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Finding the relationship between two 
quantitative variables without being able to 
infer causal relationships

Correlation is a statistical technique used to 
determine the degree to which two 
variables are related
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• Rectangular coordinate

• Two quantitative variables

• One variable is called independent (X) and 

the second is called dependent (Y)

• Points are not joined 

• No frequency table

Scatter diagram
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Example
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Scatter diagram of weight and systolic blood pressure
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The pattern of data is indicative of the type of 
relationship between your two variables:

 positive relationship
 negative relationship
 no relationship
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Reliability

Age of Car
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  Statistic showing the degree of 
relation between two 

variables
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 It is also called Pearson's correlation    or 
product moment correlation
coefficient. 

 It measures the nature and strength 
between two variables of
the quantitative type.
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The sign of r denotes the nature of   
association 

while the value of r denotes the 
strength of association.
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 If the sign is +ve  this means the relation is 
direct (an increase in one variable is 
associated with an increase in the
other variable and a decrease in one variable 
is associated with a
decrease in the other variable).

 While if the sign is -ve this means an inverse 
or indirect relationship (which means an 
increase in one variable is associated with a 
decrease in the other).
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 The value of r ranges between ( -1) and ( +1)
 The value of r denotes the strength of the 

association as illustrated
by the following diagram.
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If r = Zero  this means no association or 
correlation between the two variables.

If 0 < r < 0.25 = weak correlation.

If 0.25 ≤ r < 0.75 = intermediate correlation.

If 0.75 ≤ r < 1 = strong correlation.

If r = l = perfect correlation.
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How to compute the simple correlation 
coefficient (r(
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serial 
No

Age 
(years(

Weight 
(Kg(

1 7 12
2 6 8
3 8 12
4 5 10
5 6 11
6 9 13

   A sample of 6 children was selected, data about their 
age in years and weight in kilograms was recorded 
as shown in the following table . It is required to find 
the correlation between age and weight.
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These 2 variables are of the quantitative type, one 
variable (Age) is called the independent and 
denoted as (X) variable and the other (weight)
is called the dependent and denoted as (Y) 
variables to find the relation between age and 
weight compute the simple correlation coefficient 
using the following formula: 
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Serial 
n.

Age 
(years(

(x(

Weight 
(Kg(

(y(
xy X2 Y2

1 7 12 84 49 144

2 6 8 48 36 64

3 8 12 96 64 144

4 5 10 50 25 100

5 6 11 66 36 121

6 9 13 117 81 169
Total ∑x=

41
∑y=
66

∑xy= 
461

∑x2=
291

∑y2=
742
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r = 0.759

strong direct correlation 
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AnxietyAnxiety  

((XX((
Test Test 

score (Yscore (Y((
XX22 YY22 XYXY

1010 22 100100 44 2020

88 33 6464 99 2424

22 99 44 8181 1818

11 77 11 4949 77

55 66 2525 3636 3030

66 55 3636 2525 3030

∑∑X = 32X = 32 ∑∑Y = 32Y = 32 ∑∑XX22 = 230 = 230 ∑∑YY22 = 204 = 204 ∑∑XY=129XY=129
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r = - 0.94

Indirect strong correlation
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It is a non-parametric measure of correlation. 
This procedure makes use of the two sets of 
ranks that may be assigned to the sample 
values of x and Y.
Spearman Rank correlation coefficient could be 
computed in the following cases:
 Both variables are quantitative.
 Both variables are qualitative ordinal.
 One variable is quantitative and the other is qualitative ordinal. 
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1. Rank the values of X from 1 to n where n is the 
numbers of pairs of values of X and Y in the 
sample.

2. Rank the values of Y from 1 to n.
3. Compute the value of di for each pair of 

observation by subtracting the rank of Yi from 
the rank of Xi

4. Square each di and compute ∑di2 which is the 
sum of the squared values.
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5. Apply the following formula 

1)n(n

(di)6
1r

2

2

s −
−= ∑

  The value of rs denotes the magnitude 
and nature of association giving the same 
interpretation as simple r.
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sample
numbers

level education
(X(

Income
(Y(

A Preparatory.Preparatory. 25

B Primary.Primary. 10

C University.University. 8

D secondarysecondary 10

E secondarysecondary 15

F illitilliterateerate 50

G University.University. 60

    In a study of the relationship between level 
education and income the following data was 
obtained. Find the relationship between them 
and comment.
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(X) (Y)
Rank

X
Rank

Y
di di2

A Preparatory 25 5 3 2 4

B Primary. 10 6 5.5 0.5 0.25

C University. 8 1.5 7 -5.5 30.25

D secondary 10 3.5 5.5 -2 4

E secondary 15 3.5 4 -0.5 0.25

F illiterate 50 7 2 5 25

G university. 60 1.5 1 0.5 0.25

∑ di2=64
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Comment:

There is an indirect weak correlation between 
level of education and income.

1.0
)48(7

646
1 −=×−=sr
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 Regression: technique concerned with 
predicting some variables by knowing others

 The process of predicting variable Y using 
variable X
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 Uses a variable (x) to predict some outcome 
variable (y)

 Tells you how values in y change as a function 
of changes in values of x
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 Correlation describes the strength of a 
linear relationship between two variables

 Linear means “straight line”

 Regression tells us how to draw the straight 
line described by the correlation
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 Calculates the “best-fit” line for a certain set of data
The regression line makes the sum of the squares of the 

residuals smaller than for any other line

Regression minimizes residuals
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  By using the least squares method (a procedure 
that minimizes the vertical deviations of plotted 
points surrounding a straight line) we are
able to construct a best fitting straight line to 
the scatter diagram points and then formulate a 
regression equation in the form of:
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 Regression equation 
describes the 
regression line 
mathematically
 Intercept
 Slope
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Y

Y  =  b X  +  a

a  =  Y - i n t e r c e p t

X

C h a n g e
i n  Y

C h a n g e  i n  X

b  =  S l o p e

bXaŷ +=
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Linear Regression
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Final grade in course = 59.95 + 3.17 * study
R-Square = 0.88

Predicted final grade in class = 

59.95 + 3.17*(number of hours you study per week)
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 Someone who studies for 12 hours
 Final grade = 59.95 + (3.17*12)
 Final grade = 97.99

 Someone who studies for 1 hour:
 Final grade = 59.95 + (3.17*1)
 Final grade = 63.12

Predicted final grade in class = 59.95 + 3.17*(hours of study)
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   A sample of 6 persons was selected the value 
of their age ( x variable) and their weight is 
demonstrated in the following table. Find the 
regression equation and what is the predicted 
weight when age is 8.5 years.
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Serial no. Age (x( Weight (y(

1
2
3
4
5
6

7
6
8
5
6
9

12
8

12
10
11
13
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Serial no. Age (x( Weight (y( xy X2 Y2

1
2
3
4
5
6

7
6
8
5
6
9

12
8

12
10
11
13

84
48
96
50
66

117

49
36
64
25
36
81

144
64

144
100
121
169

Total 41 66 461 291 742
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0.92x4.675ŷ (x) +=

12.50Kg8.5*0.924.675ŷ (8.5) =+=

Kg58.117.5*0.924.675ŷ (7.5) =+=
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we create a regression line by plotting  two 
estimated values for y against their X component, 

then extending the line right and left. 
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   The following are the 
age (in years) and 
systolic blood 
pressure of 20 
apparently healthy 
adults.

Age 
(x(

B.P 
(y(

Age 
(x(

B.P 
(y(

20
43
63
26
53
31
58
46
58
70

120
128
141
126
134
128
136
132
140
144

46
53
60
20
63
43
26
19
31
23

128
136
146
124
143
130
124
121
126
123
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 Find the correlation between age 
and blood pressure using simple 
and Spearman's correlation 
coefficients, and comment.

 Find the regression equation?
 What is the predicted blood 

pressure for a man aging 25 
years?
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Serial x y xy x2

1 20 120 2400 400
2 43 128 5504 1849
3 63 141 8883 3969
4 26 126 3276 676
5 53 134 7102 2809
6 31 128 3968 961
7 58 136 7888 3364
8 46 132 6072 2116
9 58 140 8120 3364
10 70 144 10080 4900
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Serial x y xy x2

11 46 128 5888 2116
12 53 136 7208 2809
13 60 146 8760 3600
14 20 124 2480 400
15 63 143 9009 3969
16 43 130 5590 1849
17 26 124 3224 676
18 19 121 2299 361
19 31 126 3906 961
20 23 123 2829 529
Total 852 2630 114486 41678
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  B.P = 112.13 + 0.4547 * 25=123.49 = 123.5 mm hg
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   Multiple regression analysis is 
a straightforward extension of 
simple regression analysis 
which allows more than one 
independent variable.
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