Correlation and

Regression

Correlation

A correlation is a relationship between two variables. The data can be represented by the ordered pairs (x , y) where x is the independent (or explanatory) variable, and y is the dependent (or response) variable.

Example:

x	1	2	3	4	5
y	-4	-2	-1	0	2

Correlation Coefficient

The correlation coefficient is a measure of the strength and the direction of a linear relationship between two variables. The symbol r represents the sample correlation coefficient. The formula for r is

$$
r=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{\sqrt{n \sum x^{2}-\left(\sum x\right)^{2}} \sqrt{n \sum y^{2}-\left(\sum y\right)^{2}}} .
$$

The range of the correlation coefficient is -1 to 1 . If x and y have a strong positive linear correlation, r is close to 1 . If x and y have a strong negative linear correlation, r is close to -1 . If there is no linear correlation or a weak linear correlation, r is close to 0 .

Linear Correlation

Strong negative correlation

Weak positive correlation

Strong positive correlation

Nonlinear Correlation

Residuals

After verifying that the linear correlation between two variables is significant, next we determine the equation of the line that can be used to predict the value of y for a given value of x.

Observed

Each data point d_{i} represents the difference between the observed y-value and the predicted y-value for a given x-value on the line. These differences are called residuals.

Regression equation

Example continued:

Using the equation $\hat{y}=-4.07 x+93.97$, we can predict the test score for a student who watches 9 hours of TV.

$$
\begin{aligned}
\hat{y} & =-4.07 x+93.97 \\
& =-4.07(9)+93.97 \\
& =57.34
\end{aligned}
$$

A student who watches 9 hours of TV over the weekend can expect to receive about a 57.34 on Monday's test.

Linear Correlation

Negative Linear Correlation

No Correlation

Positive Linear Correlation

Nonlinear Correlation

