
Vector derivatives

September 7, 2015

In generalizing the idea of a derivative to vectors, we find several new types of object. Here we look at
ordinary derivatives, but also the gradient, divergence and curl.

1 Curves
The derivative of a function of a single variable is familiar from calculus, df(x)dx . The simplest generalization
of this is when we have a curve in two or three dimensions. A curve is a smoothly parameterized sequence
of points in space. You are familiar with this idea from mechanics, where a particle’s position may be
parameterized by time,

x (t) = (x (t) , y (t) , z (t))

At any time t, these three functions give us the position of the moving particle. The complete path of the
particle is a “curve”.

We can produce a second vector, the velocity vector, from this position vector by differentiation

v (t) =
dx (t)

dt

=

(
dx (t)

dt
,
dy (t)

dt
,
dz (t)

dt

)
We differentiate each of the three functions with respect to the parameter. This result generalizes to ar-
bitrary curves and parameterizations. If we have a curve parameterized by any parameter λ, x (λ) =
(x (λ) , y (λ) , z (λ)), then differentiation gives a tangent vector to the curve at each point,

t (λ) =
dx (λ)

dλ

Many parameters can give the same curve. For example,

x (t) = (x (t) , y (t) , z (t))

=

(
v0xt, y0yt,

1

2
gt2
)

and
x (σ) =

(
v0xσ

2, y0yσ
2,

1

2
gσ4

)
describe the same path in space. However, the length of the tangent vector will depend on which parameter
is chosen. Thus,

v (t) =
dx

dt
= (v0x, v0y, gt)
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gives the velocity, but (using σ2 = t)

t (σ) =
dx

dσ

= 2σ
(
v0x, y0y, gσ

2
)

= 2σv (t)

is merely proportional to the velocity.

2 The gradient
We can produce a vector from a scalar (i.e., a function) by differentiation. Suppose we have a scalar field,
that is an assignment of a number to each point of Euclidean 3-space:

φ = φ (x, y, z) = φ (x)

This is just the opposite of a curve. Now we have one function of three variables instead of three functions
of one variable.

In order to distinguish the different possible derivatives of φ, we use a partial derivative, holding two of
the independent variables constant while we differentiate with respect to the third,

∂φ

∂x
= lim
ε→0

φ (x+ ε, y, z)− φ (x, y, z)

ε

where the expression on the right is the usual definition of the derivative of a function of x.
This means that we have three distinct deravitives of a function, characterizing how it is changing in each

of the three coordinate directions. We make a vector of these by combining them with the basis vectors in
the corresponding directions. The resulting vector, the gradient, gives us the direction in which φ is changing
the fastest:

∇φ ≡ î
∂φ

∂x
+ ĵ

∂φ

∂y
+ k̂

∂φ

∂z
(1)

Notice that the del operator, ∇, is written in boldface or with an arrow, −→∇ because it results in a vector.
Notice that we write î∂φ∂x + ĵ∂φ∂y + k̂∂φ∂z instead of ∂φ∂x î+ ∂φ

∂y ĵ+ ∂φ
∂z k̂ to avoid any confusion about whether the

derivative also acts on the basis vectors. This doesn’t matter in Cartesian coordinates since the Cartesian
basis vectors are constant, but it does matter in other bases. For example, ∂

∂θ r̂ does not vanish because the
direction of r̂ changes as we vary θ.

We may write del as an operator without necessarily applying it to a function,

∇ ≡ î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
(2)

and, as such, it is a vector-valued operator, or simply a vector operator.
Suppose we have a unit vector, n̂, in an arbitrary direction. Using the angular expression for the dot

product, the directional derivative of φ in the n̂ direction is then

n̂ ·∇φ = |n̂| |∇φ| cos θ

= |∇φ| cos θ

where |n̂| = 1 and where θ is the angle between n̂ and ∇φ. This expression is clearly largest when cos θ = 1
and therefore θ = 0. This means that the direction of the vector, ∇φ, maximizes the directional derivatives
of φ, thereby giving the direction in which φ is changing the fastest.
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Example (Problem 1.13a): Find the gradient of the radial coordinate r. We know that r =√
x2 + y2 + z2 is the magnitude of a radial vector, r = x̂i + yĵ + zk̂ so the gradient is

∇r =

(
î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)√
x2 + y2 + z2

= î
∂
√
x2 + y2 + z2

∂x
+ ĵ

∂
√
x2 + y2 + z2

∂y
+ k̂

∂
√
x2 + y2 + z2

∂z

=
1

2

1√
x2 + y2 + z2

(
î
∂
(
x2 + y2 + z2

)
∂x

+ ĵ
∂
(
x2 + y2 + z2

)
∂y

+ k̂
∂
(
x2 + y2 + z2

)
∂z

)

=
1

2

1√
x2 + y2 + z2

(
2x̂i + 2yĵ + 2zk̂

)
=

1

r
r

= r̂

Example: Gravitational potential For example, the gravitational potential energy around a spherical
planet falls off as 1

r ,

Φ = −GMm

r

The negative of the gradient of the potential energy gives the gravitational force,

F = −∇Φ

= GMm∇
(

1

r

)
We use the chain rule with each derivative,

∂

∂x

(
1

r

)
= − 1

r2
∂r

∂x

so the full gradient is

F = −GMm

r2
∇r

= −GMm

r2
r̂

3 Divergence
We have seen that we may act with the del operator on a scalar field to produce a vector. We may also apply
the del operator to a vector field to produce a scalar. A vector field is an assignment of a vector to each
point in our space, v (x, y, z). Define the divergence of v (x, y, z) to be the dot product of the del operator
with the vector field,

∇ · v (x, y, z) ≡
(
î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
·
(
vx î + vy ĵ + vzk̂

)
Using the distributive property of the dot product and the product rule of differentiation, we expand the
first term

î
∂

∂x
·
(
vx î + vy ĵ + vzk̂

)
= î

∂

∂x
·
(
vx î
)

+ î
∂

∂x
·
(
vy ĵ
)

+ î
∂

∂x
·
(
vzk̂
)
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= î · ∂
∂x

(
vx î
)

+ î · ∂
∂x

(
vy ĵ
)

+ î · ∂
∂x

(
vzk̂
)

=

(
î · ∂vx

∂x
î + vx î ·

∂ î

∂x

)
+

(
î · ∂vy

∂x
ĵ + vy î ·

∂ ĵ

∂x

)
+

(
∂vz
∂x

î · k̂ + vz î ·
∂k̂

∂x

)
Now, using first the constancy of the Cartesian unit vectors and then the orthogonality of the basis, this
reduces to

î
∂

∂x
·
(
vx î + vy ĵ + vzk̂

)
=

∂vx
∂x

î · î +
∂vy
∂x

î · ĵ +
∂vz
∂x

î · k̂

=
∂vx
∂x

Similarly the second and third terms of the original expression give us ∂vy
∂y and ∂vz

∂z , respectively. The final
result is the sum of the three terms,

∇ · v (x, y, z) =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

(3)

The divergence tells us how much a vector field is increasing as we move outward. The divergence theorem,
which we discuss later, quantifies this statement perfectly. In the meantime, consider some examples to get
a sense of what is happening.

Divergence of a constant vector field Let a vector field be specified to be the same vector at each
point, v (x, y, z) = v0 = (vx0, vy0, vz0). Then all of the deriatives vanish, and we have ∇ · v = 0.

Vector field in the x-direction, increasing in the y-direction This also gives zero. We might take
the vector field to be

v (x, y, z) = y3 î

The divergence is then

∇ · v (x, y, z) =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

=
∂

∂x

(
y3
)

= 0

Clearly, we need some x-dependence of the x-component, y-dependence of the y, and so on. This means that
the vector field grows stronger as we move in the direction the field itself points.

Radial vector One vector that increases in its own direction is the radial vector r = x̂i + yĵ + zk̂. Its
divergence is

∇ · r =
∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 3

4 Curl
We may also use the cross product to take derivatives. For this the component form is useful, as long as we
keep track of the order of the derivatives and components. Motivatied by our previous result,

u× v = (u2v3 − u3v2) î + (u3v1 − u1v3) ĵ + (u1v2 − u2v1) k̂

4



we replace (ux, uy, uz)→
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
and define (in Cartesian coordinates):

∇× v ≡
(
∂vz
∂y
− ∂vy

∂z

)
î +

(
∂vx
∂z
− ∂vz

∂x

)
ĵ +

(
∂vy
∂x
− ∂vx

∂y

)
k̂ (4)

Notice that the curl depends on exactly the derivatives that the divergence does not depend on: we have to
look at how the components of the vector are changing in the perpendicular directions. Also, we are looking
at the difference of these derivatives.

To see what is happening, consider a vector field which is everywhere parallel to the xy-plane and
independent of the z-direction, so that vz = 0 and all of the z-derivatives vanish,

v = vx (x, y) î + vy (x, y) ĵ

The curl is then entirely in the z-direction,

∇× v =

(
∂vy
∂x
− ∂vx

∂y

)
k̂

The magnitude will be large if vy increases with increasing x, while vx decreases with increasing y. This is
just what happens if v is tangent to a circle.

Suppose we have a rotating disk in the xy-plane. If the disk rotates with angular velocity ω, then a point
at a distance r from the center at an angle θ from the x-axis has position

(x (r, θ) , y (r, θ)) = (r cos θ, r sin θ)

Uniform rotation means that θ = ωt, while r remains the same, so the velocity of any point is

v (r, θ) =
d

dt
(r cosωt, r sinωt)

= ω (−r sinωt, v cosωt)

= ω (−r sin θ, r cos θ)

= ω (−y, x)

The curl of this vector field is now

∇× v ≡
(
∂vz
∂y
− ∂vy

∂z

)
î +

(
∂vx
∂z
− ∂vz

∂x

)
ĵ +

(
∂vy
∂x
− ∂vx

∂y

)
k̂

= −∂vy
∂z

î +
∂vx
∂z

ĵ +

(
∂vy
∂x
− ∂vx

∂y

)
k̂

= −ω∂x
∂z

î− ∂y

∂z
ĵ +

(
∂x

∂x
− ∂ (−y)

∂y

)
k̂

= 2k̂

Notice that the direction of the curl is along the axis of the rotation as given by the right hand rule.

5 Combining derivatives
We can combine sums and products of derivatives in various definite ways. First, consider the gradient,
which only acts on scalars.
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5.1 Gradient
For the gradient acting on a linear combination of functions, we have

∇ (af + bg) = a∇f + b∇g

for a and b constant. You can easily see this from the usual product rule, since, for example, the î component
above is an ordinary partial derivative of a product:

î
∂

∂x
(af + bg) = î

(
∂

∂x
(af) +

∂

∂x
(bg)

)
= î

(
∂a

∂x
f + a

∂f

∂x
+
∂b

∂x
g + b

∂g

∂x

)
= î

(
a
∂f

∂x
+ b

∂g

∂x

)
The generalization to the action of the gradient on a product of functions is immediate,

∇ (fg) = g∇f + f∇g

We can also ask what happens if the gradient acts on the dot product of two vectors. We can work this out
by expanding the dot product in components and using linearity and the product rule,

∇ (u · v) = ∇ (uxvx + uyvy + uzvz)

= ∇ (uxvx) + ∇ (uyvy) + ∇ (uzvz)

= (∇ux) vx + ux∇vx + (∇uy) vy + uy∇vy + (∇uz) vz + uz∇vz

This is correct, but cumbersome. We do better if we use some index notation to write either

∇ (u · v) = ∇
(

3∑
i=1

uivi

)

=

3∑
i=1

(∇ui) vi +

3∑
i=1

ui∇vi

or, perhaps more clearly

∇k (u · v) = ∇k

(
3∑
i=1

uivi

)
= (∇ku) · v + u · ∇kv

Any of these three makes it clear what the final vector components are. We might also reconstruct the
vector, writing,

∇ (u · v) = î

[
∂u

∂x
· v + u · ∂v

∂x

]
+ ĵ

[
∂u

∂y
· v + u · ∂v

∂y

]
+ k̂

[
∂u

∂z
· v + u · ∂v

∂z

]
We may also take the gradient of a divergence,

∇ (∇ · v)

Since the divergence results in a function, its gradient is a vector.
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5.2 Divergence
The divergence is also linear. For a constant linear combination of vectors,

au + bv

the divergence distributes normally,

∇ · (au + bv) = a∇ · u + b∇ · v

If we multiply a vector field by a function, fv = (fvx, fvy, fvz), we get derivatives of that function as
well:

∇ · (fv) =
∂ (fvx)

∂x
+
∂ (fvy)

∂y
+
∂ (fvz)

∂z

=
∂f

∂x
vx +

∂f

∂y
vy +

∂f

∂z
vz + f

∂vx
∂x

+ f
∂vy
∂y

+ f
∂vz
∂z

= (∇f) · v + f∇ · v

Notice that the answer can still be written in terms of the gradient and divergence.
Since the cross product of two vectors is a vector, we may consider its divergence. Working through the

components, we have

∇ · (u× v) = ∇ ·
[
(u2v3 − u3v2) î + (u3v1 − u1v3) ĵ + (u1v2 − u2v1) k̂

]
=

∂

∂x
(u2v3 − u3v2) +

∂

∂y
(u3v1 − u1v3) +

∂

∂z
(u1v2 − u2v1)

=

(
∂u2
∂x

v3 −
∂u3
∂x

v2

)
+

(
∂u3
∂y

v1 −
∂u1
∂y

v3

)
+

(
∂u1
∂z

v2 −
∂u2
∂z

v1

)
+

(
u2
∂v3
∂x
− u3

∂v2
∂x

)
+

(
u3
∂v1
∂y
− u1

∂v3
∂y

)
+

(
u1
∂v2
∂z
− u2

∂v1
∂z

)
= v1

(
∂u3
∂y
− ∂u2

∂z

)
+ v2

(
∂u1
∂z
− ∂u3

∂x

)
+ v3

(
∂u2
∂x
− ∂u1

∂y

)
−u1

(
∂v3
∂y
− ∂v2

∂z

)
− u2

(
∂v1
∂z
− ∂v3
∂x

)
− u3

(
∂v2
∂x
− ∂v1

∂y

)
= v · (∇× u)− u · (∇× v)

We can also take the divergence of the curl, and the result is simple and important,

∇ · (∇× v) = ∇ ·
((

∂vz
∂y
− ∂vy

∂z

)
î +

(
∂vx
∂z
− ∂vz

∂x

)
ĵ +

(
∂vy
∂x
− ∂vx

∂y

)
k̂

)
=

∂

∂x

(
∂vz
∂y
− ∂vy

∂z

)
+

∂

∂y

(
∂vx
∂z
− ∂vz

∂x

)
+

∂

∂z

(
∂vy
∂x
− ∂vx

∂y

)
=

∂2vz
∂x∂y

− ∂2vy
∂x∂z

+
∂2vx
∂y∂z

− ∂2vz
∂y∂x

+
∂2vy
∂z∂x

− ∂2vx
∂z∂y

=

(
∂2vz
∂x∂y

− ∂2vz
∂y∂x

)
+

(
∂2vx
∂y∂z

− ∂2vx
∂z∂y

)
+

(
∂2vy
∂z∂x

− ∂2vy
∂x∂z

)
and because mixed partial derivatives always commute, e.g., ∂2vz

∂x∂y = ∂2vz
∂y∂x this vanishes identically. The

divergence of the curl of any vector field is zero:

∇ · (∇× v) = 0 (5)
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This makes sense because the curl isolates the amount that the vector field is circling around, which is
orthogonal to how it grows along itself.

Finally, we derive an important new operator, the Laplacian, if we combine the divergence with the
gradient,

∇ · (∇f) = ∇ ·
(
î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z

)
=

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

This operator is important enough to have its own symbol:

∇2f ≡∇ · (∇f) (6)

The Laplacian operator, ∇2 is a scalar, so it need not be bold.

5.3 Curl
Finally, we consider the curl of every vector in sight. For a constant linear combination of vectors, the answer
is just

∇× (au + bv) = a∇× u + b∇× v

but once again, if we have a function times a vector, we get derivatives of the functions,

∇× (fv) =

(
∂ (fvz)

∂y
− ∂ (fvy)

∂z

)
î +

(
∂ (fvx)

∂z
− ∂ (fvz)

∂x

)
ĵ +

(
∂ (fvy)

∂x
− ∂ (fvx)

∂y

)
k̂

Separating the derivatives of f from the curl of v as we did with the divergence, we find a cross product in
addition to f times the curl of v

∇× (fv) = f∇× v + (∇f)× v (7)

The curl of a gradient becomes,

∇× (∇f) = ∇×
(
î
∂f

∂x
+ ĵ

∂f

∂y
+ k̂

∂f

∂z

)
=

(
∂2f

∂y∂z
− ∂2f

∂z∂y

)
î +

(
∂2f

∂z∂x
− ∂2f

∂x∂z

)
ĵ +

(
∂2f

∂x∂y
− ∂2f

∂y∂x

)
k̂

Everything cancels because of the equality of mixed partials and we have

∇× (∇f) ≡ 0 (8)

for any function f .
There are two further identities to mention. The curl of a cross product is a bit messy,

∇× (v ×w) = (w ·∇)v + (∇ ·w)v − (∇ · v)w − (v ·∇)w

but the curl of a curl is simple and useful to remember:

∇× (∇× v) = ∇ (∇ · v)−∇2v (9)

These can be proved by writing out the components as for the previous results, but the answers follow more
quickly if we introduce a new object, the Levi-Civita tensor. Griffiths doesn’t introduce this until problem
6.22, but I’ll digress to describe it here. You won’t be required to use it.
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6 The Levi-Civita tensor (advanced)
This section is more advanced. It is not required, but the techniques are extremely useful for proving identities
involving cross products and curls.

In 3-dimensions, we define the Levi-Civita tensor, εijk, to be totally antisymmetric, so we get a minus
sign under interchange of any pair of indices. We work throughout in Cartesian coordinate. This means that
most of the 27 components are zero, since, for example,

ε212 = −ε212 = 0

if we imagine interchanging the two 2s. This means that the only nonzero components are the ones for which
i, j and k all take different value. There are only six of these, and all of their values are determined once we
choose any one of them. Define

ε123 ≡ 1

Then by antisymmetry it follows that

ε123 = ε231 = ε312 = +1

ε132 = ε213 = ε321 = −1

All other components are zero.
Using εijk we can write index expressions for the cross product and curl. The ith component of the cross

product is given by
[u× v]i = εijkujvk

as we check by simply writing out the sums for each value of i,

[u× v]1 = ε1jkujvk

= ε123u2v3 + ε132u3v2 + (all other terms are zero)

= u2v3 − u3v2
[u× v]2 = ε2jkujvk

= ε231u3v1 + ε213u1v3

= u3v1 − u1v3
[u× v]3 = ε3jkujvk

= u1v2 − u2v1

We get the curl simply by replacing ui by ∇i = ∂
∂xi

,

[∇× v]i = εijk∇jvk

If we sum these expressions with basis vectors ei, where e1 = i, e2 = j, e3 = k, we may write these as vectors:

u× v = [u× v]i ei

= εijkujvkei

∇× v = εijkei∇jvk

There are useful identities involving pairs of Levi-Civita tensors. The most general is

εijkεlmn = δilδjmδkn + δimδjnδkl + δinδjlδkm − δilδjnδkm − δinδjmδkl − δimδjlδkn

To check this, first notice that the right side is antisymmetric in i, j, k and antisymmetric in l,m, n. For
example, if we interchange i and j, we get

εjikεlmn = δjlδimδkn + δjmδinδkl + δjnδilδkm − δjlδinδkm − δjnδimδkl − δjmδilδkn
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Now interchange the first pair of Kronecker deltas in each term, to get i, j, k in the original order, then
rearrange terms, then pull out an overall sign,

εjikεlmn = δimδjlδkn + δinδjmδkl + δilδjnδkm − δinδjlδkm − δimδjnδkl − δilδjmδkn
= −δilδjmδkn − δimδjnδkl − δinδjlδkm + δilδjnδkm + δinδjmδkl + δimδjlδkn

= − (δilδjmδkn + δimδjnδkl + δinδjlδkm − δilδjnδkm − δinδjmδkl − δimδjlδkn)

= −εijkεlmn

Total antisymmetry means that if we know one component, the others are all determined uniquely. Therefore,
set i = l = 1, j = m = 2, k = n = 3, to see that

ε123ε123 = δ11δ22δ33 + δ12δ23δ31 + δ13δ21δ32 − δ11δ23δ32 − δ13δ22δ31 − δ12δ21δ33
= δ11δ22δ33

= 1

Check one more case. Let i = 1, j = 2, k = 3 again, but take l = 3,m = 2, n = 1. Then we have

ε123ε321 = δ13δ22δ31 + δ12δ21δ33 + δ11δ23δ32 − δ13δ21δ32 − δ11δ22δ33 − δ12δ23δ31
= −δ11δ22δ33
= −1

as expected.
We get a second identity by setting n = k and summing,

εijkεlmk = δilδjmδkk + δimδjkδkl + δikδjlδkm − δilδjkδkm − δikδjmδkl − δimδjlδkk
= 3δilδjm + δimδjl + δimδjl − δilδjm − δilδjm − 3δimδjl

= (3− 1− 1) δilδjm − (3− 1− 1) δimδjl

= δilδjm − δimδjl

so we have a much simpler, and very useful, relation

εijkεlmk = δilδjm − δimδjl

A second sum gives another identity. Setting m = j and summing again,

εijkεljk = δilδmm − δimδml
= 3δil − δil
= 2δil

Setting the last two indices equal and summing provides a check on our normalization,

εijkεijk = 2δii = 6

This is correct, since there are only six nonzero components and we are summing their squares.
Collecting these results,

εijkεlmn = δilδjmδkn + δimδjnδkl + δinδjlδkm − δilδjnδkm − δinδjmδkl − δimδjlδkn
εijkεlmk = δilδjm − δimδjl
εijkεljk = 2δil

εijkεijk = 6
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Now we use these properties to prove some vector identities. First, consider the triple product,

u · (v ×w) = ui [v ×w]i
= uiεijkvjwk

= εijkuivjwk

Because εijk = εkij = εjki, we may write this in two other ways,

u · (v ×w) = εijkuivjwk

= εkijuivjwk

= wkεkijuivj

= wi [u× v]i
= w · (u× v)

and

u · (v ×w) = εijkuivjwk

= εjkiuivjwk

= vj [w × u]j
= v · (w × u)

so that we have established
u · (v ×w) = w · (u× v) = v · (w × u)

and we get the negative permutations by interchanging the order of the vectors in the cross products.
Next, consider a double cross product:

[u× (v ×w)]i = εijkuj [v ×w]k
= εijkujεklmvlwm

= εijkεklmujvlwm

= εijkεlmkujvlwm

= (δilδjm − δimδjl)ujvlwm
= δilδjmujvlwm − δimδjlujvlwm
= (δilvl) (δjmujwm)− (δjlujvl) (δimwm)

= vi (umwm)− (ujvj)wi

Returning to vector notation, this is the BAC-CAB rule,

u× (v ×w) = (u ·w)v − (u · v)w

Finally, look at the curl of a cross product,

[∇× (v ×w)]i = εijk∇j [v ×w]k
= εijk∇j (εklmvlwm)

= εijkεklm ((∇jvl)wm + vl∇jwm)

= (δilδjm − δimδjl) ((∇jvl)wm + vl∇jwm)

= δilδjm ((∇jvl)wm + vl∇jwm)− δimδjl ((∇jvl)wm + vl∇jwm)

= (∇mvi)wm + vi∇mwm − (∇jvj)wi − vj∇jwi
Restoring the vector notation, we have

∇× (v ×w) = (w ·∇)v + (∇ ·w)v − (∇ · v)w − (v ·∇)w

If you doubt the advantages here, try to prove these identities by explicitly writing out all of the components!
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7 Exercises (required)
Work the following problems from Griffiths, Chapter 1 (page numbers refer to the 3rd edition):

• Problem 15 (page 18)

• Problem 18 (page 20)

• Problem 25 (page 24)
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