47 Centre of Mass of an Arc

-~ We have found the c.m. of arcs in some special

iderations of symmetry. We now derive general
the coordinates of the c.m. of any arc of a giv
in Fig. 419,

P be the density of a plane curve at the po
arc element at the same point. Then an
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(fxy AT given in terms of a paramecter f, we may use
It
the resu : :
dx \? dy \?
o e ALy B
oy ( dt ) +( di .
Example- Find the centroid of the arc of the curve
x§+)’§’a§ lying in the first quadrant. “I
oL, First Method : |
The equation of the curve gives y
2 —4, 2 —id
T T (0%)

(a,0)

Fig. 4.20
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Second Method :

The given curve has the parametric equation,
x=acos® §, y=asing.

oy : & :
. gg = — Sacostfsing, o =3asin § cos g,

ds = v/ 9a? cos;' 0 sin* 0+94° sint § cog2 0 dé
= 3asin @ cos 6 4.

Also, as x varies from 0 to a, @ varies from - to 0
l) -

; |
J a cos® §. 3a sin @ cos § dg |
2 \
0
J 3asin @ cos 9 dp >
T/2 \
‘ _ 441 141
| i LIS
} 0, Ewhity
/ (jr cost 0sm g dp ‘ 92 F(ii":‘l—f—l) |
T gy e |
< 141 -
(_)f. sin § cos @ 4p E(Q )F(-—Q_) \
141 |
20(5=+1) |
D@y |
BT
L(1)r(1) %
ROy |
$.}.vV=®
10 i e O
T 1 4=+ a=y (By symmetry).

I

4.8 Centroid of a Plane Region

(I) Consider the r
the x-axis,

The area

cgion bounded by the curve y=S (%)
and the ordinates *=a, x=} as shown in Fig. 421

of an elementar I is At
: y strip parallel to y-axis
distance x from itis y §z. 7 |

Fig. 4.21

: v . -y f
The coordinates of the centroid of the strip are ("’?) ; 1
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soordinates of the centroid of the given region are

b
§ xydx
- a
xX= b
J ydx
a
b b
% y dx j_yzdx
- a :-J-a‘
" g G
J-_ydx fydx
a a

@ Formulae for the centroid of the region bounded by

the curve r=F (6) and the radius vectors 6 =6, 6=6, may be

" obtained as follows :

Let AB be the curve r=f(8) and 04, OB the radius
vectors 0=61, =0, as shown in Fig. 4'22. Let P(rP 0),
Q(r+67, 8166) be two neighbouring points of the curve.

Then the area of the sectorial element POQ,

=17 (r+§7)sin §6
=41 (r+67) §9,

(Since §0 in the limit tends to zero.
=} 12 6.

(To first order small quantities.)

Also the coordinates of the centroid of the elementary
arealare (3r cos g, %r sin §). Hence the centroid of the total
4rea is given by

o 0
;ifcosﬂ-frzdﬂ % jgr"cosede
= 01

L= o
;
1 r2d g §r2dg
0, 0,

B )
afirsine.{rﬂde ;jgﬂsi_nede

v=o2l 02 al
. 0
Sirde Frde
e )] 0
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the coordinate axes and the circle x4 y2
) ﬁnt quadrant.

P
OJ' Vai—z gy

. a k
of L 2V g [
e O

a '
% 6'. ‘\/az—xi dx l X a2
; 2

¥ a’
3
B . ST e e

2% 3 (By symmetry).

olf By Symmetry the centroig lies on the initial line.
€ X-coordinate of ¢,

that of the whole Tegion (see Fig. 4:23).

{,ta]_"“g limits of § for the upper half only,
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pumerator is

mwal in the

The
+3 cos20+3 cos®@ +cos*9) 40.

_" (cos )
NoW c0s (1:-—0) = —COs e and cos? (x—@) = —cos® 0.
oot (% 9)= -‘COS’ 0, cost (= —0) =cos* 6.
Bub.
=2 _|' (3 cos? +cos49) 4.
B s 1 =y, 0D
=2 (3."5"-2 |4-2-2) 2-16‘)‘t
15
= —TC.
gimilarly the intcﬁral in the denominator
1 ) "

®
Iz’-ff (142 cos @ +-cos? Q) de

“aaal| n: 3
15

49 Mass Centre of a Solid of Revolution

To find the centre of mass of a solid of revolution, 1.6., @ solid
whose boundary is obtained by revolving a given plane curve, about & y
line in
fwean it plane. A

- Letthegiven curve be

y=fx)

given line bc eaken as the x-axis (Fig. 4 24). Con-

variation of x from x =a to x=25.

solid ca.n be regarded as made up of thin circular [e)
slice

dicular to the x-axis. The mass of the
x from the origin is P ® 2§ x. Since the &.98-




92 Mechanics

of cach slice lies on the x-axis the .

¢ i «m, Of the
also lies on the same line, i.e,, Whoj, W
y=0.
b b
g S xP w2 gy J %92 gy
Also x=a — . I
o0 .b ; (Whtmpis%
J P my2dx S 92 dx any) *
/ aq a h
Example. A solid right circular cop,. E
¢ : .

} Sol. A solig right circular cone can he regarded 55 . .. |
of revolution formed by the rotation of the line e
J=tan a.x, O<xgh !
about the r-axis (Fig. $105).
. |
| 43 ad A ]
0 X (.)f X2 dx S B tante dx
T 0
T —————
Fig. 4.25 L dy
: 0 0
: h
h x4
S d T l
el
S x2 dy Cad i
0 T
Q

e T i
of revolution, i.e., suyface fom
¢ curve about a line in 315 plane.

. - .
P=f (x) where x varies from I’I

: ; : rfacé
of revolytioy, e nynsthc area of an element of the S

C'learly _;2_,__, 0.




ch 4 Ce
px21=_ydr
- x= P2T‘)’d5

[z ds {when the surface density
is constant).

4 pumecical  €ase the valye of ds in terms of

‘ A\ 2
oordinates (6= 1 / 1+(22) d),

; ' dr\?
coordinatcs (d-f = gt (-a_f-é-) de ),

| B (2)’ _
seter (d:g (‘2?) +(Z;;) (ﬂ) may be substitut-

1 convenicnt. |
1, Find the ¢- 7 of a h
cal angle @ and height 4.
ollow right circular cone may be r
rev olution gencrated by the rot

ollow right circular cone of

egarded as the
ation of the

tan &.x <L x<h
ig. 4°27).
E | xyds
=tan &.
; dy) 2 J e
iy 1+ ‘Zx") de= * l—j—tanladx_

ntres of Mass and Gravity LR

e

Fig. 4.27
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Example 2. Find the c.m. of the surface 8enerateq
revolution of the arc of the parabola, lying betweey i by t
and the latus rectum, about the x-axis. € veryg,

Sol., Let the parabola be
P=4ax,

sothat y=24/41/ 1.

dy ] I'Jr';,—.
—— ::2 __‘\f . - 1 Ti
dx Z 2 ‘\/ X '\\/ X 2

ds =\ ’ l—{-—% dx.

By symmetry 5=0.

a

Ix.?.‘v”&? R / 14+ = dx
X

x:._..__-’- x—ydj=0
Srds kR

f2*\/3§ , 1425
0 x

a
ﬁr(x+"““)\/mdx
e
Vi

& %
h_ér[(xnta)g_a \/m] "
iy

§ Vitaa
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411 Theorems of Pappus

tain cases in which we know the area ot a surface
me of a solid, we can easily compute the position
th the help of two theorems -called

In cer

or the volu
of the mass-centre Wi

Theorems of Pappus-

Theorem 1. Let there be a uniform distribution of mass along a
ame C of length s lying entirely on one side of o line | which

lies in the plane of the curve, and let p be the distance of the mass-centre

of C from [ IfSis the surface area generated by the rotation of C

about I, then

2 ‘ﬂ.'PJ‘::-‘S,
: S
1.e., P=m.

Proof. We choose the coordinate system such that / is the
xaxis (Fig. 4°28). In such a case,

p=y for C

d
=J;'Ppyd;:=’r}; %, (- P is constant)

o Syds= ps. ... (4°20)
Also

§ = surface area generated by rotation of
C about / (the x-axis)

= f2%xyds
’-2‘2"'}&

. = 2= pr, (by 4:20)
‘!uth P;PVCS ﬂ'c theo‘_cln-
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.' ‘Example. 4 semi-circular wire.
sol. ~'We know that the surface ared of 5

radius a 18
=4xra’.

But the sphere can be regarded as the surface of revo 1
generated by the rotation of a semi-circle aboyt the g:
joining its ends. The length of the semi-circle is

S=Ta.

-, distance of the centroid (or e.m. in case of unifyy
-lé_mi-circular wire) of the semi-circle from the diameter
7 O " 4na?2  2a
AT 4

Theorem 2. Let there be a uniform distribution qf-m».--l _
~ plane region R, lying entirely on one side of a lina | in the p
the region.  Let p be the distance of the mass-centre of K

and A the area of R. If V is the volume generated by the rola
of R about [, then -

2npA=V,

andthc Plane of the region R is xy-plane ('F

- We chaose the coordinate ‘system such tha
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A semi-circu lar plane lamina.

E"mple.
: We know: that the volume of a solid sphere of radius
soa
is
i o 4 .
=3 :
3 ¢ the sphere can be regarded as a solid of revolution
uﬂtcd by the rotation of a semi-circular lamina about its
pounding diameter. The area of the semi-circular lamina is
A=} = a

e, distance of the centroid (c.m.) of the lamina from

Therefor'
(e diameter 15
j _4..7; a3
Bad ", _;_1”12 3

that a system of parallel

We have seen -(see Art. 21 5)
to a couple. In the

forces either has a resultant or reduces
former case the resultant passes through a particular point (the

centre of parallel forces) for all the orientations of the forces

- provided their ‘magnitudes and points of application are
i kept unchanged.

- Inthe following article we discuss an important casc of
 paralle] forces.

412 Centre of Gravity

| Th° result proved in Art.
| mﬂﬂm In case of a body within t
iy t_he'ea"h: B element of matter in it is attr
the centre of the earth. The force of attra
on an element is called its weight. If the size of the
» . parcd with that of the earth (as is the case
all practical cases), the forces on all the elements
(see Fig. 4'30) and will have a resultant, €qual
 the body, The resultant weight will, for all
l l,’odY: pass through a particular point G
This point is called the centre of gravity of

2:15 has an important
he gravitational
acted
ction




