14.3 Prandtl’s Boundary Layer Equations

Let us now discuss the approximate equations of motion for a two-dimensional laminar

boundary layer. We make this approximation by estimating the order of magnitude of
each term in the Navier-Stokes equations. The result will give us the Prandtl boundary

layer equations, first published by Prandtl [1.29] in 1904. The following assumptions
are made: .

l. The motion is two-dimensional, and lies in a horizontal plane with the y-axis
normal to the plate as shown in Fig. 14.3: thus gravitational effects are neglected.
The flow is laminar within the boundary layer.

The boundary layer thickness is much smaller than the length of the plate L, i.e.,
0% = B/L < 1.

4. The flow is steady.

W N

We start the distussion with the x and y components of the dimensionless Navier-
Stokes equations as given by Eq. (7.26). We recall that our dimensionless independent
variables are x* = x/L, y* = yIL, and z* = z/L, and are based on a characteristic

length L that is constant. Our dimensionless dependent variables are u* = wlU. v*
= v/U, w* = w/U, and p* = p/pU?, and are based on a characteristic velocity U
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that is constant. Usin

. the : : . , .
Navier- & above dimensionless variables, we reduce the dimensionless

Stokes equation (7.26) to

= g B o A otk - 30 (42
ax* dy* ax* T R \axr2 T gy
o IR . A | LN LS s (14.6)
Ox* ay*  gy* A dy*?
and the dimensionless continuity equation is
b S k
gu_ o ot = (147)

ax* BF =

Use of Eq. (1441) reveals that the orders of magnitude of du*/ax* and 9%u*/ox**

are 1, which means that dv*/dy* must have an order of magnitude of 1 in order to

satisfy continuity. Now, since v* equals zero on the boundary, then v* = f o 1dy
= 8%. Thus the dimensionless y-component velocity has an order of magnitude 5*.

Also dv*/ax* and d%v*/ax*? have orders of magnitude 8*. From Eq. (14.2) du™/dy*
and 3”u*/dy*? have orders of magnitude of 1/8* and 1/5*2, respectively. The dimen-
sional pressure gradient dp/dx is assumed to be known in advance from Bernoulli’s
equation applied to the outer inviscid flow

X o= = —pU — (14.8)

The distribution of U(x) along a surface is known from the inviscid analysis described
in Chap. 12. Thus dp*/dx* is retained since its order of magnitude is 1.

If we insert these orders of magnitude into Eqgs. (14.5), (14.6), and (14.7), we
obtain

ou* ou* op* | [0%u* '
e IR 3 = - — 4 —
“War T U oy ax* | R (ay*l) ' S
a 4
—-——ai* = 0(3*) = 0 (14.10)

Equation (14.10) states that the pressure across the boundary layer does not change.
The pressure is impressed on th'c !::oundary layert and its value is determined by
hydrodynamic considerations. This is all true oply if the flow dges#not separate, and
. will not separate if the flow is past a flat plate with no wall transpiration. Transforming
back to the dimensional variables (u, v, p; x, y), we obtain the Prandtl boundary layer

equations
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du ou dU 0%u
— +yp—=U—7/—+v—; (14.11)*
“ax T U oy dx ay? )
D =0 (14.12)
dy
NS (14.13)
ox ay
subject to the following necessary and sufficient boundary conditions:
@ No slip at the wall: u=1v=0 aty = 0 (14.14a)
© Patching: u— U asy — 0 (14.14b)

We solve the Prandtl boundary layer equations for u(x, y) and v(x, y) with U(x)
known from the outer inviscid flow analysis. The equations are solv‘ed by _startlng at
the leading edge of the body and moving downstream to the separation point.**

Note that the remaining momentum Eq. (14.11) is still nonlinear. However, it
does allow the no-slip boundary condition to be satisfied which constitutes a significant
improvement over potential flow analysis in the solution of real fluid flow problems.
The Prandtl boundary layer equations are thus a simplification of the Navier-Stokes
equations. They can be regarded as asymptotic equations of the Navier-Stokes equations

in the limit of vanishing viscosity.

Example 14.1
. Using the Prandtl boundary layer Eq. (14.11), show that the velocity profile for

a laminar flow past a flat plate has an infinite radius of curvature on the surface
of the plate.

P U= U op
— — = 0
2:.%'— U S i H‘( y) ax
= D= X
Figure EI14.1
*For turbulent flow we add the turbulent acceleration — [d(u'v’)/dv).

**See Ref. 14.1 for details of the mathematical analysis.

]
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Example 14.1 (Con't.)

| Solution
| The radius of curvature - : e
| calculus b of the distribution of velocity u(y) is that used in the
|
D [1 + (du/dy)?)?? i)
|d?u/dy?|

The boundary conditions at the surface of the flat plate are
(i1)

U=vyv=0ay=20

S ituti |
EUbsumtmg t.he above boundary conditions into the Prandtl boundary layer
q. (14.11) yields

o () L4

ou “
,/_+/§*_*=_1‘?f>+,,5_“ (i)
/ ox [/ dy p/ox dy* _

resulting in

0°u |
(iv)

Substitpting the gradient of the shear stress of Eq. (iv) into the expression for
the radius curvature of Eq. (i) gives

" et (V)

which means that very close to the surface of the plate, the velocity is linear

and the shear stress is constant.
This completes the solution.

Example 14.2
Reduce the Prandtl boundary layer equations to a simpler form than that given

by Eqgs. (14.11)—(14.13) for (a) flow over a flat plate, (b) the case p, = . (
constgnt), and (c) the case where v = v. (d) Solve the Prandtl boun}&rary ]al e;:
equations for the special case v = v and where the pressure gradient ap/‘axyis

ZEIO0.

4

Figure E14.2
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Example 14.2 (Con '1.)

Solution: .
: (a) For flow past a flat plate, dp/ox = 0, Eq. (14.11) reduces 1o

u , 0,0 r

o Wada ay dy” 1)

Equation (i) is the partial differential equation H. Blasius solved for his ph .

dissertation in Goéttingen, Germany [14.2].
(b) For the constant shear stress case, Eq. (14.11) reduces to

o . € | dp %
s e | s (11)
ox L p ox

which can be altered to yield

L C
p+5pu2=—-*]- vdx . (111)

Thus the total pressure can be determined if we know how the y-component of
velocity v varies in the flow.

(c) For the case v « v, the Prandtl boundary layer equations reduce to
d*u du | dp

—————._ﬂ S—

where a is a constant of proportionality. We note that the left-hand side is a

function of y, and the right-hand side is a function of x. which signifies both
the left- and right-hand side terms are constant.

(d) Setting dp/dx to zero, Eq. (iv) reduces to

d(duldy)
e v ady _ (V)
' J
Integrating Eq. (v) and taking antilogs of both sides yields
du
;f; = ¢, exp (ay) (vi)
Integrating Eq. (vi) yields '
o6
I == eip (ay) + o, (vi1)

boundaries that define the flow.
This completes the solution.

e — o —

—
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