
Chapter 4

Differentiation of vectors

4.1 Vector-valued functions

In the previous chapters we have considered real functions of several (usually two) variables f : D → R,
where D is a subset of Rn, where n is the number of variables. These are scalar-valued functions in the sense
that the result of applying such a function is a real number, which is a scalar quantity. We now wish to
consider vector-valued functions f : D → Rm. In principal, m can be any positive integer, but we will only
consider the cases where m = 2 or 3, and the results of applying the function is either a 2D or 3D vector.

4.2 Parametric equations of curves

The simplest type of vector-valued function has the form f : I → R2, where I ⊂ R. Such a function returns
a 2D vector f(t) for each t ∈ I, which may be regarded as the position vector of some point on the plane.

For example, recall the Section Formula from Level 1. This states that the position vector of any point
P on the line through points A and B is

p =
αa + βb
α + β

,

for any scalars α, β. If we define t = β/(α + β), then this may be rewritten as

p(t) = (1− t)a + tb.

As t changes, we get different points on the line through A and B and in particular, p(0) = a and p(1) = b.
We may think of p as a vector-valued function

p : R→ R3,

the image of which is the whole of the line, or

p : [0, 1] → R3,

the image of which is the line segment from A to B.
In general, a curve, in 2D or 3D space, can be represented as the image of a vector-valued function on

an interval I; the position vector of a point on the curve is

r = f(t), t ∈ I.

This is called a parametric description of the curve and t is called a parameter. This may also be written in
component form; if r = (x, y, z) and f = (f1, f2, f3) then

x = f1(t), y = f2(t), z = f3(t), t ∈ I.
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Standard types of parametric curve

Circle and ellipse The circle (x−a)2+(y−b)2 = r2, having centre (a, b) and radius r, can be parametrised
using polar coordinates x− a = r cos θ and y− b = r sin θ. Recall that θ is the angle between the radius and
the positive x-axis, measured in an anit-clockwise direction. Hence the circle has parametric form

x = a + r cos θ, y = b + r sin θ, θ ∈ [0, 2π).

If this circle were to be thought of as a curve on the xy-plane in 3D space then it would be

x = a + r cos θ, y = b + r sin θ, z = 0, θ ∈ [0, 2π).

In a similar way, the ellipse
(x− a)2

A2
+

(y − b)2

B2
= 1,

has parametric form
x = a + A cos θ, y = b + B sin θ, θ ∈ [0, 2π).

Parabola The parabola y2 = 4ax can be parametrised as

x = at2, y = 2at, t ∈ (−∞,∞).

To show that the parametric curve is identical to the parabola we must prove that every point on the
parametric curve lies on the parabola and vice versa. For any t, let x = at2 and y = 2at then y2 = 4a2t2 =
4a(at2) = 4ax so that every point on the parametric curve lies on the parabola. Also, given any point (x, y)
on the parabola, define t = y/2a so that y = 2at and then x = y2/4a = at2, so that (x, y) also lies on the
parametric curve.

Line We have already seen that
r = (1− t)a + tb, t ∈ [0, 1],

is the parametric form of the line segment joining A(a1, a2, a3) and B(b1, b2, b3). This may also be written
in component form as

x = (1− t)a1 + b1, y = (1− t)a2 + b2, z = (1− t)a3 + b3, t ∈ [0, 1].

Also, if one is given a point a on the line and a direction vector d for the line then the parametric form is

r = a + td, t ∈ R.

4.3 Differentiation of vector-valued functions

A curve C is defined by r = r(t), a vector-valued function of one (scalar) variable. Let us imagine that C is
the path taken by a particle and t is time. The vector r(t) is the position vector of the particle at time t and
r(t + h) is the position vector at a later time t + h. The average velocity of the particle in the time interval
[t, t + h] is then

displacement vector
length of time interval

=
r(t + h)− r(t)

h
.

See Figure 4.1. In terms of the components of r this is
(

x(t + h)− x(t)
h

,
y(t + h)− y(t)

h
,
z(t + h)− z(t)

h

)
.
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Figure 4.1: Velocity

If each of the scalar function x, y and z are differentiable, then this vector has a limit
(

dx

dt
,
dy

dt
,
dz

dt

)
= (ẋ, ẏ, ż),

which is the instantaneous velocity of the particle v(t). This means that (if the motion is smooth) then

v(t) = lim
h→0

r(t + h)− r(t)
h

=
d

dt
r(t) = ṙ(t).

This vector lies along the tangent to the curve at r and has length v(t) = |v(t)| which is the instantaneous
speed of the particle.

In a similar way, we define the acceleration,

a(t) =
d

dt
v(t) =

d2

dt2
r(t) = r̈(t).

More generally, for any curve r = r(α) parametrised by α (say), the vector

T =
dr
dα

is called the tangent vector to the curve and the unit vector

T̂ =
T
|T| ,

is called the unit tangent vector.

Example 4.1 A particle moves with constant angular speed (i.e. rate of change of angle) ω around a circle
of radius a and centre (0, 0) and the particle is initially at (a, 0). Show that the position of the particle is
r(t) = a(cos ωt, sin ωt).

Determine the velocity and speed of the particle at time t and prove that the acceleration of the particle
is always directed towards the centre of the circle.
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Solution :

Answer: Velocity, v = aω(− sin ωt, cosωt) and speed v = aω.

¤

Example 4.2 Find the velocity of a particle with position vector r(t) = (cos2 t, sin2 t, cos 2t). Describe the
motion of the particle.
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Solution :

Answer: The velocity is: v = sin 2t(−1, 1,−2). ¤

Example 4.3 Find the tangent vector and the equation of the tangent to the helix

x = cos θ, y = sin θ, z = θ, θ ∈ [0, 2π),

at the point where it crosses the xy-plane.

Solution :

Answer: The tangent vector is T = (− sin θ, cos θ, 1) and the equation of the tangent is given by r =
(1, 0, 0) + t(0, 1, 1), t ∈ R. ¤
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4.4 Vector and scalar fields

A function of two or three variables mapping to a vector is called a vector field. In contrast, a function of
two or three variables mapping to a scalar is called a scalar field. As we saw in Chapter 1 (using different
terminology), one can represent the graph of a scalar field as a curve or surface. A vector field F(x, y) (or
F(x, y, z)) is often represented by drawing the vector F(r) at point r for representative points in the domain.
A good example of a vector field is the velocity at a point in a fluid; at each point we draw an arrow (vector)
representing the velocity (the speed and direction) of fluid flow (see Figure 4.2). The length of the arrow
represents the fluid speed at each point.

Figure 4.2: Vector field representing fluid velocity

4.5 Different types of derivative

We have already discussed the derivatives and partial derivatives of scalar functions. Next we will consider
discuss other different types of “derivatives” of scalar and vector functions; in some cases the result is a
scalar and sometimes a vector.

Recall that if u, v, w are vectors and α is a scalar, there are a number of different products that can be
made;

Name of product Formula Type of result
Scalar multiplication αu Vector
Scalar or dot product u · v Scalar
Vector or cross product u× v Vector

.

Now consider the vector differential operator

∇ =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
.

This is read as del or nabla and is not to be confused with ∆, the capital Greek letter delta. One can form
“products” of this vector with other vectors and scalars, but because it is an operator, it always has to be
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the first term if the product is to make sense. For example, if f is a scalar field, we can form the scalar
“multiple” with ∇ as the first term

∇f =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
,

the result being a vector.
Below we will introduce the “derivatives” corresponding to the product of vectors given in the above

table.

4.5.1 Gradient (“multiplication by a scalar”)

This is just the example given above. We define the gradient of a scalar field f to be

grad f = ∇f =
(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.

We will use both of the notation grad f and ∇f interchangably.

Remark Note that f must be a scalar field for grad f to be defined and grad f itself is a vector field.

Example 4.4 Find the gradient of the scalar field f(x, y, z) = x2y + x cosh yz.

Solution :

Answer: grad f = (2xy + cosh yz, x2 + xz sinh yz, xy sinh yz). ¤

Example 4.5 Let r = (x, y, z) so that r = |r| =
√

x2 + y2 + z2. Show that

∇(rn) = nrn−2r,

for any integer n and deduce the values of grad(r), grad(r2) and grad(1/r).
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Solution :

¤

Example 4.6 Determine grad(c · r), when c is a constant (vector).

Solution :

Answer: grad(c · r) = c ¤
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Direction derivative This is the rate of change of a scalar field f in the direction of a unit vector
u = (u1, u2, u3). As with normal derivatives it is defined by the limit of a difference quotient, in this case
the direction derivative of f at p in the direction u is defined to be

lim
h→0+

f(p + hu)− f(p)
h

, (∗)

(if the limit exists) and is denoted

∂f

∂u
(p).

This definition is rarely used directly. The key formula for the directional derivatives of f in the direction
u is

∂f

∂u
= u · ∇f = u1

∂f

∂x
+ u2

∂f

∂y
+ u3

∂f

∂z
.

To prove this, first notice that

d

dt
f(p + tu) = lim

h→0+

f(p + (t + h)u)− f(p + tu)
h

so that (∗) can be obtained as

d

dt
f(p + tu)

∣∣∣∣
t=0

.

Also, using the chain rule, we have

d

dt
f(p + tu) = u1

∂f

∂x
(p + tu) + u2

∂f

∂y
(p + tu) + u3

∂f

∂z
(p + tu) = u · ∇f(p + tu).

Combining these results gives the required formula.

Remarks

1. The formula for a directional derivatives can only be used for unit vectors. To calculate the directional
derivative along a non-unit vector v, one must use the unit vector having the same direction as v, that
is

u =
v
|v| .

2. Partial derivatives are special cases of directional derivatives. For example, the partial x-derivative is
the directional derivative in the direction (1, 0, 0).

Example 4.7 Find the directional derivative of f = x2yz3 at the point P (3,−2,−1) in the direction of the
vector (1, 2, 2).
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Solution :

Answer: The direction derivative is given by, ∂f
∂u (3,−2,−1) = −38. ¤

4.5.2 Divergence of a vector field (“scalar product”)

The divergence of a vector field F = (F1, F2, F3) is the scalar obtained as the “scalar product” of ∇ and F,

div F = ∇ · F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

It is so called, because it measures the tendency of a vector field to diverge (positive divergence) or converge
(negative divergence). In particular, a vector field is said to be incompressible (or solenoidal) if its divergence
is zero.

Figure 4.3 shows the vector fields F = (x, y, 0), G = (x,−y, 0) and H = (−x,−y, 0) in the xy-plane. We
have

div F =
∂x

∂x
+

∂y

∂y
= 2 > 0

and similarly, div G = 0 and div H = −2 < 0. Notice how the arrows on the plot of F diverge and on the
plot of H converge.

Example 4.8 Show that the divergence of F = (x− y2, z, z3) is positive at all points in R3.

Solution :

¤
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Figure 4.3: Positive and negative divergence

A particular example of divergence is the Laplacian of a scalar field. Given a scalar field f , grad f = ∇f
is a vector field and the divergence of ∇f is the Laplacian of f , written ∇2f . This means that

∇2f = ∇ · (∇f) =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
.

This definition may be extended in a natural way to the Laplacian of a vector field F = (F1, F2, F3),

∇2F = (∇2F1,∇2F2,∇2F3) .

Example 4.9 Find the values of n for which ∇2(rn) = 0.
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Solution :

Answer: n = 0 or n = −1. ¤

4.5.3 Curl of a vector field (“vector product”)

The curl of a vector field F = (F1, F2, F3) is the vector obtained as the “vector product” of ∇ and F

curlF = ∇× F =
(

∂F3

∂y
− ∂F2

∂z

)
i +

(
∂F1

∂z
− ∂F3

∂x

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k .

Like any other vector product, curlF can be calculated using a 3× 3 determinant,

curlF =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

F1 F2 F3

∣∣∣∣∣∣∣∣∣∣

=
(

∂F3

∂y
− ∂F2

∂z

)
i +

(
∂F1

∂z
− ∂F3

∂x

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k .

The curl of a vector field measures its tendency to rotate. In particular, a vector field is said to be
irrotational if its curl is the zero vector. Figure 4.4 shows the vector fields F = (−y, x, 0), G = (y, x, 0) and
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H = (y,−x, 0). We have

curlF =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

−y x 0

∣∣∣∣∣∣∣∣∣∣

= 2k

and similarly, curlG = 0 and curlH = −2k < 0. The coefficient of k in curlF being positive indicates
anticlockwise rotation.

Figure 4.4: Clockwise and anticlockwise rotation

Example 4.10 Determine curlF when F = (x2y, xy2 + z, xy).

Solution :

Answer: curlF = (x− 1,−y, 0). ¤

Example 4.11 If c is a constant vector, find curl(c× r).
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Solution :

Answer: curl(c× r) = 2c. ¤

4.6 Nabla identities

There are analogues involving div, grad and curl of the elementary rules of differentiation such as linearity
(f + g)′(x) = f ′(x) + g′(x) the product rule (fg)′(x) = f(x)g′(x) + f ′(x)g(x).

Let f and g be smooth scalar fields and F and G smooth vector fields. Then all of the following are
straightforward to prove (as illustrated in Example 4.12) just using definitions

grad(f + g) = grad f + grad g grad(fg) = f(grad g) + (grad f)g,

div(F + G) = div F + div G div(fF) = f div F + (grad f) · F,

curl(F + G) = curlF + curlG curl(fF) = f curlF + grad f × F,

curl grad f = 0, div curlF = 0.

In particular, note the special cases

grad(cf) = c grad f, div(cF) = c div F, curl(cF) = c curlF,

when c is a (scalar) constant.
All of the identities are easier to remember if written using ∇. For example,

curl(fF) = ∇× (fF)
= f(∇× F) + (∇f)× F

= f curlF + grad f × F.
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Example 4.12 Prove the identities

(i) curl grad f = 0, (ii) curl(fF) = f curlF + grad f × F, (iii) div(fF) = f div F + (grad f) · F

Solution :

¤

Example 4.13 Let F = (x2y, yz, x + z). Find

(i) curl curlF, (ii) grad div F.
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Solution :

Answer: (i) curl curlF = (0, 2x, 1) and (ii) grad div F = (2y, 2x, 1). ¤

Example 4.14 Let r = (x, y, z) denote a position vector with length r =
√

x2 + y2 + z2 and c is a constant
(vector). Determine

(i) div(rn(c× r)), (ii) curl(rn(c× r)).
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Solution :

Answer: (i) div(rn(c× r)) = 0 and (ii) curl(rn(c× r)) = (n + 2)rnc− n(r · c)rn−2r. ¤
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