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Abstract This study examines linear spectral unmixing
technique for mapping the surface soil types using field
spectroscopy data as the reference spectra. The investigated
area is located in North Sinai, Egypt. The study employed
data from the Landsat 7 ETM+ satellite sensor with im-
proved spatial and spectral resolution. Mixed remotely sensed
image pixels may lead to inaccurate classification results in
most conventional image classification algorithms. Spectral
unmixing may solve this problem by resolving those into
separate components. Four soil type end-members were iden-
tified with minimum noise fraction and pixel purity index
analyses. The identified soil types are calcareous soils, dry
sabkhas, wet sabkhas, and sand dunes. Soil end-member
reference spectra were collected in the field using an ASD
FieldSpec Pro spectrometer. Constrained sum-to-one and non-
negativity linear spectral unmixing model was applied and the
soil types map was produced. The results showed that linear
spectral unmixing model can be a useful tool for mapping soil
types from ETM+ images.

Keywords Soil mapping - Field spectrometry - Spectral
mixture analyses - North Sinai Egypt

Introduction

Soil is one of the most valuable resources. Information from
soil and land resource survey is necessary for better manage-
ment and wise soil use. Soil inventory is often carried out as
part of a regional planning and development process in order
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to determine the location and extent of various soil types and
variables. The spatial and temporal variability of surface pro-
cesses makes soil properties variable and, therefore, makes it
difficult to measure directly from their reflectance spectra
even under controlled laboratory conditions (Ben-Dor and
Banin 1994). Unlike vegetation spectra, the shape of reflec-
tance spectra obtained from soils are mainly invariant in the
spectral regions (0.4—1.2 pum; Clark 1999). This may be due to
a combined effect of different factors that can affect surface
spectral reflectance of soils and make it non-consistent
through the spectrum region.

The reflectance from an image pixel is a mixture of the
individual reflectance spectra of surface materials (Adams et
al. 1986; Smith et al. 1990; Roberts et al. 1993). Spectral
mixing occurs when materials with different spectral properties
are represented by a single image pixel. Each image pixel
contains a spectrum of reflectance values for all the wavebands
in the imagery. These spectra may be considered as the sig-
natures of the ground materials such as soil types, provided that
the material occupies the whole pixel. Each pixel retains the
characteristic features of the individual spectra from each of the
component reflective materials.

Spectral unmixing of satellite images is one of the most
widely used methods for deriving information from mixed
pixels (Lu et al. 2003). Spectral mixture analyses (SMA) are
generally defined as the calculation of land cover area
fraction within a pixel (Roberts et al. 1998). Spectral mix-
ture analysis was developed for interpreting high spectral
resolution advanced visible/infrared images data and was
later expanded to be used with Landsat data (Lunetta
1998). The process involves the selection of representative
pure spectra (end-member) and the unmixing of the spectral
information of a pixel. To get more information from a single
pixel, the proportions of these materials can be approximated
using a spectral mixing model (Boardman 1994). The
spectrum recorded in every image pixel is a linear combination
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of a mixture of different components (end-member spectra;
Tompkins et al. 1997). Therefore, the value of a pixel in an
image for a band equals the weighted sum of the radiance
values for that band of all targets present in the pixel (Weng et
al. 2004). The linear spectral unmixing model has the follow-
ing form:

n
Ri = fiRi + E;
k=1

where i the number of spectral bands (1,...,m), k is the number
of end-members (1,..., n), R; is the value of a pixel in band i, f;
is the fraction of end-member £ in that pixel, Ry is the radiance
of end-member & in band 7, and Ey; is the unmodelled residual
in band 7.

For constrained linear spectral unmixing, the end-member
fractions in a pixel are constrained to sum to unity, and each
end-member fraction itself is expected not to have a negative
value or be greater than 1:

> fi=1land0<f <1
k=1

Unconstrained and constrained unmixing can result in
negative abundance values and values greater than 1 for
any end-member. The mixing fractions can be determined
from the data. For a given number of spectral bands 7, an
exact solution can be found for each pixel for the unconstrained
model if m=n and for the constrained model if m=n+1.
However, if m<n for unconstrained unmixing or if m<n+1
for constrained unmixing, then a least squares fitting procedure
can be applied to obtain the best fit.

The model root mean square (RMS) error based on the
residuals is

RMS = /> " (ER?)/m

End-members used for spectral unmixing can be derived
from the image itself (called image end-members) or measured
in field conditions (reference spectra; Lunetta 1998). Image
end-members should be selected from the extreme values of
the image spectral feature space representing spectrally the
purest pixels (Roberts et al. 1998). As the end-member spectra
identified, spectral unmixing of individual pixels can estimate
the fractional component spectra and, in turn, the physical
fractional component of the materials within the pixels (Adams
et al. 1986; Roberts et al. 1993; Theseira et al. 2003). The
outputs of linear spectral unmixing are suite of abundance
images, one for each end-member in the model. Each abun-
dance image shows the spatial distribution of the spectrally
defined material. The aim of this work was to identify and
discriminate surface soil types applying linear spectral unmix-
ing technique and field spectroscopy data as the reference
spectra under arid conditions.
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Materials and methods
Description of the investigated area

The investigated area is located in North Sinai, between 32°
40" and 34°10" E and 30°53’ and 31°13’ N (Fig. 1). North
Sinai, as a desert region, has an arid climate with hot summer,
mild winter, and an annual rainfall of 20—100 mm (Ayyad and
Ghabour 1986). The topography comprises low alluvial
plains, which are broken by large uplifted Mesozoic domes
and anticlines. North of Gabel Maghara, the area extending
near to the Mediterranean coast is a broad tract of sand dunes,
some of which attain heights of 91 m above sea level (Said
1990). North Sinai is classified into three geomorphological
districts: Mediterranean coastal district, anticlines district, and
inland (transition) district. The Mediterranean coastal district
extends 20—40 km southward from the Mediterranean coast.
The open undulating sandy plains occupy most of the Medi-
terranean coastal district with coarse sand as the soil surface.
Different types of sand dunes are prominent in the district. Salt
marshes are located at depressions and near the foothills of
sandy dunes (Hassan 2002).

Digital image processing

The following remote sensing analyses used data from the
Landsat 7 ETM+ sensor (Level 1b data) dated to year 2005.
The ETM+ data of the blue to the short-wave infrared
portion of the spectrum were used in this study. Firstly, the
thermal bands were excluded due to the nature of the study.
The 30-m spatial resolution data in the visible/NIR bands
were resampled to the higher 14-m resolution of the gray
band. The image was georectified to UTM coordinates to be
included into the exiting digital image and GIS database. All
further digital image processing and analyses of Landsat 7
ETM+ satellite image were executed using the standard
approaches provided by the software ENVI 4.6 (ITT 2008).
The processing of data was represented by calibration to
spectral radiance according to Lillesand and Kiefer (2007),
where the calibration factors for each band were provided by
(Chander et al. 2009). The Landsat ETM+ data were then
atmospherically corrected using FLAASH module in ENVI
4.6 (ITT 2008).

The selection of appropriate end-members plays a vital role
for determining pure signatures to representative homoge-
neous land covers from satellite sensor images (Rashed et al.
2003; Wu and Murray 2003). A minimum noise fraction
(MNF) procedure described by Green et al. (1988) was
employed to determine the inherent dimensionality of image
data and to reduce the image data into a small number of
significant bands suitable for end-member selection (Boardman
and Kruse 1994; Boardman et al. 1995). According to the
normalized eigenvalues >1, selected MNF components were
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Fig. 1 Location map of the
study area (false color
composite 742 ETM+)

24°30'E

26°15'E

29°45°'N

28°N

24°30'E 26°15'E

3300E
1

28°E 29°45'E JI°W'E AIS'E AS°E

M50

300N

315N

300N

T
IF00E

input to the pixel purity index (PPI) procedure to determine the
purest pixels. The image-derived end-members, spectrally pure
pixels, were identified by projecting the MNF and PPI results in
an n-dimensional visualizer. The PPI image was geographically
linked to the original image. A water mask was applied prior
to the spectral unmixing to avoid the incorporation of related
end-members. The final end-member used for spectral
unmixing have been determined by a pixel purity analysis
(PPI) that identifies the purest pixels on the edges of the
multidimensional point cloud of pixel vectors. According to
the PPI selected candidate pixel evaluation, four final
end-members were selected to subsequently perform the
field data collection.

Field data collection
Field spectra

Georeferenced spectral data for surface soil types were col-
lected using ASD FieldSpec®3 portable spectroradiometer
(ASD 2007) in a field campaign carried out in December
2010. FieldSpec acquires visible near-infrared and short-
wave infrared spectra in the 0.35- to 2.50-um spectral range.

&

0°

T
33'I00E 34t

The spectral measurements were carried out within test plots
representing a specific soil type. For each sample or surface,
100 consequent measurements using a pistol grip device
yielded an average spectrum. Before and after the measure-
ments, a white reference measurement has been taken. Reflec-
tance spectra were obtained by comparing the radiance of the
target with the radiance of a reference panel. Target and
reference scans were made successively and compared to
produce reflectance measurements.

Soil sampling

Fourteen soil profiles were dug for the identification of the
different soil type characteristics represented in the study area.
A soil profile was dug at each corresponding point after a
spectral measurement was completed. Soil samples represent-
ing the subsequent variations within the soil horizons were
collected for laboratory analyses of some chemical and phys-
ical soil properties. The soil profiles were dug to a depth of
150 cm, unless obstructed or hindered by bedrock. The soil
samples were thoroughly examined and morphologically
described in the selected sites according to the system outlined
by FAO (2006).
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Data analyses
Field spectra data

A set of processing operations should be performed before a
thematic evaluation of data measured with an ASD field
spectrometer. In order to prepare raw spectra measured with
an ASD field spectrometer for further use, basic sequence of
processing operations has to be performed. The collected
raw spectra by the field spectrometer were imported into an
ENVI spectral library and corrected for panel reflectance
since the target reflectance was slightly overestimated. For
any change in the radiation conditions, the white reference
was checked and the spectra were interpolated. Any spectra
containing measurement errors need to be removed as the
erroneous spectra falsely influence the average spectra of the
target. An indication for erroneous spectra can be peaks at
unusual wavelengths or a spectrum that differs a lot from other
spectra measured of the same target during the same measure-
ment. The collected field spectra end-members corresponding
to soil surface types were introduced into the linear spectral
unmixing model to map the surface soils identified.

Remotely sensed image data

A linear spectral unmixing model was applied to the pre-
processed multispectral data to determine pixel fractions of
the four soil types:

Pst, * Csty +
Pst, * Cst, T
pst; ! cSt3+
Psty * Csty

d>ee=1.0and0 < ¢, <1.0

Ppixel = 2oAPe - Ce} + €= +e

where p and C are the reflectance and surface fraction of each
end-member (soil type, st), respectively, and € is an error term.

Fig. 2 Scatterplot of the first
three MNF components (the
color refers to the point density)
with indicated feature spaces
for main surface soil types of
the study area (approximate
locations)

MNF Component 2

The individual surface fractions sum to unity. The outputs
of SMA are fractional surface images of input materials,
which are scaled from 0 to 1.0. Zero indicates that none of
the target material is present in the pixel, while 1 indicates
complete cover. In addition to the fractional surface images, a
root mean square error (RMSE) image is also produced. The
RMSE image gives an indication of the degree to which the
input end-members matched the extent of the materials on the
ground.

Soil analyses

The soil samples obtained from the field which represent
the soil types identified by spectral mixture analyses were
collected, air-dried, crushed softly, and passed through a
2-mm sieve to get the “fine earth.” The fine earth of soil
samples was subjected to physical and chemical analyses,
where particle size distribution was determined according to
Bandyopadhyay (2007). Soil color (wet and dry) was identi-
fied with the aid of Munssel color charts (Soil Survey Staff
1951). Electric conductivity (EC, in deciSiemens per meter),
soluble cations and anions, calcium carbonates (CaCOs3, in
percent), organic matter (OM, percent), pH, exchangeable Na,
and cation exchange capacity (CEC, in centimoles+ per
kilogram) were determined according to Bandyopadhyay
(2007).

Results and discussion

The MNF transformation explores the possible image end-
members for this study. The first three components of MNF
transformation were analyzed and described, with 77.67%,
17.00%, and 2.09% of the variability of all six ETM+ bands,
respectively. The end-members were identified through the
MNF component scatterplots. According to the MNF, PPI

MNF Component 3

MNF Component 1
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Fig. 3 Example field spectral
reflectance of surface soil types
collected. Water absorption
bands ranging 1,360-1,400 nm
and 1,800-1,980 nm were
removed
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results, and laboratory analyses, four main soil types domi-
nating in the area were identified as end-members, which are
calcareous soils, dry sabkhas, wet sabkhas, and sand dunes.
The scatterplots shown in Fig. 2 indicate the information and
spectral mixing situation of the dataset in the study area.

The scatterplots emphasize an end-member mixing situa-
tion. This is highlighted by the cloud of pixels as a spectral
mix between these surface characteristics. Dry sabkhas and
wet sabkhas have a large variability and overlap. This is due to
their spectral similarity, hence will not accurately unmix, and
the spectral mixture between these soil types can be separated
into related end-member fractions during the linear spectral
unmixing. The usual spectral mixing characteristics with pure
pixels (one soil type) at the edges of the point cloud and mixed
pixels in the center are represented in the scatterplots (Fig. 2).
For example, MNF components 1 and 2 represent a large
number of pixels appearing between the calcareous soils and
sand dunes end-members. The fractions derived from these
end-members were used to map the surface soil types in the
study area.

Image spectra were established for each soil surface feature
after confirming an appropriate match between field spectra
and pixel spectra. The established spectra for each surface
feature are shown in Fig. (3). The spectra represent the distinct
surface soil type features. This can be distinguished according
to their spectral reflectance property within the given range of
the spectrum.

The diagnostic absorption features of soils are due to the
inherent spectral behavior of the mineralogical composition,
organic matter, and water (Baumgardner et al. 1985; Irons et
al. 1989). The prominent absorption bands around the 1450-
and 1,950-nm wavelength in most soil spectra are attributed
to water and hydroxyl ions. Occasional weaker absorption

bands caused by water also occur at 970, 1,200, and
1,770 nm. Absorption features near the 400-nm wavelength
for all samples are also noticeable. The corrected soil type
spectra were simulated to match the spectral response of
ETM+ data (Fig. 4) using a Gaussian model with the pro-
vided wavelengths and the full width at half-maximum
(FWHM) spacings. The simulated spectra (Fig. 5) repre-
sented to the linear unmixing model, and the spatial distribu-
tions of each soil surface features were mapped.

The characteristics of the different soil types identified in
the study area and its associated classification according to
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Fig. 5 Simulated surface soil types spectra

the Keys to Soil Taxonomy (USDA 2010) could be summa-
rized as follows:

Sand dunes areas The mapped sand dunes surfaces (Fig. 6)
occupy a considerable area especially in the southern part of
Bair El-Abd area. They are generally arranged parallel to
each other or sub-parallel to the resultant direction of the
effective winds, where they follow a NW-SE direction and
curve southward to follow an E-W direction. The parent
material of these sand dunes is sandy deposits formed by the
erosion of weathered surface materials transported and
deposited by winds (Hola 2000). Some areas are covered with
natural vegetations with few to common density of distribu-
tion. The soils of these sand dunes are non-saline and have low
calcium carbonate content. The soil profile depth is more than
1.5 m. Saturation percentage lies around 22%. Soil texture
class has the same pattern of sedimentation, where it is medium
sand. These soils are almost free of soluble salts, whereas the
EC values are very low as they lie around 0.7 dS/m, showing a
seasonal leaching process by the considerable amounts of rain.

Gypsum, CaCOs3, and OM contents are low, as well as the CEC
in the successive soil horizons. The category of soil classification
according to USDA soil taxonomy is Typic Torripsamments.

Sabkhas areas There are many dry sabkhas and wet sabkhas
mapped in the study area. They are flat to almost flat
surfaces occupying low-lying areas. The largest ones lie
between El-Nigila and Rabaa. In addition, there are many
sabkhas around the El-Bardawil Lake. These Sabkhas are
restricted to the sandy flats that fringe the lake at the extreme
eastern and western ends. The dune sabkha occupies most of
the lake’s southern shores, where the longitudinal sand
ridges intersect the lake water (Hola 2000; Hassan 2002).
The evaporation wavy surface of flat Sabkhas was identified
at many locations in the Bair EI-Abd and Rabaa area. The
surface of sabkhas has a darker color than the surroundings
and is composed mainly of magnesium (Mg) and sodium
(Na) chlorides in addition to calcium sulfates (CaSO,). The
soil depth of these sabkhas ranges between 35 and 40 cm
and limited by water table. The texture is coarse sand to
clayey. These soils are highly affected by soluble salts which
range between 21 and 125 dS/m. The calcium carbonate
contents range between 0.3% and 36%, where the high values
refer to shell fragments and fine segregations of CaCOj3. The
gypsum content may reach 9%. CEC values range between
8 and 39 cmol+/kg soil. Soils of this unit could be classified as
Dypic Aquisalids, Calcic Aquisalids, and Gypsic Haplosalids.

Calcareous areas The majority of mapped calcareous soils
are presented in Wadi El-Arish, whereas the main stream
runs through several conspicuous steps facing the north and
parallels the present shoreline which has an E-W direction
in Wadi El-Arish area. The surface of these soils is flat to
mainly almost flat, and some parts are undulating to rolling.

Fig. 6 Map of surface soil 33°00°E 33°300°E 34°00°E
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