CHAPTER

SEVENTEEN
HIGHER-ORDER DIFFERENCE EQUATIONS

The economic models in the preceding chapter involve difference equations that
relate P, and P, ;| to each other. As the P value in one period can uniquely
determine the P value in the next, the time path of P becomes fully determinate
once an initial value P, is specified. It may happen, however, that the value of an
economic variable in period ¢ (say, y,) depends not only on y,_, but also on V5.
Such a situation will give rise to a difference equation of the second order.

Strictly speaking, a second-order difference equation is one that involves an
expression A’y,, called the second difference of y,, but contains no differences of
order higher than 2. The symbol A%, the discrete-time counterpart of the symbol
d?/di?, is an instruction to “take the second difference” as follows:

Aly, = A(Ay,) = Ay —0) [by (16.1)]
= (2 =) = (r =) [again by (16.1)]*
=Vie2 ~ 2y T
Thus a second difference of y, is transformable into a sum of terms involving a
* That is, we first move the subscripts in the (y,, | — y,) expression forward by one period, to get a
new expression (,,, — J;. ), and then we subtract from the latter the original expression. Note that.

since the resulting difference may be written as Ay,, |, — Ay,, we may infer the following rule of
operation;

A(,VHI - .Vz) = A.VH! - A.}'(

This is reminiscent of the rule applicable to the derivative of a sum or difference,

576
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two-period time lag. Since expressions like A?y, and A y, are quite cumbersome to
work with, we shall simply redefine a second-order difference equation as one
involving a two-period time lag in the variable. Similarly, a third-order difference
equation is one that involves a three-period time lag, etc.

Let us first concentrate on the method of solving a second-order difference
equation, leaving the generalization to higher-order equations for a later section.
To keep the scope of discussion manageable, we shall only deal with linear
difference equations with constant coefficients in the present chapter. However,
both the constant-term and variable-term varieties will be examined below.

17.1 SECOND-ORDER LINEAR DIFFERENCE EQUATIONS WITH
CONSTANT COEFFICIENTS AND CONSTANT TERM

A simple variety of second-order difference equations takes the form
(171) i yr_iZ j_ a4 Yy + 4y, =c

You will recognize this equation to be linear, nonhomogeneous, and with constant
coefficients (a,, a,) and constant term c.

Particular Integral

As before, the solution of (17.1) may be expected to have two components: a
particular integral y, representing the intertemporal equilibrium level of y, and a
complementary functlon . specifying, for every time period, the deviation from
the equilibrium. The partlcular integral, defined as any solution of the complete
equation, can sometimes be found simply by trying a sclution of the form y, = k.

Substituting this constant value of y into (17.1), we obtain

C

k+a]k+a2k=c and k=—1—+“m

Thus, so long as (1 + a, + a,) # 0, the particular integral is
C
(17.2) yp(—k)—m (cascofa] +a,* — 1)

Example 1 Find the particular integral of y,, , — 3y,,, + 4y, = 6. Here we have
a, = —3,a,=4 and ¢ = 6. Since a, + a, + — 1, the particular integral can be
obtained from (17.2) as follows:

6
»E1-3+4 "

In case a; + a, = —1, then the tnal solution y, = k breaks down, and we
must try y, = kt instead. Substltutmg the latter into (17.1) and bearing in mind
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that we now have y,, | = k(¢ + 1) and ,,, = k(1 + 2). we ﬁ;}d that
k(r+2)+ak(t+1)+akt=c
¢ ¢

and k= = sincea, + a, = — 1
(l+a +a))t+a, +2 a +2 [since @, + 4 |
Thus we can write the particular integral as
(17.2) V(= kt) = < (caseof a, +a, = —1;a, # — 2)

a, +2

Example 2 Find the particular integral of v, ., + y,,, — 2y, = 12. Here, a; = 1.
ay, = —2,and ¢ = 12. Obviously, formula (17.2) is not applicable, but (17.2") is.
Thus,

12
1+2

This particular integral represents a moving equilibrium.

y, = =4t

If a, + a,= —1, but at the same time ¢, = —2 (that is, if ¢, = —2 and
a, = 1), then we can adopt a trial solution of the form y, = k7, which implies
¥, = k(1 + 1), etc. As you may verify, in this case the particular integral turns
out to be

2

(17.27) yp=k12=%t“ (caseofa, = —=21a,=1)

However, since this formula applies only to the unique case of the difference
equation y,., — 2y, + v, = c, its usefulness is rather limited.

Complementary Function

To find the complementary function. we must concentrate on the reduced
equation

(17~3) Yiv2 + a1 + a,y, = 0

Our experience with first-order difference equations has taught us that the
expression 45 plays a prominent role in the general solution of such an equation.
Let us therefore try a solution of the form y, = Ab’, which naturally implies that

Vi1 =Ab"" and so on. It is our task now to determine the values of A4 and b.
Upon substitution of the trial solution into (17.3), the equation becomes

AT+ a Ab' T + a, Ab' = 0
or, after canceling the (nonzero) common factor 45,
(17.3) b +ab+a,=0
This quadratic equation—the characteristic equation of (17.3) or of (17.1)—which
1s comparable to (15.4"), possesses the two characteristic roots
ot at — ta

2

(174)  b,. b, =
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each of which is acceptable in the solution 4b‘. In fact, both b, and b, should
appear in the general solution of the homogeneous difference equation (17.3)
because, just as in the case of differential equations, this general solution must
consist of two linearly independent parts, each with 1ts own multiplicative arbitrary
constant.

Three possible situations may be encountered in regard to the characteristic
roots, depending on the square-root expression in (17.4). You will find these
parallel very closely the analysis of second-order differential equations in Sec.
15.1.

Case 1 (distinct real roots) When a} > 4a,, the square root in (17.4) is a real
number, and b, and b, are real and distinct. In that event, b} and b} are linearly
independent, and the complementary function can simply be written as a_linear
combination of these expressions; that is,

(17.5)  y = Ab} + A,b}

You should compare this with (15.7).

Example 3 Find the solution of y,,, + y,,, — 2y, = 12. This equation has the
coefficients a, = 1 and a, = —2; from (17.4), the characteristic roots can be
found to be b, b, = 1, — 2. Thus, the complementary function is

Ye = Al(l)r + Az(_z)l =4, + Az("z)l
Since, in Example 2, the particular integral of the given difference equation has
already been found to be y, = 41, we can write the general solution as

Y=y oty =A A (=2) + 4

There are still two arbitrary constants 4, and A4, to be definitized; to
accomplish this, rwo initial conditions are necessary. Suppose that we are given
Yo =4 and y, = 5. Then, since by letting 1 = 0 and 7 = 1 successively in the
general solution we find

yo=A, + 4, (= 4 by the first initial condition)

yw=A4,—24,+ 4 (= 5 by the second initial condition)
the arbitrary constants can be definitized to 4, = 3 and 4, = 1. The definite
solution then can finally be written as

y,=3+(-2)"+ 4

Case 2 (repeated real roots) When a? = 4a,, the square root in (17.4) vanishes,
and the characteristic roots are repeated:

4
2

Now, if we express the complementary function in the form of.(17.5), the two

b(zblzbl): -
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components will collapse into a single term:

Ab+ A,b5 = (A, + A4,)b" = A3b'

This will not do, because we are now short of one constant.

To supply the missing component—which, we recall, should be linearly
independent of the term A;6'—the old trick of multiplying »* by the variable ¢
will again work. The new component term is therefore to take the form A,sb".
That this is linearly independent of A,;b’ should be obvious, for we can never
obtain the expression A4,z by attaching a constant coefficient to A,b". That 4 b’
does indeed qualify as a solution of the homogeneous equation (17.3), just as 4,5
does, can easily be verified by substituting y, = A,tb" [and y,., = A,(¢t + )b,
etc.] into (17.3)* and seeing that the latter will reduce to an identity 0 = 0.

The complementary function for the repeated-root case is therefore

(17.6)  y. = A" + A b’
which you should compare with (15.9).

Example 4 Find the complementary function of y, ., + 6y,., + 9y, = 4. The
coefficients being a, = 6 and a, = 9, the characteristic roots are found to be
b, = b, = —3. We therefore have

Yo = Aa(_3)l + A4[(—3)1

If we proceed a step further, we can easily find y, = - so the general solution
of the given difference equation is

Y :Aa(—3)r +A4t(_3)[ +3

Given two initial conditions, A, and A, can again be assigned definite values.

Case 3 (complex roots) Under the remaining possibility of ai < 4a,, the char-
acteristic roots are conjugate complex. Specifically, they will be in the form

b,,b,=h+ vi
where
__4 s
(177 h=-2t and v 5
The complementary function itself thus becomes
v, =Ab, + Asb5 = A, (h+vi) + A, (h — vi)

As it stands, y. is not easily interpreted. But fortunately, thanks to De Moivre’s
theorem, given in (15.23"), this complementary function can easily be transformed
into trigonometric terms, which we have learned to interpret.

*In this substitution it should be kept in mind that we have in the present case ¢ = 4a, and
= —a,/2. i
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According to the said theorem. we can write

(h+ vi) = R'(cos 8t + isinft)
where the value of R (always taken to be positive) is, by (15.10),

2+4 42
(17.8) R=\/h2+uz=\/——-—a‘ " = o,

and @ is the radian measure of the angle in the interval [0, 2). which satisfies the
conditions

h _a] . v \/ alz
17.9 cosf =— = and sinf = — = 1 — —
( ) R 2@ R 4a,

Therefore, the complementary function can be transformed as follows:

(17.10)  y. = A,R'(cos 81 + isinft) + A,R'(cos ft — isin fr)

= R'[(A4, + A,)cos b1 + (A, — A,)isin6t]
= R'( Accos 8t + A.sinf1)
where we have adopted the shorthand symbols
A;=A4,+4, and A = (A, - Ay)i

The complementary function (17.10) differs from its differential-equation
counterpart (15.24') in two important respects. First, the expressions cos 8¢ and
sin 8¢ have replaced the previously used cos vr and sin vz. Second, the multiplica-
tive factor R’ (an exponential with base R) has replaced the natural exponential
expression e”. In short, we have switched from the cartesian coordinates (4 and
v) of the complex roots to their polar coordinates (R and #). The values of R and
8 can be determined from (17.8) and (17.9) once A and v become known. It is also
possible to calculate R and § directly from the parameter values @, and a, via
(17.8) and (17.9), provided we first make certain that ai < 44, and that the roots
are indeed complex.

Example 5 Find the general solution of y,,, + 4y, = 5. With coefficients a, = 0
and a, = §, this constitutes an illustration of the complex-root case of a? < 4a,.
By (17.7), the real and imaginary parts of the roots are h =0 and v = 5. It
follows from (17.8) that

142 1
k= \/ 0+(3) -3
Since the value of @ is that which can satisfy the two equations

h . v
cos()—i—O and smé)—ﬁ—l
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it may be concluded from Table 15.1 that

v
=7

Consequently, the complementary function is

1 7
y‘_(2) (A coszt-i-A sm2 )

To find y,, let us try a constant solution y, = k in the complete equation. This
yields k = 4; thus, y, = 4, and the general solution can be written as

| 7 .
(17.11) Y, = (5) (Ascoszt + Aésmit) +4

Example 6 Find the general solution of y,., —4y,,, + 16y, = 0. In the first
place, the particular integral is easily found to be y, = 0. This means that the
general solution y,(= y, + y,) will be identical with y_. To find the latter, we note
that the coefficients a, = —4 and a, = 16 do produce complex roots. Thus we
may substitute the a, and a, values directly into (17.8) and (17.9) to obtain

=16 = 4

R
4 1 . / f
cosﬂ—ﬂ—i and smﬁ—\/l————

The last two equations enable us to find from Table 15.2 that

kis
=3

It follows that the complementary function—which also serves as the general
solution here—is

(17.12)  yA(=y)= 4’(Ascos%t + Absing-t)

The Convergence of the Time Path

As in the case of first-order difference equations, the convergence of the time path
¥, hinges solely on whether y, tends toward zero as t+ — oo. What we learned about
the various configurations of the expression b’, in Fig. 16.1, is therefore still
applicable, although in the present context we shall have to consider two char-
acteristic roots rather than one.

Consider first the case of distinct real roots: b, # b,. If || > 1 and
|b,] > 1, then both component terms in the complementary function (17.5)— 4,5}
and A4,b5—will be explosive, and thus y, must be divergent. In the opposite case
of |b;| <1 and [b,| < 1, both terms in y, will converge toward zero as 7 is
indefinitely increased, as will y. also. What if |b,| > 1 but |b,| < 1?7 In this
intermediate case, it is evident that the 4,5} term tends to “die down,” while the
other term tends to deviate farther from zero. It follows that the 4, b‘ term must
eventually dominate the scene and render the path divergent.
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Let us call the root with the higher absolute value the dominant root. Then it
appears that it is the dominant root b, which really sets the tone of the time path,
at least with regard to its ultimate convergence or divergence. Such is indeed the
case. We may state, thus, that a time path will be convergent—whatever the initial
conditions may be—if and only if the dominant root is less than 1 in absolute value.
You can verify that this statement is valid for the cases where both roots are
greater than or less than 1 in absolute value (discussed above), and where one
root has an absolute value of 1 exactly (not discussed above). Note, however, that
even though the eventual convergence depends on the dominant root alone, the
nondominant root will exert a definite influence on the time path, too, at least in
the beginning periods. Therefore, the exact configuration of y, is still dependent
on both roots.

Turning to the repeated-root case, we find the complementary function to
consist of the terms A;b" and A rb', as shown in (17.6). The former is already
familiar to us, but a word of explanation is still needed for the latter, which
involves a multiplicative 7. If |p| > 1, the »* term will be explosive, and the
multiplicative 7 will simply serve to intensify the explosiveness as ¢ increases. If
|b| < 1, on the other hand, the b’ part (which tends to zero as ¢ increases) and the
t part will run counter to each other; i.e., the value of r will offset rather than
reinforce »'. Which force will prove the stronger? The answer is that the damping
force of b’ will always win over the exploding force of r. For this reason. the basic
requirement for convergence in the repeated-root case is still that the root be less
than 1 in absolute value.

Example 7 Analyze the convergence of the solutions in Examples 3 and 4 above.
For Example 3, the solution is

y=3+(=-2)"+4

where the roots are 1 and —2, respectively [3(1)" = 3], and where there is a

moving equilibrium 4. The dominant root being — 2. the time path is divergent.
For Example 4, where the solution is

1

4

and where |p| = 3, we also have divergence.

yo= A (=3) + A,0(=3)" +

Let us now consider the complex-root case. From the general form of the
complementary function in (17.10),

y, = R'(Ascos §r + Agsinbr)

it is clear that the parenthetical expression, like the one in (15.24’), will produce a
fluctuating pattern of a periodic nature. However, since the variable ¢ can only
take integer values 0,1,2,... in the present context. we shall catch and utilize
only a subset of the points on the graph of a circular function. The y value at each
such point will always prevail for a whole period, till the next relevant point 1s
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0 1 2 3 4 5 6 7 8

Figure 17.1

reached. As illustrated in Fig. 17.1, the resulting path is neither the usual
oscillatory type (not alternating between values above and below y, in consecutive
periods), nor the usual fluctuating type (not smooth); rather, it displays a sort of
stepped fluctuation. As far as convergence is concerned, though, the decisive
factor is really the R’ term, which, like the e”' term in (15.24"), will dictate
whether the stepped fluctuation is to be intensified or mitigated as ¢ increases. In
the present case, the fluctuation can be gradually narrowed down if and only if
R < 1. Since R is by definition the absolute value of the conjugate complex roots
(A + vi), the condition for convergence is again that the characteristic roots be
less than unity in absolute value.

To summarize: For all three cases of characteristic roots, the time path will
converge to a (stationary or moving) intertemporal equilibrium—regardless of
what the initial conditions may happen to be—if and only if the absolute value of
every root is less than 1.

Example 8 Are the time paths (17.11) and (17.12) convergent? In (17.11) we
have R = 1. therefore the time path will converge to the stationary equilibrium
(=4). In (17.12), on the other hand, we have R = 4, so the time path will not
converge to the equilibrium (= 0).

EXERCISE 17.1

1 Write out the characteristic equation for each of the following, and find the characteris-

tic roots:
] 1 1
(a) Yooa = Vs T E.yr =2 () Yev2 T Eyt*l - Eyz =5

(b) yyin — 4y, t 4y, =7 (d)y,e2 =2y, t 3y =4

2 For each of the difference equations in the preceding problem, state on the basis of its
characteristic roots whether the time path involves oscillation or stepped fluctuation, and
whether it is explosive.



HIGHER-ORDER DIFFERENCE EQUATIONS 585

3 Find the particular integrals of the equations in Exercise 17.1-1 above. Do these
represent stationary or moving equilibria?
4 Solve the following difference equations:

(@) ¥oo + 3% — 3Y = 9 (vy=061p =3

by yi2= 2y 2y =1 (n=3y =49

(¢) Yooz = Vien %y, =2 (o=4y=7

5 Analyze the time paths obtained in the preceding problem.

17.2 SAMUELSON MULTIPLIER-ACCELERATION
INTERACTION MODEL

As an illustration of the use of second-order difference equations in economics, let
us cite Professor Samuelson’s classic interacrion model, which seeks to explore the
dynamic process of income determination when the acceleration principle is in
operation along with the Keynesian multiplier.* Among other things, that model
serves to demonstrate that the mere interaction of the multiplier and the accelera-
tor is capable of generating cyclical fluctuations endogenously.

The Framework

Suppose that national income Y, is made up of three component expenditure
streams: consumption, C,; investment, /,; and government expenditure, G,. Con-
sumption is envisaged as a function not of current income but of the income of
the prior period, Y,_,: for simplicity, it is assumed that C, is strictly proportional
to Y,_,. Investment, which is of the “induced” variety, is a function of the
prevailing trend of consumer spending. It is through this induced investment. of
course, that the acceleration principle enters into the model. Specifically, we shall
assume /, to bear a fixed ratio to the consumption increment AC,_, = C, — ¢ .
The third component, G,, on the other hand, is taken to be exogenous; in fact, we
shall assume it to be a constant and simply denote 1t by G,,.
These assumptions can be translated into the following set of equations:

Y=C+1+G,

{

(17.13) C =vY,_, (0<y<l)

I.v:a(Ct_Crfi) (a>0)

where y (the Greek letter gamma) represents the marginal propensity to consume,
and a stands for the accelerator (short for acceleration coefficient). Note that, if

* Paul A. Samuelson, “Interactions between the Multiplier Analysis and the Principle of Accelera-
tion.” Review of Economic Statistics, May, 1939, pp. 75-78: reprinted in American Economic
Association, Readings in Business Cycle Theory, Richard D. Irwin, Inc., Homewood, IlL., 1944. pp.
261-269.
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induced investment is expunged from. the model, we are left with a first-order
difference equation which embodies the dynamic multiplier process (cf. Example
2 of Sec. 16.2). With induced mvestment included, however, we have a second-
order difference equation that depicts the interaction of the multiplier and the
accelerator.

By virtue of the second equation, we can express /, in terms of income as
follows:

L=alyY_, —vY ) =eay(Y, , - Y, )

Upon substituting this and the C, equation into the first equation in (17.13) and
rearranging, the model can be condensed into the single equation

Y,-v(1+ )Y +av¥,_, = G,
or, equivalently (after shifting the subscripts forward by two periods),
(17.14) Y., —y(l +a)Y,

4

o tayY, =G,

Because this is a second-order linear difference equation with constant coefficients
and constant term, it can be solved by the method just learned.

The Solution
As the particular integral, we have, by (17.2),
G, . G,

Y
ol —y(l + a) + ay I -y

It may be noted that the expression 1 /(1 — y) is merely the multiplier that would
prevail in the absence of induced investment. Thus G, /(1 — y)— the exogeneous
expenditure item times the multiplier—should give us the equilibrium income in
the sense that this income level satisfies the equilibrium condition “national
income = total expenditure” [cf. (3.24)]. Being the particular integral of the
model, however, it also gives us the intertemporal equilibrium income.

With regard to the complementary function, there are three possible cases.
Case 1 (a} > 4a,), in the present context, is characterized by

yI(1 + a)’ > day or v(1 +a)2>4a

or
4o

(1 + a)

Similarly, to characterize Cases 2 and 3, we only need to change the > sign in the
last inequality to = and < , respectively. In Fig. 17.2, we have drawn the graph
of the equation y = 4a /(1 + «)°. According to the above discussion, the (a, v)
pairs that are located exactly on this curve pertain to Case 2. On the other hand,
the (a, y) pairs lying above this curve (involving higher y values) have to do with
Case 1, and those lying below the curve with Case 3.
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1C Stable; no cycles 1D h\\ﬂ Unstable; no cycles
2C 7 Stable; nocycles 2D T\, Unstable; no cycles

Damped stepped fluctuation 3D Explosive stepped fluctuation

3D \ Uniform stepped fluctuation

v (marginal propensity to consume)

a (accelerator)

Figure 17.2

This tripartite classification, with its graphical representation in Fig. 17.2. is
of interest because it reveals clearly the conditions under which cyclical fluctua-
tions can emerge endogenously from the interaction of the multiplier and the
accelerator. But this tells nothing about the convergence or divergence of the time
path of Y. It remains, therefore, for us to distinguish, under each case, between
the damped and the explosive subcases. We could, of course, take the easy way out
by simply illustrating such subcases by citing specific numerical examples. But let
us attempt the more rewarding, if also more arduous. task of delineating the
general conditions under which convergence and divergence will prevail.

Convergence versus Divergence
The difference equation (17.14) has the characteristic equation
b2 —y(l + a)b+ay =20

which yields the two roots

y(1+a) = (¥ (1 +a)' - day
b by = 5 -

Since the question of convergence versus divergence depends on the values of b,
and b,, and since b, and b,. in turn. depend on the values of the parameters a and
y. the conditions for convergence and divergence should be expressible in terms
of the values of a and y. To do this, we can make use of the fact that—by (15.6)
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—the two characteristic roots are always related to each other by the following
two equations:

(17.15) by +b,=v(1 +a)

(17.15) bb, = ay

On the basis of these two equations, we may observe that

(17.16) (1—=6,)0—=b)=1— (b, +by)+bb,
=]l-vy(l+a)+ay=1-y

In view of the model specification that 0 < y < 1, it becomes necessary to impose
on the two roots the condition

(1717)  0<(1=b)(1-b,) <1

Let us now examine the question of convergence under Case 1, where the
roots are real and distinct. Since, by assumption, a and y are both positive,
(17.15") tells us that b,b, > 0, which implies that 5, and b, possess the same
algebraic sign. Furthermore, since y(! + a) > 0, (17.15) indicates that both b,
and b, must be positive. Hence, the time path Y, cannot have oscillations in
Case 1.

Even though the signs of b, and b, are now known, there actually exist under
Case 1 as many as iive possible combinations of (b,, b,) values, each with its own
implication regarding the corresponding values for « and vy:

(i) 0<b<b <l = 0O0<y<liay<l
(i1) 0<b,<by=1 = y=1
(i) 0<b,<l <bh), = yv>1
(iv) 1 =b, <b, = y=1
(v) 1 < b, <b, = 0<y<liay>1

Possibility i, where both b, and b, are positive fractions, duly satisfies condition
(17.17) and hence conforms to the model specification 0 < y < 1. The product of
the two roots must also be a positive fraction under this possibility, and this, by
(17.15"), implies that ay < 1. In contrast, the next three possibilities ail violate
condition (17.17) and result in inadmissible y values (see Exercise 17.2-3). Hence
they must be ruled out. But Possibility v is again acceptable. With both b, and b,
greater than one, (17.17) is again satisfied, although this time we have ay > 1
(rather than < 1) from (17.15"). The upshot is that there are only two admissible
subcases under Case 1. The first— Possibility i—involves fractional roots 5, and
b,, and therefore yields a convergent time path of Y. The other subcase—Possibil-
ity v—features roots greater than one, and thus produces a divergent time path.
As far as the values of a and y are concerned, however, the question of
convergence and divergence only hinges on whether ay <1 or ay > 1. This
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information is summarized in the top part of Table 17.1, where the convergent
subcase is labeled 1C, and the divergent subcase 1D.

The analysis of Case 2, with repeated roots, is similar in nature. The roots are
now b = y(1 + «)/2, with a positive sign because a and y are positive. Thus,
there is again no oscillation. This time we may classify the value of b into three
possibilities only:

(vi) 0<bhb<l = y<lijay<l
(vii) b=1 = y=1
(viil) b>1 = y<liay>1

Under Possibility vi, b (= b, = b,) is a positive fraction, thus the implications
regarding a and y are entirely identical with those of Possibility / under Case 1. In
an analogous manner, Possibility viii, with b (= b, = b,) greater than one, yields
the same results as Possibility v. On the other hand, Possibility vii violates (17.17)
and must be ruled out. Thus there are again only two admissible subcases. The
first— Possibility vi—yields a convergent time path, whereas the other—Possibil-
ity viii—gives a divergent one. In terms of « and vy, the convergent and divergent
subcases are again associated, respectively, with ay < 1 and @y > 1. These results
are listed in the middle part of Table 17.1, where the two subcases are labeled 2C
(convergent) and 2D (divergent).

Finally, in Case 3, with complex roots, we have stepped fluctuation, and
hence endogenous business cycles. In this case, we should look to the absolute
value R = \/2; [see (17.8)] for the clue to convergence and divergence, where a, 1s

the coefficient of the y, term in the difference equation (17.1). In the present

Table 17.1 Cases and subcases of the Samuelson model

Values of
Case Subcase a and y Time path 7,
1 Distinct real roots
N 4o 1C:0 < b, <b <1 ay < 1 Nonoscillatory and
Y (+ a)l ID: 1 < by < by ay > 1 nonfluctuating
2 Repeated real roots
_ 4a 2C:0< b <1 ay < 1 iNonoscillatory and
(1+ a)l 2D b > 1 ay > 1 nonfluctuating
3 Complex roots
. 4a 3C:R< 1 ay < 1 With stepped
Y (1 + a)l 3D:R =1 ay = | fluctuation
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model, we have R = \/dy, which gives rise to the following three possibilities:
(ix) R<l = ay<]
(x) R=1 = ay=1
(xi) R>1 = ay>1

Even though all of these happen to be admissible (see Exercise 17.2-4), only the
R <1 possibility entails a convergent time path and qualifies as Subcase 3C in
Table 17.1. The other two are thus collectively labeled as Subcase 3D.

In sum, we may conclude from Table 17.1 that a convergent time path can
obtain if and only if ay < 1.

A Graphical Summary

The above analysis has resulted in a somewhat complex classification of cases and
subcases. It would help to have a visual representation of the classificatory
scheme. This is supplied in Fig. 17.2.

The set of all admissible («, y) pairs in the model is shown in Fig. 17.2 by the
variously shaded rectangular area. Since the values of y =0 and vy =1 are
excluded, as is the value a = 0, the shaded area is a sort of rectangle without
sides. We have already graphed the equation y = 4a/(1 + «)” to mark ofl the
three major cases of Table 17.1: The points on that curve pertain to Case 2; the
points lying to the north of the curve (representing higher y values) belong to
Case 1. those lying to the south (with lower y values) are of Case 3. To distinguish
between the convergent and divergent subcases, we now add the graph of ay = |
(a rectangular hyperbola) as another demarcation line. The points lying to the
north of this rectangular hyperbola satisfy the inequality ay > 1, whereas those
located below it correspond to ay < 1. It is then possible to mark off the subcases
easily. Under Case 1, the broken-line shaded region, being below the hyperbola,
corresponds to Subcase 1C, but the solid-line shaded region is associated with
Subcase 1D. Under Case 2, which relates to the points lving on the curve
y = 4a/(l + a)*, Subcase 2C covers the upward-sloping portion of that curve,
and Subcase 2D, the downward-sloping portion. Finally, for Case 3, the rectangu-
lar hyperbola serves to separate the dot-shaded region (Subcase 3C) from the
pebble-shaded region (Subcase 3D). The latter, you should note, also includes the
points located on the rectangular hyperbola itself, because of the weak inequality
in the specification ay > 1.

Since Fig. 17.2 is the repository of all the qualitative conclusions of the
model, given any ordered pair (a.y). we can always find the correct subcase
graphically by plotting the ordered pair in the diagram.

Example 1 1f the accelerator is 0.8 and the marginal propensity to consume is
0.7, what kind of interaction time path will result? The ordered pair (0.8,0.7) is
located in the dot-shaded region, Subcase 3C: thus the time path is characterized
by damped stepped fluctuation.
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Example 2 What kind of interaction is implied by @ = 2 and y = 0.57 The
ordered pair (2,0.5) lies exactly on the rectangular hyperbola, under Subcase 3D.
The time path of Y will again display stepped fluctuation, but it will be neither
explosive nor damped. By analogy to the cases of uniform oscillation and uniform
fluctuation, we may term this situation as “ uniform stepped fluctuation.” How-
ever, the uniformity feature in this latter case cannot in general be expected to be
a perfect one, because, similarly to what was done in Fig. 17.1, we can only accept
those points on a sine or cosine curve that correspond to integer values of ¢, but
these values of r may hit an entirely different set of points on the curve in each
period of fluctuation.

EXERCISE 17.2

1 By consulting Fig. 17.2, find the subcases to which the following sets of values of a and
v pertain, and describe the interaction time path qualitatively.

(a) a =35 vy=08 () a=02.y=09

(b) a=2;v=07 (dya=15;vy=06

2 From the values of a and vy given in parts («) and (¢) of the preceding problem, find the
numerical values of the characteristic roots in each instance, and analyze the nature of the
time path. Do your results check with those obtained earlier?

4 Show that in Case 3 we can never encounter y > 1.

17.3 INFLATION AND UNEMPLOYMENT IN DISCRETE TIME

The interaction of inflation and unemployment, discussed earlier in the continu-
ous-time framework, can also be couched in discrete time. Using essentially the
same economic assumptions, we shall illustrate in this section how that model can
be reformulated as a difference-equation model.

The Model

The earlier continuous-time formulation (Sec. 15.5) consisted of three differential
equations:

(15.33) p=a—T—BU+ hn [expectations-augmented

Phillips relation]
(15.34) % =j(p—m) [adaptive expectations]
d :
(15.35) aqv _ —k(m - monetary policy]
P

dt
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Three endogenous variables are present: p (actual rate of inflation), 7 (expected
rate of inflation), and U (rate of unemployment). As many as six parameters
appear in the model, among these, the parameter m—the rate of growth of
nominal money (or, the rate of monetary expansion)—differs from the others in
that its magnitude is set as a policy decision.

When cast into the period-analysis mold, the Phillips relation (15.33) simply
becomes

(17.18) p=a—T—BU + hn, (e, 3>0;0<h<1)

In the adaptive-expectations equation, the derivative must be replaced by a
difference expression:

(17'19) T _Wtzj(pl—wt) (O<j£ I)

By the same token, the monetary-policy equation should be changed to*

(17.20) Uiy = U=—k(m—p.,) (k>0)

These three equations constitute the new version of the inflation-unemployment
model.

The Difference Equation in p

As the first step in the analysis of this new model, we again try to condense the
model into a single equation in a single variable. Let that variable be p.
Accordingly, we shall focus our attention on (17.18). However, since (17.18)—un-
like the other two equations—does not by itself describe a pattern of change, it is
up to us to create such a pattern. This is accomplished by differencing p,, i.e., by
taking the first difference of p,, according to the definition

Ap,=p,,.\—p

Two steps are involved in this. First, we shift the time subscripts in (17.18)
forward one period, to get

(17.18) pa=a—-T—=BU, + hmn,,

Then we subtract (17.18) from (17.18), to obtain the first difference of p, that
gives the desired pattern of change:

(17-21) Py — P T _B(Ut+l_ U1)+h(77t+l _77})

= Bk(m = p,,\) + hj(p,— =) [by(17.20) and (17.19)]
Note that, on the second line of (17.21), the patterns of change of the other two
variables as given in (17.19) and (17.20) have been incorporated into the pattern

of change of the p variable. Thus (17.21) now embodies all the information in the
present model.

* We have assumed that the change in U depends on (m — p,., ). the rate of growth of real money
in period (¢ + 1). As an alternative, it is possible to make it depend on the rate of growth of real
money in period 1, (m — p,) (see Exercise 17.3-4).
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However, the 7, term is extraneous to the study of p and needs to be
eliminated from the above equation. To that end, we make use of the fact that

(17.22)  hm=p,—(a—T)+BU,  [by(17.18)]
Substituting this into (17.21) and collecting terms, we obtain
(17.23) (1 + Bk)p,,, — [1 =1 = )] p, + jBU, = Bkm + j(a — T)

But there now appears a U, term to be eliminated. To do that, we difference
(17.23) to get a (U, ; — U,) term and then use (17.20) to eliminate the latter. Only
after this rather lengthy process of substitutions do we get the desired difference
equation in the p variable alone, which, when duly normalized, takes the form

1+ h+(1—j)(1+ Bk 1 - (1 —h) JBkm
(1724) P2 — §+BIZ )pH—l W—prz 1+Bk

The Time Path of p

The intertemporal equilibrium value of p, given by the particular integral of
(17.24), is

_ c _ JBkm _
P=T%a +a, Blg " [by (17.2)]

As in the continuous-time model, therefore, the equilibrium rate of inflation is
exactly equal to the rate of monetary expansion.

As to the complementary function, there may arise either distinct real roots
(Case 1), or repeated real roots (Case 2), or complex roots (Case 3), depending on
the relative magnitudes of a} and 4a,. In the present model,

(1725)  arZ4a, iff [1+h+(1 -1+ Bk)]

2401 —j(1 = m)]( + Bk)
Ifh=1,j=1and Bk = 5, for instance, then a? = (5{)* whereas 4a, = 20; thus
Case 1 results. But if # = j = 1, then ai = 4 while 4a, = 41 + Bk) > 4, and we
have Case 3 instead. In view of the larger number of parameters in the present
model, however, it is not feasible to construct a classificatory graph like Fig. 17.2
in the Samuelson model.

Nevertheless, the analysis of convergence can still proceed along the same line
as in the last section. Specifically, we recall from (15.6) that the two characteristic
roots b, and b, must satisfy the following two relations
(17.26) b, +b,=—a = 11:/}31]/( +1-7>0
1-j(1-h)

1 + Bk

[see (17.24)]

(17.26') bb,=a,= e (0,1)
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Furthermore, we have in the present model
Bk
1 + Bk

(1727)  (1=b )1 =by)=1—=(b, +b,)+bb, = >0

Now consider Case 1, where the two roots b, and b, are real and distinct.
Since their product b b, 1s positive, b, and b, must take the same sign. Because
their sum is positive, moreover, b, and b, must both be positive, implying that no
oscillation can occur. From (17.27). we can infer that neither b, nor b, can be
equal to one; for otherwise (1 — b,)(1 — b,) would be zero, in violation of the
indicated inequality. This means that, in terms of the various possibilities of
(b,, b,) combinations enumerated in the Samuelson model, Possibilities /i and iv
cannot arise here. It is also unacceptable to have one root greater, and the other
root less, than one; for otherwise (1 — b,)(1 — b,) would be negative. Thus
Possibility /ii is ruled out as well. It follows that b, and b, must be either both
greater than one. or both less than one. If b, > 1 and b, > 1 (Possibility v).
however, (17.26") would be violated. Hence the only viable eventuality 1s Possibil-
ity i, with b, and b, both being positive fractions, so that the time path of p is
convergent.

The analysis of Case 2 is basically not much different. By practically identical
reasoning. we can conclude that the repeated root b can only turn out to be a
positive fraction in this model; that is. Possibility vi is feasible, but not Possibili-
ties vii and viii. The time path of p in Case 2 is again nonoscillatory and
convergent.

For Case 3. convergence requires that R (the absolute value of the complex
roots) be less than one. By (17.8), R = V“}"Z' Inasmuch as «, 1s a positive fraction
[see (17.26")). we do have R < 1. Thus the time path of p in Case 3 is also
convergent, although this time there will be stepped fluctuation.

The Analysis of U

If we wish to analyze instead the time path of the rate of unemployment, we may
take (17.20) as the point of departure. To get rid of the p term in that equation,
we first substitute (17.18") to get

(17.28) (1 +BKVU,, - U=k(a—T —m) + khm,

Next. to prepare for the substitution of the other equation, (17.19), we difference
{17.28) to find that

(17.29) (L + Bk)U,,, — 2+ BKU,  + U=kh(m,,—m, )

In view of the presence of a difference expression in 7 on the right, we can
substitute for it a forward-shifted version of the adaptive-expectations equation.
The result of this,

(17.30) (1 + BK)U,,, — 2+ B, + U = khj(p, =7, )

1s the embodiment of all the information in the model.
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However, we must eliminate the p and = variables before a proper difference
equation in U will emerge. For this purpose, we note from (17.20) that

(1731)  kp,., = U, = U + km

Moreover, by multiplying (17.22) through by (—4j) and shifting the time sub-
scripts, we can write

(17.32) —kjh@, . = —kjp, + kjla = T) — BKU,.,
—i(Uy = U + km) + ki{la — T) — BK U, |

[by (17.31)]
~j(1 + kYU, +jU, + kila — T~ m)

These two results express p,,, and =, , in terms of the U variable and can thus
enable us, on substitution into (17.30), to obtain—at long last!—the desired
difference equation in the U variable alone:

(17.33) U.,, - l+hj+(1_j)(1+ﬁk)U " 1 - (1 —nh)

f

It

1+ Bk I ey TR
_kla—=T-( - h)m]
B 1 + Bk

It 1s noteworthy that the two constant coefficients on the left (a, and a,) are
identical with those in the difference equation for p [i.e., (17.24)]. As a result, the
earlier analysis of the complementary function of the p path should be equally
applicable to the present context. But the constant term on the right of (17.33)
does differ from that of (17.24). Consequently, the particular integrals in the two
situations will be different. This is as it should be, for, coincidence aside, there is
no inherent reason to expect the intertemporal equilibrium rate of unemployment
to be the same as the equilibrium rate of inflation.

The Long-Run Phillips Relation

It 1s readily verified that the intertemporal equilibrium rate of unemployment is

— 1
U= E[a—T—(l—h)m]

But since the equilibrium rate of inflation has been found to be p = m, we can
link U to p by the equation

(17.34) U= %[a - T-(1—-h)p]
Because this equation is concerned only with the equilibrium rates of unemploy-
ment and inflation, it is said to depict the /ong-run Phillips relation.

A special case of (17.34) has received a great deal of attention among
economists: the case of h = 1. If A = 1, the p term will have a zero coefficient and
thus drop out of the picture. In other words, U will become a constant function of
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p. In the standard Phillips diagram, where the rate of unemployment is plotted on
the horizontal axis, this outcome gives rise to a vertical long-run Phillips curve.
The U value in this case, referred to as the natural rate of unemployment, is then
consistent with any equilibrium rate of inflation, with the notable policy implica-
tion that, in the long run, there is no trade-off between the twin evils of inflation
and unemployment as exists in the short run.

But what if 4 < 1?7 In that event, the coefficient p in (17.34) will be negative.
Then the long-run Phillips curve will turn out to be downward-sloping, thereby
still providing a trade-off relation between inflation and unemployment. Whether
the long-run Phillips curve is vertical or negatively sloped 1s, therefore, critically
dependent on the value of the # parameter, which, according to the expectations-
augmented Phillips relation, measures the extent to which the expected rate of
inflation can work its way into the wage structure and the actual rate of inflation.
All of this may sound familiar to you. This is because we discussed the topic in
Example 1 in Sec. 15.5, and you have also worked on it in Exercise 15.5-4.

EXERCISE 17.3

1 Supply the intermediate steps leading from (17.23) to (17.24).

2 Show that if the model discussed in this section is condensed into a difference equation
in the vanable 7, the result will be the same as (17.24) except for the substitution of =
for p.

3 The time paths of p and U in the model discussed in this section have been found to be
consistently convergent. Can divergent time paths arise if we drop the assumption that
h < 1?7 If yes, which divergent “possibilities” in Cases 1, 2, and 3 will now become
feasible?

4 Retain equations (17.18) and (17.19), but change (17.20) to
Ut+l - Ur = Vk(m _p!)

(a) Derive a new difference equation in the variable p.

(b) Does the new difference equation vicld a different p?

(¢) Assume that j = A = 1. Find the conditions under which the characteristic roots
will fall under Cases 1, 2, and 3, respectively.

(d) Let j = h = 1. Describe the time path of p (including convergence or divergence)
when Bk = 3, 4, and 3, respectively.

17.4 GENERALIZATIONS TO VARIABLE-TERM AND
HIGHER-ORDER EQUATIONS

We are now ready to extend our methods in two directions, to the variable-term
case, and to difference equations of higher orders.
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Variable Term in the Form of cm’

When the constant term ¢ in (17.1) is replaced by a variable term—some function
of t—the only effect will be on the particular integral. (Why?) To find the new
particular integral, we can again apply the method of undetermined coefficients.
In the differential-equation context (Sec. 15.6), that method requires that the
variable term and its successive derivatives together take only a finite number of
distinct types of expression, apart from multiplicative constants. Applied to
difference equations, the requirement should be amended to read: “the variable
term and its successive differences must together take only a finite number of
distinct expression types, apart from multiplicative constants.” Let us illustrate
this method by concrete examples, first taking a variable term in the form cm’,
where ¢ and m are constants.

Example 1 Find the particular integral of

Yev2 T Ve — 3yt =7

Here, we have ¢ = 1 and m = 7. First, let us ascertain whether the variable term
7" yields a finite number of expression types on successive differencing. According
to the rule of differencing (Ay, = y,,, — »,), the first difference of the term is

AT =77 =T = (1T - 1T =6(7)
Similarly, the second difference, A’(7), can be expressed as
A(AT') = 86(7) = 6(7) ' = 6(7) = 6(7 — 1)7' = 36(7)"

Moreover, as can be verified, all successive differences will, like the first and
second, be some multiple of 7'. Since there is only a single expression type, we can
try a solution y, = B(7)' for the particular integral, where B is an undetermined
coeflicient.

Substituting the trial solution and its corresponding versions for periods
(t + 1) and (¢ + 2) into the given difference equation, we obtain

t+1

B(7)'"* + B(7)
Thus,

-3B(N)'=7  or B(M+7-3)(N'=7

1 1

b=+ 73™ %

and we can write the particular integral as
_ o 1 t
3= B() = 55(7)
This, of course, represents a moving equilibrium. You can verify the correctness

of the solution by substituting it into the difference equation and seeing to it that
there will result an identity, 7° = 7°.
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The result reached in Example 1 can be easily generalized from the variable
term 7' to that of cm’. From our experience, we expect all the successive
differences of em’ to take the same form of expression: namely, Bm’, where B i~
some multiplicative constant. Hence we can try a solution y, = Bm' for the
particular integral, when given the difference equation

H

(17.35) Yoot ayy, tay,=cm

Using the trial solution y, = Bm‘, which implies y,,, = Bm'"!, etc., we can
rewrite equation (17.35) as

Bm'*2 + q,Bm'*! + a,Bm' = em’

or B(m*+am+ a,)m' = cm’

Hence the coefficient B in the trial solution should be

4
B:

m? + a,m + a,

and the desired particular integral of (17.35) can be written as
(17.36)  y, = Bm'= — < m' (m?+am+a, #0)
m-+am+a,

Note that the denominator of B is not allowed to be zero. If it happens to
be,* we must then use the trial solution y, = Btm' instead; or, if that too fails.
v, = Bt’m'.

Variable Term in the Form of ¢¢”

Let us now consider variable terms in the form ¢t”, where ¢ is any constant, and #
IS a positive integer.
Example 2 Find the particular integral of
, y o= p2
Yiva + 5)z+1 + 2}1 =1
The first three differences of r? (a special case of ¢t” with ¢ = 1 and n = 2) are
found as follows: ¥
2
At =(t+ 1) =17 =2t+ 1
At = A(Ar?) = At + 1) = A2r + Al
=2t+1)—-2r+0=2  [Aconstant = 0]
A= A(N1P)=A2=0
* Analogous to the situation in Example 3 of Sec. 15.6. this eventuality will materialize when the
constant m happens to be equal to a characteristic root of the difference equation. The characteristic
roots of the difference cquation above are the values of b that satisfy the equation % + a\b + a, = 0.

If one root happens to have the value m, then it must follow that m? + a;m + a, = 0.
+ These results should be compared with the first three derivatives of r2:
2 3
iy Loy aa Lol
dt d{z d[3
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Since further differencing will only yield zero, there are altogether three distinct
types of expression: t* (from the variable term itself), ¢, and a constant (from the
successive differences).

Let us therefore try the solution

¥, = By + Bt + Byt?

for the particular integral, with undetermined coefficients B, B,, and B,. Note
that this solution implies

v =By + B(t+ 1)+ B,(t + 1)
= (B,+ B, + B,) + (B, + 2B,)t + B¢’
Y.y = By + B,(1+2)+ B, (1 +2)
= (B, + 2B, + 4B,) + (B, + 4B,)t + B,1*
When these are substituted into the difference equation, we obtain
(8B, + 7B, + 9B,) + (8B, + 14B,)1 + 8B,1* = ¢*

Equating the two sides term by term, we see that the undetermined coefficients
are required to satisfy the following simultaneous equations:

8B, + 7B, + 9B, =0

8B, + 14B, =0
8B, =1
Thus, their values must be B, = 5%, B, = — 1, and B, = g, giving us the

particular integral

,_i__lt+, 112
T 256 32" T %

Our experience with the variable term 7 should enable us to generalize the
method to the case of ¢t”. In the new trial solution, there should obviously be a
term B, t", to correspond to the given variable term. Furthermore, since successive
differencing of the term yields the distinct expressions t"~ ' ¢t"~2,..., ¢, and B,
(constant), the new trial solution for the case of the variable term ct” should be
written as

v,=B,+ B+ Byt +---+ B,1"

But the rest of the procedure is entirely the same.

It must be added that such a trial solution may also fail to work. In that
event, the trick—already employed on countless other occasions—is again to
multiply the original trial solution by a sufficiently high power of 7. That is, we
can instead try v, = ((B, + Byt + Byt* + -+ + B1"), etc.
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Higher-Order Linear Difference Equations

The order of a difference equation indicates the highest-order difference present in
the equation; but it also indicates the maximum number of periods of time lag
involved. An nth-order linear difference equation (with constant coefficients and
constant term) may thus be written in general as

(1737) yt+n+a1y(+nfl + o +anflyt+l +any!:C

The method of finding the particular integral of this does not differ in any
substantive way. As a starter, we can still try y, = k (the case of stationary
intertemporal equilibrium). Should this fail, we then try y, = kz or y, = k2, etc..
in that order.

In the search for the complementary function, however, we shall now be
confronted with a characteristic equation which is an nth-degree polynomial
equation:

(17.38) "+ abt+ - +a, b+a, =0

There will now be n characteristic roots b, (i =1,2,..., n), all of which should
enter into the complementary function thus:

(17.39) y.= 3 Ab

i=1

provided, of course, that the roots are all real and distinct. In case there are
repeated real roots (say, b, = b, = by), then the first three terms in the sum in
(17.39) must be modified to

A b, + Ayt + A°h, [cf. (17.6)]

Moreover, if there is a pair of conjugate complex roots—say, b, |, b,—then the

last two terms in the sum in (17.39) are to be combined into the expression
R'(A,_cosbt + A, sinft)

A similar expression can also be assigned to any other pair of complex roots. In
case of two repeated pairs, however, one of the two must be given a multiplicative
factor of ¢R’ instead of R’

After y, and y. are both found, the general solution of the complete difference
equation (17.37) is again obtained by summing; that is,

yt =yp +.y(

But since there will be a total of » arbitrary constants in this solution, no less than
n initial conditions will be required to definitize it.



HIGHER-ORDER DIFFERENCE EQUATIONS 601

Example 3 Find the general solution of the third-order difference equation

7 1 1
Yivs — §Yt+2 + §Y:+l + 5)’; =9

By trying the solution y, = k, the particular integral is easily found to be y, = 32.
As for the complementary function, since the cubic characteristic equation

7 1 1
3—-—2 —_ —_— =
b 8b +8b+32 0

can be factored into the form

o]0

the roots are b, = b, = 7 and b; = — . This enables us to write

1V 1y 1\’
v af3) = 3] e )
Note that the second term contains a multiplicative 7; this is due to the presence
of repeated roots. The general solution of the given difference equation is then
simply the sum of y. and y,.
In this example, all three characteristic roots happen to be less than 1 in their

absolute values. We can therefore conclude that the solution obtained represents a
time path which converges to the stationary equilibrium level 32.

Convergence and the Schur Theorem

When we have a high-order difference equation that is not easily solved, we can
nonetheless determine the convergence of the relevant time path qualitatively
without having to struggle with its actual quantitative solution. You will recall
that the time path can converge if and only if every root of the characteristic
equation is less than 1 in absolute value. In view of this, the following
theorem—known as the Schur theorem* —becomes directly applicable:

The roots of the nth-degree polynomial equation
agh" +ab" '+ +a,_b+ta,=0

will all be less than unity in absolute value if and only if the following n

* For a discussion of this theorem and its history, see John S. Chipman, The Theory of
Inter-Sectoral Money Flows and Income Formation, The Johns Hopkins Press, Baltimore, 1951, pp.
119-120.



602 DYNAMIC ANALYSIS

determinants
| 0 'a
] | n n-—1
a, ! a a a 0 a
0 n 1 0 n
A,Z_J__’ e e
a a <
nl 4o " 0 S a4
a", 1 an | O aO
|
ay 0 0 R d
a, a, 010 a, a,
----------------- ' . v e e e L T I 0 . LY
{
a, | ne2 ay, 0 0 a,
An:*_‘_o“—*‘_éﬂ ___________
n o ;4o 4 a4,
a, n 0 ‘ 0 a() n-2
................. i e e e e e e e e e e e e e e e e .
|
a a, a,' 0 0 a,

are all positive.

Note that, since the condition in the theorem is given on the “if and only if”
basis, it is a necessary-and-sufficient condition. Thus the Schur theorem 1s a
perfect difference-equation counterpart of the Routh theorem introduced earlier
in the differential-equation framework.

The construction of these determinants is based on a simple procedure. This
is best explained with the aid of the dashed lines which partition each determi-
nant into four areas. Each area of the kth determinant, A, . always consists of a
k X k subdeterminant. The wupper-lefr area has a, alone in the diagonal, zeros
above the diagonal, and progressively larger subscripts for the successive coeffi-
cients in each column below the diagonal elements. When we transpose the
elements of the upper-left area, we obtain the lower-right area. Turning to the
upper-right area, we now place the a, coefficient alone in the diagonal, with zeros
below the diagonal, and progressively smaller subscripts for the successive coeffi-
cients as we go up each column from the diagonal. When the elements of this area
are transposed, we get the lower-left area.

The application of this theorem is straightforward. Since the coefficients of
the characteristic equation are the same as those appearing on the left side of the
original difference equation, we can introduce them directly into the determinante
cited. Note that, in our context, we always have a, = 1.

Example 4 Does the time path of the equation y,,, + 3y, ., + 2y, = 12 con-
verge? Here we have n = 2, and the coefficients are ¢, = 1, ¢, = 3, and a, = 2.
Thus we get

dy  dy

A =

='1 2

’ ]{=—3<0

a, dg
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Since this already violates the convergence condition, there is no need to proceed
oA,

Actually, the characteristic roots of the given difference equation are easily
found to be b, b, = — 1, —2, which indeed imply a divergent time path.

Example 5 Test the convergence of the path of y, , + ¢y, — ), = 2 by the
Schur theorem. Here the coefficients are ¢, = 1. a4, = ¢, a, = — ¢ (with n = 2).
Thus we have

a4y 4y L= 35
8 =la, a, _’ ! =3 7Y
a, 0 a, al} 1 0 -5 6
A a, a, 0 a, _ . 1 0o - _ 1176 -0
©las 0 a4y a — 0 1 ! 1296
ay a, 0 a()1 6~ 0 1

These do satisfy the necessary-and-sufficient condition for convergence.

EXERCISE 17.4

1 Apply the definition of the “differencing” symbol A, to find:
(a) At (b) &t (c) A7
Compare the results of differencing with those of differentiation.

2 Find the particular integral of each of the following:
((1) Yion + 2}}; ! + = 3
(B) ¥z = Sy — 6y, =26
(¢) 3,5+ 9y =34

3 Find the particular integrals of:
(a) y,o» =2y, + 5y =1

(b) Yoo T 2.Vi+l + 5."'1 =4+ 2
(¢) ¥, a+ 5y, +2y =18+ 67+ 8-

4 Would vou expect that, when the vanable term takes the form m’ + 17, the trial solution
should be B(m)" + (B, + B,t+ --- + B.1")? Why?

S Find the characteristic roots and the complementary function of:
(a) Y- ™ %.‘}’, T + %yr =0
(M) vy =2y 0+ iy —an =1

[ Hint: Try factoring out (b — 1) in both characteristic equations.]
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6 Test the convergence of the solutions of the following difference equations by the Schur
theorem:

(@) Ve * 31 = 1= 3
(D) oy =5y =1
7 In the case of a third-order difference equation
Yiezs Y@ yia t @y tazy, =c

what are the exact forms of the determinants required by the Schur theorem?




