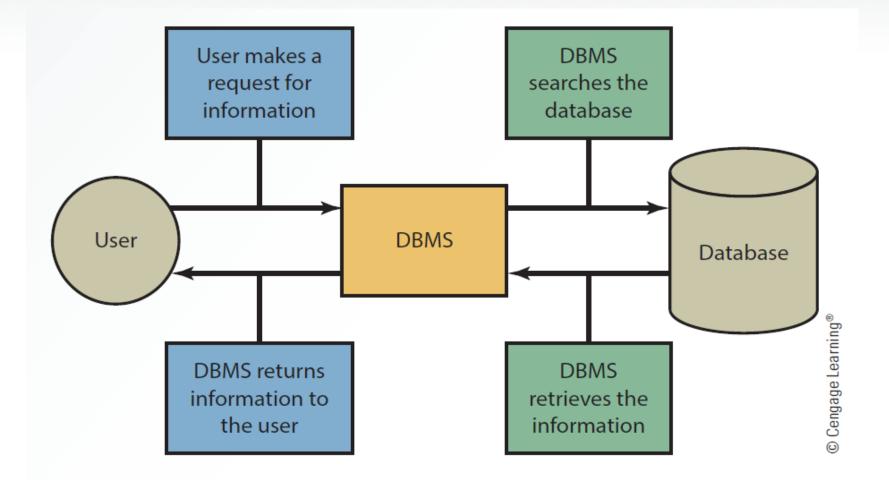
DEVELOPING DATABASES & COMPUTER FILES

Databases


Database

- Collection of related data that is stored in a central location or in multiple locations
- **Data hierarchy**: Structure and organization of data involving fields, records, and files

Database management system (DBMS)

- Software for creating, storing, maintaining, and accessing database files
- Makes using databases more efficient

Interaction Between the User, DBMS and Database

Methods for Accessing Files

- Sequential access file structure
 - Records are organized and processed in numerical or sequential order
 - Organized based on a primary key
 - Social Security numbers or account numbers
 - Used for backup and archive files as they rarely need updating

Types of Data in a Database

Internal

- Collected from within an organization
- Stored in the organization's internal databases
- External
 - Comes from a variety of resources
 - Stored in a data warehouse

Methods for Accessing Files

- Random access file structure
 - Records can be accessed in any order irrespective of the physical locations in storage media
 - Fast and very effective when a small number of records need to be processed daily or weekly
 - Records are stored on magnetic tapes

Methods for Accessing Files

- Indexed sequential access method (ISAM)
 - Records are accessed sequentially or randomly depending on the number being accessed
 - Random access is used for a small number
 - Sequential access is used for a large number
 - Uses an index structure and has two parts
 - Indexed value
 - Pointer to the disk location of the record matching the indexed value

Logical Database Design

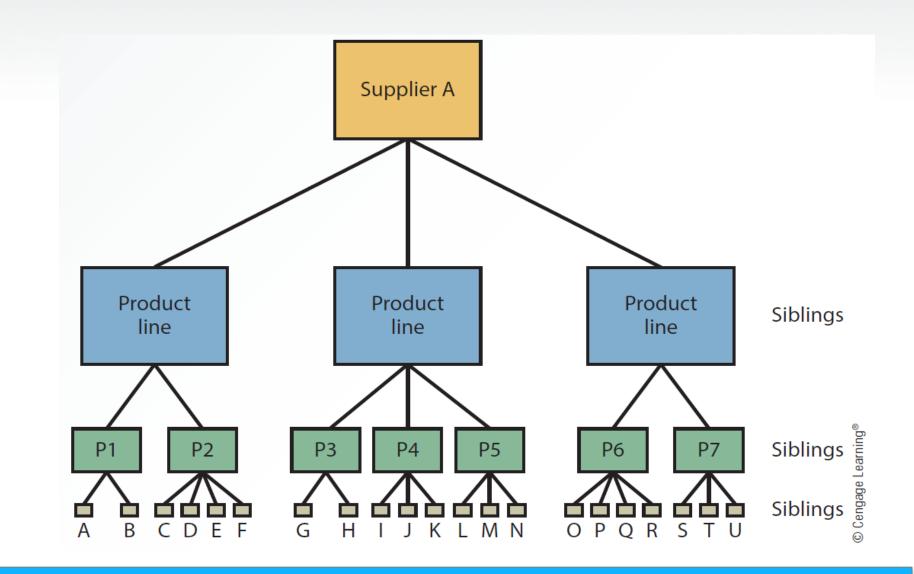
Physical view

- Involves how data is stored on and retrieved from storage media
 - Hard disks, magnetic tapes, or CDs

Logical view

- Involves how information appears to users and how it can be organized and retrieved
- Includes more than one logical view of data, depending on the user

Logical Database Design


Data model

- Determines how data is created, represented, organized, and maintained
- Contains
 - Data structure
 - Operations
 - Integrity rules

Hierarchical model

 Relationships between records form a treelike structure

A Hierarchical Model

Logical Database Design

Network model

- Similar to the hierarchical model but records are organized differently
- Includes multiple parent and child records

A Network Model

- Uses a two-dimensional table of rows and columns of data
 - Rows are records
 - Columns are fields
- Data dictionary: Stores definitions
 - Data types for fields, default values, and validation rules for data in each field

Primary key

- Uniquely identifies every record in a relational database
- Foreign key
 - Field in a relational table that matches the primary key column of another table
 - Used to cross-reference tables

Normalization

- Improves database efficiency by eliminating redundant data
 - Ensures that only related data is stored in a table
- Goes through different stages from first normal form (1NF) to fifth normal form (5NF)

- Retrieves data from tables using operations that pick and combine data from one or more tables
 - Select
 - Project
 - Join
 - Intersection
 - Union
 - Difference

Components of a DBMS

Database engine

Data definition

Data manipulation

Application generation

Data administration

Database Engine

- Heart of DBMS software
- Responsible for data storage, manipulation, and retrieval
- Converts logical requests from users into their physical equivalents
 - By interacting with other components of the DBMS

Data Definition

- Creates and maintains the data dictionary
- Defines the structure of files in a database
- Makes changes to a database's structure
 - Adding and deleting fields
 - Changing field size and data type

Data Manipulation

- Used to add, delete, modify, and retrieve records from a database
- Uses a query language
 - Structured Query Language (SQL)
 - Standard fourth-generation query language that consists of several keywords specifying actions to take
 - Query by example (QBE)
 - Involves requesting data from a database by constructing a statement formed by query forms

Application Generation

- Designs elements of an application using a database
 - Data entry screens
 - Interactive menus
 - Interfaces with other programming languages
- Used by IT professionals and database administrators

Data Administration

- Used for the tasks backup and recovery, security, and change management
- Used to determine who has permission to perform certain functions
 - Summarized as create, read, update, and delete (CRUD)

Data Administration

Database administrator (DBA)

- Handles database design and management
 - Setting up database
 - Establishing security measures to determine users' access rights
 - Developing recovery procedures when data is lost or corrupted
 - Evaluating database performance
 - Adding and fine-tuning database functions

Recent Trends in Database Design and Use

Data-driven website

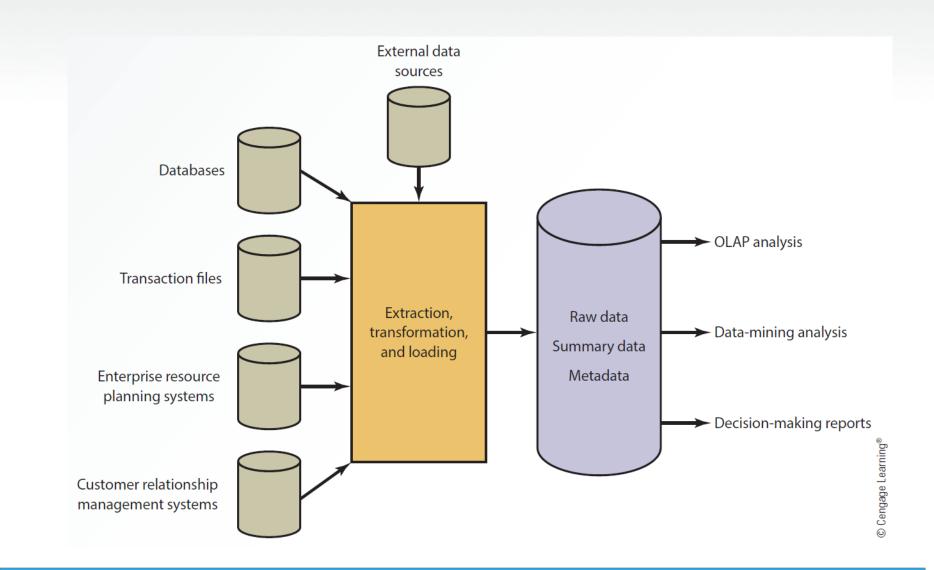
- Interface to a database
- Retrieves data and allows users to enter data
- Improves access to information
- Gives users more current information from a variety of data sources

Recent Trends in Database Design and Use

- **Distributed database**: Stores data on multiple servers throughout an organization
- Approaches to setting up a DDBMS
 - **Fragmentation**: Addresses how tables are divided among multiple locations
 - **Replication**: Each site stores a copy of the data in the organization's database
 - Allocation: Combines fragmentation and replication, with each site storing the data used most often

Recent Trends in Database Design and Use

- **Object-oriented database**: Single object contains data and their relationships
 - Object consists of attributes and methods that can be performed on the object's data
 - **Encapsulation**: Grouping objects along with their attributes and methods into a single unit
 - Inheritance: New objects can be created faster and easily by entering new data in attributes


Data Warehouses

- Collection of data from a variety of sources
 - Used to support decision-making applications and generate business intelligence
 - As they store multidimensional data, they are called hypercubes

Characteristics of Data in a Data Warehouse

- Characteristics of data in a data warehouse
 - Subject oriented
 - Comes from a variety of sources
 - Categorized based on time
 - Captures aggregated data
 - Used for analytical purposes

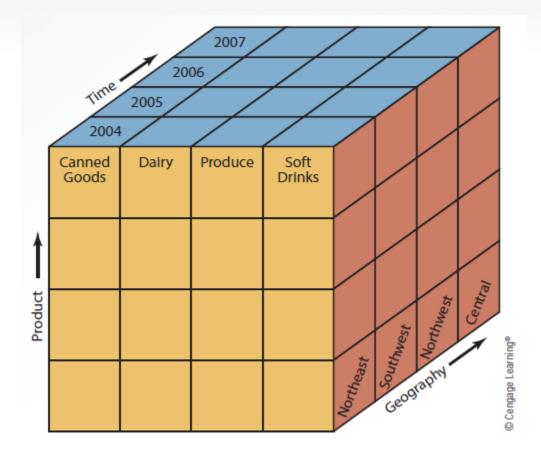
Exhibit 3.6 A Data Warehouse Configuration

Input

- Different sources of data together provide input for a data warehouse to perform analyses and generate reports
 - External data sources
 - Databases
 - Transaction files
 - Enterprise resource planning (ERP) systems
 - Customer relationship management (CRM) systems

Extraction, Transformation, and Loading (ETL)

- Processes used in a data warehouse
 - Extracting data from outside sources
 - Transforming data to fit operational needs
 - Loading data into the database or data warehouse


Storage

- Collected information is organized in a data warehouse as:
 - Raw data: Information in the original form
 - Summary data: Gives users subtotals of various categories
 - Metadata: Information about data's content, quality, condition, origin, and other characteristics

Output

- Online transaction processing (OLTP)
 - Facilitates and manages transaction-oriented applications
 - Uses internal data and responds in real time
- Online analytical processing (OLAP)
 - Generates business intelligence
 - Uses multiple sources of information and provides multidimensional analysis
 - Viewing data based on time, product, and location

Exhibit 3.7 Slicing and Dicing Data

Output

- Data-mining analysis: Discovers patterns and relationships
- Data warehouses help generate various types of information and reports for decision making
 - Cross-reference segments of an organization's operations for comparison purposes
 - Generate complex queries and reports faster and easier
 - Generate reports efficiently using data from a variety of sources

Output

- Find patterns and trends that can't be found with databases
- Analyze large amounts of historical data quickly
- Assist management in making well-informed business decisions
- Manage high demand information from many users with different needs and decision making styles

Data Mart

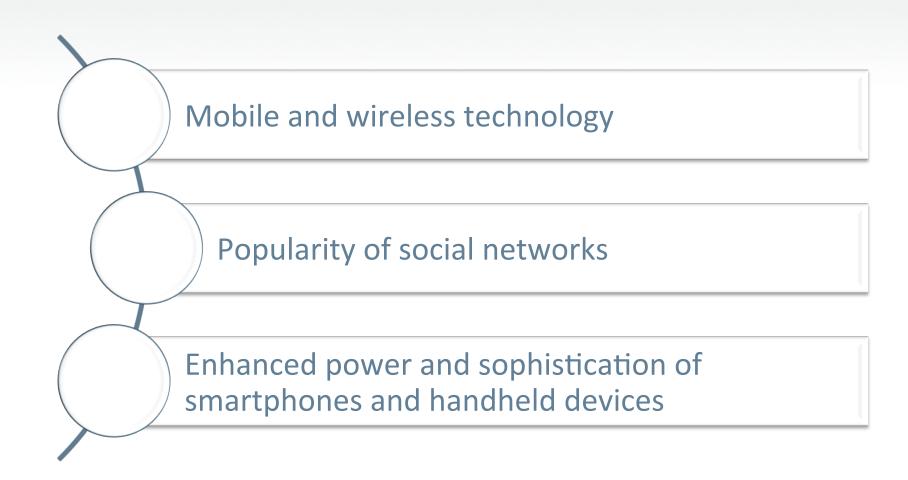
- Smaller version of data warehouse, used by single department or function
- Advantages over data warehouses
 - Access to data is faster due to their smaller size
 - *Response time for users is improved*
 - Easy to create because they are smaller and simple
 - Less expensive
 - Users are targeted better
- Has limited scope

Business Analytics (BA)

- Uses data and statistical methods to gain insight into the data
- Provides decision makers with information to act on

Types of BA Methods

- Descriptive analytics
 - Reviews past events
 - Analyzes the data
 - Provides a report indicating what happened over a given period of time and how to prepare for future
 - Reactive strategy
- Predictive analytics
 - Prepares decision maker for future events
 - Proactive strategy


Big Data Era

- Big data: Voluminous data which the conventional computing methods are unable to efficiently process and manage
 - Involves dimensions known as 3 Vs
 - Volume: Quantity of transactions
 - Variety: Combination of structured and unstructured data
 - Velocity: Speed with which data needs to be gathered and processed

Who Benefits from Big Data?

- Industries benefit and gain a competitive advantage in areas like:
 - Retail
 - Financial services
 - Advertising and public relations
 - Government
 - Manufacturing
 - Media and telecommunications
 - Energy
 - Healthcare

Factors in the Growth and Popularity of Big Data

- Allocation
- Big data
- Business analytics
- Create, read, update, and delete (CRUD)
- Data dictionary
- Data hierarchy
- Data mart
- Data model
- Data warehouse
- Database

- Database administrator (DBA)
- Database management system (DBMS)
- Data-driven website
- Data-mining analysis
- Distributed database management system (DDBMS)
- Encapsulation
- Extraction, transformation, and loading (ETL)
- Foreign key
- Fragmentation

- Hierarchical model
- Indexed sequential access method (ISAM)
- Inheritance
- Logical view
- Network model
- Normalization
- Object-oriented databases
- Online analytical processing (OLAP)
- Online transaction processing (OLTP)
- Physical view

- Primary key
- Query by example (QBE)
- Random access file structure
- Relational model
- Replication
- Sequential access file structure
- Structured Query Language (SQL)