straight members connected at their
ends by means of bolts, rivets, pins, or welding. The members found in trusses may con-
sist of steel or aluminum tubes, wooden struts, metal bars, angles, and channels. Trusses
offer practical solutions to many structural problems in engineering, such as power
transmission towers, bridges, and roofs of buildings. A plane truss is defined as a truss
whose members lie in a single plane. The forces acting on such a truss must also lie in
this plane. Members of a truss are generally considered to be two-force members. This
term means that internal forces act in equal and opposite directions along the members,
as shown in Figure 3.1.

In the analysis that follows, it is assumed that the members are connected by
smooth pins and by a ball-and-socket joint in three-dimensional trusses. Moreover, it
can be shown that as long as the center lines of the joining members intersect at a com-
mon point, trusses with bolted or welded joints may be treated as having smooth pins
(no bending). Another important assumption deals with the way loads are applied. All
loads must be applied at the joints. This assumption is true for most situations because
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Load
Compression
A Two-force members
D — \—»
1 Tension 2

FIGURE 3.1 A simple truss subjected to a load.

trusses are designed so that the majority of the load is applied at the joints. Usually, the
weights of members are negligible compared to those of the applied loads. However, if
the weights of the members are to be considered, then half of the weight of each member
is applied to the connecting joints. Statically determinate truss problems are covered in
many elementary mechanics text. This class of problems is analyzed by the methods of
joints or sections. These methods do not provide information on deflection of the joints
because the truss members are treated as rigid bodies. Because the truss members are
assumed to be rigid bodies, statically indeterminate problems are impossible to analyze.
The finite element method allows us to remove the rigid body restriction and solve this
class of problems. Figure 3.2 depicts examples of statically determinate and statically
indeterminate problems.

3.2 FINITE ELEMENT FORMULATION

Let us consider the deflection of a single member when it is subjected to force F as
shown in Figure 3.3. The forthcoming derivation of the stiffness coefficient is identical to
the analysis of a centrally loaded member that was presented in Chapter 1, Section 1.5.
As a review and for the sake of continuity and convenience, the steps to derive the ele-
ments’ equivalent stiffness coefficients are presented here again. Recall that the average
stresses in any two-force member are given by

o= 3.1)

The average strain of the member can be expressed by
AL

& = T (32)

Over the elastic region, the stress and strain are related by Hooke’s law,

o = Ee (3.3)
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Statically Determinate Statically Indeterminate
Load Y Load
3 X 3
1 2 1 2
o= = o kL.
Load Load

y

j 3
| 2 AZ
Rix 1) © R1X—>1 1—»RZX

Ry Ryy Ry Ryy
3 unknown reactions 4 unknown reactions
3 equilibrium equations 3 equilibrium equations
SFy=0 SFy=0
SFy=0 SFy=0
SM=0 2M=0

FIGURE 3.2 Examples of statically determinate and statically indeterminate problems.

| AL

F FIGURE 3.3 A two-force member sub-
jected to a force F.
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Load Load

ob

®)

FIGURE 3.4 A balcony truss.

Combining Egs. (3.1), (3.2), and (3.3) and simplifying, we have
F= <ALE>AL (3.4)

Note that Eq. (3.4) is similar to the equation of a linear spring, F = kx. Therefore,
a centrally loaded member of uniform cross section may be modeled as a spring with
an equivalent stiffness of

Koy = = (3.5)

A relatively small balcony truss with five nodes and six elements is shown in
Figure 3.4. From this truss, consider isolating a member with an arbitrary orientation.
Let us select element (5).

In general, two frames of reference are required to describe truss problems:
a global coordinate system and a local frame of reference. We choose a fixed global
coordinate system, XY (1) to represent the location of each joint (node) and to keep
track of the orientation of each member (element), using angles such as 6; (2) to
apply the constraints and the applied loads in terms of their respective global com-
ponents; and (3) to represent the solution—that is, the displacement of each joint in
global directions. We will also need a local, or an elemental, coordinate system xy,
to describe the two-force member behavior of individual members (elements). The
relationship between the local (element) descriptions and the global descriptions is
shown in Figure 3.5.

The global displacements (U,y, U;y at node i and U,y, U;y at node j) are related
to the local displacements (u;, u;, at node i and u;,, u;, at node j) according to the
equations

UiX = Uu;. CoS 6 — uiy sin 6 (36)
Uy = uusin6 + u; cos 0
Ux = ujcos0 — u;,sin 6

Uy = u,sin6 + u;, cos 0
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Y

1 Ujy
X

Global coordinate
system

FIGURE 3.5 Relationship between local and global coordinates. Note that local coordinate
x points from node i toward j.

If we write Egs. (3.6) in matrix form, we have

{U} = [T{u} (3.7)
where
Uy cosf —sinf 0 0 Uy
U; sinf®  cos6 0 0 u;
= t T = d = ly
{u} U [T 0 0 cosf —sing | {u} U,
Uy 0 0 sinf  cos @ 7

{U} and { u } represent the displacements of nodes i and j with respect to the global XY
and the local xy frame of references, respectively. [T] is the transformation matrix that
allows for the transfer of local deformations to their respective global values. In a similar
way, the local and global forces may be related according to the equations

Fix = fixcos 0 — f, sin 6

Fiy = fiysin 6 + f;, cos 6 (3.8)

Fix = fixcos 0 — f, sin 0

Fiy = fxsin 6 + f;, cos 6
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or, in matrix form,

{F} (3.9)

I
—
=
—

—
—

where
Fl — iy
{F} =1/

are components of forces acting at nodes i and j with respect to global coordinates,
and

[
fiy
fi
fv

represent the local components of the forces at nodes i and j.

A general relationship between the local and the global properties was derived
in the preceding steps. However, we need to keep in mind that for a given member the
forces in the local y-direction are zero. This fact is simply because under the two-force
assumption, a member can only be stretched or shortened along its longitudinal axis
(local x-axis). In other words, the internal forces act only in the local x-direction as
shown in Figure 3.6. We do not initially set these terms equal to zero in order to maintain
a general matrix description that will make the derivation of the element stiffness matrix
easier. This process will become clear when we set the y-components of the displace-
ments and forces equal to zero. The local internal forces and displacements are related
through the stiffness matrix

{f} =

£ 0 0 0 0|)u,
= 3.10
[ —k 0 k0 || u (3-10)
Ty 0 0 0 0] u,
AE . . .
where k = kg = T and using matrix form we can write
{f} = [k]{u} (3.11)
After substituting for {f} and { u } in terms of { F } and { U }, we have
_m w (3.12)

[TI"{F} = [k|[T]"{U}
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Jie = Ky — ug) fx k 0 —k 0 Uix
fiy= fiul [0 0 0 0] u
Jix = k(uj, — u) = —k(u; — uy,) or in a matrix form Tix —k 0 k O |uy
fy=0 fiy 0.0 0 0 |u

FIGURE 3.6 Internal forces for an arbitrary truss element. Note that the static equilibrium conditions
require that the sum of f;, and f;, be zero. Also note that the sum of f;, and f,, is zero regardless of which
representation is selected.

where [T] ! is the inverse of the transformation matrix [T] and is

cosf sinf 0 0
—sinf cos 6 0 0
T = 3.13
[T] 0 0 cosf siné (3.13)
0 0 —sinf cos 6
Multiplying both sides of Eq. (3.12) by [T] and simplifying, we obtain
{F} = [T]k][T]"{U} (3.14)

Substituting for values of the [T], [k], [T] "}, and { U} matrices in Eq. (3.14) and multi-
plying, we are left with

Fix cos’ 6 sin 6 cos 6 —cos® 6 —sin 6 cos 6 Uy
F, in 6 cos 0 in® 0 —sin 6 cos 0 —sin” 0 U,

w{_ | sin c2()s ‘sm sin 2cos . sin v (3.15)
Fix —cos” 0 —sin 6 cos 6 cos” 0 sin 6 cos 6 Ux

F —sin 6 cos 6 —sin’ @ sin 6 cos 6 sin’ 6 Uy
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Equations (3.15) express the relationship between the applied forces, the element stiff-
ness matrix [K]®, and the global deflection of the nodes of an arbitrary element. The
stiffness matrix [K]© for any member (element) of the truss is

cos? sin 6 cos 0 —cos” 6 —sin 6 cos 6
. sin 6 cos 0 sin® 6 —sin 0 cos 0 —sin®
[K]© = k o . 5 ) (3.16)
cos” 0 sin 0 cos 0 cos” 0 sin 6 cos 6
—sin 6 cos 6 —sin” sin 6 cos 0 sin” 6

The next few steps involve assembling, or connecting, the elemental stiffness matri-
ces, applying boundary conditions and loads, solving for displacements, and obtaining
other information, such as normal stresses. These steps are best illustrated through an
example problem.

EXAMPLE 3.1

Consider the balcony truss in Figure 3.4, shown here with dimensions. We are inter-
ested in determining the deflection of each joint under the loading shown in the figure.
All members are made from Douglas-fir wood with a modulus of elasticity of
E = 1.90 X 10°Ib/in* and a cross-sectional area of 8 in®. We are also interested in cal-
culating average stresses in each member. First, we will solve this problem manually.
Later, once we learn how to use ANSYS, we will revisit this problem and solve it using
ANSYS.

500 1b 500 1b
\ 3 ft 3 ft

E | 3) ©)

As discussed in Chapter 1, Section 1.4, there are seven steps involved in any finite
element analysis. Here, these steps are discussed again to emphasize the three phases
(preprocessing, solution, and postprocessing) associated with the analysis of truss
problems.

Preprocessing Phase

1. Discretize the problem into nodes and elements.
Each truss member is considered an element, and each joint connecting members
is a node. Therefore, the given truss can be modeled with five nodes and six ele-
ments. Consult Table 3.1 while following the solution.
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TABLE 3.1 The relationship between the elements and their corresponding nodes

Element Node Node j 6 See Figures 3.7-3.10
M 1 2 0
@ 2 3 135
A3 3 4 0
() 2 4 90
®) 2 5 45
6) 4 5 0

2. Assume a solution that approximates the behavior of an element.

K] = &

K]V = 422 x 10°

K]V =422 x 10°

As discussed in Section 3.2, we will model the elastic behavior of each element as
a spring with an equivalent stiffness of k as given by Eq. (3.5). Since elements (1),
(3),(4),and (6) have the same length, cross-sectional area, and modulus of elastic-
ity, the equivalent stiffness constant for these elements (members) is

1b
8 in2)<1.90 X 106,2>
AE in .
k = T = 36 = 4.22 X 10° 1b/in.

The stiffness constant for elements (2) and (5) is

Ib
@® in2)<1.90 % 106_2>
k= AE _ M/ _ 598 x 10° Ib/in
L 50.9in : '

. Develop equations for elements.

For elements (1), (3), and (6), the local and the global coordinate systems are
aligned, which means that # = 0. This relationship is shown in Figure 3.7 Using
Eq. (3.16), we find that the stiffness matrices are

cos’ 0 sin 6 cos 6 —cos’ 0 —sin 6 cos 6
sin 6 cos sin” 6 —sin 6 cos 6 —sin’ @
—cos’ —sin 6 cos cos’ @ sin 6 cos
—sin 6 cos 6 —sin® @ sin 6 cos 6 sin’ #
cos*(0) sin(0) cos(0) —cos?(0) —sin(0) cos(0)
sin(0) cos(0) sin?(0) —sin(0) cos(0) —sin?(0)
—cos?(0) —sin(0) cos(0) cos*(0) sin(0) cos(0)
| —sin(0) cos(0) —sin?(0) sin(0) cos(0) sin*(0)
1 0 -1 0]|Uy
0 0 0 0]|U,
10 1 0 |Uy
L0 0 0 0]Uy
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y y
L'X ® —— D)
i=1 Element (1) j=2
3 - 4
Element (3) FIGURE 3.7 The orientation of the local
4 or 5 coordinates with respect to the global
Element (6) coordinates for elements (1), (3), and (6).

and the position of element (1)’s stiffness matrix in the global matrix is

4.22

0 —-422 0 0 0 0 0 0 O |Uy
0 0 0 00 00 0 0 0|Uy
—-422 0 422 0 0 0 0 0 0 0 |Uy
0 0 0 0 00 0 0 0 0 |Uy
0 0 0 06 00 00 0 0|U
K149 = 105 3X
[K] 0 0 0 00 00 0 0 0 |Usy
0 0 0 0 0 0 0 0 0 O |Ux
0 0 0 00 0 0 0 0 0|Uy
0 0 0 00 0 0 0 0 0 |Usy
0 0 0 00 0 0 0 0 0 |Usy

Note that the nodal displacement matrix is shown alongside element (1)’s position
in the global matrix to aid us in observing the location of element (1)’s stiffness
matrix in the global matrix. Similarly, the stiffness matrix for element (3) is

1 0 -1 07Uy
0 0 0 0|Uy
-1 0 1 0 |Uy
0 0 0 0]|U,

[K]® =422 x 10°

and its position in the global matrix is

o
o
o

~n

[K]®9 = 10°

|

SC oo Pojwuo oo o
N
[\

N
cCoociluo o ooo

[\
S oo oCc o0 oo oo
|

O O O OO OO o o O
SO O OO OO O O o O
O O O O O O O O O
O O O O O O O O O
O O O O O OO o oo
SO O O OO OO o o o
O O O O O O OO o O

S

~
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The stiffness matrix for element (6) is

1 0 -1 0 |Ugy

6 . 0 0 0 |Uy

[K]©® = 4.22 x 10 10 1 0 |Uy

0 0 0 0]Usy

and its position in the global matrix is

0 000 0 O 0 0 0 0 |Ux
00 0 0 0 O 0 0 0 0 | Uy
00 0 0 0 O 0 0 0 0 | Uy
0 0 00 0 O 0 0 0 0 | Uy
(K]6O = 10° 00 0 0 0 O 0 0 0 0 | Usy
0 0 000 O 0 0 0 0 | Usy
0 0 00O 0 0 422 0 —422 0 |Uy
0 0 00 0 O 0 0 0 0 | Uy
0 0 00 0 0 —-422 0 422 0 |Usy
0 0 00 0 O 0 0 0 0 |Usy

For element (4), the orientation of the local coordinate system with respect
to the global coordinates is shown in Figure 3.8. Thus, for element (4), 6 = 90,
which leads to the stiffness matrix

cos?(90) sin(90) cos(90) —cos*(90) —sin(90) cos(90)
N S| sin(90) cos(90) sin?(90) —sin(90) cos(90) —sin?(90)
(K] =4.2>10 —c0s*(90) —sin(90) cos(90) cos*(90) sin(90) cos(90)
| —sin(90) cos(90) —sin?(90) sin(90) cos(90) sin*(90)

[0 0 0 0 |Uy
0 1 0 -1 |Uy
0 0 0 0 |Uy

0 -1 0 1 |Uy

(K] =4.22x10°

and its global position

0 00 0 000 0 0 0]|Uy
0 00 0 000 0 0 0|Uy
0 00 0 000 0 0 0| Uy
0 0 0 422 0 0 0 —422 0 0 |Uy
0O 00 0 00O 0 0 0lU
“46) = 105 3X
(K] Y 00 0o 000 0o 0 0luy,
0 00 0 000 0 0 0]|Uy
0 0 0 —422 0 0 0 422 0 0 |Uy
0 00 0 000 0 0 0]|Usy
0 00 0 000 0 0 0]|Usy
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=

-X y - Element (4)

FIGURE 3.8 The orientation of the local
coordinates with respect to the global
A4 coordinates for element (4).

For element (2), the orientation of the local coordinate system with respect
to the global coordinates is shown in Figure 3.9. Thus, for element (2), yielding the
stiffness matrix

cos*(135) sin(135) cos(135)
in(135) cos(135) sin?(135)
® — 208 x 10° sin(
(K] 298 x 10 —cos*(135) —sin(135) cos(135)
—sin(135) cos(135) —sin?(135)
—cos*(135) —sin(135) cos(135)
—sin(135) cos(135) —sin%(135)
cos*(135) sin(135) cos(135)
sin(135) cos(135) sin?(135)
5 5 -5 |U
@ = % 10° 2y
[KJT=298x100 _5 s 5 _s5|u,

FIGURE 3.9 The orientation of the local
coordinates with respect to the global
coordinates for element (2).
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Simplifying, we get
1 -1 | U
2 — X 5 2Y
[K] 1.49 X 10 _q 1 1 1 o,
1 _1 _1 1 U3Y
and its position in the global matrix is
0 0 0 0 0 0 0 0 0 O0fUy
0 0 0 0 0 0 0 0 0 O0|Uy
0 0 149 —149 —149 149 0 0 0 O0|Uy
0 0 —149 149 1.49 —149 0 0 0 O Uy
[K](ZG) 105 0 0 —149 149 1.49 —149 0 0 0 O0|Usy
0 0 1.49 —149 —149 149 0 0 0 O0|Usy
0 0 0 0 0 0 0 0 0 O0|Usx
0 0 0 0 0 0 0 0 0 O|Usy
0 O 0 0 0 0 0 0 0 O0fUsy
0 0 0 0 0 0 0 0 0 O]Usy

For element (5), the orientation of the local coordinate system with respect
to the global coordinates is shown in Figure 3.10. Thus, for element (5), 6 = 45,
yielding the stiffness matrix

cos*(45) sin(45) cos(45) —cos*(45) —sin(45) cos(45)
(K] = 2.98 % 10° sin(45) cos(45) sin?(45) —sin(45) cos(45) —sin%(45)
—cos?(45) —sin(45) cos(45) cos’(45) sin(45) cos(45)
| —sin(45) cos(45) —sin?(45) sin(45) cos(45) sin’(45)
5 5 -5 —5|Uy
.5 S =5 =5|U
K]® =2.98 x10° v
(K] AN _s s 5 5 |u,
L _5 _5 5 5 Usy

and its position in the global stiffness matrix is

Element (5)

FIGURE 3.10 The orientation of the local
coordinates with respect to the global
2 coordinates for element (5).
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[K]5O = 10°

Trusses

SO O OO o o o o

)

S O O OO O o o O

)

0
0
1.49
1.49
0
0
0
0
—1.49
—1.49

0 0

0 0
149 0
149 0

0 0
0 0
0 0
0 0
-149 0
-149 0

0
0
—1.49
—1.49
0
0
0
0
1.49
1.49

=l el el el =lehloele)
SO OO OO O o oo
SO OO OO O o o O

o
o
e}

0
0
—1.49
—1.49
0
0
0
0
1.49
1.49

U5 Y

It is worth noting again that the nodal displacements associated with each
element are shown next to each element’s stiffness matrix. This practice makes it
easier to connect (assemble) the individual stiffness matrices into the global stiff-
ness matrix for the truss.

4. Assemble elements.
The global stiffness matrix is obtained by assembling, or adding together, the indi-
vidual elements’ matrices:

(K] = [K]'9 + [K]PD + [K]O9 + [K]“O) + [K]“O + [K]*

[K](G) = 10°

422
0
—4.22

S O O O o o O

SO OO OO O o o oo

—4.22
0
422 + 149 + 1.49
1.49-1.49
-1.49
1.49
0
0
-1.49
—1.49
0 0
0 0
1.49 0
—1.49 0
—-1.49 —4.22
1.49 0
0 422 + 4.22
0 0
0 —4.22
0 0

0 0
0 0
—1.49 + 1.49 ~1.49
422 + 1.49 + 1.49 1.49
1.49 422 + 1.49
~1.49 ~1.49
0 422
422 0
~1.49 0
~1.49 0
0 0 0 |Uy
0 0 0 |Uy
0 149 =149 |Uy
—422  —149 149 |Uyy
0 0 0 |Usy
0 0 0 |Usy
0 422 0 |Uy
422 0 0 |Uy
422+ 149 149 |Usy
1.49 149 |Usy
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Simplifying, we get

422 0 —422 0 0 0 0 0 0 0
0O 0 O 0 0 0 0 0 0 0
—422 0 72 0 -149 149 0 0 -149 —1.49
0O 0 0 72 149 —-149 0 —422 —-149 —-1.49
(K]© =107 0 0 —-149 149 571 —-149 —422 0 0 0
0 0 149 —-149 —-149 1.49 0 0 0 0
0o 0 O 0 —-422 0 8.44 0 —-422 0
0O 0 0 -—-422 0 0 0 422 0 0
0 0 —-149 -149 O 0 —-422 0 571 1.49
L 0 0 —-149 -149 0 0 0 0 1.49 149

5. Apply the boundary conditions and loads.
The following boundary conditions apply to this problem: nodes 1 and 3 are fixed,
which implies that U,y = 0, U;y = 0, Usy = 0, and Usy = 0. Incorporating these
conditions into the global stiffness matrix and applying the external loads at
nodes 4 and 5 such that F,y, = —500 Ib and F5, = —500 Ib results in a set of linear
equations that must be solved simultaneously:

] 4 \ 4 )
1 0 0 0 0 0 0 0 0 0 U,y 0
0 1 0 0 0 0 0 0 0 0 Uy 0
—4220 72 0 —149 149 0 0 —149 —149| | Uy 0
0 0 0 72 149 —149 0 —422 -149 —1.49| | U,y 0
d 0 0 o0 0 1 0 0o 0 0 0 Ux\l ) 0
05 0 o 0 0 1 0 0 0 0 < Usy (= 0 '
0 0 0 0 —422 0 844 0 —422 0 U,y 0
0 0 0 —422 0 0 0 42 0 0 Uy —500
0 0-149 —149 0 0 —422 0 571 149 Usy 0
0 0-149 -149 0 0 0 0 149 149 | | Usy ) | —500 )

Because U,y = 0, U;y = 0, Usx = 0,and U;y = 0, we can eliminate the first, sec-
ond, fifth, and sixth rows and columns from our calculation such that we need only
solve a 6 X 6 matrix:
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72 0 0 0 —149 —149 ] ( U,y ) 0
0 72 0 —422 -149 -149 || U,y 0
ol 0 0 8.44 0 —422 0 U | _ 0
0 —422 0 422 0 0 U,y -500
—149 —149 —422 0 571 1.49 Usy 0
| —149 —149 0 0 149 149 || Uy ~500 |

Solution Phase

6. Solve a system of algebraic equations simultaneously.
Solving the above matrix for the unknown displacements yields U,y = —0.00355
in, U,y = —0.01026 in, U,y = 0.00118 in, Uyy = —0.0114 in, Usy = 0.00240 in,
and Usy = —0.0195 in. Thus, the global displacement matrix is

( 3\ ( 3\
Ux 0
Uy 0
U,x —0.00355
U,y —0.01026
Ux \ _ 0 .

S U, P = 9 0 2 in.

Uy 0.00118
Uy —0.0114
Usy 0.00240

| Uy ) | —00195

It is important to recognize that the displacements of the nodes are given with
respect to the global coordinate system.

Postprocessing Phase

7. Obtain other information.

Reaction Forces As discussed in Chapter 1, the reaction forces can be computed
from

{R} = [K]9{U} - {F}

such that



> =10°

422

—4.22

S O O O o O

SO OO OO o o o oo

—4.22

7.2

—1.49

1.49

—1.49
-1.49

0
0
0
7.2
1.49
—1.49
0
—4.22
—-1.49
-1.49

Section 3.2

0
0
—1.49
1.49
5.71
—1.49
—4.22
0
0
0

0
0
1.49
—-1.49
—1.49
1.49
0

0
0
0

Finite Element Formulation

0 0 0
0 0 0
0 0 -1.49
0 —422 -1.49
—4.22 0 0
0 0 0
8.44 0 —4.22
0 4.22 0
—4.22 0 571
0 0 1.49
( 0 ) (
0
—0.00355
—0.01026
0
" 0 ()
0.00118
—0.0114
0.00240
[ —0.0195 | L
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0
0
—1.49
—-1.49
0
0
0
0
1.49
1.49 |

S O O O O O

0
—500

0
—500

Note that the entire stiffness, displacement, and load matrices are used.
Performing matrix operations yields the reaction results

Internal Forces and Normal Stresses

( )

(

\R5Y)

\

\
1500
0
0
0
—1500
1000
0

> 1b

0
0
0

/

Now let us compute internal forces

and the average normal stresses in each member. The member internal forces f;,
and f;,, which are equal and opposite in direction, are



162

Y

Chapter 3 Trusses

f}x = k(uix - ujx) \( f}'x = k(ujx - uix)

fie= k(uix - ujx)
FIGURE 3.11 Internal forces in a truss member.

f;'x = k(uix - u/'x) (317)

f}x = k(ujx - uix)
Note that the sum of f, and f;, is zero regardless of which representation of
Figure 3.11 we select. However, for the sake of consistency in the forthcoming
derivation, we will use the second representation so that f;, and f;, are given in
the positive local x-direction. In order to use Eq. (3.17) to compute the internal
force in a given element, we must know the displacements of the element’s
end nodes, u;, and u;,, with respect to the local coordinate system, x, y. Recall
that the global displacements are related to the local displacements through a
transformation matrix, according to Eq. (3.7), repeated here for convenience,

{U} = [T]{u}

and the local displacements in terms of the global displacements:

{u} = [T]{U}

U;, cosf sinf 0 0 Ux
wy | | —sin® cos6 0 0 U;

Uy B 0 0 cosf sind Ux
u, 0 0 —sinf cos @ Uy

Once the internal force in each member is computed, the normal stress in
each member can be determined from the equation

internal force  f
ogO=—=—
area A

or alternatively, we can compute the normal stresses from
AE
f _ k(uy — wy) L (e = ) _ E<uix - u,-x>

Y A B A L

(3.18)
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As an example, let us compute the internal force and the normal stress in element (5).
For element (5), 8 = 45, U,y = —0.00355 in, U,y = —0.01026 in, Usy = 0.0024 in,

and Usy = —0.0195 in. First, we solve for local displacements of nodes 2 and 5 from
the relation

Uy, cos45 sin45 0 0 —0.00355

Uy, \ | —sin45 cos45 0 0 —0.01026

us, [ 0 0 cos45  sin 45 0.00240

Us, 0 0 —sin45 cos 45 —0.01950

which reveals that ,, = —0.00976 in and us, = —0.01209 in. Upon substitution of these
values into Egs. (3.17) and (3.18), the internal force and the normal stress in element (5)
are 696 1b and 87 Ib/in?, respectively. Similarly, the internal forces and stresses can be
obtained for other elements.

This problem will be revisited later in this chapter and solved using ANSYS. The
verification of these results will also be discussed in detail later in Section 3.6.

EXAMPLE 3.1 Revisited

We will now show how to use Excel to set up and solve Example 3.1.

1. In cell Al type Example 3.1, and in cells A3 and A4 type E= and A= as shown.
After inputting the value of E in cell B3, select B3 and in the “Name Box” type E
and hit the Return key. Similarly, after inputting the value of A in cell B4, select
B4 and in the “Name Box” type A and hit the Return key.

I___ o - ;?._“1Juuuuu B - B -
| A R c n F F G H i
1 Fxample 3.1

>

3 n- | 1.90TL106 l””'i“-z

3 A= .00 in*

H A F v Sheoll <Slocld “Eheds ¥ [i[4 .. |

Femly | P2 | | E0 [ oo () { -

2. Create the table shown with element and node numbers, length, area, and modulus
of elasticity for each member. In cells G7:G12 input ® for each element and name
them Thetal, Theta2, Theta3, Theta4, Theta5, and Theta6, respectively. Also, name
the values in D7:D12, Lengthl, Length2, Length3, Length4, LengthS, and Length6.

Thetal = & & 0 _ _ R
A u c I L | (il i 1 =
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3. Next compute the Cosine and Sine terms for [K1] as shown and name the selected

range CSelementl.

Uselemerty v B LUs] RAUIANG L heta 1) v
" u | v U T | & Il | iy
1 i
14 CosD 3in0 Caz _oste ~Sind Cost
15 Sin0 CusH Sin'e i Cosl —gin'a
16 [KI] AFEAL —Clos0 Sind Cosfl Cus'B HinH Cosf
17 Sin# s RKin'd Sind (Cosl) Rird
i
19 1.0 0.0 =1.0 0.0
0 0.0 0.0 0.0 oo
21| K1) ASKLengihl i 1141 10 il
5 0.0 1141 114 1.0
231 -
[Wx kb | sheetl “Sheetd St L7 Iid T i
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4. In a similar way, create the Cosine and Sine terms for [K2], [K3], [K4], [K5],

and [K6] and name the selected ranges CSelement2, CSelement3, CSelement4,
CSelement5, and CSelement6.
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5. Next, create the [A1] matrix and name it Aelementl, as shown. If you have for-

gotten what the A matrices represents, see Section 2.5, Equation (2.9). The nodal
displacement U1X, U1Y, U2X, U2Y, U3X, U3Y, U4X, U4Y, U5X, USY, and UiX,
UiY, UjX, and UjY are shown alongside the [A1] matrix to aid us observe the
contribution of node to its neighboring elements.

acleracntl - = -
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6. Next, create the [A2], [A3], [A4], [AS], and [A6] matrices and name them
Aelement2, Aelement3, Aelement4, Aelement5, and Aelement6, as shown.

et - A1 -
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7. We now create the stiffness matrix for each element (with their proper positions
in the global matrix) and name them K1G, K2G, K3G, K4G, K5G, and K6G. See
Equation (2.9). For example, to create [K]'C, select B80:K89 and type

=MMULT (TRANSPOSE(Aelementl), MMULT (((A*E/Length1)*CSelement1),
Aelementl))

and while holding down the Ctrl and Shift keys hit the Return key. In a similar way,
create [KJ?G, [K]?C, [K]*S, [K]®C, and [K]°C as shown.
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. The final global matrix is created next. Select the range B146:K155 and
type = K1G+K2G+K3G+K4G+K5G+K6G

and while holding down the Ctrl and Shift keys hit the Return key. Name the range
B146:K155, KG. In a similar way, create the global load matrix.

KG - B {-KACHK2HR AR KEC=KEG | b

422222

v
(L3 R

-

1
0
-500
0
500

W+ kv Sheerl | ehecty SRaeety ofa

. Apply the boundary conditions. Copy the appropriate portion of the KG matrix and
paste it in the range C168:H173 as values only. Name the range KwithappliedBC.
Similarly, create the corresponding load matrix in the range C175:C180 and name
it FwithappliedBC.
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10. Select the range C182:C187 and type
=MMULTMINVERSE (KwithappliedBC),FwithappliedBC)

and while holding down the Ctrl and Shift keys hit the Return key. Moreover,
as shown, select C189:C198, and copy the values of U partial and add the
U1X=0, U1Y=0, U3X=0, and U3Y=0. Name this matrix, UG.

-0003F3I652 in
001023 in
1U purtial} 0001184211 in.
-01148421 T

(AMIZII6KA2T

(AT RE14747

191 -0.003352652 in

102 -0.0L025 in

123 i — a

191 a

195 0000184211 in

130 i i

i in.

1% in

HATT sheen S 7 z L v |
ey | 1 g HiIncls  cowbr e avinse | BET R o L

11. Calculate the reaction forces, next. Select the range C200:C209 and type
=(MMULT(KG,UG)-FG)
and while holding down the Ctrl and Shift keys, hit the Return key.
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The complete Excel sheet is shown next.
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3.3 SPACE TRUSSES

A three-dimensional truss is often called a space truss. A simple space truss has six
members joined together at their ends to form a tetrahedron, as shown in Figure 3.12.
We can create more complex structures by adding three new members to a simple
truss. This addition should be done in a manner where one end of each new member
is connected to a separate existing joint, attaching the other ends of the new members
together to form a new joint. This structure is shown in Figure 3.13. As mentioned earlier,
members of a truss are generally considered to be two-force members. In the analysis
of space trusses, it is assumed that the members are connected together by ball-and-
socket joints. It can be shown that as long as the center lines of the adjacent bolted
members intersect at a common point, trusses with bolted or welded joints may also be

FIGURE 3.13 Addition of new elements to a simple truss to
FIGURE 3.12 A simple truss. form complex structures.
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treated under the ball-and-socket joints assumption (negligible bending moments at the
joints). Another restriction deals with the assumption that all loads must be applied at
the joints. This assumption is true for most situations. As stated earlier, the weights of
members are usually negligible compared to the applied loads. However, if the weights
of the members are to be considered, then half of the weight of each member is applied
to the connecting joints.

Finite element formulation of space trusses is an extension of the analysis of plane
trusses. In a space truss, the global displacement of an element is represented by six
unknowns, Uy, Uy, Uz, Ux, Uy, and Uy, because each node (joint) can move in three
directions. Moreover, the angles 6y, 6y, and 0, define the orientation of a member with
respect to the global coordinate system, as shown in Figure 3.14.

The directional cosines can be written in terms of the difference between the
coordinates of nodes j and i of a member and the member’s length according to the
relationships

X — &

cos By = I3 (3.19)
Y, - Y

cos by = 7 (3.20)
Z] - Zi

cosf, = 7 (3.21)

FIGURE 3.14 The angles formed by a
member with the X-, Y-, and Z-axis.
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where L is the length of the member and is given by

L=V(X - X))+ Y, - YY)+ (Z - Z) (3.22)

The procedure for obtaining the element stiffness matrix for a space-truss member
is identical to the one we followed to derive the two-dimensional truss element stiffness.
We start the procedure by relating the global displacements and forces to local displace-
ments and forces through a transformation matrix. We then make use of the two-force-
member property of a member. We use a matrix relationship similar to the one given by
Eq. (3.14). This relationship leads to the stiffness matrix [K]© for an element. However,
it is important to realize that the elemental stiffness matrix for a space-truss element is
a 6 X 6 matrix rather than the 4 X 4 matrix that we obtained for the twodimensional
truss element. For a space-truss member, the elemental stiffness matrix is

cos” Oy cos Oy cos Oy cos Oy cos 0,
cos Oy cos Oy cos? 6y cos 6y cos 0,
2
[K](") — cos Oy cos 0, cos Oy cos 6, cos” 04
—cos? Oy —cos 0y cos By —cos 6y cos 0,
—cos Oy cos Oy —cos? 6y —cos Oy cos 0,
| —cosfycosB, —cosbycosb, —cos’ 6
—cos® Oy —cos fycos By —cos Oycos b,
—cos Oy cos by —cos? Oy —cos Oy cos 0,
—cos Oy cos 0, —cos 6y cos 0, —cos’ 4, (3.23)
cos® Oy cos Oy cos Oy cos Oy cos 0,
cos Oy cos Oy cos? 6y cos 6y cos 6,
cos Oy cos 0, cos Oy cos 6, cos’ 0,

The procedure for the assembly of individual elemental matrices for a space-
truss member —applying boundary conditions, loads, and solving for displacements —is
exactly identical to the one we followed for a two-dimensional truss.

3.4 OVERVIEW OF THE ANSYS* PROGRAM
Entering ANSYS

This section provides a brief overview of the ANSYS program. More detailed infor-
mation about how you should go about using ANSYS to model a physical problem is
provided in Chapter 8. But for now, enough information will be provided to get you
started. One way to enter the ANSYS program is through the ANSYS Launcher, shown
in Figure 3.15. The Launcher has a menu that provides the choices you need to run the
ANSYS program and other auxiliary programs.

*Materials were adapted with permission from ANSYS documents.
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Simulation Environment:

Working Direclory. |Collser s\saeedatDocumentsibn sy | Bruwse.

Job: Marne. Tiuss | | Browse.

Product Help

FIGURE 3.15 The ANSYS Product Launcher for a PC version.

When using the Launcher to enter ANSYS, follow these basic steps:

1. Activate the Launcher by issuing the proper command at the system prompt if
you are running ANSYS on a UNIX Platform. On a PC platform, go to: Start —
Programs — ANSYS 15.0 — ANSYS Product Launcher®.

2. Select the ANSYS option from the Launcher menu by positioning the cursor of
the mouse over it and clicking the left mouse button. This command brings up a
dialog box containing interactive entry options.

a. Working directory: This directory is the one in which the ANSYS run will be
executed. If the directory displayed is not the one you want to work in, pick
the Browse button to the right of the directory name and specify the desired
directory.

b. Jobname: This jobname is the one that will be used as the prefix of the file
name for all files generated by the ANSYS run. Type the desired jobname in
this field of the dialog box.
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3. Move the mouse cursor over the Run button at the bottom of the window and
press it. The Graphical User Interface (GUI) will then be activated, and you are
ready to begin.

Program Organization

Before introducing the GUI, we will discuss some basic concepts of the ANSYS
program. The ANSYS program is organized into two levels: (1) the Begin level and
(2) the Processor level. When you first enter the program, you are at the Begin level.
From this level, you can enter the ANSYS processors, as shown in Figure 3.16.

You may have more or fewer processors available to you than the ones shown in
Figure 3.16. The actual processors available depend on the particular ANSYS product
you have. The Begin level acts as a gateway into and out of the ANSYS program. It is
also used to access certain global program controls. At the Processor level, several rou-
tines (processors) are available; each accomplishes a specific task. Most of your analysis
will be done at the Processor level. A typical analysis in ANSYS involves three distinct
steps:

1. Preprocessing: Using the PREP7 processor, you provide data such as the geometry,
materials, and element type to the program.

2. Solution: Using the Selution processor, you define the type of analysis, set bound-
ary conditions, apply loads, and initiate finite element solutions.

3. Postprocessing: Using POST1 (for static or steady-state problems) or POST26
(for transient problems), you review the results of your analysis through graphical
displays and tabular listings.

You enter a processor by selecting it from the ANSYS main menu in the GUI. You can
move from one processor to another by simply choosing the processor you want from
the ANSYS main menu. The next section presents a brief overview of the GUI.

Enter ANSYS Exit ANSYS
BEGIN LEVEL
PREP7 SOLUTION POST1 ! POST26 Etc.
General General Time-History
Processor
Preprocessor Postprocessor Postprocessor
PROCESSOR LEVEL

FIGURE 3.16 The organization of ANSYS.
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The Graphical User Interface (GUI)

The simplest way to communicate with ANSYS is by using the ANSYS menu system,
called the Graphical User Interface. The GUI provides an interface between you and
the ANSYS program. The program is internally driven by ANSYS commands. However,
by using the GUI, you can perform an analysis with little or no knowledge of ANSYS
commands. This process works because each GUI function ultimately produces one or
more ANSYS commands that are automatically executed by the program.

Layout of the GUI The ANSYS GUI consists of six main regions, or windows,
as shown in Figure 3.17

b Utility Menu: Contains utility functions that are available throughout the
ANSYS session, such as file controls, selecting, and graphics controls. You
also exit the ANSYS program through this menu.

B Main Menu: Contains the primary ANSYS functions, organized by pro-
cessors. These functions include preprocessor, solution, general postproc-
essor, Design Xplorer, and so on.

ANGYE Tanhar

b SAVE DB | RESUM_CE| SUIT POWRGREPH
ANSYS han Mew )

wPreferences

T Preprocessor

© Solution

L Eeneral Pastpene

+ TimeHist Postpre
+ ROM Tuul
F Deslgnxplarer
r Prob Dezign
© Radiation Spt
M Eession Editor

= Finish

Fick a Trni e o maine an ANAYT Sammans (1 GEIN) [mat=1

[type=1 rral=" Rl [arza=1

FIGURE 3.17 The ANSYS GUIL
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Toolbar: Contains push buttons that execute commonly used ANSYS
commands and functions. You may add your own push buttons by defining
abbreviations.

A4

Input Window: Allows you to type in commands directly. All previously
typed-in commands also appear in this window for easy reference and
access.

A4

B Graphics Window: A window where graphics displays are drawn.

Output Window: Receives text output from the program. It is usually
positioned behind the other windows and can be brought to the front
when necessary.

The ANSYS main menu and the ANSYS utility menu, both of which you will use most
often, are discussed next.

The Main Menu

The main menu, shown in Figure 3.18(a), contains main ANSYS functions such as pre-
processing, solution, and postprocessing.

Each menu topic on the main menu either brings up a submenu or performs an
action. The ANSYS main menu has a tree structure. Each menu topic can be expanded
to reveal other menu options. The expansion of menu options is indicated by +. You
click on the + or the topic name until you reach the desired action. As you reveal other
subtopics, the + will turn into —, as shown in Figure 3.18(b). For example, to create a
rectangle, you click on Preprocessor, then on Modeling, Create, Areas, and Rectangle.
As you can see from Figure 3.18(b), you now have three options to create the rectangle:
By 2 Corners, or By Centr&Cornr, or By Dimensions. Note that each time you revealed
another subtopic, the + turned into —.

The left mouse button is used to select a topic from the main menu. The submenus
in the main menu stay in place until you choose a different menu topic higher up in the
hierarchy.

The Utility Menu

The utility menu, shown in Figure 3.19, contains ANSYS utility functions such as
file controls, selecting, and graphic controls. Most of these functions are modeless; that
is, they can be executed at any time during the ANSYS session. The modeless nature
of the utility menu greatly enhances the productivity and user friendliness of the GUIL

Each menu topic on the utility menu activates a pull-down menu of subtopics,
which in turn will either cascade to a submenu, indicated by a P> after the topic, or per-
form an action. The symbol to the right of the topic indicates the action:

no symbol for immediate execution of the function
for a dialog box
+ for a picking menu.



178 Chapter 3 Trusses

ANSYS Main Menu @ AMAA ANSYS Main Menu AN
Preferences E Preferences |
= Preprocessor
Solution Element Type
General Postproc Real Constants
TimeHist Postpro Material Props
ROM Tool Sections
DesignXplorer B Modeling
Prob Design El Create
Radiation Opt Keypoints
B Session Editor Lines
Finish Bl Areas
Arbitrary
[=RRectangle

#1 By 2 Carners
(a) &1 By Centr & Cornr
Ey Dimensions
Circle
Polygon
21 Area Fillet
Yolumes
Nodes
Elements
Cankack Pair
Piping Models
Circuit
Racetrack Coil
Transducers
Operate
Mowe / Modify
Copy
Reflect
Check Geom
Delete -

(b)

FIGURE 3.18 The main menu.

/% ANSYS /University Low Option Utility Menu (Test) [[=] B3

File Select List Plot PlatChls WorkPlane Paameters Macro MenuChils  Help

FIGURE 3.19 The utility menu.

Clicking the left mouse button on a menu topic on the utility menu is used to “pull
down” the menu topic. Dragging the cursor of the mouse allows you to move the cursor
to the desired subtopic. The menus will disappear when you click on an action subtopic
or elsewhere in the GUI.
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Graphical Picking

In order to use the GUI effectively, it is important to understand graphical picking.
You can use the mouse to identify model entities and coordinate locations. There are
two types of graphical-picking operations: locational picking, where you locate the
coordinates of a new point, and retrieval picking, where you identify existing entities.
For example, creating key points by picking their locations on the working plane is a
locational-picking operation, whereas picking already-existing key points to apply a load
on them is a retrieval-picking operation.

Whenever you use graphical picking, the GUI brings up a picking menu. Figure 3.20
shows the picking menus for locational and retrieval picking. The features of the picking
menu that are used most frequently in upcoming examples are described in detail below.

;g

Picking Mode: Allows you to pick or unpick a location or entity. You
can use either these toggle buttons or the right mouse button to switch
between pick and unpick modes. The mouse pointer is an up arrow for
picking and a down arrow for unpicking. For retrieval picking, you also
have the option to choose from single pick, box, circle, and polygon mode.

Function Title b Create KPs on WP b Apply F/M on KPs

¥ Pick  Unpick Q o S P
Picking Mode

Saunt 2 o [ Single " EBox q

Lo Maximum = 1000 ' Folygon {~ [Circle

Picking Status E R £ Loos

R =
Picked Data = - Count = ®

Global X = ‘g bi: R e
Keyboard . Minimum = 1
Entry Options _— Keyl No. = Q

Action Buttons

{" WP Coordinates

(¥ Global Cartesian

O I Applay |
Deset | Cancel I

Help |

¥ List of Items

q b . Min, Max, Inc

0K I Applay |

| Cancel |

<4

Deset

Pick All Help |

FIGURE 3.20 Picking menu for locational and retrieval picking.
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D Picked Data: Shows information about the item being picked. For
locational picking, the working plane and global Cartesian coordinates of
the point are shown. For retrieval picking, this area shows the entity num-
ber. You can see this data by pressing the mouse button and dragging the
cursor of the mouse into the graphics area. This procedure allows you to
preview the information before releasing the mouse button and picking
the item.

b Action Buttons: This area of the menu contains buttons that take certain
actions on the picked entities, as follows:

OK: Applies the picked items to execute the function and closes the pick-
ing menu.

Apply: Applies the picked items to execute the function.
Reset: Unpicks all picked entities.

Cancel: Cancels the function and closes the picking menu.
Pick All: Picks all entities available for retrieval picking only.

Help: Brings up help information for the function being performed.

Mouse-Button Assignments for Picking A summary of the mouse-button assign-
ments used during a picking operation is given below:

|
—

[] The left button picks or unpicks the entity or location closest to the cursor
of the mouse. Pressing the left mouse button and dragging the cursor of the
mouse allows you to preview the items being picked or unpicked.

[]

1
-
—

The middle button applies the picked items to execute the function. Its func-
tion is the same as that of the Apply button on the picking menu.

[]

—
]
]

The right button toggles between pick and unpick mode. Its function is the
same as that of the toggle buttons on the picking menu.

[]

The Help System

The ANSYS help system gives you information for virtually any component in the GUI
and any ANSYS command or concept. It can be accessed within the GUI via the help
topic on the utility menu or by pressing the help button from within a dialog box. You
can access a help topic by choosing from a manual’s table of contents or index. Other
features of the help system include hypertext links, word search, and the ability to print
out help topics. An in-depth explanation of the capabilities and the organization of the
ANSYS program is offered in Chapter 8.
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3.5 EXAMPLES USING ANSYS

In this section, ANSYS is used to solve truss problems. To analyze truss problems,
ANSYS offers a three-dimensional spar element. This element, denoted by LINK180,
offers three degrees of freedom (Uy, Uy, U,) at each node. Input data must include
node locations, crosssectional area of the member, and modulus of elasticity. If a
member is prestressed, then the initial strain should be included in the input data as
well. As we learned previously in our discussion on the theory of truss element, we
cannot apply surface loads to this element; thus, all loads must be applied directly
at the nodes. To get additional information about these elements, run the ANSYS
online help menu.

EXAMPLE 3.2 Revisited

Consider the balcony truss from Example 3.1, as shown in the accompanying figure. We
are interested in determining the deflection of each joint under the loading shown in
the figure. All members are made from Douglas-fir wood with a modulus of elasticity
of E = 1.90 X 10°Ib/in? and a cross-sectional area of 8 in>. We can now analyze this
problem using ANSYS.

500 1b 500 Ib
\ 3 ft 3 ft

E | 3) ©)

The following steps demonstrate how to create the truss geometry, choose
the appropriate element type, apply boundary conditions and loads, and obtain
results:

Enter the ANSYS program by using the Launcher.

Type Truss (or a file name of your choice) in the Jobname entry field of the dialog
box.
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Fl= Frofies Options Tools Links

Simulation Environment:

ANSYS
:

Lican:
Academic Taaching Introductory

Customization/ High

File
Management Preferences

m'DocumentsAnsys

Froduct Help

Pick Run to start the GUI. Create a title for the problem. This title will appear on
ANSYS display windows to provide a simple way of identifying the displays. To
create a title, issue the command

utility menu: File — ChangeTitle . . .

=" Change Title - Ed

[ITITLE] Enter news title I Truss

[0 4 Cancel I Help |

Y
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Define the element type and material properties:

main menu: Preprocessor — Element type — Add/Edit/Delete

f'j\ Library of Element Types

www.FreeEngineeringbooksPdf.com
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Assign the cross-sectional area of the truss members:

main menu: Preprocessor — Real Constants — Add/Edit/Delete

11} Flement Types

I Real Constants

1 Real Constants

Assign the value of the modulus of elasticity:

main menu: Preprocessor — Material Props — Material Models —
Structural — Linear — Elastic — Isotropic

Note: Double-click on Structural and then on Linear, Elastic, and Isotropic.

www.FreeEngineeringbooksPdf.com
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A befine Material Model Behavior ol x|
Material  Edit  Help
i~ Material Models Defined i~ Material Models Available
@€ Material Model Murber 1 @ Structural B
@ Lineat
@ Elastic
@ Orthotropic
@ Anisokropic
Manlinear -
@ Density
Thermal Expansion Coef
@ Cramping
i £ Friction Coefficient
¥ P I =
4 | »] 4| | ]
Linear Isotropic Properties for Material Num il

Note:

EX: Modulus of Elasticity
PRXY: Poisson’s Ratio

Poisson’s Ratio may be omitted for link
elements.

Linear Isotropic Material Properties For Material Nurber 1

T1
Temperatures - |0
EX 1.9e6
PREY 0.3

Add Temperature | Delete Temperature | Graph |

>» [OK | Cancel | Help

Close the Define Material Model Behavior window.
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Save the input data:
ANSYS Toolbar: SAVE_DB
Set up the graphics area (i.e., workplane, zoom, etc.):

utility menu: WorkPlane — WP Settings . . .

WP Settings

Q_II

Sirizn A

Toggle on the workplane by the following sequence:

utility menu: Workplane — Display Working Plane

Bring the workplane to view using the following sequence:

utility menu: PlotCtrls — Pan, Zoom, Rotate . . .

www.FreeEnqgineeringbooksPdf.com
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Pan-Zoom-Rotate

Click on the small circle until you bring the workplane to view. You can also use
the arrow buttons to move the workplane in a desired direction. Then, create nodes
by picking points on the workplane:

main menu: Preprocessor — Modeling — Create — Nodes —
On Working Plane

On the workplane, pick the location of joints (nodes) and apply them:

www.FreeEnqgineeringbooksPdf.com
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]
—
—

I: [WP = 0,0]

% [WP = 36,0]

% [WP = 0,36]

% [WP = 36,36]

% [WP = 72,36]
OK

You may want to turn off the workplane now and turn on node numbering instead:
utility menu: Workplane — Display Working Plane

utility menu: PlotCtrls — Numbering . . .

—
(‘\ Plot Numbering Controls

www.FreeEngineeringbooksPdf.com
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You may want to list nodes at this point in order to check your work:

utility menu: List — Nodes . . .

i Sort NODE Listing

o
o

NODE MNumher R

NODE Number =]

NODE Number [

VM HLIST Command
le

LIST ALL SELECTED NODES. DaTs= 0
S0RT TAELE ON NODE NODE NODE
NODE x T Z
1 .0oonoooooooon .Qoooooooooon . 0ooooooooooon
2 36.0000000000 . 000000000000 . 000000000000
| Loooooooooooon 36.0000000000 L0oooooooooon
4 36.0000000000 36.0000000000 .0oo0ooooooan
5] FZ.0000000000 36.0000000000 . Ooooooooooon
Close

ANSYS Toolbar: SAVE_DB
Define elements by picking nodes:

main menu: Preprocessor — Modeling — Create — Elements —
AutoNumbered — Thru Nodes

www.FreeEnqgineeringbooksPdf.com
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]
—
—

[node 1 and then node 2]

-

c—
]
—

[use the middle button anywhere in the ANSYS graphics window to apply]

-

]
—
—

[node 2 and then node 3]

-

c—
]
—

[anywhere in the ANSYS graphics window]

-

]
—
—

[node 3 and then node 4]

-

|}
]
—

[anywhere in the ANSYS graphics window]

—

]
—
—

[node 2 and then node 4]

-

c—
]
—

[anywhere in the ANSYS graphics window]

-

L}
—l
—

[node 2 and then node 5]

—

c—
]
—

[anywhere in the ANSYS graphics window]

-

]
—
—

[node 4 and then node 5]

-

|}
]
—

[anywhere in the ANSYS graphics window]

—

OK
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JBANSYS Graphics

ANSYS Toolbar: SAVE_DB

Apply boundary conditions and loads:

main menu: Solution — Define Loads — Apply — Structural —
Displacement — On Nodes

II:[”: [node 1]
i [node 3]

-

|}
]
—

[anywhere in the ANSYS graphics window]

—
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4\ Apply U,ROT on Nodes

main menu: Solution — Define Loads — Apply — Structural —
Force/Moment — On Nodes

% [node 4]
ALl [node 5]

-

c—
]
—

[anywhere in the ANSYS graphics window]

-

Apply F/M on Nodes

ANSYS Toolbar: SAVE_DB

www.FreeEngineeringbooksPdf.com
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Solve the problem:

main menu: Solution — Solve — Current LS

1 Solve Current Load Step B

Close (the solution is done!) window.
Close (the /STAT Command) window.
For the postprocessing phase, first plot the deformed shape:

main menu: General Postproc — Plot Results — Deformed Shape

i Plot Deformed Shape E

193
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main menu: General Postproc — List Results — Nodal Solution

I\List Nodal Solution :

 Item to be listed

(53] Faworites =
(& Modal Solution
& DOF Salution
63 ¥-Component of displacerment
g3 ¥-Component of displacemeant
(i cement i
(54 Stress
(58 Total Strain
(54 Elastic Strain
(54 Plastic Strain
(54 Creep Strain
&4 Thermal Strain
(54 Total Mechanical and Thermal Strain

i swelling strain -
K b

m

Yalue for cormputing the EQY strain I

Ok, Apply Cancel | Help

FPRNSOL  Command ]
File
PRINT U  NODAL SOLUTION PER NODE
sxxxx POST1 NODAL DEGREE OF FREEDOM LISTING xwsxx
LOAD STEP- 1 SUBSTEP- 1
TIME=  1.8000 LOAD CASE= O
THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
NODE ux uy uz USUM
1 9.9000 0. 0060 .0080 0. 0080
2 -B.35526E-02-0.10252E-61 O.8000 B.16850E-61
3  0.oooo 0. 6680 0. 6680 . 0000
4 0.11842E-02-9.11436E-81 0.8000 8.11497E-01
5 0.23684E-02-8.19522F-61 0.8000 8.19665E-61
MAXIMUM ABSOLUTE UALUES
NODE o 5
UALUE -@.35526E-02-8.19522E-01 0.0000 8.19665E-81

Close
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To review other results, such as axial forces and axial stresses, we must copy these
results into element tables. These items are obtained using item label and sequence
numbers, as given in the ANSYS elements manual. For truss elements, the values of
internal forces and stresses, which ANSYS computes from the nodal displacement
results, may be looked up and assigned to user-defined labels. For Example 3.1, we
have assigned the internal force, as computed by ANSYS, in each member to a user
defined label “Axforce.” However, note that ANSYS allows up to eight characters
to define such labels. Similarly, the axial stress result for each member is assigned
to the label “Axstress.” We now run the following sequence:

main menu: General Postproc — Element Table — Define Table

Element Table Data x|

Currently Defined Data and Status:

Label Tkerm Comp Tirme Stamp

Update | Delete |

Help |

% Define Additional Element Table ITtems ) — ;x;.l

[AYPRIM] EFF MU For EQY strain I 0 [

[ETAELE] Define Additional Element Table Items

Lab Liser label for item

Item, Comp Results data item

COptirnization

(For "By sequence num”, enter sequence
no, in Selection box, See Table 4.3

in Elements Manual For seq. numbers.)

Ok | Apply | Cancel I Help |
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' Define Additional Element Table Items 2 : 1 Ll

[AWPRIN] EFF MU For EQY strain | 0 B

[ETABLE] Define Additionl Element Table Irems

Lab  User label for ikem Astress

Item,Camp Results data item

Strain-elastic
Strain-thermal
Strain-plastic
Strain-creep
Strain-other
Contact
Cptimization

(For "By sequence num", enter sequence
no. in Selection box, See Table 4.x%-3
in Elements Manual For seq, numbers.)

—_— ok | Apply | Canicel | Help

Element Table Data i x|

Currently Defined Data and Status:

Label Item Comp Time Stamp
ARFORCE SMIS 1

Add... | Update | Delzte |

—_—  (lose | Help |

main menu: General Postproc — Element Table — Plot Element Table

or

main menu: General Postproc — Element Table — List Element Table

ist Element Table Data [ <]

1-18
11-28
21-38
31-48
41-58
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/O PRETAB Command E

PRINT ELEMENT TAELE ITEMZ PER ELEMENT
*#®*%% POST1 ELEMENT TAELE LISTING *****

GTAT CURRENT CUREENT

ELEN LXFORCE LXATREESS
1 -1ls00.0 -187. 50
z 1414.2 176. 75
3 500,00 6,500
4 -500.00 —-6Z.500
5 -707.11 -G5.388
3 s00.00 62,500

MININUH VALUES
ELEM 1 1
WALIE -1500.0 -187.50

HAXINTM VALUES
ELEN 2 2
VALUE 1414.2 176.78

Close
List reaction solutions:

main menu: General Postproc — List Results — Reaction Solu

i List Reaction Solution

IStruct fr-ce
All struc forc F
Struct moment n¥

MZ
All struc mome M

PRINT RELCTION SOLUTIONS PER NODE
*=*+* POSTL TOTAL REACTION SOLUTION LISTING ***+*

LUAD STEP= 1 SUBSTEP= 24
TINE= L.oooo LOAD CAZE=- 0

THE FOLLOWING X.¥.Z SOLUTIONS ARE IN GLOEAL COORDINATES

HODE X e
i 1500.0 .0o0o0d
3 -1500.0 io000.0

TNTAL VALTES
YALUE Luouooug looo. o

www.FreeEnqgineeringbooksPdf.com
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Exit ANSYS and save everything, including element tables and reaction forces:

ANSYS Toolbar: QUIT

1 Exit from ANSYS

If, for any reason, you need to modify a model, first launch ANSYS and then type
the file name of the model in the Jobname entry field of the Launcher dialog box.
Then press Run. From the File menu, choose Resume Jobname.DB. Now you
have complete access to your model. You can plot nodes, elements, and so on to
make certain that you have chosen the right problem.

EXAMPLE 3.3

Consider the three-dimensional truss shown in the accompanying figure. We are inter-
ested in determining the deflection of joint 2 under the loading shown in the figure.
The Cartesian coordinates of the joints with respect to the coordinate system shown in
the figure are given in feet. All members are made from aluminum with a modulus of
elasticity of E = 10.6 X 10°1b/in? and a cross-sectional area of 1.56 in’.

Y

Uy=0
Uy=0p4
(0,6',0)

UX: 0
3
(0,0,-3"

www.FreeEngineeringbooksPdf.com
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To solve this problem using ANSYS, we employ the following steps:
Enter the ANSYS program by using the Launcher.

Type Truss3D (or a file name of your choice) in the Jobname entry field of the
dialog box.

Pick Run to start the GUI.

Create a title for the problem. This title will appear on ANSYS display windows
to provide a simple way of identifying the displays:

utility menu: File — Change Title . . .

i Change Title B

Define the element type and material properties:

main menu: Preprocessor — Element Type — Add/Edit/Delete

[ emert syves Y

Defined Element Tipes:

—>Add_.. ‘ Options... I Delete I
Close Help |
m Library of Element Types _I 5]
Library of Eement Types Structul Mass -
actuator 11

Beam

Pipe

Solid

e I e sm o

Elemant type reference rumber [1 '
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'l’ﬂrk-r:wnr Types

Assign the cross-sectional area of the truss members:

main menu: Preprocessor — Real Constant — Add/Edit/Delete

i Real Constants

NONE DEFINED

fi | Real Constant Set Mumber 1, for LINK180 il i Real Constants

Set

www.FreeEngineeringbooksPdf.com



Section 3.5 Examples Using ANSYS 201

Assign the value of the modulus of elasticity:

main menu: Preprocessor — Material Props — Material Models —

Structural — Linear — Elastic — Isotropic

Linear Isotropic Properties for Material Mumber 1

Linear Isokropic Material Properties far Material Mumber 1

Bl
Temperatures
— B |10.8e6
PRAY 0.3

Add Temperature |.D1_3lBtE': Temperature | Graph |

—_— ok | Caneel | Help |

Close the Define Material Model Behavior window.
ANSYS Toolbar: SAVE_DB
Create nodes in active coordinate system:

main menu: Preprocessor — Modeling — Create — Nodes — In Active CS

i Create Nodes in Active Coordinate System

www.FreeEnqgineeringbooksPdf.com



202  Chapter 3 Trusses

i Create Hodes in Active Coordinate System

i Create Nodes in Active Coordinate System

! Create Nodes in Active Coordinate System

You may want to turn on node numbering:

utility menu: PlotCtrls — Numbering . . .

www.FreeEnqgineeringbooksPdf.com
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You may want to list nodes at this point in order to check your work:

utility menu: List — Nodes . . .

i Sort NODE Listing

NODE Number -]

ODE Humber |

NODE Mumher k2

| fivis [ cancol [ Hei |

www.FreeEngineeringbooksPdf.com
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#VMNLIST Command
File
LIST ALL SELECTED NODES. D3YE= 0
SORT TAELE ON HNODE NODE NODE
NODE ® T Z THXT THYZ THZX
1 . noooo .ooooo 36.000 oo .00 .oo
2 72.000 .ooooo . ooooo oo .oo .00
3 L noooo .ooooo =-36.000 oo .oo .00
4 L noooo TZ.000 L 0oooo 0o .oo .00
Close

ANSYS Toolbar: SAVE_DB
Define elements by picking nodes. But first set the view angle:
utility menu: PlotCtrls — Pan, Zoom, Rotate . ..
Select the oblique (Obliq) or isometric (Iso) viewing.

main menu: Preprocessor — Modeling — Create — Elements —
Auto Numbered — Thru Nodes

]
—
—

[node 1 and then node 2]

-

[use the middle button anywhere in the ANSYS graphics window to apply]

c—
]
—

—

L}
—l
—

[node 1 and then node 3]

—

|}
]
—

[anywhere in the ANSYS graphics window]

—

]
—
—

[node 1 and then node 4]

-

c—
]
—_

[anywhere in the ANSYS graphics window]

-
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]
—
—

[node 2 and then node 3]

-

c—
]
—

[anywhere in the ANSYS graphics window]|

-

L}
—l
—

[node 2 and then node 4]

—

c—
]
—

[anywhere in the ANSYS graphics window]|

-

]
—
—

[node 3 and then node 4]

-

c—
]
—

[anywhere in the ANSYS graphics window]|

-

OK
ANSYS Toolbar: SAVE_DB
Apply boundary conditions and loads:

main menu: Solution — Define Loads — Apply — Structural —
Displacement — On Nodes

B0 [node 1]

[ |

000 [node 3]

[ |

B0 [node 4]

[

% [anywhere in the ANSYS graphics window]
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=1 Apply LLREDT on Nodes _ i jﬂ

[0] Apply Displacements {1,RCT) on kodes

LabZ DOFs to be constrained All DOF
 —
Ly
Uz
Apply as IConstant value ﬂ

If Caonstant walue then:

WALLUE Displacement walue l 0 <

—_— [0 4 Applhy Zancel | Help |

main menu: Solution — Define Loads — Apply — Structural —
Displacement — On Nodes

B[ [nodel]

(B0 [anywhere in the ANSYS graphics window]|

2% Apply U,ROT on Nodes - i Z

[0] Apply Displacements {1,RCT) on kodes
LabZ [OFs o be constrained

[
F ~—

Apply as IConstant walue ﬂ

If Caonstant walue then:

WALLUE Displacement walue l i} | —

Help |

—_— [0 4 Applhy Cancel
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main menu: Solution — Define Loads — Apply — Structural —
Displacement — On Nodes

[node 1]

[node 4]

[anywhere in the ANSYS graphics window]

- in-gu-

=11 Apply U,ROT on Nodes N x|

[O] Appls Displacements (U,ROT) on Modes

LabZ [DOFs ta be constrained all DoF
LI
f—
Uz
Apply a3 ICnnstant walue j

If Constant walue then:

VALLE Displacement value l 0

—_— a4 Apply Cancel Help |

main menu: Solution — Define Loads — Apply — Structural —
Force/Moment — On Nodes

B0 [node2]

[]

B0 [anywhere in the ANSYS graphics window]|

L]

ANSYS Toolbar: SAVE_DB
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="t Apply F/™ on Modes il

[F] Apply ForcefMoment on Modes

Lab  Direction of Forcejmarn ="

Apply as IConstant walue :_I

If Constant value then:

WALLUE Forcefmoment walue I -200 | —

—_— ()4 Apply Cancel | Help |

Solve the problem:
main menu: Selution — Solve — Current LS
OK
Close (the solution is done!) window.

Close (the /STAT Command) window.

Now we run the postprocessing phase by listing nodal solutions (displacements):

main menu: General Postproc — List Results — Nodal Solution

IList Nodal Solution ] x|

 Itern to be listed

|53 Fawvorites -
[ Modal Solutian
EE DOF Solution
i x-Component of displacement
2 Y-Component of displacement
A Z-Component of displacement

A T

(59 Stress

[54 Total Strain

(54 Elastic Strain

(54 Flastic Strain

[54 Creep Strain

54 Thermal Strain

(54 Tatal Mechanical and Thermal Strain _I;I
»

[
Yalue for computing the EQY strain I

ak, Apply Cancel | Help |
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IAYPRNSOL  Command 1 x|

File

|
PRINT U NODAL SOLUTION FER NODE
=xxxx POST1 NODAL DEGREE OF FREEDOM LISTING s

LOAD STEP= 1 SUBSTEP= 1
TIME= 1.80680 LOAD CASE= 5]
THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
NODE Uy uy Uz USuM
i B.00R0 B.p0B6 a. 8668 8. 60Ea
2 -8.66274E-03-0.312660E-82-0.10885E-03 0.31974E-82
3 a.80p0a B.1A88B5E-03-0.21771E-A3 @.24340E-A3
4 A.08080 B.8000 a.8868 a.6888

MAXIMUM ABSOLUTE VALUES
NODE 2 3 2
UALUE -8.66294E-83-0.31260E-82-0.21771E-A3 B.31974E-82

To review other results, such as axial forces and axial stresses, we must copy
these results into element tables. These items are obtained using itemn label and
sequence numbers, as given in the ANSYS elements manual. So, we run the fol-
lowing sequence:

main menu: General Postproc — Element Table — Define Table

i Element Table Data ]

NONE DEFINED

Cvaa 0 oeieee [ b |
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i Define Additional Element Table Items

[AYPRIN] EFf MU For EQW strain I i)

[ETABLE] Define Additional Element: Table Items

—> Lab User label for item I AXFORCE

Item,Comp Resulks data item

Cptimization

SMISC, 1
{For "By sequence num", enter sequence
n. in Selection b, See Table 4.3

in Elements Manual For seq. numbers. )

QK | Apply Cancel | Help |

e Additional Element Table Items

[AYPRIN] EFf MU For EQW strain I o

[ETABLE] Define Additional Element Table Trems

—> Llab  User label for item I AXSTRESS

Item,Comp Results dataitem

Cptimization

(For "By sequence num’, entet sequence
no, in Selection box, See Table 4,003

in Elemnents Manual for seq. numbers.)

— > ok | Applhy Caricel | Help |

i Element Table Data

AR FORCE SMIS i 1.8880
ARSTRESS L8 i 1 .8880

e | e | pemere |
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main menu: General Postproc — Element Table — List Element Table

i List Element Table Data

ARFORCE

a
5

1-568 GRPS

X' PRETABE Command

PRINT ELEMENT TAELE ITEM3 PER ELEMENT

FwwEE POSTI ELEMENT TAELE LISTING ##%%%

STAT CURRENT CURRENT
ELEM AXFORCE AXSTEESS
1 -111.80 -T1.66%

2 50,000 32.051
] A (afualu] R ululalu]ul
4 -111.80 -71.6649
5 22,04 1681.31
3 . ooono .oonoo

MINIMITH VALUES
ELEM 1 1
WALUE  -111.30 -71.669

MAaIMUM VALUES
ELEM 5 3
WALIE 282.84 1§1.31

Close
List reaction solutions:

main menu: General Postproc — List Results — Reaction Solu
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1 List Reaction Solution

Il items
Struct force

All struc forc
Struct moment :¥

HZ
All struc mome M

Cancel

FsAPRR5S0L Command
File:
|
PRINT REACTION SOLUTIONE FPER MWODE
ssxsx POST1 TOTAL REACTION SOLUTION LISTING sessess
LOAD BTEF= 1 SUBSTEP= i
TIME= 1.6868 LOAD CASE= a
THE FOLLOWING ®.¥.Z SOLUTIONS ARE IN GLOBAL COORDINATES
NODE F¥ FY FZ
i i86. 068 8. 8868 8. 8868
3 186. 068
4 -280.08 280 . 068
TOTAL UALUESE
UALUE 8. 8868 280 . 068 8. 8868
Close

Exit ANSYS and save everything, including element tables and reaction forces:

ANSYS Toolbar: QUIT

* Exit from ANSYS
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3.6 VERIFICATION OF RESULTS
There are various ways to verify your findings.

1. Check the reaction forces.
We can use the computed reaction forces and the external forces to check for
statics equilibrium:

EFY :0
and
E]‘4n0de:O

The reaction forces computed by ANSYS are F;y = 15001b; F;y = 0;
F;x = —1500 1b; and F;y = 1000 Ib. Using the free-body diagram shown in the
accompanying figure and applying the static equilibrium equations, we have:

S Fy =0 1500—-1500 = 0
+13 Fy =0 1000—500—500 = 0
G2 Myoaer = 0 (1500)(3) = (500) (3) — (500)(6) = 0

1000 1b
500 1b 500 1b
31t 31t
(3) (6)
1500 1b o 5 o
3 4 5
31t (2) 4) (%)
(1)
1500 Ib ® 0

1

Now consider the internal forces of Example 3.1 as computed by ANSYS, shown
in Table 3.2.

TABLE 3.2 Internal forces in each element

as computed by ANSYS
Element Number Internal Forces (Ib)
1 —1500
2 1414
3 500
4 —500
5 =707
6 500
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2. The sum of the forces at each node should be zero.
Choose an arbitrary node and apply the equilibrium conditions. As an example,
let us choose node 5. Using the free-body diagram shown in the accompanying
figure, we have

£ SFy=0 —500+ 707 cos45 = 0
+13S Fy =0 —500 + 707 sin45 = 0

500 1b

500 Ib 5
45"\

707 1b

3. Pass an arbitrary section through the truss.
Another way of checking for the validity of your FEA findings is by arbitrarily
cutting a section through the truss and applying the statics equilibrium conditions.
For example, consider cutting a section through elements (1), (2), and (3), as shown
in the accompanying figure.

500 Ib 500 Ib

3ft

(3) (6)
500 1b ~——¢ o) Op —

15
1414 1b
3 ft
)
1500 Ib ———

1 2

S Fy =0 —500 + 1500 — 1414 cos 45 = 0
+13 Fy = 0 =500 — 500 + 1414 cos 45 = 0
G2 Mpgger = 0 —(500) (3) + (500)(3) =0

Again, the validity of the computed internal forces is verified. Moreover, it is
important to realize that when you analyze statics problems, statics equilibrium
conditions must always be satisfied.
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At this point you should

1.
2.

7.

REFERENCES

have a good understanding of the underlying assumptions in truss analysis.
understand the significance of using global and local coordinate systems in
describing a problem. You should also have a clear understanding of their role in
describing nodal displacements and how information presented with respect to
each frame of reference is related through the transformation matrix.

know the difference between the elemental stiffness matrix and the global stiffness
matrix and know how to assemble elemental stiffness matrices to obtain a truss’s
global stiffness matrix.

know how to apply the boundary conditions and loads to a global matrix to obtain
the nodal displacement solution.

know how to obtain internal forces and stresses in each member from displacement
results.

have a good grasp of the basic concepts and commands of ANSYS. You should
realize that a typical analysis using ANSYS involves the preprocessing phase, where
you provide data such as geometry, materials, and element type to the program; the
solution phase, where you apply boundary conditions, apply loads, and initiate a
finite element solution; and the postprocessing phase, where you review the results
of the analysis through graphics displays, tabular listings, or both.

know how to verify the results of your truss analysis.
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PROBLEMS

1. Starting with the transformation matrix, show that the inverse of the transformation matrix
is its transpose. That is, show that

cosh sinf 0 0
—sinf cos 0 0 0
T =
[T] 0 0 cosf  sinf

0 0 —sinf cos 6
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2. Starting with Eq. (3.14), {F} = [T][K][T]'{U}, and substituting for values of the
[T], [K], [T] ", and {U} matrices in Eq. (3.14), verify the elemental relationship

Fix cos’ 6 sin 6 cos 6 —cos? 6 —sin 0 cos 0 Uy
Fy | _ X sin 6 cos 6 sin® @ —sin 0 cos 0 —sin’ § Uy
Fix —cos’ —sin @ cos 6 cos? 0 sin 6 cos 6 U
Fy —sin 6 cos 6 —sin® 9 sin 6 cos 6 sin’ 6 Uy

3. The members of the truss shown in the accompanying figure have a cross-sectional area of
2.5in? and are made of aluminum alloy (E = 10.0 X 10° Ib/in?). Using hand calculations,

determine the deflection of joint A, the stress in each member, and the reaction forces. Verify
your results.

4. The members of the truss shown in the accompanying figure have a cross-sectional area of
10 cm? and are made of steel (E = 200 GPa). Using hand calculations, determine the deflec-
tion of each joint, the stress in each member, and the reaction forces. Verify your results.

v 11

1.25m 1

4 kN
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5. The members of the truss shown in the accompanying figure have a cross-sectional area of
20 cm? and are made of aluminum alloy (E = 70 GPa). Using hand calculations, determine
the deflection of each joint, the stress in each member, and the reaction forces. Verify your
results.

10,000 N

1
‘ i

| 1.5m |

6. The members of the truss shown in the accompanying figure have a cross-sectional area of
3 in” and are made of structural steel (E = 30.0 X 10° Ib/in?). Using hand calculations, deter-
mine the deflection of each joint, the stress in each member, and the reaction forces. Verify
your results.

4 5
Y \
P
&
3
1 ©F /
s i —
5000 Ib

7. The members of the three-dimensional truss shown in the accompanying figure have a cross-
sectional area of 1.5 in® and are made of structural steel (E = 30.0 X 10° Ib/in?). Using hand
calculations, determine the deflection of joint A, the stress in each member, and the reaction
forces. Verify your results.
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5000 Ib 1

8. The members of the three-dimensional truss shown in the accompanying figure have a cross-
sectional area of 15 cm® and are made of aluminum alloy (E = 70 GPa). Using hand calcula-
tions, determine the deflection of joint A, the stress in each member, and the reaction forces.
Verify your results.

Y

5000 N
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9. Consider the power transmission-line tower shown in the accompanying figure. The members
have a cross-sectional area of 10 in?> and a modulus of elasticity of E = 29 X 10° Ib/in. Using
ANSYS, determine the deflection of each joint, the stress in each member, and the reaction
forces at the base. Verify your results.

5at10 ft——————
1 12 13 14 15 16
N T 10 ft
8 }
7
1000 Ib 10 ft 1000 Ib
5 6
10 ft
3 4
15 ft
1 2

<15 ft—=

10. Consider the staircase truss shown in the accompanying figure. There are 14 steps, each with a
rise of 8 in and a run of 12 in. The members have a cross-sectional area of 4 in? and are made
of steel with a modulus of elasticity of £ = 29 X 10° Ib/in>. Using ANSYS, determine the
deflection of each joint, the stress in each member, and the reaction forces. Verify your results.

; 200 Ib

ZA— / 200 Ib

e 200 1b

100 Ib 100 Ib, {

}(—12 in»‘
200 1b
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11.

12.

13.

The members of the roof truss shown in the accompanying figure have a cross-sectional
area of approximately 25 in? and are made of Douglas-fir wood with a modulus of elasticity
of E = 1.9 X 10°Ib/in%. Using ANSYS, determine the deflection of each joint, the stresses
in each member, and the reaction forces. Verify your results. Also, replace one of the fixed
boundary conditions with rollers and obtain the stresses in each member. Discuss the differ-
ence in results.

500 Ib

500 Ib 500 1b

500 1b 500 1b

D
g ,MWJM}’W

8.7 ft }

24 ft }

The members of the floor truss shown in the accompanying figure have a cross-sectional
area of approximately 21.5 in? and are made of Douglas-fir wood with a modulus of elasticity
of E = 1.9 X 10°1b/in®. Using ANSYS, determine the deflection of each joint, the stresses
in each member, and the reaction forces. Verify your results. Also, replace one of the fixed
boundary conditions with rollers and solve the problem again to obtain the stresses in each
member. Discuss the difference in results.

500 1b 500 1b 500 1b 500 1b

N

A
\\/

i 30 ft i

1ft

=

The three-dimensional truss shown in the accompanying figure is made of aluminum alloy
(E = 10.9 X 10° psi) and is to support a load of 500 1b. The Cartesian coordinates of the
joints with respect to the coordinate system shown in the figure are given in feet. The cross-
sectional area of each member is 2.246 in”. Using ANSYS, determine the deflection of each
joint, the stress in each member, and the reaction forces. Knowing that the second moment
of area is 4.090 in*, do you think that buckling is a concern for this truss? Verify your results.
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3 ft

4

609

5001b

9 ft

X

14. The three-dimensional truss shown in the accompanying figure is made of aluminum alloy
(E = 10.4 X 10°1b/in%) and is to support a sign weighing 1000 Ib. The Cartesian coordinates
of the joints with respect to the coordinate system shown in the figure are given in feet. The
cross-sectional area of each member is 3.14 in”. Using ANSYS, determine the deflection of
joint E, the stresses in each member, and the reaction forces. Verify your results.

1000 1b

ME (1.0,2.5,0)
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15.

16.

17.

18.

The three-dimensional truss shown in the accompanying figure is made of steel
(E = 29 X 10° psi) and is to support the load shown in the figure. The Cartesian coordi-
nates of the joints with respect to the system shown in the figure are given in feet. The cross-
sectional area of each member is 3.093 in%. Using ANSYS, determine the deflection of each
joint, the stresses in each member, and the reaction forces. Verify your results.

During a maintenance process on the three-dimensional truss in Problem 15, the AB member
is replaced with a member with the following properties: £ = 28 X 10° psiand A = 2.246 in>.
Using ANSYS, determine the deflection of each joint and the stresses in each member. Hint:
you may need to ask your instructor for some help with this problem or you may want to
study Example 6.2 (revisited) on your own to learn about how to assign different attributes
to an element in ANSYS.

During a maintenance process on the three-dimensional truss in Problem 13, members 4-5,
4-6,and 5-6 are replaced with steel members with the following properties: E = 29 X 10° psi
and A = 1.25in% Member 1-5 is also replaced with a steel member with a cross-sectional
area of 1.35 in®. Using ANSYS, determine the deflection of each joint and the stresses in each
member. See the hint given for Problem 16.

Derive the transformation matrix for an arbitrary member of a space truss, shown in the
accompanying figure. The directional cosines, in terms of the difference between the coordi-
nates of nodes j and i of a member and its length, are

X — X, Y, - Y, Z;— 7,
— cosfy = 5 cosf, =
L L L

cos Oy =

where L is the length of the member and is

L=VX X))+ -Y)+ (- 2Z)
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19. The three-dimensional truss shown in the accompanying figure is made of steel
(E = 29 X 10° psi) and is to support the load shown in the figure. Dimensions are given in
feet. The cross-sectional area of each member is 3.25 in?. Using ANSYS, determine the deflec-
tion of each joint, the stresses in each member, and the reaction forces. Verify your results.

Y
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20. Design Problem Size the cross section of each member for the outdoor truss structure shown
in the accompanying figure so that the end deflection of the truss is kept under 1 in. Select
appropriate material and discuss how you arrived at your final design.

Y

31t 250 16
z — l X

2 ft
3ft\/l25(m)\/



CHAPTER 4

Axial Members, Beams,
and Frames

The objective of this chapter is to introduce you to the analysis of members under axial
loading, beams, and frames. Structural members and machine components are generally
subject to a push—pull, bending, or twisting type of loading. We will discuss twisting or
torsion of structural members and plane stress formulation of machine components in
Chapter 10. The main topics discussed in this chapter include the following:

4.1 Members Under Axial Loading

4.2 Beams

4.3 Finite Element Formulation of Beams

4.4 Finite Element Formulation of Frames

4.5 Three-Dimensional Beam Element

4.6 An Example Using ANSYS

4.7 Verification of Results

4.1 MEMBERS UNDER AXIAL LOADING

In this section, we use the minimum total potential energy formulation to generate
finite element models for members under axial loading. However, before we proceed
with finite element formulation of axial members, we should define what we mean by
an axial element and corresponding shape functions and their properties.

A Linear Element

The structural example in this section is employed to introduce the basic ideas of one-
dimensional element and shape functions. Steel columns are commonly used to support
loads from various floors of multistory buildings, as shown in Figure 4.1. The column
shown in the figure may be divided into four elements and five nodes to generate a
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Actual
Load Load “Y S(ra(tjglc;ion
L L | )
K SV
(4)
o e
NAN KA NP
l l ©)
H K Y
() ﬁ%pro?dmate
i 2 | "
Il q°p
1)
3 .
po OOO&& ¢ 7o C)O'O& ~ Deflection value T

FIGURE 4.1 Deflection of a steel column subject to floor loading.

finite element model. The loading from the floors causes vertical displacements of
various points along the column. Assuming axial central loading, we may approximate
the actual deflection of the column by using a series of linear functions, describing the
deflection over each element or each section of the column. Note that the deflection
profile u represents the vertical (not the lateral) displacement of the column at various
points along the column. The profile is merely plotted as a function of Y. We have mod-
eled the example problem shown in Figure 4.1 by five nodes and four elements. Let us
focus our attention on a typical element, as shown in Figure 4.2.

~

u FIGURE 4.2 Linear approximation of
deflection variation for an element.

; R ——
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The linear deflection distribution for a typical element may be expressed as
u(e) = + C2Y (41)

In order to solve for the unknown coefficients ¢; and c¢,, we make use of the element’s
end deflection values which are given by the nodal deflections u; and u;, according to
the conditions

u = u at Y =Y, (4.2)

u = u at YZY]»

Substitution of nodal values into Eq. (4.1) results in two equations and two unknowns:

u, = c + aY;
u] - Cl + Czyv]‘ (43)
Solving for the unknowns ¢; and ¢,, we get
uin - qui 4 4
€ = Y, -~ Y, (4.4)
6= J Y (45)
Y, -,
The element’s deflection distribution in terms of its nodal values is
u,-Y]- - Lt]Yl u] - Lt,-
u® = (4.6)

+
V=Y, Y-y,

Grouping the u; terms together and the u; terms together, Eq. (4.6) becomes

Y - Y Y-Y.
© = (- 4 D u; 4.7
‘ <Y,~ - Yl->”‘ <Y,- - Y,)”f (*7)

We now define the shape functions, S; and S; using the terms in parentheses appearing
before u; and u;, according to the equations

Y,-Y Y, -Y

S, = = 4.8
Sy, ; (4.8)
R (49)

where ¢ is the length of the element. Thus, the deflection for an element in terms of the
shape functions and the nodal deflection values can be written as

u® = Su; + Su; (4.10)

Equation (4.10) can also be expressed in matrix form as

W = [8, Sﬂ{Z"} (4.11)

7
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It will become clear to you that we can use the same approach to approximate the spatial
variation of any unknown variable, such as temperature or velocity, in the same manner.
We will discuss the concept of one-dimensional elements and their properties in more
detail in Chapter 5.

As we discussed in Chapter 3, in finite element modeling, it is convenient to use
two frames of references: (1) a global coordinate system to represent the location of
each node, orientation of each element, and to apply boundary conditions and loads.
The nodal solutions of finite element models are generally expressed with respect to
global coordinates as well. On the other hand, we employ (2) a local coordinate system
to take advantage of the local characteristics of the system behavior.

For the one-dimensional element shown in Figure 4.2, the relationship between a
global coordinate Y and a local coordinate y is given by Y = Y; + y. This relationship
is shown in Figure 4.3. Substituting for Y in terms of the local coordinate y in Egs. (4.8)
and (4.9), we get

Yo-Y Y - (Y, +
son Y Y-ty oy 4.12)
¢ ¢ ¢
Y-V, (Yi+y)-Y, y
- _ _Y 4.1

where the local coordinate y varies from 0 to ¢; thatis,0 = y = ¢.

This is a good place to say a few words about the shape functions §; and S;. They
possess unique properties that, once understood, can simplify the derivation of stiff-
ness matrices. We now refer to Egs. (4.12) and (4.13) and note that §; and S; each has
a value of unity at its corresponding node and zero at the other adjacent node. For
example, if we evaluate S; at node i by substituting y = 0 in Eq. (4.12), we find that
S; = 1. Similarly, we can show that the value of §; at node j(y = €) is also 1. The value
of the shape function S, Eq. (4.12), at the adjacent node j(y = ¢) and S;, Eq. (4.13), at
its adjacent node i(y = 0) are zero. We discuss the properties of shape functions in more
detail in Chapter 5.

FIGURE 4.3 The relationship between a global coordinate
Y and a local coordinate y.
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EXAMPLE 4.1

Consider a four-story building with steel columns. One column is subjected to the load-
ing shown in Figure 4.4. Under axial loading assumption and using linear elements, the
vertical displacements of the column at various floor-column connection points were
determined to be

U 0

U, 0.03283

uy ¢ = —4 0.05784 2in
U, 0.07504

Us 0.08442

The modulus of elasticity of £ = 29 X 10°Ib/in? and area of A = 39.7 in* were used
in the calculations. A detailed analysis of this problem is given in the next section. For
now, given the nodal displacement values, we are interested in determining the deflec-
tions of points A and B.

a. Using the global coordinate Y, the displacement of point A is represented by
element (1):
Y,-Y Y-Y,

u® = §Ou; + SOy, = gt
15 - 10 10 -0
= 0) + (—0.03283) = —0.02188 i
30,000 Ib 30,000 Ib
5
I A
@ 8 ft
25,000 1b|f po’ 1125.0001b 15 ft ¥
4
Nl Yl
25,0001b{| @ 2500016 151t
3
AR 77—y
250001b|| (@) |[25,000 ft 15t
2
AN R | 74 \
A
Yy 1
" 1) 15 ft
T :
o 00'0" o's»oao

6. D0 T 0 . e T FIGURE 4.4 The column in Example 4.1.
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b. The displacement of point B is represented by element (4):

Ys—Y Y —-Y.
u® = SOu, + SPus = 5€ u; + ¢ !

Us

60 — 52 52 — 45
u = = (—0.07504) + = —(~0.08442) = ~0.079%41 in

Stiffness and Load Matrices

In this section, we use the minimum total potential energy formulation to generate the
stiffness and load matrices for members under axial loading. Previously, we showed
that under axial loading, we can approximate the exact deflection of the column
shown in Figure 4.1 by a series of linear functions. Moreover, as discussed in Section 1.6,
applied external loads cause a body to deform. During the deformation, the work
done by the external forces is stored in the material in the form of elastic energy, called
strain energy. For a member (element) under axial loading, the strain energy A is

given by
E 2
A= [ Zav= | Zav (4.14)
2 2
V %4

The total potential energy II for a body consisting of n elements and m nodes is the
difference between the total strain energy and the work done by the external forces:

n

IF:EN”—;EW (4.15)

e=1

The minimum total potential energy principle states that for a stable system, the dis-
placement at the equilibrium position occurs such that the value of the system’s total
potential energy is a minimum. That is,

oIl J < J &
— = A(e)—sziui=O fori =1,2,3,...,m (4.16)
du; o ;= u; =

where i takes on different values of node numbers. Recall that the deflection for an
arbitrary element with nodes i and j in terms of local shape functions is given by

M(E) == S,»u,- + S]Ltj (417)

where §; = 1 — % and §; = % and y is the element’s local coordinate, with its origin at
node i. The strain in each member can be computed using the relation ¢ = % as

du d d v y —u; + u
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Incorporating Eq. (4.18) into Eq. (4.14) yields the strain energy for an arbitrary
element (e):

A© / 7dV 7(14 +up — 2uju;) (4.19)

Minimizing the strain energy with respect to u; and ; leads to

N9 AE
al/li - 7(1/! B u)
N9 AE
= —(u; — u, 4.20
= g W (420)
or, in matrix form,
gA©
ou; AE| 1 =1 |y k  —k|Ju
= = ' 421
01 el Il S Bl LED
au;
where k = Y Minimizing the work done by external forces, the second term on the

right-hand side of Eq. (4.16) results in the load matrix
F.
Fl© =" 4.22
{F} { F } (4.22)

Computing individual elemental stiffness and load matrices and connecting them leads
to global stiffness and load matrices. This step is demonstrated by the next example.

EXAMPLE 4.2 A Column Problem

Consider a four-story building with steel columns. One column is subjected to the load-
ing shown in Figure 4.5. Assuming axial loading, determine (a) vertical displacements
of the column at various floor-column connection points and (b) the stresses in each
portion of the column. E = 29 X 10°1b/in?, A = 39.7 in%.

Because all elements have the same length, cross-sectional area, and physical prop-
erties, the elemental stiffness for elements (1),(2),(3), and (4) is given by

AE[ 1 —1]_397x29x10°0 1 -1 -1
K(‘?)=[ =[ = 6. xlﬁ[
[K] ¢ L-1 1 } 15 X 12 -1 1 6396107

KO = [K]® = [K]® = [K]“ = 6396 x 106[ ! . _ll}g’l
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30,000 Ib
s |
N T |
2500016 4 15 it
s 1
Nl Yl
25,000 1b|| 3 15 ft
al
AN R | 74 \
25,000 Ib|| (2) 15 ft
al
AR 77— Y
Y 1) 15 ft
} ]
- o = = -
SRR SRR FIGURE 4.5 A schematic of the column
) )
ﬁ 00 .OO' . O'Q ﬁ QO .OO' . o“; in Example 4.2.

The global stiffness matrix is obtained by assembling the elemental matrices:

1 -1 0 0 0
-1 1+1 -1 0 0
[K]© = 6.396 x 10°| 0 -1 1+1 -1 0
0 0 -1 1+1 -1
0 0 0 -1 1
The global load matrix is obtained from
F, 0
OF L F, 50000
{F}© = {ab’tl} =4 F; p = —< 50000 p 1b
Pl F, 50000
Fs 60000

Note all applied forces act in the negative Y direction. Application of the boundary
condition, ©; = 0, and loads results in

1 0 0 0 0 (u 0
-1 2 -1 0 0 ||luw 50000
6396109 0 -1 2 -1 0 [{usp=—{50000
0 0 -1 2 —1||u 50000

0 0 0o -1 1 us 60000
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Solving for displacements, we have

u 0

u, 0.03283

us; ¢ = —4 0.05784 ¢ in
Uy 0.07504

us 0.08442

The axial stresses in each element are determined from

E(u; —u;) 29 X 10°(—0.03283 — 0)

M — - _ in?
o ¢ 55X 12 5289 Ib/in
29 X 10°%(—0.05784 — (—0.03283
o? = ( ( ) _ —4029 1b/in?
15 X 12
29 X 10°%(—0.07504 — (—0.05784
o® = ( ( ) = —2771 Ib/in?
15 X 12
29 X 10°(—0.08442 — (—0.07504
o® = ¢ ( ) = —1511 Ib/in®

15 X 12

4.2 BEAMS

Beams play significant roles in many engineering applications, including buildings,
bridges, automobiles, and airplane structures. A beam is defined as a structural member
whose cross-sectional dimensions are relatively smaller than its length. Beams are com-
monly subjected to transverse loading, which is a type of loading that creates bending
in the beam. A beam subjected to a distributed load is shown in Figure 4.6.

In the previous chapter we defined trusses as structures consisting of two-force
members. Moreover, recall that when using a truss model to analyze a physical problem,
all loads are assumed to apply at the joints or the nodes of the truss. Therefore, no bend-
ing of the members are allowed. Note that for a structural member that is considered
as a beam, loads may be applied anywhere along the beam and the loading will create
bending in the beam. It is important to make these distinctions when modeling a physi-
cal problem.

The deflection of the neutral axis of a beam at any location x is represented by
the variable v. For small deflections, the relationship between the normal stress o at a

1
Load

y

X \% Neutral axis

FIGURE 4.6 A beam subjected to a distributed load.
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Positive bending and Negative moment
positive curvature and negative curvature

FIGURE 4.7 The positive and negative bending moments and curvature sign convention.

section, the bending moment at that section M, and the second moment of area / is given
by the flexure formula. The flexure formula is the equation
My

g = —T (4.23)

where y locates a point in the cross section of the beam and represents the lateral
distance from the neutral axis to that point. The deflection of the neutral axis v is also
related to the internal bending moment M(x), the transverse shear V(x), and the load
w(x) according to the equations

2
El% = M(x) (4.24)
&v  dM(x)
dv  dV(x)

Note that the standard beam sign convention is assumed in the previous equations. The
positive and negative bending moments and curvatures are shown in Figure 4.7. For
your reference, the deflections and slopes of beams under some typical loads for simply
supported and cantilevered supports are summarized in Table 4.1. If you come across
problems that can be analyzed using equations (4.24), (4.25), and (4.26) and Table 4.1,
solve them as such.

EXAMPLE 4.3

The cantilevered balcony beam shown in the accompanying figure is a wide-flange
W18 X 35, with a cross-sectional area of 10.3 in? and a depth of 17 7 in. The second moment
of area is 510 in*. The beam is subjected to a uniformly distributed load of 1000 Ib/ft.
The modulus of elasticity of the beam is E = 29 X 10° Ib/in”. Using the review materials
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presented in this section, we will determine the deflection of the beam at the midpoint
B and the endpoint C. We will also compute the slope of the beam at point C.

1000 Ib/ft

e A e B o (C

10 ft

The deflection equation for a cantilever beam is given in Table 4.1.

. —wx?
24E1

v (x> — 4Lx + 6L2%)

L
The deflection of the beam at midpoint corresponding to x = b is

2
—wx
vp = 5, (& = 4Lx + 6L7)

—(1000 Ib/ft) (5 ft)? (12 in )* .
= 52 — 4(10)(5) + 6(10))f)| == | = —0.052
24(29 X 10° Ib/in?) (510 in*) « (10)() + 6N ~ n

And the deflection of point C is

12in )’

Lo (1000167 (10 ft)“(lfltrl)
= - — —0.146 i

YT T8EI 829 x 10° Ib/in?) (510 in®) n

The maximum slope occurs at point C.

b mwL —(1000 Ib/ft) (10 ft)?
max 6EI -

T\~ 000163 rad
6(29 x 10° Ib/in?) (510 in*) <12m>

Let us also calculate the maximum bending stress in the beam. Because the maximum
bending moment occurs at point A, the maximum bending stress in the beam will occur
at point A. The resulting maximum bending stress at outer fiber of the beam at A is

u P G
12in\[17.7
(1000 1b/£6)(10 £0)(5 fO)| ——2 )( =L in
1fe \ 2 ,
o="2= = 10411 Ib/in’

1 510 in*
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4.3 FINITE ELEMENT FORMULATION OF BEAMS

Before we proceed with finite element formulation of beams, we should define what we
mean by a beam element. A simple beam element consists of two nodes. At each node,
there are two degrees of freedom, a vertical displacement, and a rotation angle (slope),
as shown in Figure 4.8.

There are four nodal values associated with a beam element. Therefore, we will use
a third-order polynomial with four unknown coefficients to represent the displacement
field. Moreover, we want the first derivatives of the shape functions to be continuous.
The resulting shape functions are commonly referred to as Hermite shape functions. As
you will see, they differ in some ways from the linear shape functions you have already
studied. We start with the third-order polynomial

V= F ox + oo’ + o’ (4.27)
The element’s end conditions are given by the following nodal values:

For node i: The vertical displacementatx =0 v = ¢, = U,

d
For node i: Theslopeat x =0 @
X

:CZZU.

L

x=0

For node j: The vertical displacementatx = L. v = ¢; + ¢,L + ¢;L* + ¢,L° = U
dv

For nodej: Theslopeat x = L I

= G + 203L + 3C4L2 = U12
x=L

We now have four equations with four unknowns. Solving for ¢, ¢,, c3, and ¢,; substitut-

ing into Eq. (4.27); and regrouping the U;;, Up, Uj;, U, terms results in the equation

v = SilUil + SiZUiZ + S}lU]l + S/'ZUjZ (428)
where the shape functions are given by
3 2
Sap =1~ PR S (4.29)
2 X
Spy=x——+ — 4.30
i2 X L L2 ( )
Uy U
y
Y U,y < Up <
L. e
x i8N\ \
\ j
L

FIGURE 4.8 A beam element.



Section 4.3 Finite Element Formulation of Beams 239

3 2

Sjl = ? - F (4.31)
» X

sz = —Z + P (4.32)

It is clear that if we evaluate the shape functions, as given in Egs. (4.29 through 4.32), at
node i at x = 0, we find that §;; = 1 and S, = §;; = S, = 0. Also, if we evaluate the

il
ds, ds; dSil deZ
= land =—=—=
X dx dx dx

If we evaluate the shape functions at node j at x = L, we find that S, =1
and §;; = S, = S, = 0, and if we evaluate the slopes of the shape functions at x = L,
determine that 7 = 1 and 1 = @52 _ B e va th
e determine that —— = 1 an = = —— = (. These values are the proper-
W dx dx dx dx v prop
ties of the Hermite third-order polynomials.
Now that you know what we mean by a beam element, we proceed with deriva-
tion of stiffness matrix. In the following derivation, we neglect the contribution of shear
stresses to the strain energy. The strain energy for an arbitrary beam element (e) then

becomes
2 2
A© = / 98 v = / —dV - /(—y dv> dv (4.33)
v dx?

oot £ (afpa

Recognizing the integral / y’dA as the second moment of the area I, we have
A

slopes of the shape functions at

2
A© = (Z ) dx (4.35)
x

Next, we substitute for the displacement field v in terms of the shape functions
and the nodal values. Let us begin by evaluating the equation

Ua
dzv dz UiZ
Al d [Sa Sa S Spl U, (4.36)
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To simplify the next few steps of derivation and to avoid unnecessary mathematical
operations, let us make use of matrix notations. First, let the second derivatives of the
shape functions be defined in terms of the following relationships:
a’s; 6 12x
Dy = 721l =2t
dx L L
a’s;, 4 6x

D, = = —— 4+ =
2 dx L 12
25, (4.36a)
D, =t — 6 1%
2 dx2 12 L3
D — szjZ _ _g+6l
2 ax? L 12
Then, Eq. (4.36) takes on the compact-matrix form of
d*v
o2~ PHU} (4.37)
Ui
Up
il
Up
d*v \?
The <dz> term can be represented in terms of the { U} and [D] matrices as
X
d*v \?
<dx2> = (ID{U})(D]{U}) = {U}'[D]'[D]{U} (4.38)

In Eq. (4.38), note that [D]{U} ={U}’[D]”. The proof of this identity is left as an
exercise for you to complete. See Problem 26 at the end of this chapter. Thus, using
Eq. (4.38) the strain energy for an arbitrary beam element is

L
A© = % /0 {U}TD]'[D]{U }dx (4.39)

Recall that the total potential energy II for a body is the difference between the total
strain energy and the work done by the external forces:

I =3A® - 3FU (4.40)

Also recall that the minimum total potential energy principle states that for a stable
system, the displacement at the equilibrium position occurs such that the value of the
system’s total potential energy is a minimum. Thus, for a beam element, we have

a9 9
——=—3AN9 - —SFU=0 fork=1,2,3,4 4.41
T U oET e (441)

where Uy takes on the values of the nodal degrees of freedom U, Uy, U;;, and U,.

Equation (4.40) has two main parts: the strain energy, and the work done by external
forces. Differentiation of the strain energy with respect to the nodal degrees of freedom
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leads to the formulation of the beam’s stiffness matrix and differentiation of the work
done by external forces results in the load matrix. We begin minimizing the strain energy
with respect to Uy, Uy, Uy, and U, to obtain the stiffness matrix. Starting with the strain
energy part of the total potential energy, we get

FING,
oU,

L
= EI / [D]’[D]dx{U} (4.42)
0

Evaluating Eq. (4.42) leads to the expression

12 6L —12 6L Uy

EI| 6L 4.2 —6L 2L* || U,

; L
oA EI/ [D][D]dx{U} = —
0

aU,

L} -12 —6L 12 —6L || U,
oL 21> —oL 4> (U,

The stiffness matrix for a beam element with two degrees of freedom at each node —the
vertical displacement and rotation—is

12 6L -12 6L
kj© = EL| 6L 4L —6L 2L’
L} -12 —6L 12 —6L

6L 21> —6L 4L°

Starting with Egs. (4.39) and (4.41), proof of steps leading to Egs. (4.42) and (4.43) is
left as an exercise for you to perform. See Problem 27,

(4.43)

Load Matrix

There are two ways in which we can formulate the nodal load matrices: (1) by mini-
mizing the work done by the load as stated above, and (2) alternatively by computing
the beam’s reaction forces. Consider a uniformly distributed load acting on a beam of
length L, as shown in Figure 4.9. The reaction forces and moments at the endpoints are
also shown in the figure.

Using the first approach, we can compute the work done by this type of loading
from f , wv dx. The next step involves substituting for the displacement function in
terms of the shape functions and nodal values, and then integrating and differenti-
ating the work term with respect to the nodal displacements. This approach will be

M, M,

FIGURE 4.9 A beam element subjected
R, R, to a uniform distributed load.
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demonstrated in detail when we formulate the load matrix for a plane stress situation.
In order to expose you to as many finite element formulations as possible, let us develop
the load matrix using the alternate approach, starting with Eq. (4.26):

d*v dV(x)
El— = =
dx* dx w(x)
For a uniformly distributed load, w(x) is constant. Integrating this equation, we get
d*v
Elﬁ = —wx + ¢ (4.44)
Applying the boundary condition (at x = 0, V(x) = R, and using Eq. (4.25))
d3
EI d—z = Ry, we find that ¢;, = R;. Substituting for the value of ¢, and integrating
X 1x=0
Eq. (4.44) we obtain
d*v wx?
Elﬁ == _T + Rlx + Cy (445)
Applying the boundary condition (at x = 0, M(x) = —M,, and using Eq. (4.24))
d2
EI d—x‘; B = —M,, we find that ¢, = —M,. Substituting for the value of ¢, and integrat-
ing, we obtain
dv wx® R
EIE = _T + ; — Mx + ¢ (446)

Applying the boundary condition (zero slope at x = 0) % =0 = 0, we find that c; = 0.
Integrating one last time, we have
wx' R’ My’

= +
Elv 24 6 2

+ ¢y (4.47)

Applying the boundary condition (zero deflection at x = 0) »(0) = 0, we deter-
mine that ¢, = 0. To obtain the values of R, and M,, we can apply two additional
boundary conditions to this problem: %]x: . = 0and v(L) = 0. Applying these condi-
tions, we get

d I3 RIL?
—dz oy = —w6 P ML =0 (4.48)
L4 RL® M,
o(L) = —“;4 P =0 (4.49)

L L?
Solving these equations simultaneously, we get R; = wT and M, = % From the

symmetry of the problem —that is, applying the statics equilibrium conditions —we find
L L2
that the reactions at the other end of the beam are R, = wT and M, = % All of the

reactions are shown in Figure 4.10.
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wlL? wl?
M= M=
<’ \->
R, = wL R,— wL  FIGURE 4.10 Reaction results for a beam
2

2 subjected to a uniformly distributed load.

If we reverse the signs of the reactions at the endpoints, we can now represent the
effect of a uniformly distributed load in terms of its equivalent nodal loads. Similarly,
we can obtain the nodal load matrices for other loading situations. The relationships

between the actual load and its equivalent nodal loads for some typical loading situa-
tions are summarized in Table 4.2.

TABLE 4.2 Equivalent nodal loading of beams

Loading Equivalent Nodal Loading

g
g
™~
g

[N

wlL? wlL?
12 12
w 3wl TwL
20 20
wL?
L 20

f—
(2 | (>
o

EXAMPLE 4.3 Revisited

Let us consider the cantilevered balcony beam of Example 4.3 again and solve it using
a single beam element. Recall that the beam is a wide-flange W18 X 35, with a cross-
sectional area of 10.3 in? and a depth of 17.7 in. The second moment of area is 510 in®.
The beam is subjected to a uniformly distributed load of 1000 Ib/ft. The modulus of
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elasticity of the beam E = 29 X 10°Ib/in’. We are interested in determining the deflec-
tion of the beam at the midpoint B and the endpoint C. Also, we will compute the

maximum slope that will occur at point C.

1000 Ib/ft

B

10 ft

Because we are using a single element to model this
and load matrices are the same as the global matrices.

12

@ _ El| 6L
L3 —12

6L

6L

412
—6L
217

—-12
—6L
12
—6L

6L

217
—6L
417

K] = K]

EI| 6L
| -12
6L

412
—6L
212

Applying the boundary conditions U;; = 0 and U;, =

1 0 0 0 U,
EI| 0 1 0 0 U,
L3 —12 —6L 12 —6L || Uy

6L 212 —6L 412 || U,

problem, the elemental stiffness

( wL)
2
wlL?

A G _ 12

(F}O = (Fy@ = 2
2
wl?

. 12 )
4 wL\
2
wl?
) 12
B wlL
2
wL?
| 12

Vs

0 at node 1, we have

0

0

wlL
2
wl?

12
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And simplifying, we get

wlL
[12 —6L:|{U21}_L3 2
—6L 412 |\Uy,J  EI| wL?

12

1000(10)

[ 12 —6(10 ft)} {U21} 3 (10 ft)? )
- 2 B 2 (1000) (10)>
60Ty 401" J (U (29 X 10° Ib/in®) (510 in*) (1; f;) (00 or 00?2( 0

The deflection and the slope at endpoint C is
U, = —0.01217 ft = —0.146in and U,, = —0.00163 rad
To determine the deflection at point B, we use the deflection equation for the beam

element and evaluate the shape functions at x = 3

v =8,U; + SpUp + 55Uy + $»Ux

Computing the values of the shape functions at point B, we have
o 3 20 _3(LV 2(LYy _1
o L 1\2 L\ 2 2

LY’ LY}
x? N x? <2> <2> L

S = —_—— —_—= —_—— = —_——
2 L L? L L2 8

1 120 in.
vy <2> (—0.146 in) + (— Sm >(—0.00163 rad) = —0.048 in
Comparing results of our finite element model to the exact solutions given in
Example 4.3, we note that they are in good agreement. We could improve our results
for the midpoint deflection by using a model that uses two elements. We have left this
as an exercise for you.

EXAMPLE 4.4

The beam shown in Figure 4.11 is a wide-flange W310 X 52 with a cross-sectional area
of 6650 mm?” and depth of 317 mm. The second moment of the area is 118.6 X 10°mm®*.
The beam is subjected to a uniformly distributed load of 25,000 N/m. The modulus of
elasticity of the beam is E = 200 GPa. Determine the vertical displacement at node 3
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25,000 N/m
ol 02 e3
Sm ‘ 25m FIGURE 4.11 A schematic of the beam
‘ in Example 4.4

and the rotations at nodes 2 and 3. Also, compute the reaction forces and moment at
nodes 1 and 2.

Note that this problem is statically indeterminate. We will use two elements to rep-
resent this problem. The stiffness matrices of the elements are computed from Eq. (4.43):

12 6L -12 6L
j© = EL| oL 417 —6L 2L7
L|-12 -6L 12 —6L

6L 217 —6L 4L°
Substituting appropriate values for element (1), we have
12 6(5) -12 6(5)
200 X 10° X 1.186 X 107*| 6(5) 4(5)*> —6(5) 2(5)°
5° -12 —6(5) 12 —6(5)
6(5) 2057 —6(5) 4(5)

For convenience, the nodal degrees of freedom are shown alongside the stiffness matri-
ces. For element (1), we have

2277120 5692800  —2277120 5692800 |Uy,
5692800 18976000 —5692800 9488000 |U,,
—2277120 —=5692800 2277120  —5692800 |U,,
5692800 9488000  —5692800 18976000 |U,,

Computing the stiffness matrix for element (2), we have

K]V =

K]V =

12 625  —12  6(25)
K@ = 200X 10° X 1.186 X 107 | 6(2.5) 4257 -6(25) 2(25)
K™= (2.5)° —12 —6(2.5) 12 —6(2.5)

6(2.5) 2(25)° —6(2.5) 4(2.5)
Showing the nodal degrees of freedom alongside the stiffness matrix for element (2),
we have
18216960 22771200  —18216960 22771200 |Uy
22771200 37952000  —22771200 18976000 (U,
—18216960 —22771200 18216960  —22771200 |Us,
22771200 18976000  —22771200 37952000 |Us;,

[K]® =
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Assembling [K]® and [K]® to obtain the global stiffness matrix yields

[ 2277120 5692800
5692800 18976000
K]© — —2277120  —5692800
5692800 9488000
0 0
0 0

—2277120 5692800
—5692800 9488000
20494080 17078400
17078400 56928000
—18216960 —22771200
22771200 18976000

247
0 0 ]
0 0
—18216960 22771200
—22771200 18976000
18216960  —22771200
—22771200 37952000 |

Referring to Table 4.2, we can compute the load matrix for elements (1) and (2). The
respective load matrices are

{F} =

{F}® =

(

\

wL )

2
wlL?
12
wL
2
wl?
12

wlL
2
wlL?
12
wlL
2
wl?
12

J

(25X 10° X 5 )
a 2
25 X 10° X 52
_ - 12
B 25 X 10° X 5
a 2
25 X 10° x 57
\ 12 Vs

2

25 X 10° X 2.5?
12

25 X 10° X 2.5
2

25 X 10° X 2.5?
12

(25 % 10° x 25 )

—62500

—52083

—62500
52083

—31250

—13021

—31250
13021

Combining the two load matrices to obtain the global load matrix, we obtain

{F}(G) =

\

,

~62500
~52083
—62500 — 31250
52083 — 13021
~31250
13021 )

—62500
—52083
—93750
39062
—31250
13021
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Applying the boundary conditions U;; = U, = 0 atnode 1 and the boundary condition
U,; = 0 at node 2, we have

1 0 0 0 0 0 Uy, ) 0
0 1 0 0 0 0 Uy, 0
0 0 1 0 0 0 Uy, 0
5692800 9488000 17078400 56928000 —22771200 18976000 39062
0 0  —18216960 —22771200 18216960 —22771200 —31250
0 0 22771200 18976000 —22771200 37952000 | 13021

U32 J

Considering the applied boundary conditions, we reduce the global stiffness matrix and
the load matrix to

39062
—31250
13021

18976000
—22771200
37952000

56928000
—22771200
18976000

—22771200
18216960
—22771200

U22
l]3 1
U32

Solving the three equations simultaneously results in the unknown nodal values. The
displacement result is

[U"=[0 0 0 —00013723(rad) —0.0085772(m) —0.004117(rad)]

We can compute the nodal reaction forces and moments from the relationship
{R} =[K][{U} - {F} (4.50)

where { R } is the reaction matrix. Substituting for the appropriate values in Eq. (4.50),
we have

[ 2277120

5692800

—2277120

5692800
0

M; ) 0

5692800
18976000
—5692800

9488000

0
0

—2277120
—5692800
20494080
17078400
—18216960
22771200

5692800
9488000
17078400
56928000
—22771200
18976000

0
0
—18216960
—22771200
18216960
—22771200

0
0
0

—0.0013723
—0.0085772
L —0.0041170

0
0
22771200
18976000
—22771200
37952000 |

1 ([ —62500)
—52083
—93750
39062
—31250
13021
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Performing the matrix operation results in the following reaction forces and moments
at each node:

R, ) 54687(N)
M, 39062(N - m)
Ry | ) 132814(N)
M, [ 0

R, 0

M3 J \ 0

Note that by calculating the reaction matrix using the nodal displacement matrix, we
can check the validity of our results. There is a reaction force and a reaction moment
at node 1; there is a reaction force at node 2; there is no reaction moment at node 2,
as expected; and there are no reaction forces or moments at node 3, as expected. The
accuracy of the results is discussed further in Section 4.7

EXAMPLE 4.4 Revisited

We will now show how to use Excel to set up and solve Example 4.4.

1. In cell Al type Example 4.4, and in cells A3, A4, and A5 type E=,I=,and w=
as shown. After inputting the value of E in cell B3, select B3 and in the “Name
Box” type E and hit the Return key. Similarly, after inputting the values of I and
w in cells B4 and B5 select B4 and BS and in the corresponding “Name Box”
type I and W. Next, create the table shown with the element and node numbers,
Length, I, and E as shown.

+ - Ja o AR
i ] & 3 C i 3 i 1 3 K L M [

ivie

1 Exnmple 4.4
B - [CGoe o
o - LLIE-01 ]

5| w- 25000 ¥im

L

7

&

2

s

Lilsrisnl Mol § Sl Lanih () 1im*) 1 {Ihdim2)
2l ik 2 5 LI9E-01  2.00E+11
2 3 25 119004 2000

2. Next compute [K1] and [K2] as shown and name them Kelement1 and Kelement2.
To create [K1], select the range H16: K19 and type

= (E*I/Length1*3)*C16:F19

and while holding down the Ctrl and Shift keys, press the Return key. Create [K2]
in a similar way.
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Kelemerll - Fe 4TV Leruh 1431 C16:T13} [
A L3 5 n F r H L} Ll [ M ™ :'
m
11 12 841, -1z .
17 B4 4o B4, 201t =
13 K- ot B F a7 12 .
14 6L R -6°L an/”
1
1t 12 il -1z £ (277,120 S AUREHN SEETTIAN S A R
17 £t 100 - 50 FAY2EOD  1ENTEOU0 -FEUIEUE  9AEEO00
e K- e’ -2 450 12 ET — 22TTAN0 5692800 22TTAZ0 5692800
1 il il -l 1l _SGULEDD  BARRDNN  -SAULEDN 1EETE DD
e
”n 12 15 -12 15
2 15 25 -15 125
s [E21= 1 e by -12 -15 12 -5 =
2 15 165 -15 15 LTI THSTRMNN -2
f"‘ D s I i o s i = | W[
azay 0 SrrGe BTEMD Cowk o Sum 36223060 [T L i

3. Now create the {F1} and {F2} elements and name them Felement1 and Felement2.

To create {F1}, select cell D26 and type =

= —w*Length172/12, and so on.

—w*Length1/2, and in cell D27 type

D26 - | --wlenghi/2 ~
n b & b 5 H I I ¥ L M=

Las
it -31250 0
& 52083 -13021
m - - 62500 e - 31250
Fal I E 13021
iy i, s & S oo
+ A ¥ ¥ | sheet) oEaec | Sheots ta 14 - | )
aeaty I |EE 2 E smos =) []

4. Next,create the [A1] and [A2] matrices and name them Aelementl and Aelement2
as shown. If you have forgotten what the A matrices represent, see Section 2.5,

Equation (2.9).
| aclementt -1 Lo !
i o T (i) [ 3 P | i | | K L 1 M =
0
41 1 ) 0 it ) i
= o i 0 a W 0
T i il 1 i il o C
B 0 0 0 i 0 a
5
k3 0 o 1 Q 0 o
1 ) ) o 1 o i
W |AZ]— n ) n i 1 i
e ) 0 b i n 1
a0 -
3 AW Shert) S Ehects D 41 = [ 3K
feacty 70 Aotrzee DLCHIGEET  Smm B Samid rﬁ_‘l.l [T Ll £

5. We now create the stiffness matrix for each element (with their proper positions
in the global matrix) and name them K1G and K2G. For example, to create [K]'C,

select B41:G46 and type

=MMULT(TRANSPOSE (Aelementl), MMULT (Kelement1,Aelementl))
and while holding down the Ctrl and Shift keys, press the Return key. In a similar

way, create [K

]2G

, as shown.
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= i B |{-MMULTfI'I'U'nNSFDSE|.'\eIerrmr|l1].MMULTl'KﬁIeln:nll.?\tel:nlerlll]|l

LK

o i} o bl [x] 1}
i 1} o o [x] 1}
i 1} 18216060 22771200 -13216.960 22,771,200

n il LTI ATESLO00 -ZLTTUIN 1R5TEO0
il i IBZT8860 22,771,200 1 %
0 i 2LITLAN TRYTALON LTI ATHSLO0

WA R b sheedl Sl desn T

bty |1

6. The {F}'C and {F}*C matrices are computed next. To create {F}'C select the range
B55:B60 and type

=MMULT(TRANSPOSE(Aelementl),Felement1)

and while holding down the Ctrl and Shift keys, press the Return key. Name this
range F1G and in a similar way create {F}*® and name it F2G.

LAl u ﬁ [ LRI I(IHnN"l‘llﬁklnrlnmnmll,!-ﬂnmnnﬂ}] -l
| 3 | r | G Tl 1 1 [4 L M N |
-62,500 a
1}
10 e =1Lz
1,021 I
R
ol -
|5 sheenn  Siams simen 43 L
bt

7. Create the final global stiffness and load matrices. Select the range B62:G67 and
type
=K1G +K2G

and while holding down the Ctrl and Shift keys, hit the Return key. Name this
range KG. In a similar way, create the global load matrix and name it FG.
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8. Apply the boundary conditions. Copy the appropriate portion of the KG matrix
and paste it in the range C76:E78 as values only. Name the range KwithappliedBC.
Similarly, create the corresponding load matrix in the range C80:C82 and name it

FwithappliedBC.

Kwithsppliedc = (2 #| ss320000
A [ v T - 0 ¢ | 8 [ 00 v | &

N

Fi

77 [Fowlth applied RCTE—
78

[0

i)

414K with applied BC®

L)

T | o
Ayamon 606368 Cot D Sum Topadlce B o =) [l act e

aeay H |

9. Select the range C84:C86 and type
= MMULT(MINVERSE (Kwithapplied BC),FwithappliedBC)

and while holding down the Ctrl and Shift keys, press the Return key. Moreover,
as shown, copy the values of {U partial} and add the boundary conditions U11 = 0,
U12 = 0,and U21 = 0 into cells C88:C93. Name this matrix, UG.
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10. Calculate the reaction forces and moments. Select the range C95:C100 and type
= (MMULT(KG,UG)-FG)
and while pressing the Ctrl and Shift keys, press the Return key.
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The complete Excel sheet is shown next.
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4.4 FINITE ELEMENT FORMULATION OF FRAMES

Frames represent structural members that may be rigidly connected with welded joints
or bolted joints. For such structures, in addition to rotation and lateral displacement, we
also need to be concerned about axial deformations. Here, we focus on plane frames. The
frame element, shown in Figure 4.12, consists of two nodes. At each node, there are three
degrees of freedom: a longitudinal displacement, a lateral displacement, and a rotation.
Referring to Figure 4.12, note that u;; represents the longitudinal displacement and u;,
and u;; represent the lateral displacement and the rotation at node i, respectively. In the same
manner, u,, Up, and u; represent the longitudinal displacement, the lateral displacement,
and the rotation at node j, respectively. In general, two frames of reference are required
to describe frame elements: a global coordinate system and a local frame of reference. We
choose a fixed global coordinate system (X, Y') for several uses: (1) to represent the location of
each joint (node) and to keep track of the orientation of each element using angles such as 6;
(2) to apply the constraints and the loads in terms of their respective global components;
and (3) to represent the solution. We also need a local, or elemental, coordinate system to
describe the axial-load behavior of an element. The relationship between the local coordi-
nate system (x, y) and the global coordinate system (X, Y) is shown in Figure 4.12. Because
there are three degrees of freedom associated with each node, the stiffness matrix for the
frame element will be a 6 X 6 matrix. The local degrees of freedom are related to the global
degrees of freedom through the transformation matrix, according to the relationship

[u] = [T][U] (4.51)
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Y Uj

FIGURE 4.12 A frame element.

where the transformation matrix is

[ cos® sin® 0 0 0 0
—sinf cos® O 0 0 0
0 0 1 0 0 0
Tl = 4.52
[T] 0 0 0 cos® sinf O (4.52)
0 0 0 -—sinf® cosf O
L0 0 0 0 0 1]

In the previous section, we developed the stiffness matrix attributed to bending for a
beam element. This matrix accounts for lateral displacements and rotations at each node and is

Un Up Uz Uy Uy Uz

0 0 0 0 0 0 U

0 12 6L 0 —12 6L | up
o B0 6L 412 0 —6L 202 | u; (4.53)
(K = I3]0 0 0 0 0 0 U

0 —-12 —-6L 0 12 —6L | up

L0 6L 2L 0 —6L 4I? Jougs

To represent the contribution of each term to nodal degrees of freedom, the degrees of
freedom are shown above and alongside the stiffness matrix in Eq. (4.53). In Section 4.1
we derived the stiffness matrix for members under axial loading as

Up Up Uz U Up U
[ AE AE
T 0 0 —T 0 O Uy
0 0 0 0 0 O Up
K, =| 0.0 0 0 0 0l (4.54)
axial AE AE
—T 0 0 T 0 O ujl
0 00 0 0 0lu
L0 0 0 0 0 0u
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Adding Egs. (4.53) and (4.54) results in the stiffness matrix for a frame element with
respect to local coordinate system x, y

r AE AFE .
- 0 0 -7 0 0
0 12EI  6EI  _12EI 6EI
L3 L2 L3 L2
o GEL 4EL . G6EI 2Ll
L? L L? L
K]© = 4.55
(K] E E (4.55)
Y o7 0 0
o _I2EI_6EI 12EI  6EI
L3 L2 L} 12
o S6EL 2B . G6EI 4Ll
L L? L L? L -

Note that we need to represent Eq. (4.55) with respect to the global coordinate sys-
tem. To perform this task, we must substitute for the local displacements in terms
of the global displacements in the strain energy equation, using the transformation
matrix and performing the minimization. (See Problem 4.13.) These steps result in
the relationship

[K]© = [T)[K][T] (4.56)

where [K]© is the stiffness matrix for a frame element expressed in the global coor-
dinate system X, Y. Next, we will demonstrate finite element modeling of frames with
another example.

EXAMPLE 4.5

Consider the overhang frame shown in Figure 4.13. The frame is made of steel, with
E = 30 X 10°Ib/in®. The cross-sectional areas and the second moment of areas for the
two members are shown in Figure 4.13. The frame is fixed as shown in the figure, and
we are interested in determining the deformation of the frame under the given distrib-
uted load.

We model the problem using two elements. For element (1), the relationship
between the local and the global coordinate systems is shown in Figure 4.14.

Similarly, the relationship between the coordinate systems for element (2) is shown
in Figure 4.15.

Note that for this problem, the boundary conditions are U;; = Uy, = U3 =
U;, = Uy, = Us; = 0. For element (1), the local and the global frames of reference
are aligned in the same direction; therefore, the stiffness matrix for element (1) can be
computed from Eq. (4.55) resulting in
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800 Ib/ft
A =7.65in2
1 =204 in*
9 ft
A =17.65in?
1 =204 in*
10 ft

FIGURE 4.13 An overhang frame supporting a distributed load.
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Uy Uy
y
Y > 3
T “13 X un = Un
X 1 g_
1/ 1) 2
FIGURE 4.14 The configuration of element (1).
19125 0 0 19125 0 0 |
0 42.5 2550 0 —42.5 2550
KO = 10° 0 2550 204000 0 —2550 102000
—1912.5 0 0 1912.5 0 0
0 —42.5 —=2550 0 42.5 —2550
. 0 2550 102000 0 —2550 204000 |
For element (2), the stiffness matrix represented with respect to the local coordinate system is
[ 2125 0 0 —2125 0 0
0 58.299 3148.148 0 —58.299 3148.148
148.14 22 —3148.14 11
K]® = 10° 0 3148.148 6666 0 3148.148 3333
4 —2125 0 0 2125 0 0
0 —58.299 —3148.148 0 58.299 —3148.148
0 3148.148 113333 0 —3148.148 226666
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T Uy
X 2% U

Uz

(@)

Us3

[S8)

Uz

131 FIGURE 4.15 The configuration of element (2).

For element (2), the transformation matrix is

[ cos(270)  sin(270) 0 0 0 0
—sin(270) cos(270) 0 0 0 0
0 0 1 0 0 0
] = 0 0 0 cos(270)  sin(270) 0
0 0 0 —sin(270) cos(270) 0
0 0 0 0 0 1]
[0 -1 0 0 0 O]
1 0 00 0 0
0 0 1.0 0 0
=19 0 00 -1 o0
0 0 01 0 0
0 0 0 0 0 1]

The transpose of the transformation matrix is

0 1.0 0 0 0]
-1 0 0 0 0 0
0 01 0 0 0
T|” =
[T] 0 00 0 1 0
0 0 0 -1 0 0
L0 0 0 0 0 1]
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Substituting for [T]”, [K]$), and [T] into Eq. (4.56), we have
0 10 0 00][2125 0 0 -2125 0 0 |
-100 0 00 0 58.299 3148.148 0 —58.299 3148.148
K] = 10° 001 0 00 0 3148.148 226666 0 —3148.148 113333
0 00 0 10]|—-2125 0 0 2125 0 0
0 00-100 0 —58299 —3148.148 O 58.299  —3148.148
L0 00 0 01| 0 3148.148 113333 0 —3148.148 226666
0 -1 0 0 0 0]
1 0 0 0 0 O
0 0 1 0 0 O
0O 0 0 0 -1 0
0O 0o o0 1 0 O
Lo 0 0 0 0 1]
and performing the matrix operation, we obtain
[ 58.299 0 3148.148 —58.299 0 3148.148 |
0 2125 0 0 —2125 0
K = 10° 3148.148 0 226666 —3148.148 0 113333
—58.299 0 —3148.148 58.299 0 —3148.1480
0 —2125 0 0 2125 0
| 3148.148 0 113333 —3148.148 0 226666
Constructing the global stiffness matrix by assembling [K]" and [K]®, we have
[ 1912.5 0 0 -1912.5 0 0
0 42.5 2550 0 —42.5 2550
0 2550 204000 0 —2550 102000
—1912.5 0 0 1912.5 + 58.299 0 0 + 3148.148
[K]© = 10° 0 —42.5 —2550 0 42.5 + 2125 —2550
0 2550 102000 0 + 3148.148 —2550 204000 + 226666
0 0 0 —58.299 0 —3148.148
0 0 0 0 —2125 0
L0 0 0 3148.148 0 113333
0 0 0 ]
0 0 0
0 0 0
—58.299 0 3148.148
0 —2125 0
—3148.148 0 113333
58.299 0 —3148.1480
0 2125 0
—3148.148 0 226666
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The load matrix is

(0 ( 0 )
wL 800 x 10
2 2 0
wl? 800 X 102 X 12 —4000
o 2\ 12 ~} —80000
me = 0 B 0 B 0
wlL 800 % 10 —4000
2 2 80000
wl> 800 X 10% X 12
\ 12 ) \ 12 )

In the load matrix, the force terms have the units of 1b, whereas the moment terms
have the units of Ib - in. Application of the boundary conditions (U;; = U}, = U3 =
Us, = Uy, = Us; = 0) reduces the 9 X 9 global stiffness matrix to the following 3 X 3

matrix:
1970.799 0 3148.148 Uy, 0
10° 0 2167.5 —2550 U,, ; = § —4000
3148.148 —2550 430666 Uy, 80000

Solving these equations simultaneously results in the following displacement matrix:
[U"=[0 0 0 —0.0002845(in) —0.0016359(in) 0.00017815(rad) 0 0 0]
This problem will be revisited later in the chapter and solved with ANSYS.

4.5 THREE-DIMENSIONAL BEAM ELEMENT

ANSYS’s three-dimensional beam elements are suited for situations wherein the beam
may be subjected to loads that can create tension, compression, bending about different
axes, and twisting (torsion). At each node, there are six degrees of freedom, displace-
ments in X-, Y-,and Z-directions, and rotation about X-, Y-,and Z-axes. A seventh degree
of freedom (warping magnitude) is optional. Therefore, absent a seventh degree the
elemental matrix for a three-dimensional beam element is a 12 X 12 matrix. ANSYS’s
three-dimensional elastic beam element is shown in Figure 4.16.

The element input data include node locations, the cross-sectional properties, and
the material properties. Note that BEAMI188 element is defined by two or three nodes.
For user control of the element orientation about the element x-axis use the third node
option. The third node (K), if used, defines a plane (with I and J) containing the ele-
ment x and z axes (as shown in Figure 4.16). Also see Example 4.6. The input data for
BEAMI188 is summarized below:

Nodes

I, J, K (K orientation node is optional)



Section 4.5 Three-Dimensional Beam Element 261

S X \ FIGURE 4.16 BEAMI188 element, the three-
V4 NGO

dimensional elastic beam element used by ANSYS.

Degrees of Freedom

UX, UY, UZ (displacements in X, Y, and Z-directions)

ROTX (rotation about X-axis), ROTY (rotation about Y-axis), ROTZ (rotation
about Z-axis)

Section Properties

The section properties may be inputted directly or calculated by ANSYS. They
include: Area of section; Moment of inertia about Y and Z axes; Product of inertia;
Warping constant; Torsional constant; Y and Z coordinates of centroid; and shear
deflection constant.

Material Properties

EX (modulus of elasticity), ALPX (Poisson’s ratio), DENS (density), GXY
(shear modulus), DAMP (damping)

Surface Loads

Pressures

face 1 (I — J) (—Z normal direction)
face 2 (I — J) (=Y normal direction)
face 3 (I — J) (+X tangential direction)
face 4 (I) (+X axial direction)

face 5 (J) (—X axial direction)

(use negative value for opposite loading)

Stresses

As you will see in Example 4.6, to review stresses in beams, you must first copy these
results into element tables, and then you can list them or plot them. These items are
obtained using item label and sequence numbers. BEAM188 output includes stress
values—examples of these stresses are given in Table 4.3.
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TABLE 4.3 Examples of stresses computed by ANSYS

SDIR Axial direct stress

SBYT Bending stress on the element + Y side of the beam
SBYB Bending stress on the element — Y side of the beam
SBZT Bending stress on the element + Z side of the beam
SBZB Bending stress on the element — Z side of the beam

TABLE 4.4 Item and sequence numbers for the BEAM188 element

Name Item 1 J

SDIR SMIC 31 36
SBYT SMIC 32 37
SBYB SMIC 33 38
SBZT SMIC 34 39
SBZB SMIC 35 40

Once you decide which stress values you want to look at, you can read them into a
table using item labels and sequence numbers. Examples of the item labels and sequence
numbers for BEAM188 are summarized in Table 4.4. See Example 4.6 for details on how
to read stress values into a table for a beam element.

4.6 AN EXAMPLE USING ANSYS

ANSYS offers two beam elements that can be used to model structural problems.

BEAMI18S is a 3-D element with tension, compression, and bending capabilities.
The element has six degrees of freedom at each node: translation in the x- and y-directions
and rotation about the z-axis and rotation about X-, Y-, and Z-axes. The element input
data include node locations, cross-sectional properties, and the material properties.
Output data include nodal displacements and additional elemental output. Examples
of elemental output are given in Table 4.3. BEAM189 is a quadratic three-node element
in 3-D. It is suited for analyzing slender to stubby/thick beam structures.

EXAMPLE 4.6

Consider the cantilever beam shown in the accompanying figure. The beam is made of
an aluminum alloy, with E = 10 X 10° Ib/in®. The cross-sectional area and the applied
loads are also shown in the figure. We will use ANSYS’s Beam188 to solve this problem
and compare the results with those of beam theory.
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Y
/l; X
z
z _
Py=501b P,=751b
4iny y
' 4in Py =1001b
2 36in H
2in
.
21in

® (beam orientation node)

3
i i
1 2

To solve this problem using ANSY, first, we need to make sure that the beam cross-
section is oriented in the way we want. Note that the beam element’s cross-section axes
(as shown in the accompanying figure) are oriented differently from those of the global
axes. Pay close attention to the orientation of the element’s cross-section axes, y and z,
and the orientation of the global Y and Z axes. When analyzing beam problems, using
ANSYS, it is good practice to make use of the orientation node k to define the orien-
tation of a beam element. The orientation node k defines a plane (with nodes i and j)
containing the element x and z-axes (see Figure 4.16). If you do not define an orienta-
tion node, the default orientation of the element y-axis is automatically calculated to be
parallel to the global X-Y plane. For the case where the element is parallel to the global
Z-axis, the element y-axis is oriented parallel to the global Y-axis.

Enter the ANSY program by using the Launcher.

Type Beam (or a file name of your choice) in the Jobname entry field of the ANSY
Launcher and Pick Run to start GUL

utility menu: File — Change Title. ..

x|

[/TITLE] Enter new title ‘ Beam| ‘

OK | Cancel | Help
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main menu: Preprocessor — Element Type — Add/Edit/Delete

J_L\ Library of Element Types

| .("'n Element Types

Next, click on the Options . .. button and set K1,K2, .. .., K15 options, as shown.

www.FreeEngineeringbooksPdf.com
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88 element type options

Assign the modulus of elasticity by using the following commands:

main menu: Preprocessor — Material Models — Structural —
Linear — Elastic — Isotropic

[\ Linear Isotropic Properties for Material Number 1

www.FreeEngineeringbooksPdf.com
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Close the “Define Material Model Behavior” window.

main menu: Preprocessor — Sections — Beam — Common Sections

x]
B
N —
Sub-lype [ W =l<—— A list of predefined shapes
Cffset To | Centrol
Cftset-y 41633420
Offset 2
1
|
b
|
i [P <J—— Number of cells along width, default = 2
2l 2 <J—— Number of cells along height, default = 2
UK SRRy |
Close Frevicw |
llelp | Meshviewl

You may view the section properties by issuing the following commands:

main menu: Preprocessor — Sections — List Sections

m List Summary of Section Properties _ '_ il
[SLIST] Properties of Sections
First Section ID [SFIRST]
Last Section ID [SLAST]

Incrementin ID [SINC]

T

Beam and Shell Listing Options ¥
Section Types |A! ﬂ




Section 4.6 An Example Using ANSYS 267

LIST SECTIDN ID SETS 1710 1 BY 1
Details = 8

SECTION ID MUHBEER: 1
EEAM SECTION SUBTVPE: PReclangle
EEAM SECTION HAWE I35:

EEAM SECTION DATA SUHHARY:

Ares = E.000E
Iy = 1987
Iyz -0 ERIO4E-1S
Izz = 2.BBET
Warping Conatant = 1277
Terzion Constant = T.4629
Centroid Y = @.41633E-18
Centroid 2 = @.138TEE-135
Shear Center ¥ =B TZZZEE-1T
Shear Center 2 = @ 3EBESE-15
Shear Correction-yy = A.34211
Shear Correction-yz = @.28428E-14
Shear Correction-zz = @.84211

Beam Section is offset to CENTROID of cross section

ANSYS Toolbar: SAVE_DB

main menu: Preprocessor — Modeling — Create — Nodes — In Active CS

_q"- Create Nodes In Active Coordinat:

fi\ create Nodes In Active Co
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x

|M| Croate Nodesin Active Coordinatc System

-

XY,Z Locelion in delive €S | 36

“ I |

TIDY THYZ, THZY
Rotation angles (degrees] | | | | |

— o | Apply Cancel Heb |

main menu: Preprocessor — Modeling — Create — Elements —
Auto Numbered — Thru Nodes

000 [pick node 1]

[

B [pick node 2]

[

000 [pick node 3]

[ ]

|:||:||: [anywhere in the ANSYS graphics window]

OK

utility menu: Plot — Elements
Toolbar: SAVE_DB

Apply boundary conditions with the following commands:

main menu: Solution — Define Loads — Apply — Structural —
Displacement — On Nodes

000 [pick node 1]

L]

(n

[ ]

—

[apply anywhere in the ANSYS graphics window]|
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ply U,ROT on Nodes

main menu: Solution — Define Loads — Apply — Structural —
Force/Moment — On Nodes

000 [pick node 2]
(B0 [apply anywhere in the ANSYS graphics window]

L]

12\ Apply F/M on N

Fi\ Apply F/M on Nodes
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Vo rimonoes x4

[F] Apply Force/Moment on Nodes

Lab Direction of force/mom I"Z ,.l
Apply as IConstant value j
If Constant value then:

VALUE Force/moment value

main menu: Solution — Solve — Current LS
OK

Close (the solution is done!) window.

Close (the STAT Command) window.

main menu: General Postproc — List Results — Nodal Solution

x|

— Item to be listed

Favorites =
& Nodal Solution
€ DOF Solution

@ X-Component of displacement

@ Y-Component of displacement

@ Z-Component of displacement

0

@ X-Component of rotation

@ Y-Component of rotation

@ Z-Component of rotation
@ Rotation vector sum

Stress =
[2E] _'lJ

Value for computing the EQV strain |

(6] Apply | Cancel | Help |
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x
Ao
wiewwxx POST]1 HODAL DEGREE OF FREEDOM LISTING wwwwew
LOAD STER= 1 SUBSTER= 1
TIME= 1.8E80 LOAD CASE= 1]
THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOEAL COORDINATE SYSTEH
NODE 113 uy uz USLM
1 B _HHEE 0. OEEH 00088 a.0088
2 B_45AR8E-0Y4-0.TIS95E-02 0 Y43ITHHE-A1 A_H452E-0
HAXIMUM RESOLUTE UALUES
NOOE 2 4 2
UALUE 0. 45HBEE-G49-0. T2595E-8Z O 4384%E-B1 B 44458E-01
In a similar way, list Rotation vector sum.
Y rrNs0L Command i =]

Hz

FPRINT ROT MODAL SOLUTION PER MNODE

wawww POST1 NOOAL DEGREE OF FREEDOM LISTING =xxwx

LOAD STEP= B SUBITEP= 1
TIME= 7.8088 LOAD CASE= @

THE FOLLOWING DEGAEE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDIMATE SYSTEH

NODE ROTH ROTY ROTZ R3UH
1 O.66068 L) 0. 0660 [ L]
2 B.0008 =8.13225E-02-0.305T5E-03 6. 13476E-02

MAXIMUM ARTOLUTE UALUES
NODE <} 2 Z 2
LALUE 3, 0e00 -0, 18225E-92-0, 303T9E-B3 B.154TEE-€2

main menu: General Postproc — List Results — Reaction Solution

[PRRSOL] List Reaction Solution
Lab Item to be Isted

Struct moment Mx
MY
MZ

Al struc mome M

5

271
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FRIMT REACTIDN SOLUTIONS FER MNODE
wawww POSTT TOTAL RERCTION SOLUTION LISTING =xxwx

LOAD STEP= B SUBITEP= 1
TIME= 7.8088 LOAD CASE= @

THE FOLLOWING #.%.2 SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE Fi FY F2 MY HE
1 -160.68 56 aaa -7S. 000 -B.518BEE-13 27A0.0 1866.8

TOTAL UALUES
UALUE  -1@0.08 56880 -T5.000 -B.S10GGE-13 2700.0 1888 .8

main menu: General Postproc — Element Table — Define Table

ent Table [tems
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wnal Element Table [tems

fi\ Define Additional Element Table [tems

wnal Element Table [tems

Sleain levslic:
Stain-cresn
stan-other
Lontzct

www.FreeEngineeringbooksPdf.com
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i Detine Additional Element Tabie Ttems x|

(NGPRIN| Ell NU fur EQV slrain

[ ]

ETABLE| Define Addfiors! Elewent Tabke Hems
— D User label bor item

Ttem,Comp Resuits data kem

\For "By sequerce num", enter sequence
. 1 Sdeckin: hox, See Telde 4.xx-3
i Fleinsnbs Mamialhe seg anmmbss )

ok | Appy | cancel lielp.

Element Table Data >
A S

Currently Defined Data and Status:

akel Iltem Comp Time Stamp Status

SDIR SMIS k3l Time= 1.0000 (Current)
SBYT SMIS 32 Time= 1.0000 (Current)
SBYB SMIS 33 Time= 1.0000 (Current)
SBZT SMIS 34 Time= 1.0000 (Current)

Time= 1.0000 (Current)

Add... | Updats Delete

main menu: General Postproc — Element Table — List Element Table

[\ List Element Table Data e x|

[PRETAB] List Element Table Data
Labl-9 Items to be isted

o ooy |
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x|

FRINT ELEWENT TRELE ITENI PER ELEMENT
wwnws POST]T ELEMENT TABLE LISTING =wwsw

STAT CURRENT

CLRRENT CLRERENT CURRENT CURRENT
ELEH 5DIR SEYT SEYE SE2T SEZE
1 12.568 1012.5 S1BTES IFT.5@ -3ET7.50

WIMIMUK UALUES
ELEH 1 i 1 1 1
uALuLE 1Z.508 181Z.5 -181Z.5 Z3T.58 -Z37.50
WAXIMUM UALUES
ELEH 1 1 i 1 1
uALLE 1Z.508 181Z.5 -181Z.5 23T.50 -237.5P

The results of ANSYS analysis and those from the beam theory are summarized
in the accompanying table. As you can see the results are in good agreement.

Results using beam theory (see Table 4.1) ANSYS results
Py L (100)(36) ] )
vy = —— = —————— = 0.0000045 in 0.0000045 in
AE  (8)(10 x 10°%)
-P,L? —~(50)(36)° . .
VY) max = = p = —0.00729 in —0.00735 in
3EI 3(10 X 10°)(10.67)
P,L? 75)(36)°
(VD my = o = TGO _ 04371 0.0445 in
3EI 3(10 X 10%)(2.67)
Py 100 b b
=X o5 125—
Oxx—axial A 8 12.5 in2 il’lz
Mc  (50)(36)(2) Ib Ib
. = — TR = 337.5—
(a-zszcndmg) max I 10.67 3374 in2 il’lz
My (75)(36)(1) 1b Ib
Yy -
(O-y}’*hending) max 1 = T = 1011? 1012 inZ
—PyL? —(50)(36)*
(02) max = = = —0.0003036 rad —0.0003037 rad
2EI  2(10 X 10°)(10.67)
—P,L? (75)(36)*
(y) max = = = —0.00182 rad —0.00182 rad
2EI 2(10 X 10°)(2.67)
>F, =0, 100+ R, =0; R, =-1001b; M, =0 R, = —1001b; M, =0
SF, =0, =50+ R, =0; R, =50lb; M, = (75 1b)(3§ in) R = 501b: M, = 2700 Ib-in
= 27001b-in ’ ’
SFE=0; 75+ R, =0; R,=-75Ib; M,=(501b)(36in) R, = —751b;
= 1800 1b-in M, = 18001b-in
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EXAMPLE 4.5 Revisited

Let us consider the overhang frame again in order to solve this problem using ANSYS.
Recall that the frame is made of steel with E = 30 X 10° Ib/in®. The respective cross-
sectional areas and the second moments of areas for the two members are shown in
Figure 4.13 (repeated in Figure 4.17 for your convenience). The members have a depth
of 12.22 in. The frame is fixed as shown in the figure. We are interested in determining
the deflections and the rotation of the frame under the given distributed load. In this
example, we show you how you may setup beam and frame problems using the user
defined section, and without using the third node (K) option.

800 1b/ft
A =17.65in?
I =204 in*
9 ft
A =7.65in2
I=204in*
10 ft

FIGURE 4.17 An overhang frame supporting a distributed load.

Enter the ANSYS program by using the Launcher.

Type Frame2D (or a file name of your choice) in the Jobname entry field of the
ANSYS Product Launcher and Pick Run to start GUI.

Create a title for the problem. This title will appear on ANSYS display windows to
provide a simple way to identify the displays. Use the following command sequences:

utility menu: File — Change Title . . .

' Change Title 5_]

[JTITLE] Entet nizw title | FramezD|

[0]4 | Cancel I Help |
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main menu: Preprocessor — Element Type — Add/Edit/Delete

Element Types

NONE DEFINED

| 3node 139

f;\ Element Types

www.FreeEngineeringbooksPdf.com
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Next click on Options . . . button and set K1, K2, ..., K15 option as shown.

F.\ BEAM188 clcment type options

Assign the modulus of elasticity by using the following commands:

main menu: Preprocessor — Material Props — Material Models —
Structural — Linear — Elastic — Isotropic

Linear Isotropic Properties for Material Number1

www.FreeEngineeringbooksPdf.com
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Close the “Define Material Model Behavior” window.

main menu: Preprocessor — Sections — Beam — Common Sections

[ remror
e i

| | > data

Hop | Mesivicw|

ANSYS Toolbar: SAVE_DB
Set up the graphics area (i.e., work plane,zoom, etc.) with the following commands:

utility menu: Workplane — WP Settings . ..

SriAn S|

www.FreeEngineeringbooksPdf.com
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utility menu: Workplane — Display Working Plane
Bring the workplane to view by the command
utility menu: PlotCtrls — Pan, Zoom, Rotate . ..

Click on the small circle until you bring the workplane to view. Then create the
nodes and elements:

main menu: Preprocessor — Modeling — Create — Nodes
— On Working Plane

[WP = 0,108]

H=

||:|:||: [WP = 120,108]
||:|:||: [WP = 120,0]
OK

main menu: Preprocessor — Modeling — Create — Elements —
Auto Numbered — Thru Nodes

||:|:||: [pick node 1]
B [pick node 2]

-

B0 [apply anywhere in the ANSYS graphics window]
B00 [pick node 2]
B0 [pick node 3]

-



Section 4.6 An Example Using ANSYS 281

(B [anywhere in the ANSYS graphics window]

L]

OK

utility menu: Plot — Elements
Toolbar: SAVE_DB
Apply boundary conditions with the following commands:

main menu: Solution — Define Loads — Apply — Structural —
Displacement — On Nodes

||:|:|[ [pick node 1]
||:|:||: [pick node 3]

[anywhere in the ANSYS graphics window]

=

% Apply U,ROT on Nodes _8 o 1

[O] Appls Displacements (U,ROT) on Modes

LabZ [OFs ko be constrained |e——
L
Ly
ROTZ
Apply as ICnnstant walue LI

If Constant walue then:

WALLIE  Displacement value l i} <

_—— a4 Apply Cancel | Help I

main menu: Solution — Define Loads — Apply — Structural —
Pressure — On Beams
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B0 [pick element 1]

L]

(0] [anywhere in the ANSYS graphics window]

L]

. W Apply PRES on Beams

To see the applied distributed load and boundary conditions, use the following
commands:

utility menu: Plot Ctrls — Symbols . . .
utility menu: Plot — Elements

ANSYS Toolbar: SAVE_DB

www.FreeEngineeringbooksPdf.com
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I\ symbots

Solve the problem:
main menu: Solution — Solve — Current LS

OK

www.FreeEngineeringbooksPdf.com
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Close (the solution is done!) window.

Close (the/STAT Command) window.

Begin the postprocessing phase and plot the deformed shape with the following
commands:

main menu: General Postproc — Plot Results — Deformed Shape

i Plot Deformed Shape

camerr || wew |

o ANSTS Graphies
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List the nodal displacements with the following commands:

main menu: General Postproc — List Results — Nodal Solution

IList Nodal Solution x|
 Itern to be listed
Favarites [

[ Modal Solution
[ DOF Solution
i X-Component of displacement
i v-Cormponent of displacement
et il
i Z-Component of rotation
i Rotation vector sum
Stress
Total Strain
Elastic Strain
Flastic Strain
Creep Strain

Thermal Strain -
I -
Yalue for computing the EQY strain I

] Apply Cancel | Help |

X

He

FRINT U MODAL SOLUTION FER MNODE
wawww POST1 NOOAL DEGREE OF FREEDOM LISTING =xxwx

LOAD STEP= B SUBITEP= 1
TIME= 7.8088 LOAD CASE= @

THE FOLLOWING DEGAEE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDIMATE SYSTEH

NODE 15} uy uz UsUH
1 O. 6606 0. 88aa 0. 0680 B . 888
2 -0.2TY43E-B3-0.16392E-02 O.0000 B_16623E-02
3 @.0068 09900 o.0aa0 B_B000

MAXIMUM ABRSOLUTE UALUES
MNODE 2 Z L] 2
UBLUE -@ 2T94IE-@3-0. 16392E-02 O.0000 B.1E&2EE-62

Also list Rotation vector sum.
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FRIMT ROT HODAL SOLUTIOM FER MODE

wawww POST1 NOOAL DEGREE OF FREEDOM LISTING =xxwx

LOAD STEP= B SUBITEP= 1
TIME= 7.8088 LOAD CASE= @

THE FOLLOWING DEGAEE OF FREEDOM RESULTS ARE IN THE GLOEBAL COORDIMATE SYSTEH

NODE ROTH ROTY ROTZ R35UH
1 O.66068 0. 880a 0. 0660 [ L]
2 B.0008 0. 8800 ©.18TOME=G3 6. 14TEY4E-03
3 @.0068 0. 9900 Q. 0aa0 B_B000
MAXIMUM ABSOLUTE UALUES
NODE [c} o] Z F
UALUE . BHAG €. aaan O 1ETOHE-BY B 18TAYE-63

List the reactions with the following commands:

main menu: General Postproc — List Results — Reaction Solution

i List Reaction Solution

All items
Struct force

All struc forc F
Struct moment MR
MY
MZ

All struc mome M

FRIMT REACTIDN SOLUTIONS FER MNODE
wawww POST1 TOTAL REMCTION SOLUTION LISTING =xwxwx

LOAD STEP= B EUBITEP= 1
TIME= 7.8088 LOAD CASE= @

THE FOLLOWING #.%.2 SOLUTIONS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE Fi FY F2 Hx MY HE
1 534 4B Y516 7 0. 0660 B . 888 0. 8880 B_1814TE+EE
3 =534 .HH 34333 0. 0600 B . 8888 0.0000 18258

TOTAL UALUES
UALUE -@.9BSEEE-18 8000.0 . 2ea0 -1 0. eeeg B.113972E+A6

www.FreeEnqgineeringbooksPdf.com
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Exit ANSYS and save everything:
ANSYS Toolbar: QUIT

1 Exit from ANSYS

4.7 VERIFICATION OF RESULTS

Refer to Example 4.2. One way of checking for the validity of our FEA findings of
Example 4.2 is to arbitrarily cut a section through the column and apply the static
equilibrium conditions. As an example, consider cutting a section through the column
containing element (2), as shown in the accompanying illustration.

160,000 1b

@

160,000 Ib

The average normal stress in that section of the column is

finternat 160,000 .
2 = = > = 2
o 397 4030 Ib/in

In a similar way, the average stress in element (4) can be checked by

f' nternal 60,000 .
4) _ /Jinternal __ T _ 2
397 1511 Ib/in
The stresses computed in this manner are identical to the results obtained earlier using

the energy method.

o

www.FreeEnqgineeringbooksPdf.com



288 Chapter 4 Axial Members, Beams, and Frames

It is always necessary to compute the reaction forces and moments for beam and
frame problems. The nodal reaction forces and moments can be computed from the
relationship

{R} = [K]{U} - {F}

We computed the reaction matrix for Example 4.4, repeated here:

R, 54687(N) )
M, 39062(N + m)
R, | ) 132814(N)
M, [ 0
R; 0

(| M, 0

Earlier, we discussed how to check the validity of results qualitatively. It was mentioned
that the results indicated that there is a reaction force and a reaction moment at node 1;
there is a reaction force at node 2; there is no reaction moment at node 2, as expected;
and there are no reaction forces or moments at node 3, as expected for the given prob-
lem. Let us also perform a quantitative check on the accuracy of the results. We can use
the computed reaction forces and moments against the external loading to check for
static equilibrium (see Figure 4.18):

+T2Fy =0 13,2814 + 54,687 — (25,000)(7.5) = =1 = 0
and
U;EMnodez =0 39,062 — 54,687(5) + (25,000)(7.5)(1.25) =2 = 0

Similarly, in reference to Example 4.5, we find that the reaction results generated using
ANSYS are shown in Figure 4.19. Checking for static equilibrium, we find that

5H3IFy=0 53440 — 534.40 = 0
TSF, =0  4516.7 + 3483.3 — (800)(10) = 0
(+3Mpoger =0 101,470 + 18259 + 3483.3(10) (12) — (534.40) (9) (12)
—(800) (10)(5)(12) =~ 0

25,000 N/m
ol o2 e3
\ J 39,062 N - m
Sm 2.5 m
54,687 N 132,814 N

FIGURE 4.18 The free-body diagram for Example 4.4.
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800 Ib/ft

KJ 101,470 1b - in

4516.7 Ib

534.40 b
qj 18,259 1b - in
10 ft

3483.31b

FIGURE 4.19 The free-body diagram for Example 4.5.

These simple problems illustrate the importance of checking for equilibrium conditions
when verifying results.

SUMMARY

At this point you should

1.
2.

know how to formulate stiffness matrix for a member under axial loading.

know that it is wise to use simple analytical solutions rather than finite element
modeling for a simple problem whenever appropriate. Use finite element model-
ing only when it is necessary to do so.

know that the stiffness matrix for a beam element with two degrees of freedom at
each node (the vertical displacement and rotation) is

12 6L —12 6L
(K]© = Ell 6L 41> —-6L 2L?
L} -12 —-6L 12 —6L

6L 21> —6L 4L°

know how to compute the load matrix for a beam element by consulting Table 4.2
for equivalent nodal forces.
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5. know that the stiffness matrix for a frame element (with local and global coordi-
nate systems aligned) consisting of two nodes with three degrees of freedom at
each node (axial displacement, lateral displacement and rotation) is

~ AE AE .
o 0 0 - 0 0
0 12EI  6EI 0 _12EI  6EI
L3 L2 L3 L2
0 6EI 4EI 0 6EI  2EI
K]© = 2L 2L
| AE AE
- 0 0 . 0 0
12EI  6EI 12EI 6EI
O T T2 e
0 6EI  2EI 0 _OEI  4EI
L L? L L? L |

Note that for members that are not horizontal, the local degrees of freedom are
related to the global degrees of freedom through the transformation matrix,
according to the relationship

{u} = [T{U}
where the transformation matrix is
[ cos® sin® 0 0 0 0]

—sinf cosf O 0 0 0
0 0 1 0 0 0

T =
[T] 0 0 0 cosf® sinf O
0 0 0 -—sin® cosh O
0 0 0 0 0 1

6. know how to compute the stiffness matrix for a frame element with an arbitrary
orientation with respect to the global coordinate system using the relationship.

(K] = [T][K]{[T]

7. know how to compute the load matrix for a frame element by consulting Table 4.2
for equivalent nodal forces.

REFERENCES

ANSYS User’s Manual: Procedures, Vol. 1, Swanson Analysis Systems, Inc.
ANSYS User’s Manual: Commands, Vol. 11, Swanson Analysis Systems, Inc.
ANSYS User’s Manual: Elements, Vol. 111, Swanson Analysis Systems, Inc.
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Beer, P, and Johnston, E. R., Mechanics of Materials, 2nd ed., New York, McGraw-Hill, 1992.
Hibbeler, R. C., Mechanics of Materials, 2nd ed., New York, Macmillan, 1994.
Segrlind, L., Applied Finite Element Analysis, 2nd ed., New York, John Wiley and Sons, 1984.

PROBLEMS

1. Determine the deflections of point D and point F and the axial stress in each member of the
system shown in the accompanying figure. (E = 29 X 10°ksi.)

5" A,=1in2 5
.D
SM A.=0.5in? oF
B
\ 10" } 10" }

2. Consider a four-story building with steel columns similar to the one presented in
Example 4.2. The column is subjected to the loading shown in the accompanying figure.
Assuming axial loading, (a) determine vertical displacements of the column at various floor-
column connection points and (b) determine the stresses in each portion of the column.
(E =29 X 10°Ib/in?, A = 59.1 in.)

45,000 Ib
s |
N7
35,000 1b[| 4 15 ft
Al
av I 7 *
35,000 || 3) 15 ft
s |1
N C *
35,000 1b|| (2) 15 ft
2 ||
N C P *
1) 15 ft
1
ﬁ.C.J:-O._Q o 0'6_'.0'_@ -
~ o . D0 ~ o . O, -0
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3. Determine the deflection of point D and the axial stress in each member in the system shown
in the accompanying figure. (E = 10.6 X 10°ksi.)

i A.=1in?
A,.=0.751in2 )
A,.=0.5in?
D
5000 lb————>  25001b ——— > C
} 120 9" Q" }

4. A 20-ft-tall post is used to support advertisement signs at various locations along its height,
as shown in the accompanying figure. The post is made of structural steel with a modulus of
elasticity of E = 29 X 10°1b/in’. Not considering wind loading on the signs, (a) determine
displacements of the post at the points of load application and (b) determine stresses in the
post.

100 1b

© A=1lin
150 1b

S ft ‘ 200 1b @ A, =2in

10 ft A <3in2

5. Determine the deflections of point D and point F in the system in the accompanying figure.
Also compute the axial force and stress in each member. (E = 29 X 10° ksi.)
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A.=02in2 800 b ———>
A,=0.15 in2
_>1000 Lo 1000 1b ———>
A.=03in2
6" 6"
A,=02in 800 b ——

A,=1in2

l——4"—
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6. Determine the deflections of point D and point F in the system in the accompanying figure.
Also compute the axial force and stress in each member.

E =101 GPa
A,=2cm?
—>‘150m<— —’I_'
0 oF /N
E =69 GPa 25 kKN / E—=73 GPa
= 2 —_—
& SCm. A.=5cm?
| E=101GPa !
<—3OCm—>‘
50 cm 40 cm 50 cm

7. The beam shown in the accompanying figure is a wide-flange W18 X 35, with a cross-sectional
area of 10.3 in*> and a depth of 177 in. The second moment of area is 510 in*. The beam is
subjected to a uniformly distributed load of 2000 Ib/ft. The modulus of elasticity of the beam
is E = 29 X 10°Ib/in%. Using manual calculations, determine the vertical displacement at
node 3 and the rotations at nodes 2 and 3. Also, compute the reaction forces at nodes 1 and
2 and reaction moment at node 1.

2,000 Ib/ft

|

|

ol

14 ft

The beam shown in the accompanying figure is a wide-flange W16 X 31 with a cross-sectional
area of 9.12 in? and a depth of 15.88 in. The second moment of area is 375 in*. The beam is
subjected to a uniformly distributed load of 2000 Ib/ft and a point load of 800 Ib. The modulus
of elasticity of the beam is E = 29 X 10° Ib/in’. Using manual calculations, determine the
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vertical displacement at node 3 and the rotations at nodes 2 and 3. Also, compute the reaction
forces at nodes 1 and 2 and reaction moment at node 1.

2,000 Ib/ft
ol o2 ® e3
10 ft }%2.5 ft>|<2.5 ft>

800 1b

9. The lamp frame shown in the accompanying figure has hollow, square cross sections and is
made of steel, with E = 29 X 10° Ib/in®. Using hand calculations, determine the endpoint
deflection of the cross member where the lamp is attached.

-

15 ft

6in j;% jj 4in
Main Cross member
1/4 in thick 3/16 in thick

10. A park picnic-table top is supported by two identical metal frames; one such frame is shown
in the accompanying figure. The frames are embedded in the ground and have hollow, circu-
lar cross-sectional areas. The tabletop is designed to support a distributed load of 300 Ib/ft>.
Using ANSYS, size the cross section of the frame to support the load safely. The modulus of
elasticity is E = 29 X 10° Ib/in’.
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28 in

I 32 in I

All members have the same
hollow circular cross section.

11. The frame shown in the accompanying figure is used to support a load of 3000 Ib. The main
vertical section of the frame has an annular cross section with an area of 8.63 in? and a polar
radius of gyration of 2.75 in. The outer diameter of the main tubular section is 6 in. All other
members also have annular cross sections with respective areas of 2.24 in? and polar radii of
gyration of 1.91 in. The outer diameter of these members is 4 in. Using ANSYS, determine the
deflections at the points where the load is applied. The frame is made of steel, with a modulus
elasticity of £ = 29 X 10° Ib/in%.

} 12 ft }

<3 ft >

( Y
1500 Ib 1500 Ib

15 ft
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12. Verify the equivalent nodal loading for a beam element subjected to a triangular load, as
shown in the accompanying figure.

w 3wl 7wl
20 20
wL? wl?
L 30 20

13. Referring to the section in this chapter discussing the frame elements, show that the stiff-
ness matrix represented with respect to the global coordinate system is related to the
stiffness matrix described with respect to the frame’s local coordinate system, according to
the relationship

(K] = [T]"[K][T]
14. The frame shown in the accompanying figure is used to support a load of 500 Ib/ft. Using

ANSYS, size the cross sections of each member if standard-size steel square tubing is to be
used. Use three different sizes. The deflection of the centerpoint is to be kept under 0.05 in.

500 Ib/ft

= i

10 ft

| |
15 ft
! !
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15. The frame shown in the accompanying figure is used to support the load given in the figure.
Using ANSYS, size the members if standard sizes of steel [-beams are to be used.

700 Ib/ft

500 Ib/ft 121t

12 ft

I‘ 15 ft I 15 ft I

16. Verify the equivalent nodal loading for a beam element subjected to the load shown in the
accompanying figure.

P P P
l 2 2
| | L
[ ]
' ' 5
R A
2 2 PL PL
M="E M="E
8 8

17. Use a one-element model and calculate the deflection and slope at the endpoint of the beam
shown in the accompanying figure. Compare your results to deflection and slope values given
in Table 4.1.

wo
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18. Use a two-element model and solve Example 4.3. Compare your results to the deflections
and the end slope of the single element model.

19. Use a one-element model and calculate the deflection and slope at the endpoint of the beam
shown in the accompanying figure. Compare your results to the deflection and slope values
given in Table 4.1.

20. Use a one-element model and calculate the deflection and the slope at the midpoint of the
beam shown in the accompanying figure. Compare your results to the deflection and slope
values given in Table 4.1.

E, 1

1 L |

21. The beam shown in the accompanying figure is a wide-flange W18 X 35, with a cross-
sectional area of 10.3 in? and a depth of 177 in. The second moment of area is 510 in*.
The beam is subjected to a point load of 2500 1b. The modulus of elasticity of the beam
E =29 X 10° Ib/in%. Use a two-element model and calculate the deflection of the midpoint
of the beam. Compare your results to exact values.

2500 1b

75 1t | 75 ft |

22. The frame shown in the accompanying figure is used to support a load of 1000 Ib. Using
ANSYS, size the cross sections of each member if standard sizes of steel I-beams are used.
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1000 1b

23. The frame shown in the accompanying figure is used to support the indicated load. Using
ANSYS, size the cross sections of each member if standard sizes of steel I-beams are used.

2500 Ib/ft

T T T

1B l l l300(11b/ftl l l l l 3i)00 lb/lft l l

| 20 ft | 20 ft |
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24. The frame shown in the accompanying figure is used to support the indicated load. Using
ANSYS, size the cross sections of each member if standard sizes of steel I-beams are used.

5KN

40 KN/m

S S T N

SKN
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25. The beams shown in the accompanying figure are used to support the indicated load. Using
ANSYS, size the cross sections of each beam if standard sizes of steel I-beams are used.

10 ft

1000 1b

26. Show that [D]{U} = {U}[D]".

27. Starting with Equations (4.39) and (4.41), show that the relationship given by Eqgs. (4.42) is
true.

28. Starting with Equation (4.42) and using the results given by Eq. (4.36a) perform the integra-
tions to obtain the results given in the first column of the stiffness matrix, Equation (4.43).

29. Starting with Equation (4.42) and using the results given by Eq. (4.36a) perform the integra-
tions to obtain the results given in the fourth row of the stiffness matrix, Equation (4.43).
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30. Design Project Size the members of the bridge shown in the accompanying figure for a case
in which traffic is backed up with a total of four trucks equally spaced on the bridge. A typical
truck has a payload weight of 64,000 1b and a cab weight of 8000 1b. As a starting point, you
may use one cross section for all beam elements. You may also assume one cross section for
all truss members. The roadbed weighs 1500 1b/ft and is supported by I-beams. Use standard
steel I-beam sizes. Design your own truss configuration. In your analysis, you may assume
that the concrete column does not deflect significantly. Write a brief report discussing how
you came up with the final design.

200 ft
100 ft
<25 fe=|  [T10ft
25ft “I-beam
o
i %D:o: Design your own truss
58 ft

Concrete —|©




CHAPTER 5

One-Dimensional Elements

The objectives of this chapter are to introduce the concepts of one-dimensional elements
and shape functions and their properties in more detail. The idea of local and natural
coordinate systems is also presented here. In addition, one-dimensional elements used
by ANSYS are discussed. These are the main topics discussed in Chapter 5:

5.1 Linear Elements

5.2 Quadratic Elements

5.3 Cubic Elements

5.4 Global, Local, and Natural Coordinates

5.5 Isoparametric Elements

5.6 Numerical Integration: Gauss—-Legendre Quadrature
5.7 Examples of One-Dimensional Elements in ANSYS

5.1 LINEAR ELEMENTS

The heat transfer example in this section is employed to introduce the basic ideas of
one-dimensional elements and shape functions. Fins are commonly used in a variety of
engineering applications to enhance cooling. Common examples include a motorcycle
engine head, a lawn mower engine head, extended surfaces (heat sinks) used in elec-
tronic equipment, and finned-tube heat exchangers. A straight fin of a uniform cross
section is shown in Figure 5.1, along with a typical temperature distribution along the
fin. As a first approximation, let us divide the fin into three elements and four nodes.
The actual temperature distribution may be approximated by a combination of linear
functions, as shown in Figure 5.1.To better approximate the actual temperature gradient
near the base of the fin in our finite element model, we have placed the nodes closer
to each other in that region. It should be clear that we can improve the accuracy of our
approximation by increasing the number of elements as well. However, for now, let us
be content with the three-element model and focus our attention on a typical element,
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FIGURE 5.1 Temperature distribution for
a fin of uniform cross section.

FIGURE 5.2 Linear approximation of
temperature distribution for an element.

as shown in Figure 5.2. The temperature distribution along the element may be interpo-
lated (or approximated) using a linear function, as depicted in Figure 5.2.

The forthcoming derivation of the shape functions are similar to the one we
showed in Chapter 4, Section 4.1. As a review and for the sake of continuity and conve-
nience, the steps to derive the shape functions are presented here again.

The linear temperature distribution for a typical element may be expressed as

TO =c, +0X (5.1)

The element’s end conditions are given by the nodal temperatures 7; and T}, according
to the conditions

T =T at X=X, (5.2)
T =T at X=X,
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Substitution of nodal values into Eq. (5.1) results in two equations and two unknowns:
Ti = + C2AXIZ' (53)

7—‘]‘201"_62)(]'

Solving for the unknowns ¢; and ¢,, we get

TX, — TX;

¢ = ﬁ (54)
- T

= X - X, (5.5)

The element’s temperature distribution in terms of its nodal values is
T/ - Ti

4

X — X X — X,

(5.6)

Grouping the T; terms together and the 7; terms together, we obtain

ro = (X T X\ (X=X, 5.7
S\ -x) X - X)) 7

We now define the shape functions, S; and §;, according to the equations

X-X X-X

&=&_&— . (5.8)
G_X-X _X-X 59)
j_)(j_Xi_ ¢ .

where ¢ is the length of the element. Thus, the temperature distribution of an element
in terms of the shape functions can be written as

T(e) == SiTi + S/71l (510)

Equation (5.10) can also be expressed in matrix form as

TO = [s, sg{?} (5.11)

As you recall, for the structural example in Chapter 4, the deflection u(® for a typical
column element is represented by

W =[S, SJ{Z} (5.12)

7
where u; and u; represent the deflections of nodes i and j of an arbitrary element (e).
It should be clear by now that we can represent the spatial variation of any unknown
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variable over a given element by using shape functions and the corresponding nodal
values. Thus, in general, we can write

v,
PO =[S S ! 513
[s J{%} (5.13)
where ¥; and W, represent the nodal values of the unknown variable, such as tempera-
ture, deflection, or velocity.

Properties of Shape Functions

The shape functions possess unique properties that are important for us to understand
because they simplify the evaluation of certain integrals when we are deriving the con-
ductance or stiffness matrices. One of the inherent properties of a shape function is that
it has a value of unity at its corresponding node and has a value of zero at the adjacent
node. Let us demonstrate this property by evaluating the shape functions at X = X; and
X = X, Evaluating §; at X = X, and X = X, we get

X-X XX X-X _X-X
Si|X:X = ¢ =—,—=1and Si|X:X] =

J
=—=0 (5.14
X=X, ¢ 14 X=X 0 (5.14)
Evaluating §; at X = X; and X = X, we obtain

X - X X — X X - X Xi— X

X=X, 1

This property is also illustrated in Figure 5.3.
Another important property associated with shape functions is that the shape
functions add up to a value of unity. That is,
Xi - X n X — X, B
X -X X -X
It can also be readily shown that for linear shape functions, the sum of the derivatives
with respect to X is zero. That is,

d(X;—X d(X-X 1 1
j N XY _ + —0  (17)
dX\X; - X,/ dX\X;— X, X-X X-X

1 (5.16)

FIGURE 5.3 Linear shape functions.
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EXAMPLE 5.1

We have used linear one-dimensional elements to approximate the temperature distri-
bution along a fin. The nodal temperatures and their corresponding positions are shown
in Figure 5.4. What is the temperature of the fin at (a) X = 4 cm and (b) X = 8 cm?

In Chapter 6, we will discuss in detail the analysis of one-dimensional fin problems,
including the computation of nodal temperatures. However, for now, using the given
nodal temperatures, we can proceed to answer both parts of the question:

a. The temperature of the fin at X = 4 cm is represented by element (2);
X3 - X X - X2
T, +
4 4

T = SOT, + SPT, = Ty

5-4 4-2
T="—"(4) +
3 D+

(34) = 36.3°C

b. The temperature of the fin at X = 8 cm is represented by element (3);

X, - X X - X,

T® = SOT; + SPT, = ‘ T, + . T,
10 — 8 8§ -5
T = 5 (34) + 5 (20) = 25.6°C
For this example, note the difference between ng) and S§3).
Toem50@ [E e A EL
base 4 ‘ “ ‘ T2 _ 41 OC
T 34

1 (1) 2 2 3 3 4 3

e s o (S)) o T, 20

‘4—2 cm } 3cm } Scm }

FIGURE 5.4 The nodal temperatures and their corresponding positions along the fin in Example 5.1.

5.2 QUADRATIC ELEMENTS

We can increase the accuracy of our finite element findings either by increasing the num-
ber of linear elements used in the analysis or by using higher order interpolation func-
tions. For example, we can employ a quadratic function to represent the spatial variation
of an unknown variable. Using a quadratic function instead of a linear function requires
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that we use three nodes to define an element. We need three nodes to define an element
because in order to fit a quadratic function, we need three points. The third point can
be created by placing a node, such as node £, in the middle of an element, as shown in
Figure 5.5. Referring to the previous example of a fin, using quadratic approximation,
the temperature distribution for a typical element can be represented by

TO = ¢, + X + ;. X° (5.18)
and the nodal values are

T=T at X=X, (5.19)

T=T, at X=X,

T=T at X=X

Three equations and three unknowns are created upon substitution of the nodal values
into Eq. (5.18):

i = O + Cz)(i + C3Xi2 (520)
Tk = + Csz + C3Xi
T = C1 + CZAX/]' + C3)(/2

Solving for ¢y, ¢,, and c; and rearranging terms leads to the element’s temperature dis-
tribution in terms of the nodal values and the shape functions:

T = ST, + ST, + ST, (5.21)

In matrix form, the above expression is

T;
TO =[S S SI§ T (5.22)
T
T
A
F—€/2—> FIGURE 5.5 Quadratic approximation

of the temperature distribution for an
element.
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where the shape functions are

S, = %(X — )(]) (X — Xk) (5.23)
Sj = %(X_ X) (X = Xp)
5= 3 (X = X)(X = X)

In general, for a given element the variation of any parameter ¥ in terms of its nodal
values may be written as

v;
VO =[S, S SV (5.24)

Wy

It is important to note here that the quadratic shape functions possess properties
similar to those of the linear shape functions; that is, (1) a shape function has a value
of unity at its corresponding node and a value of zero at the other adjacent node, and
(2) if we sum up the shape functions, we will again come up with a value of unity. The
main difference between linear shape functions and quadratic shape functions is in their
derivatives. The derivatives of the quadratic shape functions with respect to X are not
constant.

5.3 CUBIC ELEMENTS

The quadratic interpolation functions offer good results in finite element formulations.
However, if additional accuracy is needed, we can resort to even higher order inter-
polation functions, such as third-order polynomials. Thus, we can use cubic functions
to represent the spatial variation of a given variable. Using a cubic function instead of
a quadratic function requires that we use four nodes to define an element. We need
four nodes to define an element because in order to fit a third-order polynomial, we
need four points. The element is divided into three equal lengths. The placement of
the four nodes is depicted in Figure 5.6. Referring to the previous example of a fin,
using cubic approximation, the temperature distribution for a typical element can be
represented by

TO =+ X+X+e,X (5.25)
and the nodal values are
T=1T at X=X, (5.26)
T = Tk at X = Xk
T=1T, at X=X,
T=T1T at X=X,
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FIGURE 5.6 Cubic approximation of the
temperature distribution for an element.
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Four equations and four unknowns are created upon substitution of the nodal values
into Eq. (5.25). Solving for ¢, ¢,, c3, and ¢, and rearranging terms leads to the element’s
temperature distribution in terms of the nodal values and the shape functions:

T = ST, + ST, + ST + S, T, (5.27)
In matrix form, the above expression is
T;
T
TO=1[S, S S S, / (5.28)
T
T,
where the shape functions are
9
§i= 5 (X = X)X ~ X)X - X,) (529)

_ 9 v _ _
§ = 55 (X = X)X ~ X)(X ~ X,)

S = 505 (X = X)(X = X)(X - X,)
S = 25 (X = X)X = X)X = X,

It is worth noting that when the order of the interpolating function increases, it
is necessary to employ Lagrange interpolation functions instead of taking the above
approach to obtain the shape functions. The main advantage the Lagrange method offers
is that using it, we do not have to solve a set of equations simultaneously to obtain the
unknown coefficients of the interpolating function. Instead, we represent the shape
functions in terms of the products of three linear functions. For cubic interpolating
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functions, the shape function associated with each node can be represented in terms of
the product of three linear functions. For a given node —for example, i—we select the
functions such that their product will produce a value of zero at other nodes—namely, j,
k, and m—and a value of unity at the given node, i. Moreover, the product of the func-
tions must produce linear and nonlinear terms similar to the ones given by a general
third-order polynomial function.

To demonstrate this method, let us consider node i, with the global coordinate Xj.
First, the functions must be selected such that when evaluated at nodes j, k, and m, the
outcome is a value of zero. We select

Si = a(X — X)X — XX — X,) (5.30)

which satisfies the above condition. That is, if you substitute for X = X, or X = X, or
X = X, the value of S; is zero. We then evaluate a, such that when the shape function
S; is evaluated at node i(X = X)), it will produce a value of unity:

1= al(Xi - ‘Xv/)()(t - Xk)(‘Xl - Xm) = al(_€)<_§><_2;>

Solving for a;, we get

“= "3

and substituting into Eq. (5.30), we have

9

SA = —
l 2¢°

(X = X)(X = X)(X - X,,)
The other shape functions are obtained in a similar fashion. Keeping in mind the expla-
nation offered above, we can generate shape functions of an (N — 1)-order polynomial
directly from the Lagrange polynomial formula:

N X — Xy omitting (X — Xy) X -—XDX - X)) (X —Xy)

Sy = — = 5.31
K AE Xix — Xy omitting (Xx — Xg)  (Xx — X)(Xx — Xp) -+ (X — Xy) (5-31)

Note that in order to accommodate any order polynomial representation in Eq. (5.31)
numeral values are assigned to the nodes and the subscripts of the shape functions.

In general, using a cubic interpolation function, the variation of any parameter ¥
in terms of its nodal values may be written as

VO =[S S S Sdq

Once again, note that the cubic shape functions possess properties similar to those of
the linear and the quadratic shape functions; that is, (1) a shape function has a value of
unity at its corresponding node and a value of zero at the other adjacent node, and (2) if
we sum up the shape functions, we will come up with a value of unity. However, note
that taking the spatial derivative of cubic shape functions will produce quadratic results.
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EXAMPLE 5.2
Using Lagrange interpolation functions, generate the quadratic shape functions directly
from the Lagrange polynomial formula, Eq. (5.31):
g = ﬁ (X — X)) omitting (X — Xkg)
K =i (Xx — X)) omitting (Xx — Xx)

For quadratic shape functions, N—1 = 2 and K = 1, 2, 3. Refer to Figure 5.5 and note
that subscripts 1, 2, and 3 correspond to nodes i, k, and j respectively. Also, it is impor-
tant to distinguish the difference between lowercase &, denoting a specific node, and
uppercase K, a variable subscript, denoting various nodes.

Fornodeior K =1,

X - X)X - X)) X -X)X—-X5) 2
X — X)(X) — X5) <_§>(_€) ¢

S;i=258 = (X — X)X — Xj)

Fornode kor K = 2,

X X)X -X) XXX -Xy) -4 )
T X - X)X - Xy <g><_€> = 2 (X = X)X - X))
2 2

For node jor K = 3,

Sk:SZ

X-XHX-X) X-X)X-X) 2
(X3 = X)(X; — X)) (€)<§> ¢

S =8 = (X = X)X = Xy)

The results are identical to shape functions given by Eq. (5.23).

5.4 GLOBAL, LOCAL, AND NATURAL COORDINATES

Most often, in finite element modeling, it is convenient to use several frames of ref-
erence, as we briefly discussed in Chapters 3 and 4. We need a global coordinate
system to represent the location of each node, orientation of each element, and to
apply boundary conditions and loads (in terms of their respective global components).
Moreover, the solution, such as nodal displacements, is generally represented with
respect to the global directions. On the other hand, we need to employ local and natu-
ral coordinates because they offer certain advantages when we construct the geometry
or compute integrals. The advantage becomes apparent particularly when the integrals
contain products of shape functions. For one-dimensional elements, the relationship
between a global coordinate X and a local coordinate x is given by X = X, + x, as
shown in Figure 5.7
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| Global X

Local X
Nodei — > JNode j
X, Y. FIGURE 5.7 The relationship between
| ‘] a global coordinate X and a local
¢
I |

coordinate x.

Substituting for X in terms of the local coordinate x in Egs. (5.8) and (5.9), we get
X —X X — (X +x)

X
S; 1-- 5.32
= . ; (5.32)
X-X (X+0-X «x
§="F = . = (5.33)

where the local coordinate x varies from 0 to ¢;thatis 0 = x = ¢.

One-Dimensional Linear Natural Coordinates

Natural coordinates are basically local coordinates in a dimensionless form. It is often
necessary to use numerical methods to evaluate integrals for the purpose of calculating
elemental stiffness or conductance matrices. Natural coordinates offer the convenience
of having —1 and 1 for the limits of integration. For example, if we let
2x
=—-1
¢ ¢
where x is the local coordinate, then we can specify the coordinates of node i as —1 and
node j by 1. This relationship is shown in Figure 5.8.
We can obtain the natural linear shape functions by substituting for x in terms of
& into Egs. (5.32) and (5.33). This substitution yields

1
Si=50-9 (5.34)
S; = %(1 + &) (5.35)

Natural linear shape functions possess the same properties as linear shape functions;
that is, a shape function has a value of unity at its corresponding node and has a value of

i J

the local coordinate x and the natural
coordinate &.

¢
E=—1 ’—»
Local x &=1
Node i. .Node j
X j( FIGURE 5.8 The relationship between
|
|

!
|
‘ ¢
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zero at the adjacent node in a given element. As an example, the temperature distribu-
tion over an element of a one-dimensional fin may expressed by

1 1
T = ST, + ST, = 5(1 - T, + 5(1 + 6T, (5.36)

Itisclear thatat{ = —1,T = T;andat§ = 1,7 = T,

ISOPARAMETRIC ELEMENTS

By now, it should be clear that we can represent other variables, such as the displacement
u, in terms of the natural shape functions §; and §; according to the equation

1 1
w9 = Su; + Su; = E(1 — O, + E(1 + Eu; (5.36a)

Also note that the transformation from the global coordinate X(X; = X = X)) or the
local coordinate x(0 = x = ¢) to ¢ can be made using the same shape functions S; and
S;. That is,

1 1
X =SX 4 SX = (1= 9X, + (1 + 9, (5.36b)
or
1 1
X = Sl‘xi + Slx] - 5(1 - f)xi + 5(1 + f)x]

Comparing the relationships given by Egs. (5.36), (5.36a), and (5.36b), we note that we
have used a single set of parameters (such as S, S;) to define the unknown variables u,
T, and so on, and we used the same parameters (S, S;) to express the geometry. Finite
element formulation that makes use of this idea is commonly referred to as isopara-
metric (iso meaning the same or uniform) formulation, and an element expressed in
such a manner is called an isoparametric element. We discuss isoparametric formulation
further in Chapters 7 and 10.

EXAMPLE 5.3

Determine the temperature of the fin in Example 5.1 at the global location X = 8 cm
using local coordinates. Also determine the temperature of the fin at the global location
X = 7.5 cm using natural coordinates.

| e
Tbase=50°C\J F‘ i 7 g 1 i | T, 50
L2 @ 3 © 4 ;z =5t
T, 20

‘«—2 cm—| 3cm ‘ 5cm |
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a. Using local coordinates, we find that the temperature of the fin at X = 8cm is
represented by element (3) according to the equation

X X
T® = SPT; + SPT, = <1 - €>T3 + T
Note that element (3) has a length of 5 cm, and the location of a point 8 cm from
the base is represented by the local coordinate x = 3:

3 3
T= (1 = 5>(34) +5(0) = 256°C

b. Using natural coordinates, we find that the temperature of the fin at X = 7.5 cm
is represented by element (3) according to the equation

1 1
T®) = SOT;, + SPT, = S =T+ (1L + T,

Because the point with the global coordinate X = 7.5 cm is located in the middle
of element (3), the natural coordinate of this point is given by & = 0:

0 = %(1 - 0)(34) + %(1 + 0)(20) = 27°C

One-Dimensional Natural Quadratic
and Cubic Shape Functions

The natural one-dimensional quadratic and cubic shape functions can be obtained in
a way similar to the method discussed in the previous section. The quadratic natural
shape functions are

1
Si= 61 -8 (5.37)
1
S = 55(1 + &) (5.38)
Se=0+Hd — &) (5.39)
The natural one-dimensional cubic shape functions are

1

Si= 11— HCGE+ DB -1 (5.40)
1

S, = R(l +&BE+1DBE-1T) (5.41)
9

Se= 1o (1 +9E —DEE- 1) (5:42)

S0 = (14 H(1 = HBE+1) (543)
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For the sake of convenience, the results of Sections 5.1 to 5.4 are summarized in Table 5.1.
Make sure to distinguish the differences among presentations of the shape functions
using global, local, and natural coordinates.

EXAMPLE 5.4

X;

Evaluate the integral / S;dX using (a) global coordinates and (b) local coordinates.

X;
a. Using global coordinates, we obtain
Yot

X; X,

j (X - X\ 1
/ S2dX = / ( >dX=2(X—X,«)3
¥ x \ ¢ 3¢ X

i i

b. Using local coordinates, we obtain

[rsae- [ (3=

This simple example demonstrates that local coordinates offer a simple way to evaluate
integrals containing products of shape functions.

¢

3

5.6 NUMERICAL INTEGRATION: GAUSS-LEGENDRE QUADRATURE

As we discussed earlier, natural coordinates are basically local coordinates in a dimen-
sionless form. Moreover, most finite element programs perform element numerical
integration by Gaussian quadratures, and as the limit of integration, they use an inter-
val from —1 to 1. This approach is taken because when the function being integrated
is known, the Gauss—-Legendre formulae offer a more efficient way of evaluating an
integral as compared to other numerical integration methods such as the trapezoidal
method. Whereas the trapezoidal method or Simpson’s method can be used to evalu-
ate integrals dealing with discrete data (see Problem 24), the Gauss-Legendre method
is based on the evaluation of a known function at nonuniformally spaced points to
compute the integral. The two-point Gauss—Legendre formula is developed next in this
section. The basic goal behind the Gauss-Legendre formulae is to represent an integral
in terms of the sum of the product of certain weighting coefficients and the value of the
function at some selected points. So, we begin with

I= / flx)dx = 2w,f(xi) (5.44)

Next, we must ask (1) How do we determine the value of the weighting coefficients,
represented by the w;’s? (2) Where do we evaluate the function, or in other words, how
do we select these points (x;)? We begin by changing the limits of integration from a to b
to —1 to 1 with the introduction of the variable A such that

X =cyt+ A
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Matching the limits, we get
a=cy+ (-1

b=cy+ c(1)
and solving for ¢, and ¢, we have
_(b+a
Co = >
and
_ (b —a)
= >
Therefore,
(b+a) (b-a)
— + A 5.45
x 2 2 (545)
and
(b —a)
dx = > di (5.46)

Thus, using Egs. (5.45) and (5.46), we find that any integral in the form of Eq. (5.44) can
be expressed in terms of an integral with its limits at —1 and 1:

1 n
I= / f) dx = > wif(n) (5.47)
-1 i=1
The two-point Gauss—-Legendre formulation requires the determination of two
weighting factors w; and w, and two sampling points A; and A, to evaluate the func-
tion at these points. Because there are four unknowns, four equations are created using
Legendre polynomials (1, A, X, X’) as follows:
1
wif(Ay) + w, f(Ay) = / Ldx =2
-1
1
wi f(A) + wyf(dy) = / Adr =0
-1
! 2
wi f(A) + wy f(Ay) = / N dx = 3
-1
1
w f(A) + wy f(Ay) = / Xdr=0
-1
The above equations lead to the equations
wi(1) + wy(1) =2
wi(A) + wy(ry) =0
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TABLE 5.2 Weighting factors and sampling points for Gauss-Legendre formulae

Points (n) Weighting factors (w;) Sampling points (A;)
2 w; = 1.00000000 A = —0.577350269
w, = 1.00000000 A = 0.577350269
3 w; = 0.55555556 A = —0.774596669
w, = 0.88888889 A= 0
w; = 0.55555556 A3 = 0.774596669
4 w; = 0.3478548 A = —0.861136312
w, = 0.6521452 A, = —0.339981044
w; = 0.6521452 A3 = 0.339981044
wy = 0.3478548 Ay = 0.861136312
5 w; = 0.2369269 A = —0.906179846
w, = 0.4786287 A, = —0.538469310
w; = 0.5688889 A= 0
w, = 0.4786287 Ay = 0.538469310
ws = 0.2369269 As = 0.906179846
2 2 — 2
wi(A)" + wy(Ay)” = 3

wi(Ar)* + wy(Ap)* = 0

Solving for w,, w,, A, and A,, we have w; = w, = 1, A; = —0.577350269, and
A, = 0.577350269. The weighting factors and the 2, 3, 4, and 5 sampling points for
Gauss-Legendre formulae are given in Table 5.2. Note that as the number of sampling
points increases, so does the accuracy of the calculations. As you will see in Chapter 7,
we can readily extend the Gauss-Legendre quadrature formulation to two- or three
dimensional problems.

EXAMPLE 5.5

6
Evaluate the integral I = / (x* + 5x + 3) dx using the Gauss-Legendre two-point
2

sampling formula.

This integral is simple and can be evaluated analytically, leading to the solution
I = 161.333333333. The purpose of this example is to demonstrate the Gauss—Legendre
procedure. We begin by changing the variable x to A by using Eq. (5.45). So, we obtain

L_bra b-a, (6+2) (6-2)

=4+
> > > 2)\42/\

and

o (62

d
x 2 2

dA = 2dA
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Thus, the integral I can be expressed in terms of A:
fx) f)

~

6 1
I= / (x* + 5x + 3)dx = / ()[4 + 210)* + 5(4 + 21) + 3)]dA
2 -1

Using the Gauss—Legendre two-point formula and Table 5.2, we compute the value of
the integral 7 from

I = wif(A) + wf(Ay)

From Table 5.2, we find that w;, = w, = 1, and evaluating f(A) at A, = —0.577350269
and A, = 0.577350269, we obtain

() = Q)[4 + 2(—0.577350269)] + 5(4 + 2(—0.577350269) + 3)] = 50.6444526769
(L) = )[4 + 2(0.577350269)] + 5(4 + 2(0.577350269) + 3)] = 110.688880653
I = (1)(50.6444526769) + (1)110.688880653 = 161.33333333

EXAMPLE 5.6
)(].
Evaluate the integral / S;dX in Example 5.4 using the Gauss—Legendre two-point
X,
formula. l

Recall from Eq. (5.35) that §; = 1(1 + ¢) and by differentiating the relationship

: . . 2x
between the local coordinate x and the natural coordinate ¢ (i.e., & = 7 1=

2
¢ = 2 dx) we find dx = % dé. Also note that for this problem, § = A. So,

% NX - X\ ‘(x\? ¢ [T1 2
— 2 — ! — - = —
1= [sax= [ (5 fax = [(3fa-g [0 e [

Using the Gauss—Legendre two-point formula and Table 5.2, we compute the value of
the integral I from

I = w f(A) + wf(Ay)

From Table 5.2, we find that w; = w, = 1, and evaluating f(A) at A; = —0.577350269
and A, = 0.577350269, we obtain

2 2
f&) = g[;(l + 51):| = g[i(l - 0.577350269):| = 0.022329099389¢

2 2
f(&) = g[;(l + 52):| = g[i(l + 0.577350269)} = 0.31100423389¢

I = (1)(0.022329099389¢) + (1)(0.31100423389¢) = 0.333333333¢

Note that the above result is identical to the results of Example 5.4.
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5.7 EXAMPLES OF ONE-DIMENSIONAL ELEMENTS IN ANSYS

ANSYS offers uniaxial link elements that may be used to represent one-dimensional
problems. These link elements include LINK31, LINK33, and LINK34. The LINK33
element is a uniaxial heat conduction element. It allows for the transfer of heat between
its two nodes via conduction mode. The nodal degree of freedom associated with this
element is temperature. The element is defined by its two nodes, cross-sectional area,
and material properties such as thermal conductivity. The LINK34 element is a uni-
axial convection link that allows for heat transfer between its nodes by convection.
This element is defined by its two nodes, a convective surface area, and a convective
heat transfer (film) coefficient. The LINK31 element can be used to model radiation
heat transfer between two points in space. The element is defined by its two nodes, a
radiation surface area, a geometric shape factor, emissivity, and the Stefan-Boltzman
constant. In Chapter 6, we will use LINK33 and LINK34 to solve a one-dimensional
heatconduction problem.

SUMMARY

At this point you should

1. have a good understanding of the linear one-dimensional elements and shape
functions, their properties, and their limitations.

2. have a good understanding of the quadratic and cubic one-dimensional elements
and shape functions, their properties, and their advantages over linear elements.

know why it is important to use local and natural coordinate systems.
know what is meant by isoparametric element and formulation.
have a good understanding of Gauss—-Legendre quadrature.

7 I N

know examples of one-dimensional elements in ANSYS.
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PROBLEMS

1. We have used linear one-dimensional elements to approximate the temperature distribu-
tion along a fin. The nodal temperatures and their corresponding positions are shown in the
accompanying figure. (a) What is the temperature of the fin at X = 8 cm? (b) Evaluate the
heat loss from the fin using the relationship

dT

0= _kAa ‘XZO

where k = 200 W/m-K and A = 15 mm>.
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| Thuia=18°C
Thase = 100"()\ \‘ “ ‘“ T, 100
T, _ 800 { C
1 2 @ 3 3) 4 T; 64
- - - - T, 41
‘4—2 cm } 3 cm } Scm }

2.

3.

X
j
Evaluate the integral / S?dX for a linear shape function using (a) global coordinates and
X

(b) local coordinates.

Starting with the equations

T, = ¢ + &, X; + c3X?
Tk = + C2Xk + C3X/%

T, = ¢, + &X; + X}
solve for ¢, ¢,, and ¢;, and rearrange terms to verify the shape functions given by
2
5= 5 (X~ X)X - X))
2
5= 5 (X~ X)X — X
—4
Sk = ?(X - X)X - X))

For Problem 3, use the Lagrange functions to derive the quadratic shape functions by the
method discussed in Section 5.3.

Derive the expressions for quadratic shape functions in terms of the local coordinates and
compare your results to the results given in Table 5.1.

Verify the results given for one-dimensional quadratic natural shape functions in Table 5.1 by
showing that (1) a shape function has a value of unity at its corresponding node and a value
of zero at the other nodes, and (2) if we sum up the shape functions, we will come up with a
value of unity.

Verify the results given for the local cubic shape functions in Table 5.1 by showing that (1) a
shape function has a value of unity at its corresponding node and a value of zero at the other
nodes and (2) if we sum up the shape functions, we will come up with a value of unity.

Verify the results given for the natural cubic shape functions in Table 5.1 by showing that (1) a
shape function has a value of unity at its corresponding node and a value of zero at the other
nodes and (2) if we sum up the shape functions, we will come up with a value of unity.
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9. Obtain expressions for the spatial derivatives of the quadratic and cubic shape functions.

10. As previously explained, we can increase the accuracy of our finite element findings either
by increasing the number of elements used in the analysis to represent a problem or by using
a higher order approximation. Derive the local cubic shape functions.
X,

11. Evaluate the integral / S;dX for a quadratic shape function using (a) global coordinates,
X;
(b) natural coordinates, and (c) local coordinates.

12. Assume that the deflection of a cantilever beam was approximated with linear one-dimen-
sional elements. The nodal deflections and their corresponding positions are shown in the
accompanying figure. (a) What is the deflection of the beam at X = 2.5 ft? (b) Evaluate the
slope at the endpoint.

5. 9 100 Ib/ft
a b b
T x TN |
S 9 EI=2X10° Ib - fe
y
1 2 3 4 5 . 0
V) 0.003275
m m [ ]
t e e » yy ¢ =4 0.022275 3 in
V4 0.034400
<1 ft—| 2 ft <1 ft—l<—1 ft—> Vs 0.046875

13. We have used linear one-dimensional elements to approximate the temperature distribution
inside a metal plate. A heating element is embedded within a plate. The nodal temperatures
and their corresponding positions are shown in the accompanying figure. What is the tem-
perature of the plate at X = 28 mm? Assume that (a) linear elements were used in obtaining
nodal temperatures and (b) quadratic elements were used.

T, 120
it T, 119
8 cm \ T, 116
T, 111
4 »[10 mm|= Tsp =104 p°C
T, 95
2 3 4 5 6 7 8 9 T7 34
f—
/! X T, 71
T, 56
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14. Quadratic elements are used to approximate the temperature distribution in a straight fin.

The nodal temperatures and their corresponding positions are shown in the accompanying
figure. What is the temperature of the fin at X = 8 cm?

’ T, 100 )
T, 74
L e B
S T, » =< 44 p°C
T, 36
1 2 3 4 5 6 7 T 31
| | | | | T 28 )
‘4—2 cm—>| 2 cm | 2 cm | 2 cm | 2 cm | 2 cm—>|

15. Develop the shape functions for a linear element, shown in the accompanying figure, using
the local coordinate x whose origin lies at the one-fourth point of the element.

X

}—»

i@ ®]
~ 3 —
€ |
_>Xi
Xj

16. Using the natural coordinate system shown in the accompanying figure, develop the natural
shape functions for a linear element.

—

i@ ®

Xi} ¢ ‘X,

17. In the accompanying figure, the deflection of nodes 2 and 3 are 0.02 mm and 0.025 mm,

respectively. What are the deflections at point A and point B, provided that linear elements
were used in the analysis?

6 cm ‘4— 3 cm —

1 2 !
[} °
B

e

| 12 cm 6 cm 8cm |




18.

19.

20.
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Consider the steel column depicted in the accompanying figure. Under the assumption of
axial loading, and using linear elements, we determined that the downward vertical displace-
ments of the column at various floor—column connection points are

U 0

U, 0.03283

uz ¢ = 4 0.05784 (in
Uy 0.07504

Us 0.08442

Using local shape functions, determine the deflections of points A and B, located in the
middle of elements (3) and (4) respectively.

30,000 1b
s |
“)
25.0001b | 'Jp 15 ft
s 1
Y| o |74 3
3
25,000 Ib (.24 15 ft
5 1
A 0 |74 3
25,000 1b|| (2) 15 ft
2 1
AW B |74 3
€] 15 ft
1
S50 ..0 ._ 050
o > O . o S O

Determine the deflection of points A and B on the column in Problem 18 using natural
coordinates.

A 20-ft-tall post is used to support advertisement signs at various locations along its height,
as shown in the accompanying figure. The post is made of structural steel with a modulus of
elasticity of E = 29 X 10° Ib/in®. Not considering wind loading on the signs and using linear
elements, we determined that the downward deflections of the post at the points of load
application are

Uy O
u, |} 62069 x 107 o
us 8.7931 x 10~

U, 10.8621 x 107
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21.
22,

23.

24.

Determine the deflection of point A, located at the midpoint of the middle member, using
(a) global shape functions, (b) local shape functions, and (c) natural shape functions.

100 Ib

=1in2
St © A.,=1in
5 £t @ A,=2in?
10 ft A, =3in2
Y il
o O o
VT ot e

Evaluate the integral in Problem 11 using Gauss—-Legendre two-point formula.

Evaluate the given integral analytically and using Gauss—-Legendre formula.

5
/ (x® + 6x* + 10)dx
1

Evaluate the given integral analytically and using Gauss-Legendre two- and three-point
formulae.

8
/ (Bx* + x* — 7x + 10)dx
-

In Section 5.6 we mentioned that when the function being integrated is known, the Gauss—
Legndre formulae offer a more efficient way of evaluating an integral as compared to the
trapezoidal method. The trapezoidal approximation of an integral deals with discrete data at
uniformly spaced intervals and is computed from

b
1 1
/f(x)dx = h<2YO tyityt o Yty t 2yn>
a



25.

26.

217.

28.
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The above equation is known as the trapezoidal rule, and /4 represents the spacing among
data points, yy, y1, Vo, - - . , and y,. For Problem 23, use # = 1 and generate 11 data points:
yoatx = —2,y;atx = —1,...,and y;patx = 8. Use the generated data and the trapezoidal
rule to approximate the integral. Compare this result to the results of Problem 23.

y=f(x)

Derive and plot the spatial derivatives for linear, quadratic, and cubic elements. Discuss the
differences.

Temperature distribution along a section of a material is given by T, = 80°C, T} = 70°C,
T, = 62°C, T3 = 55°C with X, = 0, X; = 2cm, X, = 4 cm, X3 = 6 cm. Use single linear,
quadratic, and cubic elements to approximate the given temperature distribution. Plot the
actual data points and compare them to the linear, quadratic, and cubic approximations. Also,
estimate the spatial derivative of the given data and compare it to the derivatives of the linear,
quadratic, and cubic representations.

Use the isoparametric formulation to express the following information: 7; = 100°C,
T, = 60°C with the corresponding global coordinates X; = 2 cm, X, = 5 cm. Show the
transformation equations between the global coordinate, the local coordinate, and the natu-
ral coordinate.

Use the isoparametric formulation to express the following deflection information:
U, =0.01lcm, U, = 0.02cm with the corresponding global coordinates X; = 2cm,
X, = 12 cm. Show the transformation equations between the global coordinate, the local
coordinate, and the natural coordinate.



CHAPTER 6

Analysis
of One-Dimensional Problems

The main objective of this chapter is to introduce the analysis of one-dimensional prob-
lems. Most often, a physical problem is not truly one-dimensional in nature; however,
as a starting point, we may model the behavior of a system using one-dimensional
approximation. This approach can usually provide some basic insight into a more com-
plex problem. If necessary, as a next step we can always analyze the problem using a
two- or three-dimensional approach. This chapter first presents the one-dimensional
Galerkin formulation used for heat transfer problems. This presentation is followed by
an example demonstrating analysis of a one-dimensional fluid mechanics problem. The
main topics discussed in Chapter 6 are

6.1 Heat Transfer Problems

6.2 A Fluid Mechanics Problem
6.3 An Example Using ANSYS
6.4 Verification of Results

6.1 HEAT TRANSFER PROBLEMS

Recall that in Chapter 1 we discussed the basic steps involved in any finite element
analysis; to refresh your memory, these steps are repeated here.

Preprocessing Phase

1. Create and discretize the solution domain into finite elements; that is, subdivide
the problem into nodes and elements.

2. Assume shape functions to represent the behavior of an element; that is, assume
an approximate continuous function to represent the solution for a element.
The one-dimensional linear and quadratic shape functions were discussed in
Chapter 5.
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3. Develop equations for an element. This step is the main focus of the current
chapter. We will use the Galerkin approach to formulate elemental descriptions.
In Chapter 4, we used the minimum potential energy theorem to generate finite
element models for members under axial loading and for beam elements.

4. Assemble the elements to represent the entire problem. Construct the global stiff-
ness or conductance matrix.

5. Apply boundary conditions and loading.

Solution Phase

6. Solve a set of linear algebraic equations simultaneously to obtain nodal results,
such as the temperature at different nodes or displacements.

Postprocessing Phase

7. Obtain other important information. We may be interested in determining the heat
loss or stress in each element.

We now focus our attention on step 3 of the preprocessing phase. We formulate
the conductance and the thermal load matrices for a typical one-dimensional fin ele-
ment. We considered a straight fin of a uniform cross section in Chapter 5. For the sake
of convenience, the fin is shown again in Figure 6.1. The fin is modeled using three ele-
ments and four nodes. The temperature distribution along the element is interpolated
using linear functions. The actual and the approximate piecewise linear temperature
distribution along the fin are shown in Figure 6.1. We will concentrate on a typical ele-
ment belonging to the fin and formulate the conductance matrix and the thermal load
matrix for such an element.

One-dimensional heat transfer in a straight fin is governed by the following heat
equation, as given in any introductory text on heat transfer:

T
kA

— hpT + hpT; =0 (6.1)

dx?

FIGURE 6.1 The actual and approximate
temperature distribution for a fin of uniform
cross section.
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dQConvection

T

\ Ll [
"

L

We start by applying the energy balance to a differential element

9x = qx+ax + dqconvection

dq.
e = q, + de + dqconvectinn

Next we use Fourier’s law

and use Newton’s law of cooling,

dqconveclion = h(dAs)(T - Tf)

0=

dq, d dr
~dx + d. ion = | kA —— | dx + h(dA,)(T — T,
dx X q convection dx < dx > X ( A)( f)

Writing dA; (differential surface area) in terms of the perimeter of the fin and dx and simplify-
ing, we are left with

d*T
—kA—+ hp(T—-T) =0
i P( f)

FIGURE 6.2 Derivation of the heat equation for a fin.

Equation (6.1) is derived by applying the conservation of energy to a differential section
of a fin, as shown in Figure 6.2. The heat transfer in the fin is accomplished by conduc-
tion in the longitudinal direction (x-direction) and convection to the surrounding fluid.
In Eq. (6.1), k is the thermal conductivity, and A denotes the cross-sectional area of the
fin. The convective heat transfer coefficient is represented by 4, the perimeter of the fin
is denoted by p, and T} is the temperature of the surrounding fluid. Equation (6.1) is
subjected to a set of boundary conditions. First, the temperature of the base is generally
known; that is,

7(0) = T, (6.2)
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The other boundary condition deals with the heat loss at the tip of the fin. In general,
there are three possibilities. One possibility is that the tip is long enough so that the
temperature of the tip is equal to the temperature of the surrounding fluid temperature.
This situation is represented by the condition

(L) = T (63)

The situation in which the heat loss from the tip of the fin may be neglected is repre-
sented by the condition

—0 (6.4)

If the heat loss from the tip of the fin should be included in the analysis, then we have
the condition

ar
— kA S

| =hA(T, - T) (6.5)

X=L

Equation (6.5) is obtained by applying the energy balance to the cross-sectional
area of the tip. Equation (6.5) simply states that the heat conducted to the tip’s surface
is convected away by the surrounding fluid. Therefore, we can use one of the bound-
ary conditions given by Egs. (6.3)-(6.5) and the base temperature to model an actual
problem. Before we proceed with the formulation of the conductance matrix and the
thermal load matrix for a typical element, let us emphasize the following points: (1) The
governing differential equation of the fin represents the balance of energy at any point
along the fin and thus governs the balance of energy at all nodes of a finite element
model as well, and (2) the exact solution of the governing differential equation (if pos-
sible) subject to two appropriate boundary conditions renders the detailed temperature
distribution along the fin, and the finite element solution represents an approximation
of this solution. We now focus on a typical element and proceed with the formulation of
the conductance matrix, recalling that the temperature distribution for a typical element
may be approximated using linear shape functions, as discussed in Chapter 5. That is,

T
TO =[S, S { ’} (6.6)
T
where the shape functions are given by
Xi—X X - X
S; = ; and §; = ; (6.7)

In order to make this derivation as general as possible and applicable to other type
of problems with the same form of differential equations, let ¢, = kA, ¢, = —hp,
c; = hpT, and ¥ = T. Thus, Eq. (6.1) can be written as

2

aw
Clﬁ + Czq, + C3 = 0 (68)
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Recall from our introductory discussion of weighted residual methods in Chapter 1
that when we substitute an approximate solution into the governing differential equa-
tion, the approximate solution does not satisfy the differential equation exactly, and thus,
an error, or a residual, is produced. Also recall that the Galerkin formulation requires
the error to be orthogonal to some weighting functions. Furthermore, the weighting
functions are chosen to be members of the approximate solution. Here we will use the
shape functions as the weighting functions because they are members of the approxi-
mate solution.

We can obtain the residual equations in one of two ways: using a nodal approach
or an elemental approach. Consider three consecutive nodes, i, j, and &, belonging to
two adjacent elements (e),and (e + 1), as shown in Figure 6.3. Elements (e¢) and (e + 1)
both contribute to error at node j. Realizing this fact, we can write the residual equation
for node j as

Xj &>v (e)
R = R(e) + R(c+l) = S(E) (S + Cz\P + C3 dx
N i Yaxe

X;

X 2 (e+1)
k av
+/ S](.“H)[cldxz + o,V + c{| dX =0 (6.9)
X

]

Pay close attention to the subscripts denoting node numbers and superscripts referring
to element numbers while following the forthcoming derivation. Writing the residual or
the error equations for each node of a finite element model leads to a set of equations
of the form

R, 0

R, 0

Ryp =20 (6.10)
0

R 0

where R, = R{" + R?, Ry = R + R{, and so on.
Let us now look at the contribution of each element to the nodal residual equa-
tions more closely. Expanding Eq. (6.9) for a number of nodes (1, 2, 3, 4, and so on),

we get
X, A, 1)
R, = / S§1)|:c12 + oW + c{| dX =0 (6.11)
X, dXx
(e) (e+1)
o o d FIGURE 6.3 Elements (¢) and (e + 1)
! ] k and their respective nodes.
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X, dZ\P 1)
R, = RV + RP = / N e el e | dX
X

element 2 contribution

X3 BPr (@]
-‘f-/ ng) Clﬁ + CZ\P + C3 dX = 0 (612)
X,

element 2 contribution

X; v ()
R;=RY + RY = / S@ e eV e | dX
X5

element 3 contribution

Xy dZ\P (3)
+/ S§3) Clﬁ + oV +ce| dX =0 (6.13)
X3

element 3 contribution

X dz‘P 3)
R, =Ry + RY = / Sf)[cl + ¥ + C3] dXx

X, dx’
element 4 contribution
Xs 2 (4)
aw
+ / Sf“”[clz + oV + cs] dX =0 (6.14)
X, dx

and so on. Note that element (2) contributes to Egs. (6.12) and (6.13), and element
(3) contributes to Egs. (6.13) and (6.14), and so on. In general, an arbitrary ele-
ment (e) having nodes i and j contributes to the residual equations in the following
manner:

&; &3 (o)
Rl(e) == /X’ Si(e) Clﬁ + CZ\II + C3 179, ¢ (615)
X
i dz\lj (e)
R}e) = / S](e) |:Cldxv2 + Czq, + C3:| dX (616)
X;

This approach leads to the elemental formulation. It is important to note that we have
set up the residual equations for an arbitrary element (e). Moreover, the elemental
matrices obtained in this manner are then assembled to present the entire problem, and
the residuals equations are set equal to zero.

Evaluation of the integrals given by Egs. (6.15) and (6.16) will result in the
elemental formulation. But first, we will manipulate the second-order terms into
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first-order terms. This manipulation is accomplished by using the chain rule in the
following manner:

d A% v as; dv
dX<S dX> S Vaxax (6.17)
A d d¥V as; dv
— = —=| Si—= 6.18
e dX< ’dX) dX dX (6.18)

Substituting Eq. (6.18) into Eq. (6.15), we obtain

X
( (d(.dv\ dS;, av
RO = [ e (55 + SV + ) | dX 6.19
i /Xi <C1<dX<’dX> dX dX> (e C3)> (6.19)

We eventually need to follow the same procedure for Eq. (6.16) as well, but for
now let us focus only on one of the residual equations. There are four terms in Eq. (6.19)
that need to be evaluated:

X. X
d v i ds; dv
(e) = / R +
R} / <dX<S )) dx /X cl< F3% dX> ax

X;j X
—I—/ Si(c, V) dX +/ SicydX (6.20)

X

i

Considering and evaluating the first term, we have

Yo d(  dv av
[, oGl ) o = s 3

It is important to realize that in order for us to obtain the result given by Eq. (6.21), S, is
zero at X = X;and S; = 1 at X = X. The second integral in Eq. (6.20) is evaluated as

% das; dv ¢
/Xi Cq <_dXd)(> dx = —? (\I’l - \I’]) (622)

av
ax

dv
= —

—C Si I
X oy, dx

(6.21)

X=X;

X - X
¢

and

To obtain the results given by Eq. (6.22), first substitute for S; =
X — X X - X

J

V=S8V, + SV, = ¢ v, + P i‘If,- and then proceed with evaluation of
integral. Evaluation of the third and the fourth integrals in Eq. (6.20) yields
i ¢ ¢
/ S(e W) dX = 2w, + g (6.23)
X, 3 6
X; ¢
/ SiC3 dX = C37 (624)
Y. 2

l
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In exactly the same manner, we can evaluate the second residual equation for node j, as
given by Eq. (6.16). This evaluation results in the following equations:

X d av av av av
Bl Y Vi =S — -5 — =c— 6.25
/X,- Cl<dX<S] dX)) = hdax X=X; % ax X=X; “ax X=X; o
X as; gw o
——|dX = — (—V. + P, 6.26
/X,- Cl( dXdX) ¢ Tl ) (6:26)
X ¢ ¢
/ S/, W)dX = 2w, + 2y, (6.27)
5, 6 3
X ¢
/ S] C3 dX = 37 (628)
X; 2

l

It should be clear by now that evaluation of Egs. (6.15) and (6.16) results in two
sets of linear equations, as given by:

A

R\ ) “dX|xx _cl{ 1 —1} W,

otl2 171(v) otf1
SRt e

Note that from here on, for the sake of simplicity of presentation of conductance and
load matrices, we will set the residual of an element equal to zero. However, as we men-
tioned earlier, it is important to realize that the residuals are set equal to zero after all
the elements have been assembled. Therefore, we rewrite the Eq. (6.29) as

L4y

YdX | x-x +q{ 1 —1} \ +—c2€[2 Lo, _ et f1 (6.30)
_av el-1 1l 6 L1 2]\ 211
CdX |x-x,

]

Combining the unknown nodal parameters, we obtain

dv
Cli

R (K] + [K]ﬁf)}{&} = {F}© (6.31)

]

dv

dX X:X]'

1 -1
© =S
(K]e" = [—1 1}

where
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is the elemental conductance for a heat transfer problem (or, it could represent the stiff-
ness for solid mechanics problems), due to the ¢, coefficient,

—,0[2 1
© — @2
K =27 1]

is the elemental conductance (or, for a solid mechanics problem, the stiffness) due to

the ¢, coefficient, and
it |1
F1O0 = 2
o=t

is the load matrix for a given element. The terms

v
“Tax

X=X;

dw
“ax

X:X]-

contribute to both the conductance (or, for a solid-mechanics problem, the stiffness)
matrix and the load matrix. They need to be evaluated for specific boundary conditions.
We shall undertake this task shortly. However, let us first write down the conductance
matrix for a typical one-dimensional fin in terms of its parameters. The conductance
matrices are given by

,_al 1 -17] kA[ 1 -1
[K]ER—e[_1 J— e[_l J (6.32)

-2 1 hp€|:2 1
© — 2t =

In general, the elemental conductance matrix may consist of three terms: The
[K]¢ term is due to conduction heat transfer along the fin (through the cross-sectional
area); the [K]\¥) term represents the heat loss through the top, bottom, and side sur-
faces (periphery) of an element of a fin; and, depending on the boundary condition of
the tip, an additional elemental conductance matrix [K]§): can exist. For the very last
element containing the tip surface, and referring to the boundary condition given by
Eq. (6.5), the heat loss through the tip surface can be evaluated as

and

dv dT
—|x= kA=~ | x-
Cq dx X=X, _ dx X=X, B 0 (6 34)
_. 2y dT hA(T; — T)) '
Vax|xex || TR x|
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By rearranging and simplifying, we have

aT
kA——
worl <1 S0 e
kAdT hA(T; — T)) 0 hAJLT; hAT; '
dX X:Xj
0 O
© _
0
The term — { WAT } belongs to the right side of Eq. (6.31) with the thermal load matrix.
f
It shows the contribution of the boundary condition of the tip to the load matrix:
(FHge =1 ° (637)
- hAT;

To summarize, the conductance matrix for all elements, excluding the last element, is

given by
kAl 1 -1 hpt|2 1
() = {2 i
o= {4 ] L (6:39)

If the heat loss through the tip of the fin must be accounted for, the conductance matrix
for the very last element must be computed from the equation

— h
T N

The thermal load matrix for all elements, excluding the last element, is given by

{F}© = hp; Tf{i} (6.40)

If the heat loss through the tip of the fin must be included in the analysis, the thermal
load matrix for the very last element must be computed from the relation

o hp €Ty (1 0
B IREN

The next set of examples demonstrates the assembly of elements to present the entire
problem and the treatment of other boundary conditions.

EXAMPLE 6.1 A Fin Problem

Aluminum fins of a rectangular profile, shown in Figure 6.4, are used to remove heat
from a surface whose temperature is 100°C. The temperature of the ambient air is 20°C.
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Tauia— 20°C, h =30 W/m? - K

r—_B
I 1 2 @ 3 3 4 @ S

-1 [ —

‘4—20mm } 20 mm } 20 mm } 20mm—4

FIGURE 6.4 Finite element model of a
straight fin.

The thermal conductivity of aluminum is 168 W/m + K (W/m - °C). The natural convective
heat transfer coefficient associated with the surrounding air is 30 W/m? - K (W/m? - °C).
The fins are 80 mm long, 5 mm wide, and 1 mm thick. (a) Determine the temperature dis-
tribution along the fin using the finite element model shown in Figure 6.4. (b) Compute

the heat loss per fin.

We will solve this problem using two boundary conditions for the tip. First, let us
include the heat transfer from the tip’s surface in the analysis. For elements (1), (2), and
(3) in the situation, the conductance and thermal load matrices are given by

o JkA[ 1 -1
[K]()_{{,’[—l 1]

hp €Ty (1
(&) —

Substituting for the properties, we obtain

)

K] — {(168)(5 X1x109[ 1 —1} L 30X 1220 x 10°[2 1}}

20 X 1073 -1 1

30><12><20><106><20{1}_{

Fl© =
{F} > 1

6 L1 2

0.072
0.072

The conductance matrix for elements (1), (2), and (3) is

K10 = K19 = (K] = |

0.0444
—0.0408

—0.0408:| W

0.0444 | °C
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and the thermal-load matrix for elements (1), (2), and (3) is

N N 5 _ ) 0.072
{F} = (F}@ = {F}© = {0.072}w

Including the boundary condition of the tip, the conductance and load matrices for
element (4) are obtained in the following manner:

o [kA[ 1 1) hpef2 1] TO 0
[K]()—{€|:_1 1}+ 6|:1 2J+|:0 hA]}

[K](“)—[ 0.0444  —0.0408] [0 0 _[ 0.0444 —0.0408 | W
—0.0408  0.0444 0 (30 X5x%1x107 —0.0408  0.04455 | °C

hp€T; (1 0
(e) — +
{F} 2 {1} {hATf

0.072 0 0.072
(4) = —+ =
{F} {0.072} {(30 X 5X1X107° X 20)} {0.075}W

Assembly of the elements leads to the global conductance matrix [K]‘® and the global
load matrix {F}©:

0.0444 —0.0408 0 0 0
—0.0408  0.0444 + 0.0444 —0.0408 0 0
[K]© = 0 —0.0408 0.0444 + 0.0444 —0.0408 0
0 0 —0.0408 0.0444 + 0.0444  —0.0408
0 0 0 —0.0408 0.04455
0.072
0.072 + 0.072
{F}© =< 0.072 + 0.072
0.072 + 0.072
0.075

Applying the base boundary condition 7 = 100°C, we find that the final set of linear
equations becomes

1 0 0 0 0 T, 100
—0.0408  0.0888  —0.0408 0 0 T, 0.144

0 —0.0408  0.0888  —0.0408 0 T; p = 4 0.144

0 0 —0.0408  0.0888  —0.0408 || 7, 0.144

0 0 0 —0.0408  0.04455 Ts 0.075
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We can obtain the nodal temperatures from the solution of the above equation. The
nodal solutions are

T, 100
T, 75.03
Ty ¢ =< 59.79 3°C
T, 51.56
T, 48.90

Note that the nodal temperatures are given in °C and not in °K.

Because the cross-sectional area of the given fin is relatively small, we could have
neglected the heat loss from the tip. Under this assumption, the elemental conductance
and forcing matrices for all elements are given by:

K]V = [K]® = [K]® = [K]® = [ 0.0444 —0.0408} w

—0.0408  0.0444 | °C

n 2 _ o J0.072
{F)V = {F} = (F}® = (F} = {Omz}w

Assembly of the elements leads to the global conductance matrix [K]© and the global
load matrix {F}©:

0.0444 —0.0408 0 0 0
—0.0408  0.0444 + 0.0444 —0.0408 0 0
[K]© = 0 —0.0408 0.0444 + 0.0444 —0.0408 0
0 0 —0.0408 0.0444 + 0.0444 —0.0408
0 0 0 —0.0408 0.0444
0.072
0.072 + 0.072
{F}© = ¢ 0.072 + 0.072
0.072 + 0.072
0.072

Applying the base boundary condition 7 = 100°C, we find that the final set of linear
equations becomes

1 0 0 0 0 T, 100
—0.0408  0.0888 —0.0408 0 0 T, 0.144

0 —0.0408  0.0888 —0.0408 0 T; p = 4 0.144

0 0 —0.0408  0.0888 —0.0408 || T} 0.144

0 0 0 —0.0408  0.0444 Ts 0.072
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which has approximately the same solution as that calculated previously:

T, 100
T, 75.08
Ty ¢ =< 59.89 3°C
T, 51.74
T 49.19

Compared to the previous results, the nodal temperatures are slightly higher because
we neglected the heat loss through the end surface of the tip.

The total heat loss Q from the fin can be determined by summing the heat loss
through individual elements:

Qo = 20 (6.42)
X

00 = / 'np(T — T)ax
X

L

X; T; T]
= / ]hp((S,-Ti + 8T) — T)dX = hp€<< er > - Tf> (6.43)

Xj

Applying the temperature results to Egs. (6.42) and (6.43), we have
O = OV + 0 + 09 + Q¥
I+ T; 100 + 75.08
oW = hp€<< > > Tf> =30 X 12 X 20 X 10~ << —20 | = 04862 W

2

+
0® =30 x 12 X 20 X 10~ <<75 08 + 39. 89) - 20> = 0.3418 W
59.89 + 51.74
0® =30 x 12 X 20 X 10~ <<99 7>—ZO>=O.2578W
51.74 + 4919
0% =30 X 12 X 20 X 10~ << >—20>=0.2193W

Ooral = 1.3051 W

EXAMPLE 6.1 Revisited

Using Example 6.1, we will show how to use Excel to set up and solve a one-dimensional
heat transfer problem.

1. In cell Al type Example 6.1, and in cells A3, A4, A5, A6, A7, and A8 type
L=,P=,A=,k=,h =, and Tf=, respectively, as shown. After inputting the
value of L in cell B3, select B3, and in the “Name Box” type L and hit the Return
key. Similarly, after inputting the values of P, A, k, h, and Tf in cells B4, BS, B6, B7,
and B8 select each cell and in the corresponding “Name Box” type P, A, k, h, and
Tf, respectively. Make sure to hit the Return key after you name each variable.
Also, create the table shown.
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T - E| 20 -
a h | r n T T f it i i K 1 Iz
1 xample 6.1
; |
e L .z m
4 P- 0oz m
] A 0.000005 '
6 k— 168 Wi, "C
7 b= il Win' T
o, o ¢
1
i Elamem MNodz i odej Length (il Perinueisr () A RUAIC) b pwdel
11 1 L 2 0.0z 0012000 0.000003 lag an
1 2 3 3 12 LTI 0 16K kL]
13 5 k] 1 o0z 0.012000 0000003 lag El]
) 4 4 s 12 AT 0 16K k]
_»:1'1'52"'5 “H| Bheett | Eherts | Eneets td = = = Ta 1 1 i
umuty [ 55 [ e — e

2. Create the [K] and {F} matrices as shown. For example, select cell E19 and type
= (A*k/L) + (h*P*L/6)*2.As another example, select cells H22:H23 and type
= h*P*L*Tf/2
and while holding down the Ctrl and Shift keys, hit the Return key.

1 - i b -hrELALL -
A n 3 n T T 0 il I i 3 I =
1&
13 | e 040 ‘ [
L Lo [52] - 53] - [Kd] - = 0A0E HREEE]
Al
2 WL ATSY 1 = 0072
3| M= miy= 1y = Ty = | 0072
W4 r b shests ety LT T4 b
L ANERAZR TATE DN G Fmiled @| 1L e = Ll .

3. Next, create [Al], [A2], [A3], and [A4] matrices and name them Aelementl,
Aelement2, Aelment3, and Aelement4, as shown. See Section 2.5, Equation (2.9),
if you have forgotten what these matrices represent. First create [A1] and then to
create [A2],[A3],and [A4], copy [A1],rows 25 through 27 into rows 29 through 31;33
through 35; and 37 through 39 and modify them accordingly. The nodal temperatures
T1,T2,T3,T4,T5,and Ti and Tj are shown alongside the [A1], [A2], [A3],and [A4]
matrices to aid us observe the contribution of node to its neighboring elements.

r - B | -hTPILTI -
i=a== H 0 {H | r 3 i y = 3 [ = (== Mo T
a4
25| Tl T2 T3 T TS
5 [A1]- 1 0 0 0 il Ti
2| o L 0 o o Tj
b
i " r: 3 4 15
ECAN FRIE il 1 0 0] i T
£l il 0] 1 ] 0 13
=2
31| Tl T2 e T T5
¥ [AN- a 0 1 0 i Ti
5 a 0 0 1 0 T
Al
E1] m I I3 I 15
ECREN FETES i ] ] 1 i 1
o q 0 0 0 1 T
40 ] shees el el 6 7 T 1 3
iy | 7] D L T LR Lk Ll
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4. Next, create the conductance matrix for each element (with their proper positions
in the global matrix) and name them K1G, K2G, K3G, and K4G. For example, to
create [K]'¢, select B41:F45 and type

= MMULT(TRANSPOSE(Aelementl), MMULT (Kelement,Aelementl))

and while holding down the Ctrl and Shift keys hit the Return key. In a similar way,
create [K]*®, [K]*¢, and [K]*C as shown.

B {-MMULT|TRANSPOSC e lernent 1] MM ULT [Kelziment Aslementd )} Rt
3 il H H 1 1 4 [} L] =
ar CLANMAY AL HRAA ) PRSI TH) PR
an CLANNRMMY Duaddn EIRIEUE] LR PR
A ﬂqn— (LMY BRI uadd BRI ALOEI
i LMY BRI HHe] LR LR e LRI 8)
" LMY [ERATA LN LR ACIC PR
R
A3 (LMY A [R L E) HEREA i) LR e)
Y CEAMMMMY L ALCIIIE LI L
ity [K|“— A0 LRI 004440 EARE L) DOggog
it CLARNMAY LR BIR R Duaddn HERI Y]
e AN LRI TS HRSTe) A [RUAHTE)
i
- LR LR Te) LR Te) PR LR
il LAY DLCIEIH PR RER ] DLCIC
1 EK|"“— Q00000 000000 000000 000000 0.00000
1 LMY ALk DL uidddn (LD
B3 LA DL PR EIRIEE Duoiaddn
74 ] Shoet) Smees | eheces B 4] L
e T svsmtome covezs susoon [P we O L ]
5. The final global matrix is created next. Select the range B65:F69 and type
and while holding down the Ctrl and Shift keys hit, the Return key.
By B S [-K16 0 K2 136 K9] =
i — o il | I el (el
|=
A o
WoATE b Sl e el e, 31
Ry T — — — | (4
6. Create the load matrix as shown.
Bt - K |{_MMU| L IHAMSECSF Aelrment TLEIRMEL | TRANSECS 1) RARAL [T RARSUT SRRl ranns 4, F  RRLI [T RANSUTSE [Andementd), H] |
| = [ [ I r ==k | i i3 K L [ m =
il
=]
76 ) -
| e W o e e [IE] = Ll
iy | 73| R ) T — e
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7. Apply the boundary conditions. Copy the appropriate portion of the KG matrix
and paste it in the range C77:G81 as values only and modify it as shown. Name
the range KwithappliedBC. Similarly, create the corresponding load matrix in the
range C83:C87 and name it FwithappliedBC.

Kurithappliednc (- #1 ||
H 1 ! K B
LK with applied BO|"™
a2
11 Lo 0000
L] 0.14400
un 4F withapplied BCF - 014400 |_|
N 0.11400
1 007200
W4 b b Shockl Steet ehoots. K i . | ¥
MJ"E AYSAgCOTANL  Cout IS O3RN i i+

8. Select the range C89:C93 and type
= MMULTMINVERSE (KwithappliedBC),FwithappliedBC)
and while holding down the Ctrl and Shift keys, hit the Return key.

cES -0 £ {-MMULTIMIFVERSC Ko ithappliedDC), P g e B} ~|
n B PR P— U ] E 3 ] [ H i 3 K B
o &
P
iry- i 2
b
53 | e |
24
|41 snecty . Shec il g 151l
s 1 | AvgeT i

The complete Excel sheet is shown next.
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EXAMPLE 6.2 A Composite Wall Problem

A wall of an industrial oven consists of three different materials, as depicted in Figure 6.5.
The first layer is composed of 5 cm of insulating cement with a clay binder that has a
thermal conductivity of 0.08 W/m - K. The second layer is made from 15 cm of 6-ply
asbestos board with a thermal conductivity of 0.074 W/m + K (W/m - °C). The exterior
consists of 10-cm common brick with a thermal conductivity of 0.72 W/m? - K (W/m - °C).
The inside wall temperature of the oven is 200°C, and the outside air is 30°C with a con-
vection coefficient of 40 W/m? - K (W/m? - °C). Determine the temperature distribution
along the composite wall.
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Tsurface =200°C
Thuia=30°C, h =40 W/m2 - K

%
X
T,=200°C ) @) ?3)
1 2 3 4

FIGURE 6.5 A composite wall of an industrial oven.

This heat conduction problem is governed by the equation

&’T
kAW =0 (6.44)

and is subjected to the boundary conditions 7; = 200°C and —kA%%|, . =
hA(T, — Ty). For this example, we compare Eq. (6.44) to Eq. (6.8), finding that
¢, = kA,c; = 0,c5 = 0,and ¥ = T. Thus, for element (1), we have

[K](l):kA|:1 -1 :QOSM[ 1 -1 :[ 1.6 -1.6 | W
At 1 0.05 -1 1 -1.6 1.6 | °C
0
{F}(l) = { }W
0

For element (2), we have
K|® = kA[ 1 —17] _ 0074 x 1[ 1o-1] _ [ 0493 —0493 | W
eL-1 1 015 L-1 1 —0.493 0493 ] °C

e = {Olw
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For element (3), including the boundary condition at node 4, we have

K] — kA[ Lo [0 0] _ 072X 1[ 11, [o 0
eL-1 1 0 hA 01 L-1 1 0 (40 x 1)
_[ 72 12| W
~72 472 °C

5 0o _ 0 {0
(P} = {hATf} B {(40 X 1 X 30)} B {1200}W

Assembling elements, we obtain

[ 16 ~1.6 0 0
(K]© — —-1.6 1.6 +0.493 —0.493 0
0 —0.493 0493 +72 72
. 0 0 =72 472
0
0
F16) =
{F) .
12