CHAPTER

I'WELVE
OPTIMIZATION WITH EQUALITY CONSTRAINTS

The last chapter presented a general method for finding the relative extrema of an
objective function of two or more choice variables. One important feature of that
discussion is that all the choice variables are independent of one another, in the
sense that the decision made regarding one variable does not impinge upon the
choices of the remaining variables. For instance, a two-product firm can choose
any value for Q| and any value for Q, it wishes, without the two choices limiting
each other.

If the said firm 1s somehow required to observe a restriction (such as a
production quota) in the form of Q, + Q, = 950, however, the independence
between the choice variables will be lost. In that event, the firm’s profit-maximiz-
ing output levels O, and O, will be not only simultaneous but also dependent,
because the higher Q, is, the lower (0, must correspondingly be, in order to stay
within the combined quota of 950. The new optimum satisfying the production
quota constitutes a constrained optimum, which, in general, may be expected to
differ from the free optimum discussed in the preceding chapter.

A restriction, such as the production quota mentioned above, establishes a
relationship between the two variables in their roles as choice variables, but this
should be distinguished from other types of relationships that may link the
variables together. For instance, in Example 2 of Sec. 11.6, the two products of
the firm are related in consumption (substitutes) as well as in production (as is
reflected in the cost function), but that fact does not qualify the problem as one of
constrained optimization, since the two output variables are still independent as
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370 OPTIMIZATION PROBLEMS

choice variables. Only the dependence of the variables qua choice variables gives
rise to a constrained optimum.

In the present chapter, we shall consider equality constraints only, such as
Q, + Q, = 950. Our primary concern will be with relative constrained extrema.
although absolute ones will also be discussed in Sec. 12.4.

12.1 EFFECTS OF A CONSTRAINT

The primary purpose of imposing a constraint is to give due cognizance to certain
limiting factors present in the optimization problem under discussion.

We have already seen the limitation on output choices that result from a
production quota. For further illustration, let us consider a consumer with the
simple utility (index) function

(12.1) U= xx, + 2x,

Since the marginal utilities—the partial derivatives U, = dU/dx, and U, =
dU/dx,—are positive for all positive levels of x, and x, here, to have U
maximized without any constraint, the consumer should purchase an infinite
amount of both goods, a solution that obviously has little practical relevance. To
render the optimization problem meaningful, the purchasing power of the con-
sumer must also be taken into account; i.e., a budget constraint should be
incorporated into the problem. If the consumer intends to spend a given sum, say,
$60, on the two goods and if the current prices are P, = 4 and P,, = 2, then the
budget constraint can be expressed by the linear equation

(122)  4x, 4+ 2x, =60

Such a constraint, like the production quota referred to earlier, renders the
choices of ¥, and X, mutually dependent.

The problem now is to maximize (12.1), subject to the constraint stated in
(12.2). Mathematically, what the constraint (variously called restraint, side rela-
tion, or subsidiary condition) does is to narrow the domain, and hence the range of
the objective function. The domain of (12.1) would normaily be the set
{(xy, xy)|x; = 0, x, = 0}. Graphically, the domain is represented by the nonnega-
tive quadrant of the xx, plane in Fig. 12.1a. After the budget constraint (12.2) is
added, however, we can admit only those values of the variables which satisfy this
latter equation, so that the domain is immediately reduced to the set of points
lying on the budget line. This will automatically affect the range of the objective
function, too; only that subset of the utility surface lying directly above the
budget-constraint line will now be relevant. The said subset (a cross section of the
surface) may look like the curve in Fig. 12.1b, where U is plotted on the vertical
axis, with the budget line of diagram « placed on the horizontal axis. Our interest,
then, is only in locating the maximum on the curve in diagram b.

In general, for a function z = f(x, y), the difference between a constrained
extremum and a free extremum may be illustrated in the three-dimensional graph
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of Fig. 12.2. The free extremum in this particular graph is the peak point of the
entire dome, but the constrained extremum is at the peak of the inverse U-shaped
curve situated on top of (i.e., lying directly above) the constraint line. In general,
a constrained maximum can be expected to have a lower value than the free
maximum, although, by coincidence, the two maxima may happen to have the
same value. But the constrained maximum can never exceed the free maximum.

It is interesting to note that, had we added another constraint intersecting the
first constraint at a single point in the xy plane, the two constraints together
would have restricted the domain to that single point. Then the locating of the
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extremum would become a trivial matter. In a meaningful problem, the number
and the nature of the constraints should be such as to restrict, but not eliminate,
the possibility of choice. Generally, the number of constraints should be less than
the number of choice variables.

12.2 FINDING THE STATIONARY VALUES

Even without any new technique of solution, the constrained maximum in the
simple example defined by (12.1) and (12.2) can easily be found. Since the
constraint (12.2) implies

60 — 4x,
B 2

we can combine the constraint with the objective function by substituting (12.2')
into (12.1). The result is an objective function in one variable only:

U=x,(30 - 2x,) + 2x, = 32x, — 2x}

which can be handled with the method already learned. By setting dU/dx, =
32 — 4x, equal to zero, we get the solution X, = 8, which by virtue of (12.2")
immediately leads to X, = 30 — 2(8) = 14. From (12.1), we can then find the
stationary value U = 128; and since the second derivative is d*U/dx? = —4 < (,
that stationary value constitutes a (constrained) maximum of U.*

When the constraint is itself a complicated function, or when there are several
constraints to consider, however, the technique of substitution and elimination of
variables could become a burdensome task. More importantly, when the con-
straint comes in a form such that we cannot solve it to express one variable (x,)
as an explicit function of the other (), the elimination method would in fact be
of no avail—even if x, were known to be an implicit function of x,, that is, even
if the conditions of the implicit-function theorem were satisfied. In such cases, we
may resort to a method known as the method of Lagrange (undetermined)
multiplier, which, as we shall see, Las distinct analytical advantages.

(12.2) X5 =30 — 2x,

Lagrange-Multiplier Method

The essence of the Lagrange-multiplier method is to convert a constrained-
extremum problem into a form such that the first-order condition of the free-
extremum problem can still be applied.

Given the problem of maximizing U = x,x, + 2x,, subject to the constraint
4x, + 2x, = 60 [from (12.1) and (12.2)], let us write what is referred to as the
Lagrangian function, which is a modified version of the objective function that

" You may recall that for the flower-bed problem of Exercise 9.4-2 the same technique of
substitution was applied to find the maximum area, using a constraint (the available quantity of wire
netting) to eliminate one of the two variables (the length or the width of the flower bed).
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incorporates the constraint as follows:
(12.3) Z = x,Xx, + 2x, + A(60 — 4x — 2x,)

The symbol A (the Greek letter lambda). representing some as yet undetermined
number, is called a Lagrange (undetermined) multiplier. If we can somehow be
assured that 4x, + 2x, = 60, so that the constraint will be satisfied, then the last
term in (12.3) will vanish regardless of the value of A. In that event, Z will be
identical with U. Moreover, with the constraint out of the way, we only have to
seek the free maximum of Z, in lieu of the constrained maximum of U, with
respect to the two variables x, and x,. The question is: How can we make the
parenthetical expression in (12.3) vanish?

The tactic that will accomplish this is simply to treat A as an additional
variable in (12.3), i.e., to consider Z = Z(A, x,, x,). For then the first-order
condition for free extremum will consist of the set of simultaneous equations

Z\(=08Z/IN ) =60 —4x, — 2x,=0
(124)  Z,(=8Z/3x,) = x,+2—4x =0
Z(=82/8x,) = x, — 2A = 0

and the first equation will automatically guarantee the satisfaction of the con-
straint. Thus, by incorporating the constraint into the Lagrangian function Z and
by treating the Lagrange multiplier as an extra variable, we can obtain the
constrained extremum U (two choice variables) simply by screening the stationary
values of Z, taken as a free function of three choice variables.

Solving (12.4) for the critical values of the variables, we find X, = 8, x, = 14
(and X = 4). As expected, the values of X, and X, check with the answers already
obtained by the substitution method. Furthermore, it is clear from (12.3) that
Z = 128; this is identical with the value of U found earlier. as it should be.

In general, given an objective function

(12.5)  z=f(x,y)

subject to the constraint

(12.6) g(x,y)=c

where ¢ is a constant,* we can write the Lagrangian function as

(127)  Z=f(x.y) + A[e - glx. )]
For stationary values of Z, regarded as a function of the three variables A. x. and

* 1t is also possibie to subsume the constant ¢ under the contraint function so that (12.6) appears
instead as G{(x, y)=0, where G(x,1)= g(x. )~ ¢ I[n that case, (12.7) should be changed to
Z=f(x.¥)+A[0 = G(x, )] =f(x,y) = AG(x, ). The version in (12.6) is chosen because it
facilitates the study of the comparative-static ¢ffect of a change in the constraint constant later {see
(12.16)).
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¥, the necessary condition is

Z,=c—glx,y)=0

Z,=f —Ag =0
Since the first equation in (12.8) is simply a restatement of (12.6), the stationary
values of the Lagrangian function Z will automatically satisfy the constraint of
the original function z. And since the expression Afc — g(x, y)] is now assuredly
zero, the stationary values of Z in (12.7) must be identical with those of (12.5),

subject to (12.6).
Let us illustrate the method with two more examples.

Example I Find the extremum of
zZ =Xy subject to x+y=6

The first step is to write the Lagrangian function
Z=xy+M6—-x—y)

For a stationary value of Z, it is necessary that

Zy=6—-—x—y=0 x+y=26
Z=y—-A=0 or —A +y=0
Z,=x—-A=0 —A+x =0

Thus, by Cramer’s rule or some other method, we can find
A=3 Xx=3 y=3

The stationary value is Z = 7 = 9, which needs to be tested against a second-order
condition before we can tell whether it is a maximum or minimum (or neither).
That will be taken up later.

Example 2 Find the extremum of
z=x%+x} subjectto  x, +4x,=2
The Lagrangian function 1s
Z=xi+x3+A2—x, —4x,)

for which the necessary condition for a stationary value is

Z,=2—-x —4x,=0 X, +4x,=2
Z,=2x,—A=0 or —A+ 2x, =0
Z,=2x,—4A =0 —4A +2x,=0

The stationary value of Z, defined by the solution

= 4 ¥ o= X —
A= X =07 Xy = 17
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is therefore Z = 7 = %. Again, a second-order condition should be consulted
before we can tell whether 7 is a maximum or a minimum.

Total-Differential Approach

In the discussion of the free extremum of = = f(x, y). it was learned that the
first-order necessary condition may be stated in terms of the total differential dz
as follows:

(12.9) c=fdx+ fdy =0

This statement remains valid after a constraint g(x, y) = c is added. However,
with the constraint in the picture. we can no longer take dx and dy both as
“arbitrary” changes as before. For if g(x. y) = ¢, then dg must be equal to dc,
which is zero since ¢ is a constant. Hence.

(12.10) (dg=)g. dx + g, dy =0

and this relation makes dx and &y dependent on each other. The first-order

necessary condition therefore becomes dz = 0 [(12.9)]. subject to g = ¢, and hence

also subject to dg = 0 [(12.10)]. By visual inspection of (12.9) and (12.10), 1t

should be clear that. in order to satisfy this necessary condition, we must have
o4

(12.11) — =
£, &

This result can be verified by solving (12.10) for dy and substituting the result into
(12.9). The condition (12.11), together with the constraint g(x, y)= ¢, will
provide two equations from which to find the critical values of x and y.*

Does the total-differential approach yield the same first-order condition as
the Lagrange-multiplier method? Let us compare (12.8) with the result just
obtained. The first equation in (12.8) merely repeats the constraint; the new result
requires its satisfaction also. The last two equations in (12.8) can be rewritten,
respectively, as

(12.117) L=>\ and —=A

g, 8

and these convey precisely the same information as (12.11). Note, however, that
whereas the total-differential approach yields only the values of ¥ and v, t

Lagrange-multiplier method also gives the value of A as a direct by-product. As it
turns out. A provides a measure of the sensitivity of Z (and £) to a shift of the
constraint. as we shall presently demonstrate. Therefore, the Lagrange- mu]tlpher

* Note that the constraint g = ¢ is still to be considered along with (12.11), even though we have
utilized the equation dg = 0-—that is. (12.10)—in deriving (12.11). While g = ¢ necessarily implies
dg = 0. the converse is not true: dg = 0 mercly implies g = a constant (not necessarily ¢). Unless the
constraint is explicitly considered. therefore. some information will be unwittingly left out of the
problem.
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method offers the advantage of containing certain built-in comparative-static
information ir} the solution.

An Interpretation of the Lagrange Multiplier

To show that X indeed measures the sensitivity of Z to changes in the constraint.
let us perform a comparative-static analysis on the first-order condition (12.8).
Since A, x, and y are endogenous, the only available exogenous variable is the
constraint parameter c¢. A change in ¢ would cause a shift of the constraint curve
in the xy plane and thereby alter the optimal solution. In particular, the effect of
an increase in ¢ (a larger budget, or a larger production quota) would indicate
how the optimal solution is affected by a relaxation of the constraint.

To do the comparative-static analysis, we again resort to the implicit-function
theorem. Taking the three equations in (12.8) to be in the form of F/(A, x, y; ¢)
= 0 (with j = 1,2, 3), and assuming them to have continuous partial derivatives.
we must first check that the following endogenous-variable Jacobian (where

fx}’ = fVX’ and gxy = g}'?‘)

aF' 9F' GF! 0 B )
GEREINVII [ Y R S VIR S
. (9 A ax a .y gx XX g_x_\f Xy g/\’)‘
IF*  dF*  9F’
aA 8x ay _g,\' fx_v - }\ng_ fy, - )\g,\‘}‘

does not vanish in the optimal state. At this moment, there is certainly no inkling
that this would be the case. But our previous experience with the comparative
statics of optimization problems [see the discussion of (11.42)] would suggest that
this Jacobian is closely related to the second-order sufficient condition, and that if
the sufficient condition is satisfied, then the Jacobian will be nonzero at the
equilibrium (optimum). Leaving the full demonstration of this fact to the follow-
ing section, let us proceed on the assumption that |[J| # 0. If so, then we can
express A, X, and 7 all as implicit functions of the parameter c:
(12.13)  A=A(¢) x=x(¢c) and §F=7(c)
all of which will have continuous derivatives. Also, we have the identities
c-g(x.y)=0

(12.14)  f(Z, 7) - Ag (%, 7)=0

[ F) = Ag (5. 7)=0

Now since the optimal value of Z depends on A, X, and 7, that is,

(12.15)  Z=/f(x,7) + X[c - g(x. 7)]

we may, in view of (12.13), consider Z to be a function of ¢ alone. Differentiating
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Z totally with respect to ¢, we find

dZ . dx . dy o oqdN o dx dp
dc_xdc+f"dc+[c g(x,y)]dc+}\(1 5<ge T 8 e

- X _ 5 X _
=/~ Agx)gf? +{/, - ?\gy)% + [e - g(x, y‘)]%c— + X

where 1., f,, g,, and g, are all to be evaluated at the optimum. By (12.14),
however, the first three terms on the right will all drop out. Thus we are left with
the simple result

(1216)  —==X

which validates our claim that the solution value of the Lagrange multiplier
constitutes a measure of the effect of a change in the constraint via the parameter
¢ on the optimal value of the objective function.

A word of caution, however, is perhaps in order here. For this interpretation
of A, you must express Z specifically as in (12.7). In particular, write the last term

as A[c — g(x, »)}, not A[g(x, v) — ¢].

n-VYariable and Multiconstraint Cases

The generalization of the Lagrange-multiplier method to n variables can be easily
carried out if we write the choice variables in subscript notation. The objective
function will then be in the form

z=f(x), X5,.., X,,)
subject to the constraint

glx,, xy,...,x,)=c

It follows that the Lagrangian function will be

Z=f(x. X5, x,) + A — g(x, x5...., x,)]
for which the first-order condition will consist of the following (n + 1) simulta-
neous equations:

Zy=c—g(x,,x5,....x,)=0

Zy=f—Ag; =0

Z,=f,—Ag; =0

ZIT :f;f - Ag"’ = O
Again, the first of these equations will assure us that the constraint is met, even
though we are to focus our attention on the free Lagrangian function.

When there is more than one constraint, the Lagrange-multiplier method is

equally applicable, provided we introduce as many such multipliers as there are
constraints in the Lagrangian function. Let an n-variable function be subject
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simultaneously to the two constraints
glx;, xy..oox,)=c¢ and  h(x,. x5,....x,)=d

Then, adopting A and p (the Greek letter mu) as the two undetermined multi-
pliers, we may construct a Lagrangian function as follows:

Z=f(x; xp0ox,) + A e —glx,. xy.. ... x,)]
+pld = h(x, xy,...0x,)]

This function will have the same value as the original objective function f if both
constraints are satisfied, i.e., if the last two terms in the Lagrangian function both
vanish. Considering A and u as variables, we now count (n + 2) variables
altogether; thus the first-order condition will in this case consist of the following
(n + 2) simultaneous equations:

Zy=c¢—g(x,.x5.....x,)=0

Z, =d~- h(x,, x5,....x,)=0

Z=f—Ag,—ph,=0 (i=1.2,....n)

These should normally enable us to solve for all the x, as well as A and p. As
before, the first two equations of the necessary condition represent essentially a
mere restatement of the two constraints.

EXERCISE 12.2

1 Use the Lagrange-multiplier method to find the stationary values of z:
(d) z=xy,subjecttox + 2y =2

(b) z=x(y + 4),subjecttox + p =8
(¢) z=x — 3y — xy,subjectto x + = 6
(d) z=7— 1y + x?, subject to x + = 0

2 In the above problem, find whether a slight relaxation of the constraint will increase or
decrease the optimal value of z. At what rate?

3 Write the Lagrangian function and the first-order condition for stationary values
(without solving the equations) for each of the following:

(a) z=x+ 2y + 3w+ xy — vw, subject to x + y + 2w = 10

(b) z = x>+ 2xp + yw”, subject to 2x + v+ wo=24and x + w=21§

4 If, instead of g(x, y) = ¢, the constraint is written in the form of G(x.3) = 0, how
should the Lagrangian function and the first-order conditicn be modified as a_conse-
quence?

5 In discussing the total-differential approach, it was pointed out that, given the constraint
g(x, v) = ¢, we may deduce that dg = 0. By the same token, we can further deduce that
d’g = d(dg) = d(0) = 0. Yet, in our earlier discussion of the unconstrained extremum of
a function z = f(x, y), we had a situation where dz = 0 is accompanied by either a
positive definite or a negative definite d~z, rather than d°z = (. How would vou account
for this disparity of treatment in the two cases?
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6 If the Lagrangian function is writien as Z = f(x, y) + Al g(x, y) — ¢] rather than as in
(12.7), can we still interpret the Lagrange multiplier as in (12.16)7 Give the new interpreta-
tion, if any.

12.3 SECOND-ORDER CONDITIONS

The introduction of a Lagrange multiplier as an additional variable makes it
possible to apply to the constrained-extremum problem the same first-order
condition used in the free-extremum problem. It is tempting to go a step further
and borrow the second-order necessary and sufficient conditions as well. This,
however, should not be done. For even though Z is indeed a standard type of
extremum with respect to the choice variables, it is nor so with respect o the
Lagrange multiplier. Specifically, we can see from (12.15) that. unlike X and 7. if A
is replaced by any other value of A. no effect will be produced on Z. since
[c — g(Xx, ¥)] is identically zero. Thus the role played by A in the optimal solution
differs basically from that of x and p.* While it is harmless to treat A as just
another choice variable in the discussion of the first-order condition, we must be
careful not to apply blindly the second-order conditions developed for the
free-extremum problem to the present constrained case. Rather, we must derive a
set of new ones. As we shall see, the new conditions can again be stated in terms
of the second-order total differential 4*z. However, the presence of the constraint
will entail certain significant modifications of the criterion.

Second-Order Total Differential

It has been mentioned that, inasmuch as the constraint g(x, y) = ¢ means
dg =g dx + g.dy = 0, as in (12.10). dx and dy no longer are both arbitrary. We
may, of course, still take (say) dx as an arbitrary change, but then dy must be
regarded as dependent on dx, always to be chosen so as to satisfy (12.10}, i.e.. to
satisfy dy = —(g./g,) dx. Viewed differently, once the value of dx is specified, dy
will depend on g, and g,. but since the latter derivatives in turn depend on the
variables x and y, dy will also depend on x and y. Obviously, then. the earlier
formula for d?z in (11.6), which is based on the arbitrariness of both dx and dy.
can no longer apply.

To find an appropriate new expression for d°z, we must treat dy as a variable
dependent on x and y during differentiation (if dx is to be considered a constant).

* In a more general framework of constrained optimization known as *nonlinear programming.”
to be discussed in a later chapter. it will be shown that. with inequality constraints, if Z is a maximum
(minimum) with respect to x and y, then it will in fact be a minimum (maximum) with respect to A. In
other words, the point (A, ¥. ¥) is a saddle point. The present case —where /7 is a genuine extremum
with respect to x and 1. but is invariant with respect to A—may be considered as a degenerate casc of
saddle point. The saddle-point nature of the solution (X, ¥, ) also leads to the important concept of
“duality.” But this subject is best to be pursued later.
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Thus,

d(dz )d N a(dz)

2 p— p—
d°z =d(dz) e 3y

dy

ad Jd
= gx (fedx + fody) dx + o (fodx + fody) dy

- |:fXXdX+ (f“d * l%d )]d + fwdx+ (fndy+fyady)} dy
=S dx® o+ [y dydx + f, (”d + foodedy + f, dv? + ], (ciy) y

Since the third and the sixth terms can be reduced to

fy[ 8(8‘3) dx + 8%‘3’)@] = f d(dy) = f,d%

the desired expression for 42z is
(12.17) d’z = f. dx* + 2f dxdy +f,dy? + f.dy

which differs from (11.6) only by the last term, f, d?y.

It should be noted that this last term is in theﬁrsr degree [d?y is not the same
as (dy)?]; thus its presence in (12.17) disqualifies d?z as a quadratic form.
However, d°z can be transformed into a quadratic form by virtue of the
constraint g(x, y) = c. Since the constraint implies dg = 0 and also d? g = d(dg)
= 0, so by the procedure used in obtaining (12. 17) we can get

(d%g =)g, dx* +2g  dxdy + g, dv? +g1dy—0

Solving this last equation for dy and substituting the result in (12. 17), we are
able to eliminate the first-degree expression d 2y and write d*z as the following
quadratic form:

¥ ¥

dzz = (f\‘,\' - ?g_\‘.\) dxz + 2

fo — gg_”-) dx dy +

/s
f, vy _g;- 8y dy?

Because of (12.11"), the first parenthetical coefficient is reducible to (f,, — Ag,.),
and similarly for the other terms. However, by partially differentiating the
derivatives in (12.8), you will find that the following second derivatives
ZY.\' = fXX - Ag.\’ﬁ(
(12.18) Z=fo g, =2,
Z}'}‘ = yy - Ag}'}'
are precisely equal to these parenthetical coefficients. Hence, by making use of the
Lagrangian function, we can finally express d 2z more neatly as follows:

(12.17) d*z = Z_ .dx? + Z, dx dy
Z, dydx + Z _ dy?



OPTIMIZATION WITH EQUALITY CONSTRAINTS 381

The coefficients of (12.17") are simply the second partial derivatives of Z with
respect to the choice variables x and y; together, therefore, they can give rise to a
Hessian determinant.

‘Second-Order Conditions,

For a constrained extremum of z = f(x, y), subject to g(x, y) = ¢, the second-
order necessary and sufficient conditions still revolve around the algebraic sign of
the second-order total differential d°z, evaluated at a stationary point. However,
there is one important change. In the present context, we are concerned with the
sign definiteness or semidefiniteness of d”z. not for all possible values of dx and
dy (not both zero), but only for those dx and dy values (not both zero) satisfying

the linear constraint (12.10), g dx + g dy = 0. Thus the second-order necessary
conditions are:

For maximum of z:  d?z negative semidefinite, subject to dg = 0

For minimum of z;  d°z positive semidefinite, subject to dg = 0

and the second-order sufficient conditions are:
For maximum of z: d?:z negative definite, subject to dg = 0
For minimum of z:  d?z positive definite, subject to dg = 0

In the following, we shall concentrate on the second-order sufficient conditions.
Inasmuch as the (dx, dy) pairs satisfying the constraint g, dx + g dy =

constitute merely a subset of the set of all possible dx and dy, the constrained sign
definiteness is less stringent—that is, easier to satisfy— than the unconstrained
sign definiteness discussed in the preceding chapter. In other words, the second-
order sufficient condition for a constrained extremum problem is a weaker
condition than that for a free extremum problem. This is welcome news because,
unlike necessary conditions which must be stringent in order to serve as effective
screening devices, sufficient conditions should be weak to be truly serviceable.*

The Bordered Hessian

As in the case of free extremum, it is possible 10 express the second-order
sufficient condition in determinantal form. In place of the Hessian determinant
|H|. however, in the constrained-extremum case we shall encounter what is
known as a bordered Hessign. S

In preparation for the development of this idea. let us first analyze the
conditions for the sign definiteness of a two-variable quadratic form, subject to a

* A million-dollar bank deposit™ is clearly a sufficient condition for “being able to afford a steak
dinner.” But the extremely limted applicability of that condition renders it practically useless. A more
meaningful sufficient condition might be something like *twenty dollars in one’s wallet,” which is a
much less stringent financial requirement.
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linear constraint, say,

g = au’ + 2huv + bv? subject to au + fo =10

Since the constraint implies v = —(a/f)u, we can rewrite ¢ as a function of one
variable only:
PV SRR (aB? — 2hafB + b ’)"‘2
= du- — =y U = \a - [4 o )—
B B* B?
It is obvious that g is positive (negative) definite if and only if the expression in
parentheses is positive (negative). Now, it so happens that the following symmet-
ric determinant

0O a B
a a *h =2haﬁ—al32—b(x2
B h b

is exactly the negative of the said parenthetical expression. Consequently, we can
state that

) { positive definite
q

. ... subjecttoau + fv =20
negative definite } ) B

0 a B
it e a h { - 8
o B h b
[t is noteworthy that the determinant used in this criterion is nothing but the

a h

, b
and a similar border on the left. Furthermore, the border is merely composed of

the two coefficients @ and § from the constraint, plus a zero in the principal
diagonal. This bordered discriminant is symmetric.

discriminant of the original quadratic form ‘, with a border placed on top

Example 1 Determine whether ¢ = 4u? + 4uv + 307, subject to u — 2v = 0, is

either positive or negative definite. We first form the bordered discriminant
0 1 =2

1 4 2|, which is made symmetric by splitting the coefficient of uv into
-2 2 3

two equal parts for insertion into the determinant. Inasmuch as the determinant

has a negative value (—27), ¢ must be positive definite.

When applied to the quadratic form d?z in (12.17"), the variables u and ©
become dx and dy, respectively, and the (plain) discriminant consists of the
Z\‘ iy Z\’\‘

Hessian - Z- . Moreover, the constraint to the quadratic form being

X vy

g, dx + g dy =0, wehavea = g, and B = g . Thus, for values of dx and dy that
satisfy the said constraint, we now have the following determinantal criterion for
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the sign definiteness of d*z:

» . [ positive definite ) _
AL . .. rsubjecttodg =0
| negative definite |

0 g, g
iff & ’—,\',‘( w0
8y Z v Z)'y

The determinant to the right. often referred to as a bordered Hessian, shall be
denoted by |ﬁ_ |, where the bar on tQp symbolizes the border. On the basis of this,
we may conclude that, given a stationary value of z = f(x, y)orof Z = f(x, y)
+ Ale — g(x, y)]. a positive []7| is sufficient to establish it as a relative maxi-
mum of z; similarly, a negative | H | 1s sufficient to establish it as a minimum—all
the derwatlves involved in |H | bemg evaluated at the critical values of x and y.

" Now that we have derived the second-order sufficient condition, it is an easy
matter to verify that. as earlier claimed. the satisfaction of this condition will
guarantee that the endogenous-variable Jacobian (12.12) does not vanish in the
optimal state. Substituting (12.18) into (12.12), and multiplying both the first
column and the first row of the Jacobian by — 1 (which will leave the value of the
determinant unaltered), we see that

0 g, \
(12.19) || =& Z. Z,|=|H|
g1 Z\‘\ Z\\

That is. the endogenous-variable Jacobian is identical with the bordered Hessian
—a result similar to (11.42) where it was shown that, in the free-extremum
context, the endogenous-variable Jacobian is identical with the plain Hessian. If,
in fulfillment of the sufficient condition. we have |H | # 0 at the optimum, then
|J| must also be nonzero. Consequently, in applying the implicit-function theo-
rem to the present context, it would not be amiss to substitute the condition
|H | # 0 for the usual condition |J| = 0. This practice will be followed when we
analyze the comparative statics of constrained-optimization problems below.

Example 2 Let us now return to Example 1 of Sec. 12.2 and ascertain whether
the stationary value found there gives a maximum or a minimum. Since Z_=y — A
and Z = x — A, the second-order partial derivativesare Z_, =0, Z,, = Z, =1

and Z, = 0. The border elements we need are g = 1 and g = 1. Thus we find
that
o1
|[Hl =1 0 1|=2>0
L1 0]

which establishes the value z = 9 as a4 maximum.
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Example 3 Continuing on to Example 2 of Sec. 12.2, we see that Z; = 2x, — A
and Z, = 2x, — 4A. These yield Z,, = 2, Z,, = Z,, = 0, and Z,, = 2. From the
constraint x, + 4x, = 2, we obtain g, =1 and g, = 4. It follows that the
bordered Hessian is

0
1
4

\H| = = —34<0

1
2
0

o O

and the value Z = % is a minimum. -

n-Variable Case
When the objective function takes the form
z=f(x,,%,...,x,) subjectto  g(x,,%5,...,%x,)=c

the second-order condition still hinges on the sign of 4°z. Since the latter is a
constrained quadratic form in the variables dx,, dx,,..., dx,, subject to the
relation

no

(dgz)gldxl + gdx, + -+ g, dx, =0

the conditions for the positive or negative definiteness of 4z again involve a
bordered Hessian. But this time these conditions must be expressed in terms of
the bordered principal minors of the Hessian.

Given a bordered Hessian

O gl gi‘ gn
. & Zy Zy 1n
|H| = 8 Zy Zy Zy,
gn Zn] ZHZ Znn

0 81 &2 83
0 & &2
= 7 7 — & Zy Z, Z,
|H,| =8 1 12 |Hy) = 7 7 7 (etc.)
7 7 82 21 22 23
3 21 22
8 Zy Zy Zy

with the last one being |H,| = |H|. In the newly introduced symbols, the
horizontal bar above H again means bordered, and the subscript indicates
the order of the principal minor being bordered. For instance, |H,| involves the
second principal minor of the (plain) Hessian, bordered with 0, g;, and g,; and
similarly for the others. The conditions for positive and negative definiteness of
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Table 12.1 Determinantal test for relative constrained extremum:
z = f(x,, X3,..., X,,), subject to g(x,. x,...., x,) = ¢; with
Z =:f(xl’xil""* xn)+ }\[C - g(xl'XZ""* X”)]

Condition Maximum Minimum

First-order necessary Ih=7Fy=0Fy= - =Z, =0 Zy=2=24,=- =Z,=0
condition

Second-order sufficient [Hs| > 0: |Hy| < 0 | Hy) L H, . | H <0
condition* [H | > 00 s )" H,| >0

*Applicable only after the first-order necessary condition has been satisfied.

d?z are then

itive definit
5 . {p051 ive definite } subject to dg = 0

d<zis ) .
negative definite

[ | <0

'ff \|Hy) > 0; |H,| < 0:|H,| > 0; etc.
In the former, all the bordered principal minors, starting with |H,|, must be
negative; in the latter, they must alternate in sign. As previously, a positive
definite d2z is sufficient to establish a stationary value of z as its minimum,
whereas a negative definite d°z is sufficient to establish it as a maximum,
Drawing the threads of the discussion together, we may summarize the
conditions for a constrained relative extremum in Table 12.1. You will recognize,
however, that the criterion stated in the table is not complete. Because the
second-order sufficient condition is not necessary, failure to satisfy the criteria
stated does not preclude the possibility that the stationary value is nonetheless a
maximum or a minimum as the case may be. In many economic applications,
however, this (relatively less stringent) second-order sufficient condition is either
satisfied, or assumed to be satisfied, so that the information in the table is
adequate. It should prove instructive for you to compare the results contained in
Table 12.1 with those in Table 11.2 for the free-extremum case.

Multiconstraint Case

When more than one constraint appears in the problem, the second-order
cordition involves a Hessian with more than one border. Suppose that there are n
choice variables and m constraints (m < n) of the form g/(x,,..., x,) = c;. Then
the Lagrangian function will be

Z=f(x....x,)+ LA [e, - g/(xp0ux,)]

i=1
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and the bordered Hessian will appear as

|
0 0 0, 2 & g,
0 0 gl g g

[
............... e
o 0 O 0 fe4d nt m
Hi=o o L.
g 8 gl Ly 2y Z,
gé g22 gy : Zy  Zy Z,y,
............... oo e e
gr: g;:_ gr’zn | Zn 1 Zrl 2 Zn "

where g/ = dg//dx, are the partial derivatives of the constraint functions, and
the double-subscripted Z symbols denote, as before, the second-order partial
dertvatives of the Lagrangian function. Note that we have partitioned the
bordered Hessian into four areas for visual clarity. The upper-left area consists of
zeros only, and the lower-right area is simply the plain Hessian. The other two
areas, containing the g/ derivatives, bear a mirror-image relationship to each
other with reference to the principal diagonal, thereby resulting in a symmetric
array of elements in the entire bordered Hessian.

Various bordered principal minors can be formed from |H |. The one that
contains Z,, as the last element of its principal diagonal may be denoted by |H, |,
as before. By including one more row and one more column, so that Z,; enters
into the scene, we will have | H,|, and so forth. With this symbolism. we can state
the second-order sufficient condition in terms of the signs of the following
(n — m) bordered principal minors:

|ﬁm+l|’ lﬁm-FZl‘:“’ |]7n|(: |ﬁ|)

For a maximum of z, a sufficient condition is that these bordered principal minors
alternate in sign, the sign of |H, .| being that of (— 1)”'. For a minimum of z,
a sufficient condition is that these bordered principal minors all take the same
sign, namely, that of (—1)".

Note that it makes an important difference whether we have an odd or even
number of constraints, because (—1) raised to an odd power will yield the
opposite sign to the case of an even power. Note, also, that when m = 1, the
condition just stated reduces to-that presented in Table 12,1,

EXERCISE 12.3

1 Use the bordered Hessian to determine whether the stationary value of z obtained in
each part of Exercise 12.2-1 is a maximum or a minimum.

2 In stating the second-order sufficient conditions for constrained maximum and mini-
mum, we specified the algebraic signs of |H,|, |H|, | H,], etc., but not of |H,|. Write out
an appropriate expression for |H\|, and verify that it invariably takes the negative sign.
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3 Recalling Property II of determinants (Sec. 5.3), show that: B
(a) By appropriately interchanging two rows and/or two columns of |H,| and duly
altering the sign of the determinant after each interchange, it can be transformed into

Zy Z, g
Zy 2y g
g & 0

(b) By a similar procedure, |H,| can be transformed into

VAT ATERVATENS 4

Ly Ly Zyn g

Zy 2y 2y g

g 83 g3 0
What alternative way of “bordering” the principal minors of the Hessian do these results
suggest?

4 Write out the bordered Hessian for a constrained optimization problem with four choice
variables and two constraints. Then state specifically the second-order sufficient condition
for a maximum and for a minimum of z, respectively.

124 QUASICONCAVITY AND QUASICONVEXITY

In Sec. 11.5 it was shown that, for a problem of free extremum, a knowledge of
the concavity or convexity of the objective function obviates the need to check the
second-order condition. In the context of constrained optimization, it is again
possible to dispense with the second-order condition if the surface or hyper-
surface has the appropriate type of configuration. But this time the desired
configuration 1s quasiconcavity (rather than concavity) for a maximum, and
quasiconvexity (rather than convexity) for a minimum. As we shall demonstrate,
quasiconcavity (quasiconvexity) is a weaker condition than concavity (convexity).
This is only to be expected, since the second-order sufficient condition to be
dispensed with is also weaker for the constrained optimization problem (d’z
definite in sign only for those dx, satisfying dg = 0) than for the free one (d*z
definite in sign for all dx,).

Geometric Characterization

Quasiconcavity and quasiconvexity, like concavity and convexity, can be either
strict or nonstrict. We shall first present the geometric characterization of these
concepts:

Let u and v be any two distinct points in the domain (a convex set) of a
function f, and let line segment vv in the domain give rise to arc MN on the
graph of the function, such that point N is higher than or equal in height to
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point M. Then function f is said to be quasiconcave ( quasiconvex) if all points
on arc MN other than M and N are higher than or equal in height to point M
(lower than or equal in height to point N ). The function f is said to be strictly
quasiconcave (strictly quasiconvex) if all the points on arc MN other than M
and N are strictly higher than point M (strictly lower than point V).

It should be clear from this that any strictly quasiconcave (strictly quasiconvex)
function is quasiconcave {(quasiconvex), but the converse is not true.

For a better grasp, let us examine the illustrations in Fig. 12.3, all drawn for
the one-variable case. In diagram a. line segment uv in the domain gives rise to
arc MN on the curve such that N is higher than M. Since all the points between M
and N on the said arc are strictly higher than M, this particular arc satisfies the
condition for strict quasiconcavity. For the curve to qualify as strictly quasicon-
cave, however, all possible (u, v) pairs must have arcs that satisfy the same
condition. This is indeed the case for the function in diagram a. Note that this
function also satisfies the condition for (nonstrict) quasiconcavity. But it fails the
condition for quasiconvexity, because some points on arc MN are higher than N,
which is forbidden for a quasiconvex function. The function in diagram b has the
opposite configuration. All the points on arc M’N’ are lower than N’, the higher
of the two ends, and the same is true of all arcs that can be drawn. Thus the
function in diagram b is strictly quasiconvex. As you can verify, it also satisfies
the condition for (nonstrict) quasiconvexity, but fails the condition for quasicon-
cavity. What distinguishes diagram c is the presence of a horizontal line segment
M”N”, where all the points have the same height. As a result, that line
segment—and hence the entire curve-—can only meet the condition for quasicon-
cavity, but not strict quasiconcavity.

Generally speaking, a quasiconcave function that is not also concave has a
graph roughly shaped like a bell, or a portion thereof, and a quasiconvex function
has a graph shaped like an inverted bell, or a portion thereof. On the bell, it is
admissible (though not required) to have both concave and convex segments. This
more permissive nature of the characterization makes quasiconcavity (quasicon-

L Jp——

(a)

Figure 12.3
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z

Figure 12.4

vexity) a weaker condition than concavity (convexity). In Fig. 12.4, we contrast
strict concavity against strict quasiconcavity for the two-variable case. As drawn,
both surfaces depict increasing functions, as they contain only the ascending
portions of a dome and a bell, respectively. The surface in diagram a is strictly
concave, but the one in diagram b is certainly not, since it contains convex
portions near the base of the bell. Yet it is strictly quasiconcave; all the arcs on
the surface, exemplified by MN and M’N’, satisfy the condition that all the points
on each arc between the two end points are higher than the lower end point.
Returning to diagranr’a, we should note that the surface therein is also strictly
quasiconcave. Although we have not drawn any illustrative arcs MN and M'N’ in
diagram a, it is not difficult to check that all possible arcs do indeed satisfy the
condition for strict quasiconcavity. In general, a strictly concave function must be
strictly quasiconcave, although the converse is not true. We shall demonstrate this
more formally in the paragraphs that follow.

Algebraic Definition

The geometric characterization above can be translated into an algebraic defini-
tion for easier generalization to higher-dimensional cases:

quasiconcave

A function f is { } iff, for any pair of distinct points ¥ and v in

quasiconvex
the (convex) domain of f, and for 0 < § < 1,

[=f(u)

(1220)  f(o) 2 flu) = f[9“+(1_0)°]\sf(v)
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To adapt this definition to strict quasiconcavity and quasiconvexity, the two weak

W)

< f(v
You may find it instructive to compare (12.20) with (11.20). /)
From this definition, the following three theorems readily follow. These will
be stated in terms of a function f(x), where x can be interpreted as a vector of
variables, x = (x,,..., x,,).

inequalities on the right should be changed into strict inequalities {

Theorem I (negative of a function) If f(x) is quasiconcave (strictly quasicon-
cave), then —f(x) is quasiconvex (strictly quasiconvex).

Theorem II (concavity versus quasiconcavity) Any concave (convex) function
is quasiconcave (quasiconvex), but the converse is not true. Similarly, any strictly
concave (strictly convex) function is strictly quasiconcave (strictly quasiconvex),
but the converse is not true.

Theorem III  (linear function) If f(x) is a linear function, then it is quasicon-
cave as well as quasiconvex.

Theorem 1 follows from the fact that multiplying an inequality by —1
reverses the sense of inequality. Let f(x) be quasiconcave, with f(v) > f(u).
Then, by (12.20), f[8u + (1 — 8)v] > f(u). As far as the function —f(x) is
concerned, however, we have (after multiplying the two inequalities through by
—1) —f(u)= —f(v) and —f[0u + (1 = #)v] < —f(u). Interpreting —f(u) as
the height of point N, and — f(v) the height of M, we see that the function —f(x)
satisfies the condition for quasiconvexity in (12.20). This proves one of the four
cases cited in Theorém I; the proofs for the other three are similar.

For Theorem II, we shall only prove that concavity implies quasiconcavity.
Let f(x) be concave. Then, by (11.20),

fl0u+ (1 —8)v] =6f(u)+ (1 —8)f(v)

Now assume that f(v) = f(u); then any weighted average of f(v) and f(u)
cannot possibly be less than f(u), Le.,

0f(u) + (1 - 8)f(v) = f(u)

Combining the above two results, we find that

flou+ (1 =8)v]=f(u) forf(v)=f(u)

which satisfies the definition of quasiconcavity in (12.20). Note, however, that the
condition for quasiconcavity cannot guarantee concavity.

Once Theorem 11 is established, Theorem III follows immediately. We
already know that a linear function is both concave and convex, though not
strictly so. In view of Theorem II, a linear function must also be both quasicon-
cave and quasiconvex, though not strictly so.
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In the case of concave and convex functions, there is a useful theorem to the
effect that the sum of concave (convex) functions is also concave (convex).
Unfortunately, this theorem cannot be generalized to quasiconcave and quasicon-
vex functions. For instance, a sum of two quasiconcave functions is not necessarily
quasiconcave (see Exercise 12.4-3).

Sometimes it may prove easier to check quasiconcavity and quasiconvexity by
the following alternative definition:

A function f(x), where x is a vector of variables, is

{ quasiconcave
any constant k, the set

} iff, for

quasiconvex

IV

is a convex set

[$7={x1f(x)
(12.21) |55 (x| 1(x) <

The sets S and S= were introduced earlier (Fig. 11.10) to show that a convex
function (or even a concave function) can give rise to a convex set. Here we are
employing these two sets as tests for quasiconcavity and quasiconvexity. The
three functions in Fig. 12.5 all contain concave as well as convex segments and
hence are neither convex nor concave. But the function in diagram a is quasicon-
cave, because for any value of k (only one of which has been illustrated), the set
S= is convex. The function in diagram b is, on the other hand, quasiconvex since
the set §< is convex. The function in diagram ¢—a monotonic function—differs
from the other two in that both > and S< are convex sets. Hence that function
is quasmoncave as well as quasiconvex.

Note that while (12.21) can be used to check quasiconcavity and quasiconvex-
ity, it is incapable of distinguishing between strict and nonstrict varieties of these
properties. Note, also, that the defining properties in (12.21) are in themselves not
sufficient for concavity and convexity, respectively. In particular, given a concave
function which must perforce be quasiconcave, we can conclude that §~ is a

| SE—
|
|
|
| |
seeves s OO X e0cccebosoeeed X
(N — O e
Set §=< Set 8= SetS~
(b) (¢)

Figure 12.5
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convex set; but given that S* is a convex set, we can conclude only that the
function f is quasiconcave (but not necessarily concave).

Example 1 Check z = x* (x > 0) for quasiconcavity and quasiconvexity. This
function is easily verified geometrically to be convex, in fact strictly so. Hence it is
quasiconvex. Interestingly, it is also quasiconcave. For its graph—the right half of
a U-shaped curve, initiating from the point of origin and increasing at an
increasing rate—is, similarly to Fig. 12.5¢, capable of generating a convex S> as
well as a convex S=.

If we wish to apply (12.20) instead. we first let ¥ and v be any two distinct
nonnegative values of x, Then

flu)y=u®> flv)=0v> and f[Ou+(1-8)o]=[0u+(1-8)v]

Suppose that f(v) = f(u), that is, v* > 4?; then v = u, or more specifically, v > u
{since u and v are distinct). Inasmuch as the weighted average [6u + (1 — 6)v]
must lie between v and v, we may write the continuous inequality

0> [Bu+ (1 — 8)v]” > u? for0 <0 <1
or  f{o)>f[0u+(1—8)v] > f(u) for0 <@ <1

By (12.20), this result makes the function f both quasiconcave and
quasiconvex—indeed strictly so.

Example 2 Show that z = f(x, y) = xy (x, y = 0) is quasiconcave. We shall use
the criterion in (12.21) and establish that the set $> = {(x, y) | xy > k) is convex
for any k. For this purpose, we set xy = k to obtain an isovalue curve for each
vatue of k. Like x and y, k should be nonnegative. In case k > 0, the isovalue
curve is a rectangular hyperbola in the first quadrant of the xy plane. The set S= |
consisting of all the points on or above a rectangular hyperbola, is a convex set.
In the other case, with k = 0, the isovalue curve as defined by xy = 0 is L-shaped,
with the L coinciding with the nonnegative segments of the x and y axes. The set
S~ . consisting this time of the entire nonnegative quadrant, is again a convex set.
Thus. by (12.21), the function z = xy (x, v > 0) is quasiconcave.

You should be careful not to confuse the shape of the isovalue curves xy = k
(which is defined in the xy plane) with the shape of the surface z = xy (which is
defined in the xyz space). The characteristic of the z surface (quasiconcave in
3-space) is what we wish to ascertain; the shape of the isovalue curves (convex in
2-space for positive k) is of interest here only as a means to delineate the sets S~
in order to apply the criterion in (12.21).

Example 3 Show that z = f(x, y) = (x — a)* + (y — b)?is quasiconvex. Let us
again apply (12.21). Setting (x — a)* + (v — b)’> = k, we see that k must be
nonnegative. For each k. the isovalue curve is a circle in the xp plane with its
center at (a, b) and with radius vk . Since $== {(x. y) [ (x —a) + (v —h) <
k} 1s the set of all points on or inside a circle, it constitutes a convex set. This is
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true even when k = 0—when the circle degenerates into a single point,
(a, b)—since by convention a single point is considered as a convex set. Thus the
given function is quasiconvex.

Differentiable Functions

The definitions (12.20) and (12.21) do not require differentiability of the function
f. If f1s differentiable, however, quasiconcavity and quasiconvexity can alterna-
tively be defined in terms of its first derivatives:

A differentiable function of one variable, f(x), is

{ quasiconcave
pair of distinct points ¥ and v in the domain,

. iff, for any
quasiconvex

(12.22)  f(v) = flu) = ff/“)iu_“))}zo

Quasiconcavity and quasiconvexity will be strict, if the weak inequality on the
right is changed to the strict inequality > 0. When there are two or more
independent variables, the definition is to be modified as follows:

. . . , uasiconcave | .
A differentiable function f(x,...., x,) is 4 . } iff, for any two
\ quasiconvex
distinct points 4 = (u,,..., u,) and v = (v,,..., v,) In the domain,
~

=1

\ L o)y, - u,/)I

7=1

J S (u)(o )l

(12.22)  f(v) > f(u) >0

where f, = df/dx,, to be evaluated at u or v as the case may be.

Again, for strict quasiconcavity and quasiconvexity, the weak inequality on the
right should be changed to the strict inequality > 0.

Finally, if a function z = f(x,...., x,) 1s twice continuously differentiable,
quasiconcavity and quasiconvexity can be checked by means of the first and
second partial derivatives of the function, arranged into the bordered determinant

o fi L o
f\ fll flz fln
(12'23) |B] = L h fzz o fa
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This bordered determinant resembles the bordered Hessian | H | introduced in the
preceding section. But unlike the latter, the border in | B| is composed of the first
derivatives of the function f rather than an extraneous constraint function g. It is
because | B| depends exclusively on the derivatives of function f itself that we can
use |B]. along with its successive principal minors

| O fl f2 |
0

{12.24) |B,| :| a |B.| =i fu Ji e |B,| = |B]
Ifl f”‘ \fz f21 fzz

to characterize the configuration of that function.

We shall state here two conditions; one is necessary, and the other is
sufficient. Both relate to quasiconcavity and quasiconvexity on a domain consist-
ing only of the nonnegative orthant (the n-dimensional analog of the nonnegative
quadrant), that 1s, with x,..., . x, > 0.*

For z = f(x,,..., x,,) to be quasiconcave on the nonnegative orthant, it is
necessary that

ni

s [
(12.25) By} <0, [|B] =0, ..., |Bll even

}Oifnis{Odd

VA

wherever the partial derivatives are evaluated in the nonnegative orthant. For
quasiconvexity, it 1S necessary that

(1225)  |B,| <0. |By <0, .... |B]<0

A sufficient condition for f to be quasiconcave on the nonnegative orthant is
that

< . dd
(]2.26) tBl| < 0, |B2|>0, Ce |Bn|{>}01fnls{gven

wherever the partial derivatives are evaluated in the nonnegative orthant. For
guasiconvexity, the corresponding sufficient condition is that

(1226')  |B,| <0, |Byi <0. .... |B,] <0

Note that the condition |B,] < 0in (12.25) and (12.25") is automatically satisfied

* Whereas concavity (convexity) of a function on a convex domain can always be extended to
concavity (convexity) over the entire space. quasiconcavity and quasiconvexity cannot. For instance.
our conclusions in Examples 1 and 2 above will not hold if the variables are allowed to take negative
values. The two conditions given here arc based on Kenneth J. Arrow and Alain C. Enthoven,
" Quasi-Concave Programming,” Econometrica, October 1961, p. 797, (Theorem 5). Their attention s
confined to quasiconcave functions; our extension to quasiconvex functions makes usc of the fact that
the negative of a quasiconcave function is quasiconvex.
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because |B,| = —f2 it is listed here only for the sake of symmetry. In contrast,
the condition |B,| < 0 in (12.26) and (12.26") is not automatically satisfied.

Example 4 The function z = f(x,, x,) = x,X, (x|, x, = 0) is quasiconcave (cf.
Example 2 above). We shall now check this by (12.22"). Let u = (u,, 4,) and
v = (v, vy) be any two points in the domain. Then f(u) = u,u, and f(v) = v,v,.
Assume that

(1227)  flv) = f(u) or U0, = U\U, (v, 05, Uy, 4y = 0)

Since the partial derivatives of f are f| = x, and f, = x,, (12.22") amounts to the
condition that

filu)(o, —u) + f(u)(0; — uy) = uy (v, — uy) + u (v, — uy) 20
Or, upon rearrangement,
(12.28) uy(vy —uy) = u{u; — vy)

We need to consider four possibilities regarding the values of u, and u,. First,
if u, = u, =0, then (12.28) is trivially satisfied. Second, if u; = 0 but u, > 0,
then (12.28) reduces to the condition u,v, > 0, which is again satisfied since u,
and v, are both nonnegative. Third, if #, > 0 and u, = 0, then (12.28) reduces to
the condition 0 > —u,v,, which is still satisfied. Fourth and last, suppose that u,
and u, are both positive, so that v, and v, are also positive. Subtracting v,u, from
both sides of (12.27), we obtain

(12.29) vy(0, — ) = u(uy — vy)

Three subpossibilities now present themselves:

1. If u, = vy, then v, > u,. In fact. we should have v, > u, since (u,, u,) and
(v,, v,) are distinct points. The fact that u, = v, and v, > u, implies that
condition (12.28) is satisfied.

2. If u, > v,, then we must also have v, > u by (12.29). Multiplying both sides
of (12.29) by u,/v,, we get

u
(12.30) uz(Ul_ul)sz(”z_Uz)

> u(uy, — vy) [since LENN 1}
U3
Thus (12.28) is again satisfied.

3. The final subpossibility is that #, < v,, implying that u,/v, is a positive
fraction. In this case, the first line of (12.30) still holds. The second line also
holds, but now for a different reason: a fraction (u,/v,) of a negative number
(u, — v,) is greater than the latter number itself.

Inasmuch (12.28) is satisfied in every possible situation that can arise, the
function z = x,x, (x,, x, > 0) is quasiconcave. Therefore, the necessary condi-
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tion (12.25) should hold. Because the partial derivatives of f are
fi = x; = x fin=/=0 fio=fu =1

the relevant principal minors turn out to be

0 x, x
X
|B,| = . 02 = -x3<0 B, =|x;, 0 1|=2xx,20
: x, 1 0

Thus (12.25) is indeed satisfied. Note, however, that the suflicient condition
(12.26) 1s satisfied only over the positive orthant.

Example 5 Show that z = f(x, y) = x" (x, y > 0; 0 < a, b < 1) is quasicon-
cave. The partial derivatives of this function are

f/‘ — axa*lyh fy — bxaybfl

foo=ala—1)x2y>  f =f =abx* 'y*=" [ =b(b—1)x%"?
Thus the principal minors of |B| have the following signs:
0 7 2
B, = Tl —(ax? ) <0
l I' fx f‘(): ( y )
0 s f
|B,| =/ [fox fol= [202[)2 —a(a = 1)b*
fl' fVX flv'}'

—azb(b o 1)]X3a—2y3/7—2 > 0

This satisfies the sufficient condition for quasiconcavity in (12.26). The given
function 1s in fact strictly quasiconcave, although the criterion in (12.26) is
incapable of confirming that.

A Further Look at the Bordered Hessian

The bordered determinant |B|, as defined in (12.23), differs from the bordered
Hessian

0 81 8> &n
_ g8 <y Zy Z,
|H| = g Zy Zy Z,,
gn an Zn2 Znn

in two ways: (1) the border elements in | B| are the first-order partial derivatives
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of function f rather than g; and (2) the remaining clements in |B| are the
second-order partial derivatives of f rather than the Lagrangian function Z.

However, in the special case of a linear constraint equation, g(x,,..., x,) = a,x,
+ -+ +a,x, = c—a case frequently encountered in economics (see Secs. 12.5
and 12.7)—Z, reduces to f,,. For then the Lagrangian function is

4 =f(xl*"" X") + A[C TS T anxn]
so that

Zf=fj*}\aj and Z . =

1} 1]

Turning to the borders, we note that the linear constraint function yields the
first derivative g, = a,. Moreover, when the first-order condition is satistied, we
have Z, = f, — Aa; = 0, so that f, = Aa, or f, = Ag,. Thus the border in |B| is
simply that of |H | multiplied by a positive scalar A. By factoring out A
successively from the horizontal and vertical borders of |H| (see Sec. 5.3,
Example 5), we have

|B| = N|H |

Consequently, in the linear-constraint case, the two bordered determinants always
possess the same sign at the stationary point of Z. By the same token, the
principal minors |B;| and |H,| (i = l,..., n) must also share the same sign at
that point. It then follows that if the bordered determinant |B| satisfies the
sufficient condition for quasiconcavity in (12.26), the bordered Hessian |H | must
then satisfy the second-order sufficient condition for constrained maximization in
Table 12.1. A similar link exists between quasiconvexity and the second-order
condition for minimization subject to a linear constraint.

Absolute versus Relative Extrema

A more comprehensive picture of the relationship between quasiconcavity and
second-order conditions is presented in Fig. 12.6. (A suitable modification will
adapt the figure for quasiconvexity.) Constructed in the same spirit—and to be
read in the same manner—as Fig. 11.5, this figure relates quasiconcavity to
absolute as well as relative constrained maxima. The three ovals in the upper part
summarize the first- and second-order conditions for a relative constrained
maximum. And the rectangles in the middle column, like those in Fig. 11.5, tie the
concepts of relative maximum, absolute maximum, and unique absolute maxi-
mum to one another.

But the really interesting information can be found in the two diamonds and
the elongated = symbols passing through them. The one on the left tells us that,
once the first-order condition is satisfied, and if the two provisos listed in the
diamond are also satisfied, we have a sufficient condition for an absolute
constrained maximum. The first proviso is that the function f be explicitly
quasiconcave-—a new term which we must hasten to define.
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=R o Xy)
is a:stationary point
stibject to
glXy, ..o Xyl=c
[first-order condition]

>

AN
427 isnegative © d?z isnegative
definite at7 gemnidefiniteatz.
subjecttodg =0 ".subjectto dg =10 .
~{second-order ~second:order
sufficient conditioni necessary condition]
Z.isarelative .
constrained
maximum
Lis fis
explicitly = gtrictly
“guasiconicave, . guasiconcave,
- -and the congtraint and the constraint.
set is - setis '
~Convex convex

Z is-an absolute
constrained.
maximum

7 is.a unique
absolute

constrained
maximum

Figure 12.6

A function f is explicitly quasiconcave iff

flo)>f(u) = [[Ou+(1-6)v]>f(u)

This defining property means that whenever a point on the surface, f(v), is higher
than another, f(u), then all the intermediate points—the points on the surface
lying directly above line segment uv in the domain—must aiso be higher than
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f(u). What such a stipulation does is to rule out any horizontal plane segments on
the surface.* Note that the condition for explicir quasiconcavity is not as strong as
the condition for stricr quasiconcavity. since the latter requires f[fu + (1 — #)cl
> f(u) even for f(v)= f(u). implying that nonhorizontal plane segments are
ruled out, too.f The other proviso in the left-side diamond is that the set
Xy x,) | gUx L x,) = ¢} be convex. If an equaliry constraint is specitied.
as in our present context. however, the said set can be convex if and only if the
constraint function g is linear (e.g.. a straight line in a two-dimensional domain).
Thus, in the present context, the second proviso simply means a linear constraint
equation. When both provisos are met. we shall be dealing with that portion of a
bell-shaped, horizontal-segment-free surface (or hypersurface) lying directly above
a line (or plane or hyperplane) in the domain. A local maximum found on such a
subset of the surface must be an absolute constrained maximum.

The diamond on the right in Fig. 12.6 involves the stronger condition of szrict
quasiconcavity. A strictly quasiconcave function must be explicitly quasiconcave,
although the converse is not true. Hence, when strict quasiconcavity replaces
explicit quasiconcavity. an absolute constrained maximum is still ensured. But
this time that absolute constrained maximum must also be unique. since the
absence of any plane segment anywhere on the surface decidedly precludes the
possibility of multiple constrained maxima.

EXERCISE 12.4

1 Draw a strictly quasiconcave curve = = f{x) which is
(«a) also quasiconvex (d) not concave
(h) not quasiconvex {e) neither concave nor convex
(¢} not convex (/) both concave and convex

2 Are the following functions quasiconcave? Strictly so? First check graphicaily. then
algebraically by (12.20). Assume that x > 0.
(a) f(x)=ua (b) f(x)=a~+ bx(b>10) (c)f(,\')=a+('xl(('<{)}

3 (a) Letz = f(x) plot as a negatively sloped curve shaped like the right half of a bell in
the first quadrant, passing through the points (0.5), (2.4). (3.2), and (5. 1). Let - = g(x}
plot as a positively sloped 45° line. Are f(x) and g(x) quasiconcave?

(b) Now plot the sum f(x) + g(x). Is the sum function quasiconcave?

4 By examining their graphs, and using (12.21), check whether the following functions are
quasiconcave, quasiconvex, both, or neither:
(a) f(x)=x"—2x (b) f{x. x1)=06x —9x, () flx;.xy)=xs~ In

* Let the surface contain a horizontal plane segment P such that f(u) € P and f{v) € 7. Then
those intermediate points that are located on P will be of equal height to f(u). thereby violatng the
first proviso.

# Let the surface contain a slanted plane segment P’ such that f(u) = f(v) are both located on £
Then all the intermediate points wilt also be on P’ and be of equal height to f(u). thereby violating the
cited requirement for strict quasiconcavity.
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5 (a) Verify that a cubic function z = ax” + bx? + cx + d is in general neither quasicon-
cave nor quasiconvex.

(b) Is it possible to impose restrictions on the parameters such that the function
becomes both quasiconcave and quasiconvex for x > (7

6 Use (12.22) to check z = x” (x = 0) for quasiconcavity and quasiconvexity.
7 Show that z = xy (x, y > 0) is not quasiconvex.

8 Use bordered determinants to check the following functions for quasiconcavity and
quasiconvexity:
(@) z==x*~y" (x,y>0) () z=—(x+ D= (y+2? (x,y>0)

12.5 UTILITY MAXIMIZATION AND CONSUMER DEMAND

The maximization of a utility function was cited earlier as an example of
constrained optimization. Let us now reexamine this problem in more detail. For
simplicity, we shall still allow our hypothetical consumer the choice of only two
goods, both of which have continuous, positive marginal-utility functions. The
prices of both goods are market-determined, hence exogenous, aithough in this
section we shall omit the zero subscript from the price symbols. If the purchasing
power of the consumer is a given amount B (for budget), the problem posed will
be that of maximizing a smooth utility (index) function

U=Uxy) (U,U, >0)

subject to
xP.+ yP. =B

First-Order Condition
The Lagrangian function of this optimization model is
Z=U(x,y)+A(B - xP,—yP,)
As the first-order condition, we have the following set of simultaneous equations:
Zy=B—-xP, —yP. =0
(12.31) Z. =U —-AP =0
Z, =U —-AP =0
Since the last two equations are equivalent to
U U,

31 - =t
(1231 ¢ P A

X

the first-order condition in effect calls for the satisfaction of (12.31"), subject
to the budget constraint—the first equation in (12.31). What (12.31') states is
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merely the familiar proposition in classical consumer theory that, in order to
maximize utility, consumers must allocate their budgets so as to equalize the ratio
of marginal utility to price for every commodity. Specifically, in the equilibrium
or optimum, these ratios should have the common value A. As we learned earlier,
A measures the comparative-static effect of the constraint constant on the optimal
value of the objective function. Hence, we have in the present context A =
(8U/8B); that is, the optimal value of the Lagrange multiplier can be interpreted
as the marginal utility of money (budget money) when the consumer’s utility is
maximized.
If we restate the condition in (12.31") in the form

12.317) U _ L
(12. u P

Al ¥

the first-order condition can be given an alternative interpretation, in terms of
indifference curves.

An indifference curve is defined as the locus of the combinations of x and y
that will yield a constant level of U. This means that on an indifference curve we
must find

dU = U dx + U, dy =0

with the implication that dy/dx = — U /U,. Accordingly, if we plot an
indifference curve in the xy plane, as in Fig. 12.7, its slope, dy /dx, must be equal
to the negative of the marginal-utility ratio U_/U.,. (Since we assume U, U, > 0,
the slope of the indifference curve must be negative.) Conversely, since U, /U, is
the negative of the indifference-curve slope, it must represent the marginal rate of
substitution between the two goods.

What about the meaning of P /P? As we shall presently see, this ratio
represents the negative of the slope of the graph of the budget constraint. The

Indifference
curves

U,
_ Budget line
Yoo dy P
{slope = l = %)
! /dx P,
|
‘1 Budget
} line
‘ x
0 X O

(a) {(b)

Figure 12.7
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budget constraint, xP, + yP, = B, can be written alternatively as

__B Px
Y= p T p*

¥ v

so that, when plotted in the xy plane as in Fig. 12.7, it emerges as a straight line
with slope — P, /P, (and vertical intercept B/P)).

In this light, the new version of the first-order condition—(12.31”) plus the
budget constraint—discloses that, to maximize utility, a consumer must allocate
the budget such that the slope of the budget line (on which the consumer must
remain) is equal to the slope of some indifference curve. This condition is met at
point E in Fig. 12.7a, where the budget line is tangent to an indifference curve.

Second-Order Condition

If the bordered Hessian in the present problem is positive, i.e., if

0 P P
(1232) |§| = Px Urx U = ZPXP;UXV B Pyzljxx o szUyy >0
P U, U

13 yX ¥y

(with all the derivatives evaluated at the critical values ¥ and 7), then the
stationary value of U will assuredly be a maximum. The presence of the
derivatives U,,, U, and U, in (12.32) clearly suggests that meeting this
condition would entail certain restrictions on the utility function and. hence, on
the shape of the indifference curves. What are these restrictions?

Considering first the shape of the indifference curves, we can show that a
positive |H | means the strict convexity of the (downward-sloping) indifference
curve at the point of tangency E. Just as the downward slope of an indifference
curve 1s guaranteed by a negatwe dy /dx(= = U/U,), its strict convexity would
be ensured by a positive d’y/dx>. To get the expression for d 2y /dx?, we can
differentiate — U, /U, with respect to x; but in doing so, we should bear in mind
not only that both Ux and U, (being derivatives) are functions of x and y but also
that, along a given indifference curve, y is itself a function of x. Accordingly, U,
and U, can both be considered as functions of x alone; therefore, we can get a
total derlvatlve

2y U du au,
d*y d(__i) 1(U : /

(1233) E = E; Uy Ulz Y dx - U dx

Since x can affect U, and U, not only directly but also indirectly, via the
intermediary of y, we have

(]234) dx - Ux,\‘ + U\*XE dx - ny + UV}’E

where dy/dx refers 1o the slope of the indifference curve. Now, at the point of
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tangency E—the only point relevant to the discussion of the second-order
condition—this slope is identical with that of the budget constraint; that is,
dy/dx = — P /P_. Thus we can rewrite (12.34) as

dU, P

(12.34") W _y —u Loy - U
. dx - Yxx ¥x Rv dx - Yxy vy Py

Substituting (12.34") into (12.33) and utilizing the information that
UP,
Ur - P

¥

[from (12.317)]

and then factoring out U‘,/P,z, we can finally transform (12.33) into
d’y 2PPU, - P!, - P, |H|

12.33
( ) dx? U P} U P?

It is clear that when the second-order sufficient condition (12.32) is satisfied,
the second derivative in (12.33") is positive, and the relevant indifference curve is
strictly convex at the point of tangency. In the present context, it is also true that
the strict convexity of the indifference curve at the tangency implies the satisfac-
tion of the sufficient condition (12.32). This is because, given that the indifference
curves are negatively sloped, with no stationary points anywhere, the possibility
of a zero d?y/dx? value on a strictly convex curve is ruled out. Thus strict
convexity can now result only in a positive d*y/dx?, and hence a positive |H |,
by (12.33). _

Recall, however, that the derivatives in |I7 | are to be evaluated at the critical
values X and ¥ only. Thus the strict convexity of the indifference curve, as a
sufficient condition, pertains only to the point of tangency, and it is not incon-
ceivable for the curve to contain a concave segment away from point E, as
illustrated by the broken curve segment in Fig. 12.7a. On the other hand, if the
utility function is known to be a smooth, increasing, strictly quasiconcave
function, then every indifference curve will be everywhere strictly convex. Such a
utility function has a surface like the one in Fig. 12.45. When such a surface is cut
with a plane parallel to the xy plane, we obtain for each of such cuts a cross
section which, when projected onto the xy plane, becomes a strictly convex,
downward-sloping indifference curve. In that event, no matter where the point of
tangency may occur, the second-order sufficient condition will always be satisfied.
Besides, there can exist only one point of tangency, one that yields the unique
absolute maximum level of utility attainable on the given linear budget. This
result, of course, conforms perfectly to what the diamond on the right of Fig. 12.6
states.

You have been repeatedly reminded that the second-order sufficient condition
is not necessary. Let us illustrate here the maximization of utility while (12.32)
fails to hold. Suppose that, as illustrated in Fig. 12.7b, the relevant indifference
curve contains a linear segment that coincides with a portion of the budget line.
Then clearly we have muitiple maxima, since the first-order condition U /U, =
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P_/P, is now satisfied at every point on the linear segment of the indifference
curve, including E,, E,, and E,. In fact, these are absolute constrained maxima.
But since on a line segment d’y /dx” is zero, we have |H | = 0 by (12.3%'). Thus
maximization is achieved in this case even though the second-order sufficient
condttion (12.32) is violated.

The fact that a linear segment appears on the indifference curve suggests the
presence of a slanted plane segment on the utility surface. This occurs when the
utility function 1s explicitly quastconcave rather than strictly quasiconcave. As
Fig. 12.7b shows, points E,, E,, and E;, all of which are located on the same
(highest attainable) indifference curve, yield the same absolute maximum utility
under the given linear budget constraint. Referring to Fig. 12.6 again, we note
that this result is perfectly consistent with the message conveyed by the diamond
on the left.

Comparative-Static Analysis

In our consumer model, the prices P, and P, are exogenous, as is the amount of
the budget, B. If we assume the satisfaction of the second-order sufficient
condition, we can analyze the comparative-siatic properties of the model on the
basis of the first-order condition (12.31), viewed as a set of equations F/ = {
(j=1,2,3), where each F/ function has continuous partial derivatives. As
pointed out in (12.19), the endogenous-variable Jacobian of this set of equations
must have the same value as the bordered Hessian; that is, |J| = |H |. Thus,
when the second-order condition (12.32) is met, |J| must be positive and it does
not vanish at the initial optimum. Consequently, the implicit-function theorem is
applicable, and we may express the optimal values of the endogenous variables as
implicit functions of the exogenous variables:

>
fi

X(P\' Py’ B)

i

(12.35)  x=x(P.P, B)

i

,‘7 .V(Px’ Pl"B)

These are known to possess continuous derivatives that give comparative-static
information. In particular, the derivatives of the last two functions x and p, which
are descriptive of the consumer’s demand behavior, can tell us how the consumer
will react to changes in prices and in the budget. To find these derivatives,
however, we must first convert (12.31) into a set of equilibrium identities as
follows:

(12.36) U(X, 7)=AP =0
) 0
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By taking the total differential of each identity in turn (allowing every variable to
change), and noting that U, = U,,. we then arrive at the linear system

X

—P, dX — P, dj = XdP_+ jdP, - dB
(12.37) —P. d\ + U, dx + U, dy = X dP,

- PdA+U, dx +U,dy = N dP,

To study the effect of a change in the budget size (also referred to as the
income of the consumer), let dP, = dP, = 0, but keep dB # 0. Then, after
dividing (12.37) through by dB, and interpreting each ratio of differentials as a
partial derivative, we can write the matrix equation*

0 -P, —P ]|[(3X/9B) ~1
ru, U] | o

As you can verify, the array of elements in the coefficient matrix is exactly the
same as what would appear in the Jacobian |J|, which has the same value as the
bordered Hessian |H | although the latter has P_and P, (rather than — P_and
— P,) in the first row and the first column. By Cramer’s rule, we can solve for all
three comparative-static derivatives, but we shall confine our attention to the
following two:

0 -1 -P b
X 1 - S Xy
(12.39) (H_x) -=—i|-P, 0 U, :i’ !
58] " 1J] ST
-P, U,
0 -P, -1 rU
8 y 1 - - 1 - X xx
(12.40) (8—;)=m —P, Ui 0 Im —p U
_ PV U‘-\- O ¥ rx
By the second-order condition, |J| = |H | is positive, as are P_and P, Unfor-

tunately, in the absence of additional information about the relative magnitudes
of P, P, and the U ;» we are still unable to ascertain the signs of these two
comparative-static derivatives. This means that, as the consumer’s budget (or
income) increases, his optimal purchases ¥ and y may either increase or decrease.
In case, say, X decreases as B increases, product x is referred to as an inferior good

as against a normal good.

* The matrix equation (12.38) can also be obtained by totally differentiating (12.36) with respect to
B. while b=aring in mind the implicit solutions in (12.35).
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Next, we may analyze the effect of a change in P,. Letting dP, = dB = 0 this
time, but keeping 4P_# 0, and then dividing (12.37) through by dP,, we obtain
another matrix equation

0 _Px _Pv (8>_\/8Px) X
(12.41) -P, U, U,||(3x/0P)|=|]A
- Pr UL‘X UH ( (9}7/3[’)() 0

From this, the following comparative-static derivatives emerge:

0 T -P
ax 1 T ’
, Sa_lip x w,
(12.42) (8131) 17| x Xy
-p 0 U,
- X _P\' U.\}‘ X 0 _Py
/1 - P, va /1 _Py UH
=T, + 1T, [ 7, means the ith term]
0 -p %
a1 _
. = |=—1-P U, A
—P, U, 0
X -P. U, A 0 - P,
W =P Uy VIR Uy
=T+ 1,

How do we interpret these two results? The first one, (dx/dP,), tells how a
change in P, affects the optimal purchase of x; it thus provides the basis for the
study of our consumer’s demand function for x. There are two component terms
in this effect. The first term, T, can be rewritten, by using (12.39), as —(dx/dB)Xx.
In this light, 7, seems to be a measure of the effect of a change in B (budget, or
income) upon the optimal purchase x, with X itself serving as a weighting factor.
However, since this derivative obviously is concerned with a price change, T,
must be interpreted as the income effect of a price change. As P, rises, the decline
in the consumer’s real income will produce an effect on X similar to that of an
actual decrease in B; hence the use of the term —(dx/dB). Understandably, the
more prominent the place of commodity x in the total budget, the greater this
income effect will be—and hence the appearance of the weighting factor X in 7).
This interpretation can be demonstrated more formally by expressing the con-
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sumer’s effectual income loss by the differential dB = — X dP_. Then we have
__dB
(12.44) f= P
dX\_ [ 0x )\ dB
and =T, = = (ﬁ)x N (aB ) dP.

which shows T, to be the measure of the effect of dP, on X via B, that is, the
income effect.

If we now compensate the consumer for the effectual income loss by a cash
payment numerically equal to dB. then, because of the neutralization of the
income effect, the remaining component in the comparative-static derivative
(dx/dP,), namely, T,, will measure the change in X due entirely to price-induced
substitution of one commodity for another, i.e., the substitution effect of the
change in P_. To see this more clearly, let us return to (12.37), and see how the
income compensation will modify the situation. When studying the effect of dP,
only (with dP, = dB = 0), the first equation in (12.37) can be written as — P.dx
— P dy = X dP,. Since the indication of the effectual income loss to the consumer
lies in the expression X dP_(which, incidentally, appears only in the first equation),
to compensate the consumer means to set this term equal to zero. If so, the vector

X 0
of constants in (12.41) must be changed from | X | to [ X |. and the income-com-
0 0
pensated version of the derivative (dx/dP,) will be
0 0 -P ' S »
(8_}() z_l__p‘. A Urzi ’ =T,
BPX compensated |‘]' - |J| - P‘ U‘,‘
' P -P. 0 U, -
Hence, we may express (12.42) in the form
, ax ax )_ ax
(12.42) (ap )_ i+ 1=~ (8B,x " (ap), ]
X I x / compensated
income effect substitu;ion effect

This result, which decomposes the comparative-static derivative (dx/dP,) into
two components, an income effect and a substitution effect, is the two-good
version of the so-called ““Slutsky equation.”

What can we say about the sign of (dx/dP,)? The substitution effect T, is
clearly negative, because |J| > 0 and A > 0 [see (12.31")]. The income effect T,
on the other hand, is indeterminate in sign according to (12.39). Should it be
negative, it would reinforce T,: in that event, an increase in P, must decrease the
purchase of x, and the demand curve of the utility-maximizing consumer would
be negatively sloped. Should it be positive, but relatively small in magnitude, it
would dilute the substitution effect. though the overall result would still be a
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downward-sloping demand curve. But in case 7, is positive and dominates 7,
(such as when X is a significant item in the consumer budget, thus providing an
overwhelming weighting factor), then a rise in P, will actually lead to a larger
purchase of x, a special demand situation characteristic of what are called Giffen
goods. Normally, of course, we would expect (dx/dP_) to be negative.

Finally, let us examine the comparative-static derivative in (12.43), (dy/0dP,)
= T, + T,. which has to do with the cross effect of a change in the price of x on
the optimal purchase of y. The term T, bears a striking resemblance to term 7,
and again has the interpretation of an income effect.* Note that the weighting
factor here is again X (rather than y); this is because we are studying the effect of
a change in P_ on effectual income, which depends for its magnitude upon the
relative importance of X (not y) in the consumer budget. Naturally, the remaining
term, T, is again a measure of the substitution effect.

The sign of T is, according to (12.40), dependent on such factors as U, ., U,,.
etc., and is indeterminate without further restrictions on the model. However, the
substitution effect 7, will surely be positive in our model, since A, P_, P, and |/|
are all positive. This means that, unless more than offset by a negative income
effect, an increase in the price of x will always increase the purchase of y in our
two-commodity model. In other words, in the context of the present model, where
the consumer can choose only between two goods, these goods must bear a
relationship to each other as substitutes,

Even though the above analysis relates to the effects of a change in P_, our
results are readily adaptable to the case of a change in P,. Our model happens to
be such that the positions occupied by the variables x and y are perfectly
symmetrical. Thus, to infer the effects of a change in P,, all that it takes is to
interchange the roles of x and y in the results already obtained above.

Proportionate Changes in Prices and Income

It is also of interest to ask how X and y will be affected when all three parameters
P.. P, and B are changed in the same proportion. Such a question still lies within
the realm of comparative statics, but unlike the preceding analysis, the present
inquiry now involves the simultaneous change of all the parameters.

When both prices are raised, along with income, by the same multiple j, every
term in the budget constraint will increase j-fold, to become

JB — jxP, ~ jyP, = 0

* If vou need a stronger dose of assurance that 7, represents the income effect, you can use (12.40)
and (12.44) to writc

T-,(£)~A(§j)ﬁ
T\ ) T \aB ) ap,

Thus T; 1s the effect of a change in P, on ¥ via the income factor B.
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Inasmuch as the common factor j can be canceled out, however, this new
constraint is in fact identical with the old. The utility function, moreover, is
independent of these parameters. Consequently, the old equilibrium levels of x
and y will continue to prevail; that is, the consumer equilibrium position in our
model 1s invariant to equal proportionate changes in all the prices and in the
income. Thus, in the present model, the consumer is seen to be free from any
“money illusion.”
Symbolically, this situation can be described by the equations

X(P\., P}.-, B) = X(JPY‘.]P\’.]B)
v(P.. P B)=7(jP. jP.JB)

The functions x and ¥, with the invariance property just cited, are no ordinary
functions; they are examples of a special class of function known as homogeneous
functions, which have interesting economic applications., We shall therefore ex-
amine these in the next section.

EXERCISE 12.5

1 Given U= (x+2)y+ Dand P, =4, P. = 6, and B = 130:
(a) Write the Lagrangian function.
(b) Find the optimal levels of purchase x and y.
(¢) Is the second-order sufficient condition for maximum satisfied?
(d) Does the answer in (/) give any comparative-static information?

2 Assume that U = (x + 2)(y + 1), but this time assign no specific numerical values to
the price and income parameters.

(a) Write the Lagrangian function.

(b) Find ¥, ¥, and A in terms of the parameters P, P, and B.

{¢) Check the second-order sufficient condition for maximum.

(d) By setting P, = 4, P_. = 6, and B = 130, check the validity of your answer to the
preceding problem.

3 Can your solution (x and y) in Exercise 12.5-2 yield any comparative-static informa-
tion? Find all the comparative-static derivatives you can, evaluate their signs, and interpret
their economic meanings.

4 From the utility function U = (x + 2)(y + 1) and the constraint xP, + yP, = B of
Exercise 12.5-2, we have already found the U, and |H |, as well as ¥ and A. Moreover, we
recall that |J| = |H |.

(a) Substitute these into (12.39) and (12.40) to find (dx/dB) and (dV/dB).

(b) Substitute into (12.42) and (12.43) to find (3x/dP,.) and (IV/3P,).

Do these results check with those obtained in Exercise 12.5-3?

S Comment on the validity of the statement *“If the derivate (dx/dP,) is negative, then x
cannot possibly represent an inferior good.”
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6 When studying the effect of dP, alone, the first equation in (12.37) reduces to — P dx —
P.dy = XdP_, and when we compensate for the consumer’s effectual income loss by
dropping the term X 4P,, the equation becomes — P.dX — P.dr = 0. Show that this last
result can be obtained alternatively from a compensation procedure whereby we try to
keep the consumer’s optimal utility level U (rather than effectual income) unchanged, so
that the term 7, can alternatively be interpreted as (dx/3P,) 7 onvam- | Hint: Make use
of (12.31")]

7 (a) Does the assumption of diminishing marginal utility to goods x and p imply strictly
convex indifference curves?

(b) Does the assumption of strict convexity in the indifference curves imply diminishing
marginal utility to goods x and y?

126 HOMOGENEOUS FUNCTIONS

A function is said to be homogeneous of degree r, if multiplication of each of its
independent variables by a constant j will alter the value of the function by the
proportion j, that is, if

SOy e, ) =7 (xx,)

In general, j can take any value. However, in order for the above equation to
make sense, ( jx,,...,/jx,) must not lie outside the domain of the function f. For
this reason, in economic applications the constant j is usually taken to be positive,
as most economic variables do not admit negative values.

Example 1 Given the function f(x, y.w) = x/y + 2w/3x. if we multiply each
variable by j, we get
o (jx) 2(jw) x 2w , o
fOx. vy jw) ==+ ===+ == fx. v,w) = f(x. y.w)
() 3(x) » 3

In this particular example, the value of the function will nor be affected at all by
equal proportionate changes in all the independent variables; or, one might say.
the value of the function is changed by a multiple of j° (= 1). This makes the
function f a homogeneous function of degree zero.

You will observe that the functions x and y cited at the end of the preceding
section are both homogeneous of degree zero.

Example 2 'When we multiply each variable in the function

2 2w2
+ —_—

X
g(xa)«W)—T .
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by j, we get

. v i) = . _
gljx, jy. jw) ; N5

() 20w) _ [x 2w?
() (x) ( "

e

The function g is homogeneous of degree one (or, of the first degree); multiplica-
tion of each variable by j will alter the value of the function exactly j-fold as well.

Example 3 Now, consider the function A(x, y,w) = 2x% + 3yw — w?. A similar
multiplication this time will give us

h(jx. jy, jw) = 2(jx)2 + 30y (jw) — (J'W)2 = j*h(x, yow)

Thus the function / is homogeneous of degree two; in this case, a doubling of all
variables, for example, will quadruple the value of the function.

Linear Homogeneity

In the discussion of production functions, wide use is made of homogeneous
functions of the first degree. These are often referred to as linearly homogeneous
functions, the adverb “linearly” modifying the adjective “homogeneous.” Some
writers, however, seem to prefer the somewhat misleading terminology linear
homogeneous functions, or even linear and homogeneous functions, which tends
to convey, wrongly, the impression that the functions themselves are linear. On
the basis of the function g in Example 2 above, we know that a function which is
homogeneous of the first degree is not necessarily linear in itself. Hence you
should avoid using the terms “linear homogeneous functions” and “linear and
homogeneous functions” unless, of course, the functions in question are indeed
linear. Note, however, that it is not incorrect to speak of “linear homogeneity,”
meaning homogeneity of degree one, because to modify a noun (homogeneity)
does call for the use of an adjective (linear).

Since the primary field of application of hinearly homogeneous functions is in
the theory of production, let us adopt as the framework of our discussion a
production function in the form. say.

(1245) Q= f(K.L)

Whether applied at the micro or the macro level, the mathematical assumption of
linear homogeneity would amount to the economic assumption of constant
returns to scale, because linear homogeneity means that raising all inputs (inde-
pendent variables) j-fold will always raise the output (value of the function)
exactly j-fold also.

What unique properties characterize this linearly homogeneous production
function?
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Property I Given the linearly homogeneous production function Q = f(K, L),
the average physical product of labor (APP,) and of capital (APP,) can be
expressed as functions of the capital-labor ratio, k = K/L, alone.

To prove this, we multiply each independent variable in (12.45) by a factor
J = 1/L. By virtue of linear homogeneity, this will change the output from Q to
JO = Q/L. The right side of (12.45) will correspondingly become

(5 -AEre

Since the variables K and L in the original function are to be replaced (whenever
they appear) by k& and 1, respectively, the right side in effect becomes a function
of the capital-labor ratio & alone, say, ¢(k), which is a function with a single
argument, k, even though two independent variables K and L are actually
involved in that argument. Equating the two sides, we have

(1246)  APP, = £ = (k)

The expression for APP, is then found to be

(1247)  APP, = % _ %% _ ci)(kk)

Since both average products depend on & alone, linear homogeneity implies
that, as long as the K/L ratio is kept constant (whatever the absolute levels of K
and L), the average products will be constant, too. Therefore, while the produc-
tion function is homogeneous of degree one, both APP, and APP, are homoge-
neous of degree zero in the variables K and L, since equal proportionate changes
in K and L (maintaining a constant k) will not alter the magnitudes of the
average products.

Property I Given the linearly homogeneous production function Q = f(K, L),
the marginal physical products MPP, and MPP, can be expressed as functions of
k alone.

To find the marginal products, we first write the total product as

(12.45") Q= Lé(k) [by (12.46)]

and then differentiate Q with respect to K and L. For this purpose, we shall find
the following two preliminary results to be of service:

L 9L 9L

(24g) K 6(1() I ak_a(K):i

9K~ dK\L)~ Ll 1
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The results of differentiation are

(12.49) MPPKEB—Q— i [Lo(k)]

dK ~ 9K
=L 8%(1?) = Ld¢d(/<k) —g% [chain rule]
1
- Lot 1) = #'k) [by (12.48)]
d J
(12.50) MPP, = £ = E[qu(k)]
= ¢(k) + Lé%(gl [product rule]
ak ‘
= ¢(k) + Lo'(k) 77 [chain rule]
-k
= ¢(k) + qu(k)7 [by (12.48)]
= ¢(k) — k¢'(k)

which indeed show that MPP, and MPP, are functions of &k alone.
Like average products, the marginal products will remain the same as long as

the capital-labor ratio is held constant; they are homogeneous of degree zero in
the variables K and L.

Property IIl1 (Euler’s theorem) If Q=/(K,L) is linearly homogeneous,
then

90,00 _
Kok T30 =

PROOF

k2, %€

ot Lo = Ke'(k) + L[o(k) = ke'(K)]  [by (12.49). (12.50)]

= Ko'(k) + Lo(k) — Ko'(k) [k =K/L]
= L¢(k)=Q [by (12.45")]

Note that this result is valid for any values of K and L; this is why the
property can be written as an identical equality. What this property says is that
the value of a linearly homogeneous function can always be expressed as a sum of
terms, each of which is the product of one of the independent variables and the
first-order partial derivative with respect to that variable, regardless of the levels
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of the two inputs actually employed. Be careful, however, to distinguish be-

. : J . :
tween the identity K g—% + Lﬁ% = @ [Euler’s theorem, which applies only to

the constant-returns-to-scale case of Q = f(K, L)] and the equation dQ =

—gTQ(dK + %%dL [total differential of Q, for any function Q = f(K, L)].

Economically, this property means that under conditions of constant returns
to scale, if each input factor is paid the amount of its marginal product, the total
product will be exactly exhausted by the distributive shares for all the input
factors, or, equivalently, the pure economic profit will be zero. Since this situation
is descriptive of the long-run equilibrium under pure competition, it was once
thought that only linearly homogeneous production functions would make sense
in economics. This, of course, is not the case. The zero economic profit in the
long-run equilibrium is brought about by the forces of competition through the
entry and exit of firms, regardless of the specific nature of the production
functions actually prevailing. Thus it is not mandatory to have a production
function that ensures product exhaustion for any and all (K, L) pairs. Moreover,
when imperfect competition exists in the factor markets, the remuneration to the
factors may not be equal to the marginal products, and, consequently, Euler’s
theorem becomes irrelevant to the distribution picture. However, linearly homoge-
neous production functions are often convenient to work with because of the
various nice mathematical properties they are known to possess.

Cobb-Douglas Production Function

One specific production function widely used in economic analysis is the Cobb-
Douglas production function:

(12.51) Q = AKeL! "~

where A4 is a positive constant, and « is a positive fraction. What we shall consider
here first is a generalized version of this function, namely,

(1252) Q= AK°L*

where f is another positive fraction which may or may not be equal to 1 — a.
Some of the major features of this function are: (1) it i1s homogeneous of degree
(a + B); (2) in the special case of « + B = 1, it is linearly homogeneous; (3) its
1soquants are negatively sloped throughout and strictly convex for positive values
of K and /1.; and (4) it 1s strictly quasiconcave for positive K and L.

[ts homogeneity is easily seen from the fact that, by changing K and L to jK
and jL, respectively, the output will be changed to

A(JK)" (L) = jo B(AKLF) = jo+BQ

That is, the functton is homogeneous of degree (a + B). In case « + B8 = 1, there
wili be constant returns to scale, because the function will be linearly homoge-
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neous. (Note, however, that this function is not linear! It would thus be confusing
to refer to it as a “linear homogeneous™ or “linear and homogeneous™ function.)
That its isoquants have negative slopes and strict convexity can be verified from
the signs of the derivatives dK /dl and d°K/dL? (or the signs of dL/dK and
d"L/dK?). For any positive output Q. (12.52) can be written as

AK*LP = Q, (A.K,L.Q,>0)
Taking the natural log of both sides and transposing, we find that

mA+alnK+BnlL~1InQ,=0

which implicitly defines K as a function of L.* By the implicit-function rule and
the log rule, therefore. we have
dKk  JF/dL (B/L) _ BK

Rkl - — = < (
dL dF/dK (a/K) al

Then 1t follows that

)
dL? dl.\  alL

The signs of these derivatives establish the 1soquant (any isoquant) to be down-
ward-sloping throughout and strictly convex in the LK plane for positive values
of K and L. This. of course. is only to be expected from a function that is strictly
quasiconcave for positive K and L. For the strict quasiconcavity feature of this
function, see Example 5 of Sec. 12.4, where a similar function was discussed.

Let us now examine the « + 8 = 1 case (the Cobb-Douglas function proper).
to verify the three properties of linear homogeneity cited earlier. First of all, the
total product in this special case is expressible as

K‘(!
(12.51)y Q= AK*“L' ":A(T) L= LAk®

where the expression 4k 1s a specific version of the general expression ¢ (k) used
before. Therefore, the average products are

Q o
APP — = — Ak
(12.53)
Q0L Ak
AP =% =Tk~ % =M

both of which are now functions of k alone.

* The conditions of tue implicit-function theorem are satistied. because F (the left-side expression)
has continuous partial derivatives. and because dF /0K = /K # 0 for positive valucs of K.
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Second, differentiation of ¢ = AK°L'™ ® yields the marginal products:

a— |
13% =AcxK"lL‘“”=Acx(§) = Aak®"!
(12.54) :
8Q _ a —a _ 5 : _ _ o
oy = AK (1 —a)L ™" = 4(l a)(L) —A(1 - a)k

and these are also functions of k alone.
Last, we can verify Euler’s theorem by using (12.54) as follows:
90 99 _ a1 a
K8K+L8L—KAak + LA(l — a)k
o Ka
= LAk [Lk +1 a}
=LAk [a + 1 —a] = LAk* = Q  [by(12.51")]

Interesting economic meanings can be assigned to the exponents a and
(1 — a) in the linearly homogeneous Cobb-Douglas production function. If each
input is assumed to be paid by the amount of its marginal product, the relative
share of total product accruing to capital will be

K{(0Q/0K)  KAak*"'
0  LAk®

Similarly, labor’s relative share will be

L(3Q/0L) _ LA(l —«)k* _
0 B LAk® B

]l — «

Thus the exponent of each input variable indicates the relative share of that input
in the total product. Looking at it another way, we can also interpret the
exponent of each input variable as the partial elasticity of output with respect to
that input. This isabejag?e the capital-share expression given above is equivalent

Q/K

is precisely that of ¢, .

What about the meaning of the constant A? For given values of K and L, the
magnitude of 4 will proportionately affect the level of Q. Hence 4 may be
considered as an efficiency parameter, i.e., as an indicator of the state of
technology.

to the expression = ¢, and, similarly, the labor-share expression above

Extensions of the Results

We have discussed linear homogeneity in the specific context of production
functions, but the properties cited are equally valid in other contexts, provided
the variables K, L, and Q are properly reinterpreted.
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Furthermore it is possible to extend our results to the case of more than two
variables. With a linearly homogeneous function

Y :f(XI’XZ""’xn

we can again divide each variable by x, (that is, multiply by 1/x,) and get the
result
X X3 X

= — e, 1 f 1

¥ xlqb( PRl iEEt [homogeneity of degree 1]

which is comparable to (12.45"). Moreover, Euler’s theorem is easily extended to
the form

n

Y x =y [Euler’s theorem]

i=1

where the partial derivatives of the original function f (namely, f;) are again
homogeneous of degree zero in the variables x;, as in the two-variable case.

The above extensions can, in fact, also be generalized with relative ease to a
homogeneous function of degree r. In the first place, by definition of homogene-
ity, we can in the present case write

o X2 X3 X .
y = x,qb( —=,=,...,= [homogeneity of degree r |

X; X, X,

The modified version of Euler’s theorem will now appear in the form

Yox.f=w [Euler’s theorem]

i=1

where a multiplicative constant r has been attached to the dependent variable y
on the right. And, finally, the partial derivatives of the original function f, the f,.
will all be homogeneous of degree (r — 1) in the variables x,. You can thus see
that the linear-homogeneity case is merely a special case thereof, in which r = 1.

EXERCISE 12.6

1 Determine whether the following functions are homogeneous. If so, of what degree?
(a) f(x.y)=yxy (d) f(x,y)=2x+y+ 3y

Xy

(b)Y flx.yy=(x*—yHY (o) flx,y,w) = ;,.Vh + 2Xw

)

() fopy=x=xy+p° (/) flxoy,w)=x" = Syw’

) instead of

2 Show that the function (12.45) can be expressed alternatively as Q = K "b(“ILE

o=l
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3 Deduce from Euler’s theorem that, with constant returns to scale:
{a) When MPP, = 0, APP, is ¢equal to MPP, .
() When MPP, = 0, APP, is equal to MPP,.

4 On the basis of (12.46) through (12.50), check whether the following are true under
conditions of constant returns to scale:

{a) An APP,; curve can be plotted against & (= K/L) as the independent variable (on
the horizontal axis).

{b) MPP, is measured by the slope of that APP, curve.

(¢) APPy is measured by the slope of the radius vector to the APP, curve.

{d)y MPP, = APP, — k(MPP, ) = APP, — k (slope of APP,).

5 Use (12.53) and (12.54) to verify that the relations described in parts b, ¢, and d of the
preceding problem are obeyed by the Cobb-Douglas production function.

6 Given the production function Q = AK*L#* show that:

(a) a + B > 1 implies increasing returns to scale.

() a + B < | implies decreasing returns to scale.

(c) « and f are, respectively, the partial elasticities of output with respect to the capital
and labor inputs.

7 Let output be a function of three inputs: Q = AK“L"N°.

(a) Is this function homogeneous? If so, of what degree?

(5) Under what condition would there be constant returns to scale? Increasing returns
to scale?

(¢) Find the share of product for input N, if it is paid by the amount of its marginal
product.

8 Let the preduction function Q = g( K, I.) be homogeneous of degree 2.

(a) Write an equation to express the second-degree homogeneity property of this
function.

(b) Find an expression for Q in terms of ¢{4), in the vein of (12.45).

(¢) Find the MPP, function. Is MPP, still a function of &k alone, as in the linear-ho-
mogeneity case?

{d) Is the MPP, function homogencous in K and L? If so, of what degree?

12.7 LEAST-COST COMBINATION OF INPUTS

As another example of constrained optimization, let us discuss the problem of
finding the least-cost input combination for the production of a specified level of
output Q,, representing, say, a customer’s special order. Here we shall work with a
general production function; later on, however, reference will be made to homo-
geneous production functions.

First-Order Condition

Assuming a smooth production function with two variable inputs, Q = Q(a. b),
where Q , O, > 0. and assuming both input prices to be exogenous (though again
omitting the zero subscript), we may formulate the problem as one of minimizing
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the cost
C=aP, + bP,
subject to the output constraint
Q(a. b) =@,
Hence, the Lagrangian function is
Z =aP,+ bP, + p[Q, - Q(a.b)]

To satisfy the first-order condition for a minimum C, the input levels (the
choice variables) must satisfy the following simultaneous equations:

Z,= 0y~ Qla.b) =0
Zu:Pu_-u‘Qazo
Zf):Ph_,'LQh:O

The first equation in this set i1s merely the constraint restated, and the last two
imply the condition

P, P
12.55 e
12399, 7o, 7"

At the point of optimal input combination, the input-price-marginal-product
ratio must be the same for each input. Since this ratio measures the amount of
outlay per unit of marginal product of the input in question, the Lagrange
multiplier can be given the interpretation of the marginal cost of production in
the optimum state. This interpretation is. of course, entirely consistent with our
earlier discovery in (12.16) that the optimal value of the Lagrange multiplier
measures the comparative-static effect of the constraint constant on the optimal
value of the objective function, that is, = (§C/8§Q,). where the § symbol
indicates that this 1s a partial total derivative.
Equation (12.55) can be alternatively written in the form

: P._ Q.
(12.55") P,= 0,
which you should compare with (12.31). Presented in this form, the first-order
condition can be explained in terms of i1soquants and isocosts. As we learned in
(11.36), the Q/Q, ratio is the negative of the slope of an 1soquant; that is. it is a
measure of the marginal rate of technical substitution of a for b (MRTS,,). In the
present model, the output level is specified at Q,; thus only one isoquant is
involved, as shown in Fig. 12.8, with a negative slope.

The P,/P, ratio, on the other hand, represents the negative of the slope of
isocosts (a notion comparable with the budget line in consumer theory). An
isocost, defined as the locus of the input combinations that entail the same total
cost, is expressible by the equation

G

Cy=aP,+ bP, or b= -

_—P—h a

|
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where C, stands for a (parametric) cost figure. When plotted in the @b plane, as in
Fig. 12.8. therefore, it yields a family of straight lines with (negative) slope
— P, /P, (and vertical intercept C,/P,). The equality of the two ratios therefore
amounts to the equality of the slopes of the isoquant and a selected isocost. Since
we are compelled to stay on the given isoquant, this condition leads us to the
point of tangency £ and the input combination (&, b).

Second-Order Condition

To ensure a minimum cost, 1t is sufficient (after the first-order condition is met) to
have a negative bordered Hessian, i.e., to have )

O Qu Qh
|H| =0, —#0Q. —#0Q.,|=p(0,0;-20,0,0,+ 0,02 <0
O, —uQ,, —uQ

Since the optimal value of p (marginal cost) is positive, this reduces to the
condition that the expression in parentheses is negative when evaluated at E.

From (11.40), we recall that the curvature of an isoquant is represented by
the second derivative

d*h -1 5 s

2 = 3 (Qanh - 2QuhQaQb + beQa)

da®  Qj
in which the same parenthetical expression appears. Inasmuch as Q, is positive,
the satisfaction of the second-order sufficient condition would imply that d?b/da?

Isoquant (@ = @,)

( db —Q,,>
slopg — — = ——
da @,

Isocosts

db _Pq ‘
slope = — — ’
da P, ’

Figure 12.8
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15 positive—that is, the isoquant is strictly convex—at the point of tangency. In
the present context, the strict convexity of the isoquant would also imply the
satisfaction of the second-order sufficient condition. For, since the isoquant is
negatively sloped, strict convexity can mean only a positive d?b/da’ (zero
d*b/da* is possible only at a stationary point on the isoquant), which would in
turn ensure that |H | < 0. However, it should again be borne in mind that the
sufficient condition |H | < 0 (and hence the strict convexity of the isoquant) at
the tangency is, per se, not necessary for the minimization of C. Specifically, C
can be minimized even when the isoquant is (nonstrictly) convex, in a multiple-
minimum situation analogous to Fig. 12.7b, with db/da”* = 0 and |H | = 0 at
each minimum.

In discussing the utility-maximization model (Sec. 12.5), it was pointed out
that a smooth, increasing, strictly quasiconcave utility function U = U(x, y) gives
rise to everywhere strictly convex, downward-sloping indifference curves in the xy
plane. Since the notion of isoquants is almost identical with that of indifference
curves,* we can reason by analogy that a smooth, increasing, strictly quasiconcave
production function Q = Q(a, b) can generate everywhere strictly convex, down-
ward-sloping isoquants in the ab plane. If such a production function is assumed,
then obviously the second-order sufficient condition will always be satisfied.
Moreover, it should be clear that the resulting C will be a unique absolute
constrained minimum.

The Expansion Path

Let us now turn to one of the comparative-static aspects of this model. Assuming
fixed input prices, let us postulate successive increases of ), (ascent to higher and
higher isoquants) and trace the effect on the least-cost combination b/a. Each
shift of the isoquant, of course, will result in a new point of tangency, with a
higher isocost. The locus of such points of tangency, known as the expansion path
of the firm, serves to describe the least-cost combinations required to produce
varying levels of Q. Two possible shapes of the expansion path are shown in Fig.
12.9.

If we assume the strict convexity of the isoquants (hence, satisfaction of the
second-order condition), the expansion path will be derivable directly from the
first-order condition (12.55%). Let us illustrate this for the generalized version of
the Cobb-Douglas production function.

The condition (12.55") requires the equality of the input-price ratio and the
marginal-product ratio. For the function Q = Aa®b”®, this means that each point
on the expansion path must satisfy

Q, Aaa* 'bP  ab

P
12.56 oz ” -
( ) P, Oy AaBbP' Ba

* Both are in the nature of “isovalue™ curves. They differ only in the field of application:
indifference curves are used in models of consumption and isoquants, in models of production.
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implying that the optimal input ratio should be

b _ BP,
— = —5 = aconstant
a «aobP,

(12.57)
since a, B, and the input prices are all constant. As a result, all points on the
expansion path must show the same fixed input ratio; i.e., the expansion path
must be a straight line emanating from the point of origin. This is illustrated in
Fig. 12.9h, where the input ratios at the various points of tangency (AL /0OA.
A'E’ /OA" and A"E" /0A") are all equal.

The linearity of expansion path is characteristic of the generalized Cobb-
Douglas function whether or not « + 8 = 1, because the derivation of the result
in (12.57) does not rely on the assumption « + § = 1. As a matter of fact, any
homogeneous production function (not necessarily the Cobb-Douglas) will give
rise to a linear expansion path for each set of input prices, because of the
following reason: if it is homogeneous of (say) degree r. the marginal-product
functions Q, and Q, must both be homogeneous of degree (» — 1) in the inputs ¢
and b; thus a j-fold increase in both inputs will produce a j”~ !-fold change in the
values of both Q, and Q,, which will leave the Q_/Q, ratio intact. Therefore, if
the first-order condition P /P, = Q,/Q, 1s satisfied at given input prices by a
particular input combination (g, b, ), it must also be satisfied by a combination
( ja,. jb,)—precisely as is depicted by the linear expansion path in Fig. 12.95.

Although any homogeneous production function can give rise to a linear
expansion path, the specific degree of homogeneity does make a significant
difference in the interpretation of the expansion path. In Fig. 12.9h, we have
drawn the distance OF equal to that of E£’, so that point I’ involves a doubling
of the scale of point E. Now if the production function is homogeneous of degree
one, the output at £’ must be twice (2' = 2) that of E. But if the degree of

Expansion path

Expansion path

/

Figure 12.9
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homogeneity is two, the output at E’ will be four times (2> = 4) that of E. Thus,
the spacing of the isequants for @ = 1, Q = 2,..., will be widely different for
different degrees of homogeneity.

Homothetic Functions

We have explained that, given a set of input prices, homogeneity (of any degree)
of the production function produces a linear expansion path. But linear expansion
paths are not unique to homogeneous production functions; for a more general
class of functions, known as homothetic functions, can produce them, too.

A homothetic function is a composite function in the form

(1258)  H=h[Q(a.b)]  [h(Q)+0]

where Q(a, b) is homogeneous of degree r. Although derived from a homoge-
neous function, the function H = H(a. b) is in general not homogeneous in the
variables ¢ and b. Nonetheless, the expansion paths of H(a, b), like those of
Q(a, b), are linear. The key to this result is that, at any given point in the ab
plane, the H isoquant shares the same slope as the Q isoquant:

(12.59)  Slope of H isoquant = ~ %; T %
Q.

= — —= = slope of Q isoquant

Qs

Now the linearity of the expansion paths of Q(a, b) implies, and is implied by,
the condition

a

: b
= constant for any given P

0
In view of (12.59), however, we immediately have
f, b
(12.60) — —% = constant for any given —
H, a

as well. And this establishes that H(a, b) also produces linear expansion paths.

The concept of homotheticity is more general than that of homogeneity. In
fact, every homogeneous function is automatically a member of the homothetic
family, but a homothetic function may be a function outside the homogeneous
family. The fact that a homogeneous function is always homothetic can be seen
from (12.58), where if we let the function H = h(Q) take the specific form H = Q
—with 7' (Q)=dH/dQ = 1—then the function @, being identical with the
function H itself, is obviously homothetic. That a homothetic function may not be
homogeneous will be illustrated in Example 2 below.

In defining the homothetic function H, we specified in (12.58) that 4'(Q) # 0.
This enables us to avoid division by zero in (12.59). While the specification
h'(Q) # 0 1s the only requirement from the mathematical standpoint, economic
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considerations would suggest the stronger restriction A'(Q) > 0. For if H(a. b) 1~.
like Q(a, b), to serve as a production function, that is, if H is to denote output.
then H, and H, should, respectively, be made to go in the same direction as Q_
and Q, in the Q(a, b) function. Thus H(a, b) needs to be restricted to be u
monotonically increasing transformation of Q(a, b).

Homothetic production functions (including the special case of homogencous
ones) possess the interesting property that the (partial) elasticity of optimal input
level with respect to the output level is uniform for all inputs. To see this, recall
that the linearity of expansion paths of homothetic functions means that the
optimal input ratio b/a is unaffected by a change in the exogenous output level
H,. Thus d(b/a)/dH, = 0 or
1 (& ;Zo - 5581%0) =0  [quotient rule]

2
a

Multiplying through by ﬁzHO, and rearranging, we then get
da H, b H,

= — or eiy = Ef
= H bH,
dH, a dH, b atly 0

which is what we asserted above.

Example 1 Let H = Q?, where Q = Aa®b®. Since Q(a, b) is homogeneous and
h'(Q) = 1Q is positive for positive output, H(a, b) is homothetic for Q > 0. We
shall verify that it satisfies (12.60). First, by substitution, we have

H = Q%= (4a°b*)’ = A%a*p**
Thus the slope of the isoquants of H is expressed by

H A22 2a—132p8 b
(12.61) __“:__u_?a_Tb_:_a_
H, A*a? b P! Ba

This result satisfies (12.60) and implies linear expansion paths. A comparison of
(12.61) with (12.56) also shows that the function H satisfies (12.59).

In this example, Q(a, b) 1s homogeneous of degree (a + ). As it turns out,
H(a, b) is also homogeneous, but of degree 2(a + B). As a rule, however, a
homothetic function is not necessarily homogeneous.

Example 2 Let H = e, where Q = Aa®bh”. Since Q(a, b) is homogeneous and
h'(Q) = e? is positive, H(a, b) is homothetic. From this function,

H(a.b) = exp(Aa®hP)
it is easily found that
H, Aaa® 'bPexp( Aa®b?) ab
H, T Aa®BbP lexp( Aa®h?) ~ Ba

This result is, of course, identical with (12.61) in Example 1.
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This time, however, the homothetic function is ror homogeneous, because

H(ja. jb) = exp| 4(ja)"(jb)"] = exp( Aa"b¥j ' #)

[exp(Aab®)]" " = [H(a. b)) "+ j'H(a. b)

Elasticity of Substitution

Another aspect of comparative statics has to do with the effect of a change in the
P,/P, ratio upon the least-cost input combination /@ for producing the same
given output Q, (that is, while we stay on the same isoquant).

When the (exogenous) input-price ratio P, /P, rises, we can normally expect
the optimal input ratio b/a also to rise, because input b (now relatively cheaper)
will tend to be substituted for input «. The direction of substitution is clear, but
what about its exzent? The extent of input substitution can be measured by the
following point-elasticity expression, called the elasticity of substitution and de-
noted by o (lower-case Greek letter sigma, for “substitution”):

relative change in (b /a)

[

(12.62) o - .
relative change in (P,/P,)

d(b/a) d(b/a)

_ b/c7 - d(Pu/Ph)
~d(p/P)  b/a
Pu/Ph Pu/Ph

The value of o can be anywhere between 0 and ~c; the larger the o, the greater
the substitutability between the two inputs. The limiting case of ¢ = 0 is where
the two inputs must be used in a fixed proportion as complements to each other.
The other limiting case, with o infinite, 1s where the two inputs are perfect
substitutes for each other. Note that, if (b/a@) is considered as a function of
(P,/P,), then the elasticity ¢ will again be the ratio of a marginal function to an
average function.*

For illustration, let us calculate the elasticity of substitution for the gener-
alized Cobb-Douglas preduction function. We learned earlier that, for this case.

*There is an alternative way of expressing o. Since, at the point of tangeneyv. we alwavs have
I)U QU

> =, = MRTS,
P/W Q])

the elasticity of substitution can be defined equivalently as
d{bh/a) d(b/a)
relative change in (b/a) b/ d(Q,/0,)

relative change in MRTS,, Td(0.0,) b/a
Q(J/Q/‘V ch/’Q/‘

(1262) o=
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the least-cost input combination is specified by

( b ) _ E(&) [from (12.57)]

al al P

This equation is in the form y = ax, for which dy /dx (the marginal) and y /x (the
average) are both equal to the constant a. That 1s,
d(bsa) _ B b/a__ B

= — nd =
d( Pu/Ph) o ‘ Pu/P/) «

Substituting these values into (12.62), we immediately find that 6 = 1; that is, the
generalized Cobb-Douglas production function is characterized by a consrani.
unitary elasticity of substitution. Note that the derivation of this result in no way
relies upon the assumption that a + 8 = 1. Thus the elasticity of substitution of
the production function Q = Aa*h” will be unitary even if a + 8 # 1.

CES Production Function

More recently. there has come into common use another form of production
function which, while still characterized by a constant elasticity of substitution
(CES), can yield a ¢ with a (constant) value other than 1.* The equation of this
function. known as the CES production function, is

(12.63) Q:A[SK P+ (1 -8)L p] “1/p
(A>O;O<5<]; —1 <pi0)

where K and L represent two factors of production, and 4. 8, and p (lowercase
Greek letter rho) are three parameters. The parameter A (the efficiency paramerer)
plays the same role as the coefticient 4 in the Cobb-Douglas function; it serves as
an indicator of the state of technology. The parameter § (the distribution parame-
ter), like the a in the Cobb-Douglas function, has to do with the relative factor
shares in the product. And the parameter p (the substitution parameter )— which
has no counterpart in the Cobb-Douglas function—is what determines the value
of the (constant) elasticity of substitution, as will be shown later.

First. however, let us observe that this function is homogeneous of degree
one. If we replace K and L by /K and jL. respectively, the output will change from

Q to
ALUK) " (1 =0)L) ] T =l K (L= gy
=) e =

Consequently, the CES function, like all linearly homogeneous production func-
tions. displays constant returns to scale, qualifies for the application of Euler’s
theorem, and possesses average products and marginal products that are homoge-
neous of degree zero in the variables K and /..

* Ko 1o Arrow, H, B. Chenery, B. S. Minhas, and R. M. Solow. * Capital-Labor Substitution and
Economic Efficiency.” Review of Economics and Statisues, August 1961, pp. 225-250.
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We may also note that the isoquants generated by the CES production
function are always negatively sloped and strictly convex for positive values of K
and L. To show this, let us first find the expressions for the marginal products Q,
and Q. Using the notation [ - - - ] as a shorthand for [6K™° + (1 — §)L *], we
have

(12.64) Q[‘zg_%z (_%)[“'](l/m‘(l—ﬁ)(—p)LD'l
=(1_S)A[,,_]*U*P)/PLf(Hp)
1(1—8)/4/14;0[...](I+p)/PL(l+p)
;(1—14_;8—)(%)”>0 [by (12.63)]

and similarly,

8Q B 6 Q I+p
dK  A° ( K) >0
which are defined for positive values of K and L. Thus the slope of isoquants
(with K plotted vertically and L horizontally) is

ak @, (1 —38) ( K

(12.66) - = il b

(12.65) Q4

)Hp<0 [see (11.36)]

It can then be easily checked that d°K/dL? > 0 (which we leave to you as an
exercise), implying that the isoquants are strictly convex for positive K and L.

[t can also be shown that the CES production function is quasiconcave for
positive K and L. Further differentiation of (12.64) and (12.65) shows that the
second derivatives of the function have the following signs:

_ 4, _(0-8)+p0)(Q\VV2L-0
QLI__EQL_ 4P (z’) IT<O

[0, L — Q < 0, by Euler’s theorem]

_ 3, _8(1+p)[Q\"OxkK- 0
QKK_WQK—T(E) KT<0

[QxK — Q < 0, by Euler’s theorem]

(1—5)(1+p)(Q)"&>

Q1 = Q1 = 1° ! L

These derivative signs, valid for positive K and L, enable us to check the sufficient
condition for quasiconcavity (12.26). As you can verify,

|B)| = —Qx <0
and |By| = 2Qx0,0k; — le(QLL ~ QiQkk >0

Thus the CES function is quasiconcave for positive K and L.

0
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Last, we shall use the marginal products in (12.64) and (12.65) to find the
elasticity of substitution of the CES function. To satisfy the least-cost combina-
tion condition Q, /Qx = P, /Py, where P, and P, denote the prices of labor
service (wage rate) and capital service (rental charge for capital goods), respec-
tively, we must have

I—S(K)”p P,
— = = —= see (12.66
so1T) = lee(1zeo)]

Thus the optimal input ratio is (introducing a shorthand symbol ¢)
I’ WUy p L/ (1+p) P 1/(1+p)
(12.67) X =PJLJ L =L
L 1 -6 P, Py

Taking (K/L) to be a function of (P, /P ). we find the associated marginal and
average functions to be

dK/L p /00
Marginal function = (K/L) N _L)
d(P,/P.) 1+pl| P
N v/ A
Average function = PP, = ( PK)

Therefore the elasticity of substitution is*

_ Marginal function 1

Average function 1+ p

(12.68)

What this shows 1s that ¢ 1s a constant whose magnitude depends on the
value of the parameter p as follows:

»1<p<0\ {o>1
p =10 = o= 1
0<p<oc/ \0<]

Cobb-Douglas Function as a Special Case of the CES Function

In this last result, the middle case of p = 0 leads to a unitary elasticity of
substitution which, as we know, is characteristic of the Cobb-Douglas function.
This suggests that the (linearly homogeneous) Cobb-Douglas function is a special

* Of course, we could also have obtained the same result by first taking the logarithms of both
sides of (12.67):

K 1 P,
Inl =1 =1In¢ + In| —
[/ l+p Py

and then applving the formula for elasticity in (10.28). to get

_d(nK/1)

T dn k) T
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case of the (linearly homogeneous) CES function. The difficulty is that the CES
function, as given in (12.63). is undefined when p = 0, because division by zero is
not possible. Nevertheless, we can demonstrate that, as p — 0, the CES function
approaches the Cobb-Douglas function.

For this demonstration, we shall rely on a technique known as L' Hépital s

rule. This rule has to do with the evaluation of the limit of a function f(x) = mlx)

n(x)

as x — a (where a can be either finite or infinite), when the numerator m(x) and
the denominator n(x) either (1) both tend to zero as x — a, thus resulting in an
expression of the 0/0 form, or (2) both tend to 4+ 20 as x — a. thus resulting in
an expression in the form of oo /o0 (or oo/ — 00, or —o¢c /00, Or —00/— ).
Even though the limit of f(x) cannot be evaluated as the expression stands under
these two circumstances, its value can nevertheless be found by using the formula

(12.69)  tim 20Dy 0

L’Hopital’s rul
X—a n(x) [y n(x) [ opita Srue]

Example 3 Find the limit of (1 — x?)/(1 — x) as x = 1. Here, both m(x) and
n(x) approach zero as x approaches unity, thus exemplifying circumstance (1).

Since m'(x) = —2x and n'(x) = — 1, we can write
_ y2 _
lim —— = lim =2 = fim 2x = 2
x>l 1 —x a1 —1 x—

This answer 1s 1dentical with that obtained by another method in Example 2 of
Sec. 6.4.

Example 4 Find the limit of (2x + 5)/(x + 1) as x = . When x becomes
infinite, both m(x) and n(x) become infinite in the present case; thus we have
here an example of circumstance (2). Since m’(x) = 2 and n’(x) = 1. we can write

= 1' — =

M T Myt

Again, this answer is identical with that obtained by another method in Example
3 of Sec. 6.4.

It may turn out that the right-side expression in (12.69) again falls into the
0/0 or the oo /o format, same as the left-side expression. In such an event. we
may reapply L’'Hopital’s rule, i.e., we may look for the limit of m”(x)/n"(x) as
x — a, and take that limit as our answer. It may also turn out that even though
the given function f(x), whose limit we wish to evaluate, is originally not in the
form of m(x)/n(x) that falls into the 0,/0 or the oo /oc format upon limit-taking,
a suitable transformation will make f(x) amenable to the application of the rule
in (12.69). This latter possibility can be illustrated by the problem of finding the
limit of the CES function (12.63)—now viewed as a function Q(p)—as p — 0.

As given, Q(p) is not in the form of m(p)/n(p). Dividing both sides of
(12.63) by A, and taking the natural log, however, we do get an expression in that
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form, namely,

~In{éK * + (1 -8)L°°
(1270) 10 2=l (=)L) mle)
A p n(p)
Moreover, as p — 0, we find that m(p})— —In[6 + 1 — 6] = —Inl =0, and

n(p) — 0, too. Thus L’Hopital’s rule can be used to find the limit of In(Q/A4).
Once that is done, the limit of Q can also be found: since Q /A4 = ¢'"™€/1) 50 that
QO = Ae™2/ it follows that

(12.71)  lim Q = lim 4e"™@/*) = gelmine/4

From (12.70), let us first find m'(p) and n’(p), as required by L’Hopital’s rule.
The latter is simply n’(p) = 1. The former is
[8K 4+ (1=8)L *] dp
— [=8K *InK = (1 =&)L *In L]

B [6K*+(1—8)L *] [by (10.217]

m'(p) = (6K 7+ (1 —8)L "] [chain rule]

By L’Hopital’s rule, therefore, we have

imin L - i o) _dn K+ (1-6)nl
p—0 A =0 n'(p) 1

In( K°L'"%)

In view of this result, when e is raised to the power of lim In(Q/A4), the outcome
p—0

is simply K°L' °. Hence, by (12.71), we finally arrive at the result
lim Q = AK®L! ®

p—0

showing that, as p — 0, the CES function indeed tends to the Cobb-Douglas
function.

EXERCISE 12.7

1 Suppose that the isoquants in Fig. 1295 are derived from a particular homogeneous
production function ¢ = Q(a. b). Noting that OF = EE’ = E'E”, what must be the
ratios between the output levels represented by the three isoquants if the function Q is
homogeneous

(a) of degree one? (b) of degree two?

2 For the generalized Cobb-Douglas case, if we plot the ratio h/a against the ratio P,/ P,
what type of curve will result? Does this result depend on the assumption that a + § = 1?
Read the elasticity of substitution graphically from this curve.

3 Is the CES production function characterized by diminishing returns to each input for
all positive levels of input?

4 Show that, on an isoquant of the CES function, d*K/dL> > 0.
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5 (a) For the CES function, if each factor of production is paid according to its marginal
product, what is the ratio of labor’s share of product to capital’s share of product? Would
a larger value of § mean a larger relative share for capital?

(b) For the Cobb-Douglas function, is the ratio of labor’s share to capital’s share
dependent on the K/L ratio? Does the same answer apply to the CES function?

6 (a) The CES production function rules out p = — 1. If p = — 1, however, what would
be the general shape of the isoquants for positive K and L?
(0) Is o defined for p = —1? What is the limit of 0 as p —» — 17

(¢) Interpret economically the above results.

7 Show that by writing the CES function as Q = A[6K™ " + (1 — 8)L *] "?. where
r > 0 is a new parameter, we can introduce increasing returns to scale and decreasing
returns to scale.

8 Evaluate the foliowing:

. oxT—x— 12 N
(a) lim —————= (¢) lim =t
x4 X l~ 4 v} | X
(b) lim < (d) lim
x— () X e X

9 By use of L’Hopital’s rule, show that

(¢) lim ~ =0 (b) lim xInx =0 (¢) lim x® =1
x> € x—0 c—{

128 SOME CONCLUDING REMARKS

In the present part of the book. we have covered the basic techniques of
optimization. The somewhat arduous journey has taken us (1) from the case of a
single choice variable to the more general #-variable case, (2) from the polynomial
objective function to the exponential and logarithmic, and (3) from the uncon-
strained to the constrained variety of extremum.

Most of this discussion consists of the “classical” methods of optimization,
with differential calculus as the mainstay. and derivatives of various orders as the
primary tools. One weakness of the calculus approach to optimization is its
essentially myopic nature. While the first- and second-order conditions in terms
of derivatives or differentials can normally locate relative or local extrema without
difficulty, additional information or further investigation is often required for
identification of absolute or global extrema. Our detailed discussion of concavity,
convexity, quasiconcavity, and quasiconvexity is intended as a useful stepping
stone from the realm of relative extrema to that of absolute ones.

A more serious limitation of the calculus approach is its inability to cope with
constraints in the inequality form. For this reason, the budget constraint in the
utility-maximization model, for instance, is stated in the form that the total
expenditure be exactly equal to (and not “less than or equal to”) a specified sum.
In other words, the limitation of the calculus approach makes it necessary to deny
the consumer the option of saving part of the available funds. And it is for
precisely the same reason that we have not explicitly constrained the choice
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variables to be nonnegative, as economic common sense may dictate. In fact, we
have only been able to use inequalities as model specifications (such as Q,>0
and @, < 0). These play a role in evaluating the signs of mathematical solutions
but are not objects of mathematical operations themselves.

We shall deal with the matter of inequality constraints when we study
mathematical programming (linear and nonlinear programming), which repre-
sents the “nonclassical” approach to optimization. That topic, however, is re-
served for Part 6 of the book. Meanwhile, so that you can develop an appreciation
of the full sweep of categories of economic analysis—statics — comparative
statics — dynamics—we shall introduce in Part 5 methods of dynamic analysis.
This is also pedagogically preferable, since the mathematical techniques of
dynamic analysis are closely related to methods of differential calculus which we
have just learned.

For those of you who are anxious to turn to mathematical programming.
however, it is perfectly feasible to skip Part 5 and proceed directly to Part 6. No
methodological difficulties should arise.



