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Some Typical Applications of Experimental Design

taperimental Jisdgn methods have found bromd application in many disciplines. Ay Ay
previmusly, we may view experimentation ax pari of the scientific process und us o pf the
ways hy which we kearn about huw systems or processes work. Generally. we keurn throyg,
a setles ol activitles In which we moke conjeciures aboul a process. perfum experimens i
generate dala from the process, and then use the information from the experiment to culabliy,
new conjectures, which lcaul 1o new capenments, and so on,

Caperimental design is a critically impostant 1ool in the scientilic and cnpincering word
for improving the provduct realizalion prscess. Critical components of Lthese activities are iy
new manufacturing process desisn and development, and proecess managemenl. The applic-
tion of experimental design techniues early in process development can result in

I. Improved process ylelds

2. Reduced varishility and closer confonnunce lo pominal or larget requircments
3. Reduccd development time

d. Reduced overall emis

Experimental design methods are also of fundamental importance in englrecring
deslpn activiiies, where new products are teveloped and existing onres improved, Some agphi-
cations ol experimental deslgn in engincering design include

" 1. Evaluation and comparison uf basie design cunligurations
2. Evaluation of marerial aliematives

A, Scleetion of design purameters so Ut the product will work wel wider o wide var-
ety of eld canditions, that is, so that the product is robust

Determination of key product design parameters that impact product performunce

et F 'qﬁli!ﬁﬁii of new products.
b AT e e e _ _

he L ﬁwﬁéﬁl deslgn in product realization can result in products that ofe casicr

\to mantufactiire ahd that have cnhanced Meld performance and reliability, lower product

‘product deslen ary) development tine. Designed experiments also have

'“Ii: marketing, e kel research, Immsaxlioual pnd service operilions

operations. We s present several examples that illusirate some o
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Guidelines for Designing Experiments

To wse the statistical approach in designing and analyzing im experiment, it s negesy; Y for

i aases

———

cveryvone nvolved i the ex perimcm to have welear idea i advanee off L\.ltlly whal is to he stug
tedd, how the data are to be collected, and at least a qualitative understanding of how theye ay

are to be analyzed. An outline of the recommended procedure is shown in Table 1,1, W
give o briel discussion of this outline and elaborate on sonie of the key points, For more detaily,

Now

see Coleman and Moutgomery (1993), and the references therein, The supplemental text
material for this chapter is also useful,

.-\J/I Recognition of and statement of the problem,  This may secem 1o be a rather obi.

ous point, but in practice oflen neither it is simple to realize that & problem requiring
experimentation exists, nor is it simple to develop a clear and generally aceepted state-
ment of this problem. 1t is necessary to develop all ideas about the objectives of the
experiment. Usually, it is important to solicit input from all concerned partics: engj-
neering, quality assurance, manufacturing, marketing, management, customer, and
operating personnel (who usually have much insight and who are too often ignored),
For this reason, a team approach to designing experiments is recommended.

al is usually helpful to prepare i list of specitic problems or questions that are
to be addressed by the experiment. A clear statement of the problem often contributes
‘substantially to better understanding of the phenomenon being studied and the final
solution of the problem}l is also important to keep the overall objective in mind; for
example, is this a new process or system—in which case the initial objective is
likely to be characterization or factor sereening—or is it a mature or reasonably
well-understood system that has been previously characterized—in which case the
objective may be optimization There are many possible objectives of an experi-
ment, including confirmation (I8"the system performing the same way now that it
did in the past?). discovery (What happens iff we explore new materials, variables,
operating conditions, ctc.?), and stability or robustnessj(Under what conditions do
the response variables of interest seriously degrade? Or, how can we reduce the vari-
ability in the response variable that arises [rom sources that we cannot directly con-
" trol?). Obviously, the specific questions to be addressed in the experiment relate
directly to the overall objectives. An important aspect of problem tformulation is the
rccoumtmn that one large comprehensive experiment is unlikely to answer the key
questions satistactorily. A single comprehensive experiment requires the experi-
1enters o know the answers 10 & lot of questions, and if they are wrong, the results
ill:be dlmppomtm". This leads to wasting time, materials, and other resources

and | hlqy" result in never .msxvurmg the original l”C\CslI‘(.h questions satisfactorily. A

Pre-experimental
planning

pcnm;.m _
of thedata " .. -
commendations -
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1.4 Guidelines for Designing Experiments 15

S(-‘(.llll.'flﬁal approach employing a series of smaller experiments, each with a specific
objective, such as factor screening, is a better strutegy.
2. Selection of the response variable. u:] selecting the response variable, the experi-
menter should be certain that this varhble really provides useful information about
the process under study. Most often, the average or standard deviation (or both) of
the measured characteristic will be the response vnriuthMultipIc responses are not
unusual, Gauge capability (or measurement error) is also an important factor. If
gauge capability is inadequate, only relatively large factor effects will be detected by
the experiment or perhaps additional replication will be required.\In some situations
_\vhcrc gauge capability is poor, the experimenter may decide to measure each exper-
tmental unit several times and use the average of the repeated measurements as the
f)bservpd response)lt is usually critically important to identify issues related to defin-
g the responses of interest and how they are to be measured before conducting the
experiment, Sometimes designed experiments are employed to study and improve the
performance of measurement systems. For an example, see Chapter 12,

\/3. Choice of factors, levels, and range. (As notgd in Table 1.1, steps 2 and 3 are often

done simultaneausly or in the reverse order.)&hen considering the factors that may
‘influence the performance of a process or systém, the experimenter usually discov-
ers that these factors can be classified as either potential design factors or nuisance
factors. The potential design factors are those factors that the experimenter may wish
to vary in the experiment. Often we find that there are a lot of potential design fac-
tors, and some further classification of them is helpful. Some useful classifications
are design factors, held-constant factors, and allowed-to-vary factors. The design
factors are the factors actually selected for study in the experiment. Held-constant
factors are variables that may exert some effect on the response,)but for purposes of
the present experiment these factors are not of interest, so they will be held at a spe-
cific level. For example, in an etching experiment in the semiconductor industry,
there may be an effect that is unique to the specific plasma etch tool used in the

experiment. However, this factor would be very difficult to vary in an experiment, so -

" the experimenter may decide to perform all experimental runs on one particular (ide-
ally “typical™) etcher. Thus, this factor has been held constant. As an example of
allowed-to-vary factors, the experimental units or the “materials™ to which the design
factors are applied are usually nonhomogeneous, yet we often ignore this unit-to-unit

variability and rely on randomization to balance out any material or experimental -

unit effect. We often assume that the effects of held-constant factors and allowed-to-
vary factors are relatively small. -
Nuisance factors, on the other hand, may have large effects that must be

‘ffect.'lf’or example, the relative humidity in the process envi-
s§;performance, and if the humidity cannot be controlled,
nd treated as a covariate. When a factor that varies nat-
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the settings of the controllable design factors that minimize the variabiliyy anyy,
§ & ‘ '

‘ed from the noisc factors. This is sometimes callcd' P robustnesy gy
' oo analysis of covariance. and process rolyg.
robust design problem. BlOCl;]l“w ‘: aly | Obustyg,
ulios 2 iscus later in the text. o
bmdu‘z;:lrcccdtll:?:;ssgrimemcr has Sell.)C(Cd the. dcsxgl; I}u:‘l-nr.‘%.“l;c‘ ;H .s‘hc MUSE chog,,
the ranges over which these factors wn!l be varied anc t 1‘."\?‘.51~ 'L ‘L\-Lls at which Uy
will be made. Thought must also be given to how lhehtf fd%lm.\ are to be Controlley,
the desired values and how they arc to be mf:usurcd. For mslufl‘cc. i the flow g i
~ experiment. the engineer has delined 12 variables lh:u. may :mc-u _thc occurrence o
~ solder defects. The experimenter will also nave to ‘dcmdc (‘m a lcgl(.m ol mterey for
each variable (that is, the range over which each Tactor will be ‘vnncd) and on
many levels of each variable tofusc. Proccss knmvlcdgc 18 rcqt‘nrcd o do this, "Thiy
process knowledge is usually @ _tombinalion of practical expericnce .und theoretiey
~understanding. 1t is important to investigate all factors that may be ol unportance gy
to be not overly influenced by past cxperience, particularly when we are i the carly
stages of experimentation or when the process is not very mature.

‘When the objective of the experiment is factor screening or process charag.
terization, it is usually best to keep the namber of factor levels low. Generally, twy
“levels work very well in factor screening studics. Choosing the region of iaterest iy

also important. In factor screening, the region of interest should be retatively lurge—
that is, the range over which the factors are varied should be Fread, As we learn mor
~ about which variables are important and which levels prodace ihe best results, the
~ region of interest will usually become NATTOWC.

' The cause-and-effect diagram can be 2 useful echnique for organizing some
~of the information generated in pre-experimental planning. Figure 110 is the cause

and-effect diagram constructed while planning an experiment to resolve problems

with wafer charging (a charge accumulation on the wafers) encountered in an etching

tool used in semiconductor manufacturing. The cause-and-effect diagram is also
‘known as a fishbone diagram becausc the “effect” of interest or the response variable
~is drawn along the spine of the diagram and the potential causes or design factors are

-Unfamiliarity with normal
wear conditions;

Flood gun: ...
. installation

ntd=effect dinoram for the astehine nracece
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Uncontrollabla Controllable design
factors factors

x-axis shift
Spindle differences \ y-axis shift

Ambient temp 2-axis shift

Spindle speed
Titanium properties\ Fixture height

.

Feed rate Blade profile,

= surface finish,
defects
Ope Viscosity of
i cutting fluid
Tool vendor Te{“p of cutting
. fluid

Nuisance (blocking) Held-constant
factors ) factors

wm FIGURE 1.11 A causc-and-effect diagram for the CNC
machine experiment

organized in a series of ribs. The cause-and-effect diagram uses the traditional causes
of measurement, materials, people, environment, methods, and machines to organize
the information and potential design factors. Notice that some of the individual caus-
es will probably lead directly to a design factor that will be included in the experiment
(such as wheel speed, gas flow, and vacuum), while others represent potential areas
that will need further study to turn them into design factors (such as operators follow-
ing improper procedures), and still others will probably lead to either factors that will
be held constant during the experiment or blocked (such as temperature and relative
humidity). Figure 1.11 is a cause-and-effect diagram for an experiment to study the
effect of several factors on the turbine blades produced on a computer-numerical-
contmllcd (CNC) machine. This experiment has three response variables: blade pro-

,-blade surfacc hmqh. nnd surface finish defects in the finished blade The causes

het.ls It is unlikely that one person has all the knowledge required
many situations, Th(.reton,, we strongly argue for a team effort

done. S e _
design. é f_t_he abswe pre-experimental planning activities are
ep is relatively easy. Choice of design.involves consideration of
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sample wize (nber of replicaten), wlegtion of i '-:.vm!.:':h"f..* ron order o !.‘S"-:: AR
meatl trials, s determination of sehether or 1ol binghang or sty randomization
restrictions wre ivalved X1 hin book disetsses some of the mnre ImpORant typs of
experimental desipna, nid it can vlumately be et as cutulog for sclecting
appropriite experimental design for a wide variety of probicms. 3
 fhere we wlso several interactive statiadical spftware packagcs ‘hif' SEPPOLs L
phuse of exparitnental desdpn. The eapernente can colet mnfutination shoul IS ruimn-
ber of factoes, bavels, mulh ranges, atned Higae progranis wnill enther present aselechion of
desipns for consideration o fecommend particulas d""""-;"-"'_m'c g Lynce)seves:
al alternatives instead of relying o cotnpter n:t,mmncndmmri in snost cases.) These
progruns will usilly also provide a weathsheet (with the order of the runs random.
ized) for use in conducting (he eaperiment, . -

I seleeting the design, it important 10 feep the crperimental ghjeetives in
mind. In many engincering experiments, we alteady knovs an the ontzet that some of
the fuctor levels will result in different values fr thie responie, Consequently, we are
interested in identifying shich Gactors ciuse this difference and in estimaling lh(': mag-
nitude of the response ehange. T otlier situations, we miy b moure interested in ver-
ifying uniformity, Far extumple, two production conditions A and B may be corpparcd,
A being the standard and 13 being i mote costeeffective alternative, The experimenter
will then be interested in demonstrating that, say, there is no difference in yicld
between the two conditions,

NS, Performing the experiment, (thn running the experiment, iUis vital to monitor
the process carefully to ensure that everything is being done according to plan,
Errors in experimental procedure at this stage will wsually destroy experimental
validity. Up-front planning is crucial 1o success. It is casy to underestimate the
logistical and planmng aspects of running a designed experiment in a complex
manufacturing or research and development environment.

Colemun and Montgomery (16931 suggest that prior Lo conducting the experi-
ment a few trial runs or pilot runs are often helpful, These runs provide information
about censistency of experimental material, @ chicck on the measurement system, a
rough idea of experimental crror, and a chance (o practice the overall experimental
technique. This also provides an opportunity to revisit the decizions made in steps
1-4, if necessary, ' ’

v’?? Statistical analysis of the data.@‘!utimcal_mulhodf; shiould be used 1o analyze the data
s0 that results and conclusions are objective rather than judgmental in nature. If the
experiment has been designed correerly and performed according to the design, the

signed 10 assist in datis analysis, and many of the programs used in step 4
fesign provide s seamless, dircet interfuce 16 the sintistical analysis. Often
9""“ sraphical methods play an important role in data analysis and
. Because many of the questions thit the erperimenter wants 1o answer
nto an‘hypothesis-testing framework, hypothesis testing and contidence
ition ‘procedures are very useful in analyzing data from 4 designed
I s also usually very helpful to present the results of many cxpf.:rimchm
mpirical model, that i, un equation derived from the data that cxpress
ebween the response and the important design factors. Residual

wauacy cheeking dre also imponant anolysis techniques, We will

o ('?ﬂ m"ﬁw‘j“ sannot prove that o factor (or factors) has 8
0Y-provide guidelings i 16 the refiability and validity o
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results. When properly applicd, statistical methods do not allow anything to be proved
experimentally, but they do allow us to measure the likely error in a conclusion or to
attach a level of confidence to a statement, The primary advantage of statistical meth-
ods is that they add nbchuvuy to the decision-making process. Statistical techniques

coupled with good engineering or process knowledge and common sense will usual-
ly lead to sound conclusions.

[ 4

. Conclusions and recommendations. Once the data have been analyzed, the experi-
menter must draw practical concluvions about the w=nlts and recommend a course of
action. Graphic al meheds are often useful in this stage. particularly in presenting the
results to others. Follow-up runs and confirmation testing should also oe performed
to validate the conelusions from the expefiment.

~ Throughout this entire process, it is important to keep in mind that experimenta-
tion is an important part of the learning process, where we tentatively formulate
hypotheses about a system, perform experiments to investigate these hypotheses, and on
the basis of the resuits formulate new hypotheses, and so on. This suggests that experi-
mentation is iterative. It is usually a major mistake to design a single, large, comprehen-
sive experiment at the start of a study. A successful experiment requires knowledge of
tne 1mporlant factors, the ranges over which these factors should be varied, the appro-
priate number of levels to use, and the proper units of measurement for these variables.
‘Generally, we'do not perfectly know the answers to these questions, but we learn about
them as we go along. As an cxpﬂnmcnn] program progresses, we often drop some input

'i-vanablesuadd others, . ch_angc the region of exploration for some factors, or add new

On! f“iﬁﬁ “Conse itcntly :we usually experiment sequeniially, and as a gener-

S e T xjc' ent of the available resources should be invested in

i ¢ that sufficient resources are available to perform

Dmphqh the final chjective of the experiment.
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