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Case Studies: Numerical 
Integration and Differentiation

The purpose of this chapter is to apply the methods of numerical integration and differen-
tiation discussed in Part Six to practical engineering problems. Two situations are most 
frequently encountered. In the fi rst case, the function under study can be expressed in 
analytic form but is too complicated to be readily evaluated using the methods of calculus. 
Numerical methods are applied to situations of this type by using the analytic expression 
to generate a table of arguments and function values. In the second case, the function to 
be evaluated is inherently tabular in nature. This type of function usually represents a series 
of measurements, observations, or some other empirical information. Data for either case 
are directly compatible with several schemes discussed in this part of the book.
 Section 24.1, which deals with heat calculations from chemical engineering, involves 
equations. In this application, an analytic function is integrated numerically to determine 
the heat required to raise the temperature of a material.
 Sections 24.2 and 24.3 also involve functions that are available in equation form. 
Section 24.2, which is taken from civil engineering, uses numerical integration to deter-
mine the total wind force acting on the mast of a racing sailboat. Section 24.3 determines 
the root-mean-square current for an electric circuit. This example is used to demonstrate 
the utility of Romberg integration and Gauss quadrature.
 Section 24.4 focuses on the analysis of tabular information to determine the work 
required to move a block. Although this application has a direct connection with me-
chanical engineering, it is germane to all other areas of engineering. Among other things, 
we use this example to illustrate the integration of unequally spaced data.

 24.1 INTEGRATION TO DETERMINE THE TOTAL QUANTITY 
OF HEAT (CHEMICAL/BIO ENGINEERING)

Background. Heat calculations are employed routinely in chemical and bio engineer-
ing as well as in many other fi elds of engineering. This application provides a simple 
but useful example of such computations.
 One problem that is often encountered is the determination of the quantity of heat 
required to raise the temperature of a material. The characteristic that is needed to carry 
out this computation is the heat capacity c. This parameter represents the quantity of 
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674 CASE STUDIES: NUMERICAL INTEGRATION AND DIFFERENTIATION

heat required to raise a unit mass by a unit temperature. If c is constant over the range 
of temperatures being examined, the required heat DH (in calories) can be calculated by

¢H 5 mc ¢T  (24.1)

where c has units of cal/(g ? 8C), m 5 mass (g), and DT 5 change in temperature (8C). For 
example, the amount of heat required to raise 20 g of water from 5 to 108C is equal to

¢H 5 20(1)(10 2 5) 5 100 cal

where the heat capacity of water is approximately 1 cal/(g ? 8C). Such a computation is 
adequate when DT is small. However, for large ranges of temperature, the heat capacity is 
not constant and, in fact, varies as a function of temperature. For example, the heat capac-
ity of a material could increase with temperature according to a relationship such as

c(T) 5 0.132 1 1.56 3 1024T 1 2.64 3 1027T 
2 (24.2)

In this instance you are asked to compute the heat required to raise 1000 g of this material 
from 2100 to 2008C.

Solution. Equation (PT6.4) provides a way to calculate the average value of c(T):

c(T) 5

#
T2

T1

 
c(T) dT

T2 2 T1
 (24.3)

which can be substituted into Eq. (24.1) to yield

¢H 5 m #
T2

T1

 
c(T) dT  (24.4)

where DT 5 T2 2 T1. Now because, for the present case, c(T) is a simple quadratic, DH 
can be determined analytically. Equation (24.2) is substituted into Eq. (24.4) and the 
result integrated to yield an exact value of DH 5 42,732 cal. It is useful and instructive 
to compare this result with the numerical methods developed in Chap. 21. To accomplish 
this, it is necessary to generate a table of values of c for various values of T:

T, 8C c, cal/(g ? 8C)

 2100 0.11904
 250 0.12486
 0 0.13200
 50 0.14046
 100 0.15024
 150 0.16134
 200 0.17376

These points can be used in conjunction with a six-segment Simpson’s 1y3 rule to com-
pute an integral estimate of 42,732. This result can be substituted into Eq. (24.4) to yield 
a value of DH 5 42,732 cal, which agrees exactly with the analytical solution. This exact 
agreement would occur no matter how many segments were used. This is to be expected 
because c is a quadratic function and Simpson’s rule is exact for polynomials of the third 
order or less (see Sec. 21.2.1).
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 24.2 EFFECTIVE FORCE ON THE MAST OF A RACING SAILBOAT 675

 The results using the trapezoidal rule are listed in Table 24.1. It is seen that the 
trapezoidal rule is also capable of estimating the total heat very accurately. However, a 
small step (, 108C) is required for fi ve-place accuracy. The same calculation can also 
be implemented with software. For example, MATLAB software yields

>> m=1000;
>> DH=m*quad(@(T) 0.132+1.56e-4*T+2.64e-7*T.^2,-100,200)

DH =
42732

 24.2 EFFECTIVE FORCE ON THE MAST OF A RACING SAILBOAT 
(CIVIL/ENVIRONMENTAL ENGINEERING)

Background. A cross section of a racing sailboat is shown in Fig. 24.1a. Wind forces 
( f ) exerted per foot of mast from the sails vary as a function of distance above the deck 

TABLE 24.1 Results using the trapezoidal rule with various step sizes.

Step Size, 8C DH Et (%)

 300 96,048 125
 150 43,029 0.7
 100 42,864 0.3
 50 42,765 0.07
 25 42,740 0.018
 10 42,733.3 ,0.01
 5 42,732.3 ,0.01
 1 42,732.01 ,0.01
 0.05 42,732.00003 ,0.01

Wind

z = 30 ft

z = 0

Mast
support
cables

Mast

T

3 ft

(b)

(a)

FIGURE 24.1
(a) Cross section of a racing 
sailboat. (b) Wind forces f 
exerted per foot of mast as a 
function of distance z above the 
deck of the boat.
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676 CASE STUDIES: NUMERICAL INTEGRATION AND DIFFERENTIATION

of the boat (z), as in Fig. 24.1b. Calculate the tensile force T in the left mast support 
cable, assuming that the right support cable is completely slack and the mast joins the 
deck in a manner that transmits horizontal or vertical forces but no moments. Assume 
that the mast remains vertical.

Solution. To proceed with this problem, it is required that the distributed force f be 
converted to an equivalent total force F and that its effective location above the deck d 
be calculated (Fig. 24.2). This computation is complicated by the fact that the force 
exerted per foot of mast varies with the distance above the deck. The total force exerted 
on the mast can be expressed as the integral of a continuous function:

F 5 #
30

0
 
200 a z

5 1 z
b e22zy30 dz (24.5)

This nonlinear integral is diffi cult to evaluate analytically. Therefore, it is convenient to 
employ numerical approaches such as Simpson’s rule and the trapezoidal rule for this 
problem. This is accomplished by calculating f(z) for various values of z and then using 
Eq. (21.10) or (21.18). For example, Table 24.2 has values of f(z) for a step size of 3 ft 
that provide data for Simpson’s 1y3 rule or the trapezoidal rule. Results for several step 
sizes are given in Table 24.3. It is observed that both methods give a value of F 5 1480.6 lb 
as the step size becomes small. In this case, step sizes of 0.05 ft for the trapezoidal rule 
and 0.5 ft for Simpson’s rule provide good results.

TABLE 24.3  Values of F computed on the basis of various versions of the trapezoidal 
rule and Simpson’s 1/3 rule.

Technique Step Size, ft Segments F, lb

Trapezoidal rule 15 2 1001.7
 10 3 1222.3
 6 5 1372.3
 3 10 1450.8
 1 30 1477.1
 0.5 60 1479.7
 0.25 120 1480.3
 0.1 300 1480.5
 0.05 600 1480.6
Simpson’s 1/3 rule 15 2 1219.6
 5 6 1462.9
 3 10 1476.9
 1 30 1480.5
 0.5 60 1480.6

TABLE 24.2  Values of f(z) for a step size of 3 ft that provide data for the trapezoidal 
rule and Simpson’s 1/3 rule.

z, ft 0 3 6 9 12 15 18 21 24 27     30

f(z), lb/ft 0 61.40 73.13 70.56 63.43 55.18 47.14 39.83 33.42 27.89 23.20

FIGURE 24.2
Free-body diagram of the forces 
exerted on the mast of a 
sailboat.

0
3 ft

d = 13.05 ft

V

T

H

F = 1480.6 lb

� = tan–1 (3/30)
= 0.0996687
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 The effective line of action of d (Fig. 24.2) can be calculated by evaluation of the integral

d 5

#
30

0
 
z f(z) dz

#
30

0
 
f(z) dz

 (24.6)

or

d 5

#
30

0
 
200z[zy(5 1 z)]e22zy30 dz

1480.6
 (24.7)

This integral can be evaluated using methods similar to the above. For example, Simpson’s 
1y3 rule with a step size of 0.5 gives d 5 19,326.9y1480.6 5 13.05 ft.
 With F and d known from numerical methods, a free-body diagram is used to develop 
force and moment balance equations. This free-body diagram is shown in Fig. 24.2. Sum-
ming forces in the horizontal and vertical direction and taking moments about point 0 gives

 gFH 5 0 5 F 2 T sin u 2 H (24.8)

 gFV 5 0 5 V 2 T cos u  (24.9)

 gM0 5 0 5 3V 2 Fd  (24.10)

where T 5 the tension in the cable and H and V 5 the unknown reactions on the mast 
transmitted by the deck. The direction, as well as the magnitude, of H and V is unknown. 
Equation (24.10) can be solved directly for V because F and d are known.

V 5
Fd

3
5

(1480.6)(13.05)

3
5 6440.6 lb

Therefore, from Eq. (24.9),

T 5
V

cos u
5

6440.6

0.995
5 6473 lb

and from Eq. (24.8),

H 5 F 2 T sin u 5 1480.6 2 (6473)(0.0995) 5 836.54 lb

These forces now enable you to proceed with other aspects of the structural design of the 
boat such as the cables and the deck support system for the mast. This problem illustrates 
nicely two uses of numerical integration that may be encountered during the engineering 
design of structures. It is seen that both the trapezoidal rule and Simpson’s 1y3 rule are 
easy to apply and are practical problem-solving tools. Simpson’s 1y3 rule is more accurate 
than the trapezoidal rule for the same step size and thus may often be preferred.

 24.3 ROOT-MEAN-SQUARE CURRENT BY NUMERICAL 
INTEGRATION (ELECTRICAL ENGINEERING)

Background. The average value of an oscillating electric current over one period may 
be zero. For example, suppose that the current is described by a simple sinusoid: i(t) 5 
sin(2ptyT), where T is the period. The average value of this function can be determined 
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678 CASE STUDIES: NUMERICAL INTEGRATION AND DIFFERENTIATION

by the following equation:

i 5

#
T

0
 
sin a2pt

T
b dt

T 2 0
5

2cos (2p) 1 cos 0

T
5 0

 Despite the fact that the net result is zero, such current is capable of performing work 
and generating heat. Therefore, electrical engineers often characterize such current by

IRMS 5
B

1

T #
T

0
 
i2(t) dt (24.11)

where i(t) 5 the instantaneous current. Calculate the RMS or root-mean-square current 
of the waveform shown in Fig. 24.3 using the trapezoidal rule, Simpson’s ly3 rule, 
Romberg integration, and Gauss quadrature for T 5 1 s.

Solution. Integral estimates for various applications of the trapezoidal rule and Simpson’s 
1y3 rule are listed in Table 24.4. Notice that Simpson’s rule is more accurate than the 
trapezoidal rule.
 The exact value for the integral is 15.41261. This result is obtained using a 
128- segment trapezoidal rule or a 32-segment Simpson’s rule. The same estimate is also 
determined using Romberg integration (Fig. 24.4).
 In addition, Gauss quadrature can be used to make the same estimate. The determi-
nation of the root-mean-square current involves the evaluation of the integral (T 5 1)

I 5 #
1y2

0
 
(10e2t sin 2pt)2 dt (24.12)

i

0 T/2T/4 t

For 0 � t � T/2, i(t) = 10e– t /T sin �2� �
For T/2 � t � T, i(t) = 0

t
T

FIGURE 24.3
A periodically varying electric 
current.

cha9792x_ch24_673-693.indd Page 678  29/10/13  9:48 PM F-468 cha9792x_ch24_673-693.indd Page 678  29/10/13  9:48 PM F-468 /207/MH02101/cha9792x_disk1of1/007339792x/cha9792x_pagefiles/207/MH02101/cha9792x_disk1of1/007339792x/cha9792x_pagefiles



 24.3 ROOT-MEAN-SQUARE CURRENT BY NUMERICAL INTEGRATION 679

TABLE 24.4  Values for the integral calculated using various numerical schemes. The 
percent relative error et is based on a true value of 15.41261.

Technique Segments Integral Et (%)

Trapezoidal rule 1 0.0 100
 2 15.16327 1.62
 4 15.40143 0.0725
 8 15.41196 4.21 3 1023

 16 15.41257 2.59 3 1024

 32 15.41261 1.62 3 1025

 64 15.41261 1.30 3 1026

 128 15.41261 0

Simpson’s 1/3 rule 2 20.21769 231.2
 4 15.48082 20.443
 8 15.41547 20.0186
 16 15.41277 1.06 3 1023

 32 15.41261 0

 First, a change in variable is performed by applying Eqs. (22.29) and (22.30) to yield

t 5
1

4
1

1

4
 td   dt 5

1

4
 dtd

These relationships can be substituted into Eq. (24.12) to yield

I 5 #
1

21
 
c10e2[1y41 (1y4)td] sin 2p a1

4
1

1

4
 tdbd

2

 
1

4
 dt (24.13)

 For the two-point Gauss-Legendre formula, this function is evaluated at td 5 21y13 
and 1y13, with the results being 7.684096 and 4.313728, respectively. These values can 
be substituted into Eq. (22.23) to yield an integral estimate of 11.99782, which represents 
an error of et 5 22.1%.
 The three-point formula is (Table 22.1)

 I 5 0.5555556(1.237449) 1 0.8888889(15.16327) 1 0.5555556(2.684915)

 5 15.65755   0 et 0 5 1.6

The results of using the higher-point formulas are summarized in Table 24.5.

O(h2) O(h4) O(h6) O(h8) O(h10) O(h12)

0 20.21769 15.16503 15.41502 15.41261 15.41261
15.16327 15.48082 15.41111 15.41262 15.41261
15.40143 15.41547 15.41225 15.41261
15.41196 15.41277 15.41261
15.41257 15.41262
15.41261

FIGURE 24.4
Result of using Romberg 
integration to estimate the RMS 
current.
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680 CASE STUDIES: NUMERICAL INTEGRATION AND DIFFERENTIATION

TABLE 24.5  Results of using various-point Gauss quadrature 
formulas to approximate the integral.

Points Estimate Et (%)

 2 11.9978243 22.1
 3 15.6575502 21.59
 4 15.4058023 4.42 3 1022

 5 15.4126391 22.01 3 1024

 6 15.4126109 21.82 3 1025

 The integral estimate of 15.41261 can be substituted into Eq. (24.12) to compute an 
IRMS of 3.925890 A. This result could then be employed to guide other aspects of the 
design and operation of the circuit.

 24.4 NUMERICAL INTEGRATION TO COMPUTE WORK 
(MECHANICAL/AEROSPACE ENGINEERING)

Background. Many engineering problems involve the calculation of work. The general 
formula is

Work 5 force 3 distance

When you were introduced to this concept in high school physics, simple applications 
were presented using forces that remained constant throughout the displacement. For 
example, if a force of 10 lb was used to pull a block a distance of 15 ft, the work would 
be calculated as 150 ft ? lb.
 Although such a simple computation is useful for introducing the concept, realistic 
problem settings are usually more complex. For example, suppose that the force varies 
during the course of the calculation. In such cases, the work equation is reexpressed as

W 5 #
xn

x0

 
F(x) dx (24.14)

where W 5 work (ft ? lb), x0 and xn 5 the initial and fi nal positions, respectively, and 
F(x) a force that varies as a function of position. If F(x) is easy to integrate, Eq. (24.14) 
can be evaluated analytically. However, in a realistic problem setting, the force might 
not be expressed in such a manner. In fact, when analyzing measured data, the force 
might be available only in tabular form. For such cases, numerical integration is the only 
viable option for the evaluation.
 Further complexity is introduced if the angle between the force and the direction of 
movement also varies as a function of position (Fig. 24.5). The work equation can be 
modifi ed further to account for this effect, as in

W 5 #
xn

x0

 
F(x)cos [u(x)] dx (24.15)

Again, if F(x) and u(x) are simple functions, Eq. (24.15) might be solved analytically. How-
ever, as in Fig. 24.5, it is more likely that the functional relationship is complicated. For 
this situation, numerical methods provide the only alternative for determining the integral.
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 24.4 NUMERICAL INTEGRATION TO COMPUTE WORK 681

 Suppose that you have to perform the computation for the situation depicted in 
Fig. 24.5. Although the fi gure shows the continuous values for F(x) and u(x), assume that, 
because of experimental constraints, you are provided with only discrete measurements 
at x 5 5-ft intervals (Table 24.6). Use single- and multiple-application versions of the 
trapezoidal rule and Simpson’s 1y3 and 3y8 rules to compute work for this data.

FIGURE 24.5
The case of a variable force 
acting on a block. For this case, 
the angle, as well as the magni-
tude, of the force varies.

F(x)

x0

�

0
0

30
x, ft

10

F
(x

),
 lb

1

0
0

30
x, ft

�
(x

),
 r

ad

F(x)

xn

�

TABLE 24.6  Data for force F(x) and angle u(x) as a function of 
position x.

x, ft F(x), lb U, rad F(x) cos U

 0 0.0 0.50 0.0000
 5 9.0 1.40 1.5297
 10 13.0 0.75 9.5120
 15 14.0 0.90 8.7025
 20 10.5 1.30 2.8087
 25 12.0 1.48 1.0881
 30 5.0 1.50 0.3537
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682 CASE STUDIES: NUMERICAL INTEGRATION AND DIFFERENTIATION

Solution. The results of the analysis are summarized in Table 24.7. A percent relative 
error et was computed in reference to a true value of the integral of 129.52 that was 
estimated on the basis of values taken from Fig. 24.5 at 1-ft intervals.
 The results are interesting because the most accurate outcome occurs for the simple 
two-segment trapezoidal rule. More refi ned estimates using more segments, as well as 
Simpson’s rules, yield less accurate results.
 The reason for this apparently counterintuitive result is that the coarse spacing of the 
points is not adequate to capture the variations of the forces and angles. This is particularly 
evident in Fig. 24.6, where we have plotted the continuous curve for the product of F(x) 
and cos [u(x)]. Notice how the use of seven points to characterize the continuously vary-
ing function misses the two peaks at x 5 2.5 and 12.5 ft. The omission of these two 
points effectively limits the accuracy of the numerical integration estimates in Table 24.7. 
The fact that the two-segment trapezoidal rule yields the most accurate result is due to 
the chance positioning of the points for this particular problem (Fig. 24.7).
 The conclusion to be drawn from Fig. 24.6 is that an adequate number of measure-
ments must be made to accurately compute integrals. For the present case, if data were 

TABLE 24.7  Estimates of work calculated using the trapezoidal rule and Simpson’s rules. 
The percent relative error et as computed in reference to a true value of the 
integral (129.52 ft ? lb) that was estimated on the basis of values at 1-ft 
intervals.

Technique Segments Work Et, %

Trapezoidal 1 5.31 95.9
 2 133.19 2.84
 3 124.98 3.51
 6 119.09 8.05
Simpson’s 1/3 rule 2 175.82 235.75
 6 117.13 9.57
Simpson’s 3/8 rule 3 139.93 28.04

x, ft
0 30

F
(x

) 
co

s
[�

 (
x)

]

Work

FIGURE 24.6
A continuous plot of F(x) cos 
[u(x)] versus position with the 
seven discrete points used to 
develop the numerical 
integration estimates in 
Table 24.7. Notice how the 
use of seven points to 
characterize this continuously 
varying function misses two 
peaks at x 5 2.5 and 12.5 ft.
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 24.4 NUMERICAL INTEGRATION TO COMPUTE WORK 683

available at F(2.5) cos [u(2.5)] 5 4.3500 and F(12.5) cos [u(12.5)] 5 11.3600, we could 
determine an integral estimate using the algorithm for unequally spaced data described 
previously in Sec. 21.3. Figure 24.8 illustrates the unequal segmentation for this case. 
 Including the two additional points yields an improved integral estimate of 126.9 (et 5 2.02%). 
Thus, the inclusion of the additional data would incorporate the peaks that were missed 
previously and, as a consequence, lead to better results.

FIGURE 24.7
Graphical depiction of why the 
two-segment trapezoidal rule 
yields a good estimate of the 
integral for this particular case. 
By chance, the use of two 
trapezoids happens to lead to 
an even balance between 
positive and negative errors.

x, ft

0
0

10

30
F

(x
) 

co
s

[�
 (

x)
]

Overestimates

Underestimates

FIGURE 24.8
The unequal segmentation 
scheme that results from the 
inclusion of two additional 
points at x 5 2.5 and 12.5 in 
the data in Table 24.6. The 
numerical integration formulas 
applied to each set of 
segments are shown.
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PROBLEMS

Chemical/Bio Engineering
24.1 Perform the same computation as Sec. 24.1, but compute the 
amount of heat required to raise the temperature of 1200 g of the 
material from 2150 to 1008C. Use Simpson’s rule for your compu-
tation, with values of T at 508C increments.
24.2 Repeat Prob. 24.1, but use Romberg integration to es 5 
0.01%.
24.3 Repeat Prob. 24.1, but use a two- and a three-point Gauss-
Legendre formula. Interpret your results.
24.4 Integration provides a means to compute how much mass 
enters or leaves a reactor over a specifi ed time period, as in

M 5 #
t2

t1

 
Qc dt

where t1 and t2 5 the initial and fi nal times, respectively. This for-
mula makes intuitive sense if you recall the analogy between inte-
gration and summation. Thus, the integral represents the summation 
of the product of fl ow times concentration to give the total mass 
entering or leaving from t1 to t2. If the fl ow rate is constant, Q can 
be moved outside the integral:

M 5 Q #
t2

t1

 
c dt (P24.4.1)

Use numerical integration to evaluate this equation for the data 
listed below. Note that Q 5 4 m3/min.

t, min 0 10 20 30 35 40 45 50

c, mg/m3 10 35 55 52 40 37 32 34

24.5 Use numerical integration to compute how much mass leaves 
a reactor based on the following measurements.

t, min 0 10 20 30 35 40 45   50

Q, m3/min 4 4.8 5.2 5.0 4.6 4.3 4.3 5.0

c, mg/m3 10 35 55 52 40 37 32   34

24.6 Fick’s fi rst diffusion law states that

Mass flux 5 2D 

dc

dx
 (P24.6.1)

where mass fl ux 5 the quantity of mass that passes across a unit 
area per unit time (g/cm2/s), D 5 a diffusion coeffi cient (cm2/s), 
c 5 concentration, and x 5 distance (cm). An environmental engi-
neer measures the following concentration of a pollutant in the 

sediments underlying a lake (x 5 0 at the sediment-water interface 
and increases downward):

x, cm 0 1      3

c, 1026 g/cm3 0.06 0.32 0.6

Use the best numerical differentiation technique available to esti-
mate the derivative at x 5 0. Employ this estimate in conjunction 
with Eq. (P24.6.1) to compute the mass fl ux of pollutant out of the 
sediments and into the overlying waters (D 5 1.52 3 1026 cm2/s). 
For a lake with 3.6 3 106 m2 of sediments, how much pollutant 
would be transported into the lake over a year’s time?
24.7 The following data were collected when a large oil tanker was 
loading:

t, min 0 10 20 30 45 60   75

V, 106 barrels 0.4 0.7 0.77 0.88 1.05 1.17 1.35

Calculate the fl ow rate Q (that is, dVydt) for each time to the order 
of h2.
24.8 You are interested in measuring the fl uid velocity in a narrow 
rectangular open channel carrying petroleum waste between loca-
tions in an oil refi nery. You know that, because of bottom friction, 
the velocity varies with depth in the channel. If your technician has 
time to perform only two velocity measurements, at what depths 
would you take them to obtain the best estimate of the average ve-
locity? State your recommendation in terms of the percent of total 
depth d measured from the fl uid surface. For example, measuring at 
the top would be 0%d, whereas at the very bottom would be 100%d.
24.9 Soft tissue follows an exponential deformation behavior in 
uniaxial tension while it is in the physiologic or normal range of 
elongation. This can be expressed as

s 5
Eo

a
 (eae 2 1)

where s 5 stress, e 5 strain, and Eo and a are material constants 
that are determined experimentally. To evaluate the two material 
constants, the above equation is differentiated with respect to e, 
which is a fundamental relationship for soft tissue

ds

de
5 Eo 1 as

To evaluate Eo and a, stress-strain data are used to plot dsyde versus 
s and the slope and intercept of this plot are the two material con-
stants, respectively. The table contains stress-strain data for heart 
chordae tendineae (small tendons use to hold heart valves closed 
during contraction of the heart muscle). This is data from loading 
the tissue; different curves are produced on unloading.
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24.10 The standard technique for determining cardiac output is the 
indicator dilution method developed by Hamilton. One end of a 
small catheter is inserted into the radial artery and the other end is 
connected to a densitometer, which can automatically record the con-
centration of the dye in the blood. A known amount of dye, 5.6 mg, 
is injected rapidly, and the following data are obtained:

 Time,  Concentration,  Time, Concentration,
 s  mg/L  s mg/L

 5 0 21 2.3
 7 0.1 23 1.1
 9 0.11 25 0.9
 11 0.4 27 1.75
 13 4.1 29 2.06
 15 9.1 31 2.25
 17 8 33 2.32
 19 4.2 35 2.43

Plotting the above data results in the dye dilution curve in 
Fig. P24.10a. The concentration reaches a maximum value at about 
15 seconds and then falls off, followed by a rise due to the recircula-
tion of dye. The curve is replotted on a semilog graph in Fig. P24.10b. 
Notice that a straight line approximates the descending limb of the 

(a) Calculate the derivative dsyde using fi nite differences that are 
second-order accurate. Plot the data and eliminate the data 
points near the zero points that appear not to follow the straight-
line relationship. The error in these data comes from the inabil-
ity of the instrumentation to read the small values in this region. 
Perform a regression analysis of the remaining data points to 
determine the values of Eo and a. Plot the stress versus strain 
data points along with the analytic curve expressed by the fi rst 
equation. This will indicate how well the analytic curve 
matches these data.

(b) Often the previous analysis does not work well because the 
value of Eo is diffi cult to evaluate. To solve this problem, Eo is 
not used. A data point is selected (s, e) that is in the middle of 
the range used for the regression analysis. These values are 
substituted into the fi rst equation, and a value for Eoya is deter-
mined and substituted into the fi rst equation:

s 5 a s

eae 2 1
b (eae 2 1)

Using this approach, experimental data that are well defi ned will 
produce a good match of the data points and the analytic curve. Use 
this new relationship and again plot the stress versus the strain data 
points and the new analytic curve.

s 3 103 N/m2 87.8 96.6 176 263 350 569 833 1227 1623 2105 2677 3378 4257

e 3 1023 m/m 153 198 270 320 355 410 460 512 562 614 664 716 766

2
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0 40
Time after injection (s)
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FIGURE P24.10
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collected the following data on the mass fl ux of insulin being deliv-
ered through the patch (and skin) as a function of time:

 Flux, mg/cm2/h Time, h Flux, mg/cm2/h Time, h

 15 0 8 5
 14 1 5 10
 12 2 2.5 15
 11 3 2 20
 9 4 1 24

Remember that mass fl ux is fl ow rate through an area or (1yA) 
dmydt. Provide your best possible estimate for the amount of 
drug delivered through the skin in 24 hours using a 12 cm2 patch.
24.13 Videoangiography is used to measure blood fl ow and deter-
mine the status of circulatory function. In order to quantify the 
videoangiograms, blood vessel diameter and blood velocity are 
needed such that total blood fl ow is determined. Below is the den-
sitometric profi le taken from a videoangiogram of a blood vessel. 
One way to determine consistently where the edge of the blood 
vessel is from the angiogram is to determine where the fi rst deriva-
tive of the profi le is an extreme value. Using the data provided, fi nd 

dilution curve. In order to separate out the recirculation effect, ana-
lysts extend the straight-line portion. The cardiac output can then be 
calculated from

C 5
M

A
3 60 s/min

where C 5 cardiac output [L/min], M 5 amount of injected dye 
(mg), and A 5 area under the curve with the linear correction. Cal-
culate the cardiac output of this patient using the trapezoidal rule 
with a step size of 2 s.
24.11 Glaucoma is the second leading cause of vision loss world-
wide. High intraocular pressure (pressure inside the eye) almost 
always accompanies vision loss. It is postulated that the high pres-
sure damages a subset of cells in the eye that are responsible for 
vision. One investigator theorizes that the relationship between 
 vision loss and pressure can be described as

VL 5 A exp ak #
t

25
 
(P 2 13) dtb

where VL is percent vision loss, P is intraocular pressure (mm Hg), 
t is time (years), and k and A are constants. Using the data below 
from three patients, estimate the constants k and A.

Patient A B C

Age at diagnosis 65 43 80
VL 60 40 30

 Age, years P, mm Hg Age, years P, mm Hg Age, years P, mm Hg

 25 13 25 11 25 13
 40 15 40 30 40 14
 50 22 41 32 50 15
 60 23 42 33 60 17
 65 24 43 35 80 19

 Distance Density Distance Density Distance Density Distance Density

 0 26.013 28 38.273 56 39.124 84 37.331
 4 26.955 32 39.103 60 38.813 88 35.980
 8 26.351 36 39.025 64 38.925 92 31.936
 12 28.343 40 39.432 68 38.804 96 28.843
 16 31.100 44 39.163 72 38.806 100 26.309
 20 34.667 48 38.920 76 38.666 104 26.146
 24 37.251 52 38.631 80 38.658

24.12 One of your colleagues has designed a new transdermal 
patch to deliver insulin through the skin to diabetic patients in a 
controlled way, eliminating the need for painful injections. She has 

the boundaries of the blood vessel and estimate the blood vessel 
diameter. Use both O(h2) and O(h4) centered difference formulas 
and compare the results.
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where U 5 water velocity (m/s). Use these relationships and a 
 numerical method to determine Ac and Q for the following data:

y, m 0 2 4 5 6      9

H, m 0.5 1.3 1.25 1.7 1 0.25

U, m/s 0.03 0.06 0.05 0.12 0.11 0.02

24.19 The following relationships can be used to analyze uniform 
beams subject to distributed loads,

dy

dx
5 u(x) 

du

dx
5

M(x)

EI
 

dM

dx
5 V(x) 

dV

dx
5 2w(x)

where x 5 distance along beam (m), y 5 defl ection (m), u(x) 5 
slope (m/m), E 5 modulus of elasticity (Pa 5 N/m2), I 5  moment 
of inertia (m4), M(x) 5 moment (N m), V(x) 5 shear (N), and 
w(x) 5 distributed load (N/m). For the case of a linearly increas-
ing load (recall Fig. P8.18), the slope can be computed analyti-
cally as

u(x) 5
w0

120EIL
 (25x4 1 6L2x2 2 L4) (P24.19.1)

Employ (a) numerical integration to compute the defl ection (in m) 
and (b) numerical differentiation to compute the moment (in N m) 
and shear (in N). Base your numerical calculations on values of the 
slope computed with Eq. P24.19 at equally-spaced intervals of 
Dx 5 0.125 m along a 3-m beam. Use the following parameter 
values in your computation: E 5 200 GPa, I 5 0.0003 m4, and w0 5 
2.5 kN/cm. In addition, the defl ections at the ends of the beam are 
set at y(0) 5 y(L) 5 0. Be careful of units.
24.20 You measure the following defl ections along the length of a 
simply-supported uniform beam (see Prob. 24.19)

Civil/Environmental Engineering
24.14 Perform the same computation as in Sec. 24.2, but use O(h8) 
Romberg integration to evaluate the integral.
24.15 Perform the same computation as in Sec. 24.2, but use Gauss 
quadrature to evaluate the integral.
24.16 As in Sec. 24.2, compute F using the trapezoidal rule and 
Simpson’s 1y3 and Simpson’s 3y8 rules but use the following 
force. Divide the mast into 5-ft intervals.

F 5 #
30

0

 
250z

6 1 z
 e2zy10 dz

24.17 Stream cross-sectional areas (A) are required for a number of 
tasks in water resources engineering, including fl ood forecasting and 
reservoir designing. Unless electronic sounding devices are available 
to obtain continuous profi les of the channel bottom, the engineer 
must rely on discrete depth measurements to compute A. An example 
of a typical stream cross section is shown in Fig. P24.17. The data 
points represent locations where a boat was anchored and depth read-
ings taken. Use two trapezoidal rule applications (h 5 4 and 2 m) and 
Simpson’s 1y3 rule (h 5 2 m) to estimate the cross-sectional area 
from these data.
24.18 As described in Prob. 24.17, the cross-sectional area of a 
channel can be computed as

Ac 5 #
B

0
 
H(y) dy

where B 5 the total channel width (m), H 5 the depth (m), and 
y 5 distance from the bank (m). In a similar fashion, the average 
fl ow Q (m3/s) can be computed as

Q 5 #
B

0
 
U(y)H(y) dy

2010

Water surface

1.8 2 4 4 6 4 3.6 3.4 2.8

6

4

2

D
ep

th
, m

0

Distance from left bank, m
0

FIGURE P24.17
A stream cross section.

x, m 0 0.375 0.75 1.125 1.5 1.875 2.25 2.625       3

y, cm 0 20.2571 20.9484 21.9689 23.2262 24.6414 26.1503 27.7051 29.275
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p(z) 5 rg(D 2 z) (P24.23.1)

where p(z) 5 pressure in pascals (or N/m2) exerted at an elevation z 
meters above the reservoir bottom; r 5 density of water, which for 
this problem is assumed to be a constant 103 kg/m3; g 5 acceleration 
due to gravity (9.8 m/s2); and D 5 elevation (in m) of the water 
surface above the reservoir bottom. According to Eq. (P24.23.1), 
pressure increases linearly with depth, as depicted in Fig. P24.23a. 
Omitting atmospheric pressure (because it works against both sides 
of the dam face and essentially cancels out), the total force ft can be 
determined by multiplying pressure times the area of the dam face 
(as shown in Fig. P24.23b). Because both pressure and area vary 
with elevation, the total force is obtained by evaluating

Employ numerical differentiation to compute the slope, the  moment 
(in N m), the shear (in N) and the distributed load (in N/m). Use the 
following parameter values in your computation: E 5 200 GPa, and 
I 5 0.0003 m4.
24.21 A transportation engineering study requires the calculation 
of the total number of cars that pass through an intersection over a 
24-h period. An individual visits the intersection at various times 
during the course of a day and counts the number of cars that pass 
through the intersection in a minute. Utilize the data summarized in 
Table P24.21, to estimate the total number of cars that pass through 
the intersection per day. (Be careful of units.)
24.22 A wind force distributed against the side of a skyscraper is 
measured as

TABLE P24.21  Traffi c fl ow rate (cars/min) for an intersection measured at various times 
within a 24-h period.

 Time Rate Time Rate Time Rate

 12:00 midnight 2  9:00 A.M. 11  6:00 P.M. 20
 2:00 A.M. 2 10:30 A.M. 4  7:00 P.M. 10
 4:00 A.M. 0 11:30 A.M. 11  8:00 P.M. 8
 5:00 A.M. 2 12:30 P.M. 12  9:00 P.M. 10
 6:00 A.M. 6  2:00 P.M. 8 10:00 P.M. 8
 7:00 A.M. 7  4:00 P.M. 7 11:00 P.M. 7
 8:00 A.M. 23  5:00 P.M. 26 12:00 midnight 3

Height, l, m 0 30 60 90 120 150 180 210     240

Force, F(l ), N/m 0 340 1200 1600 2700 3100 3200 3500 3800

FIGURE P24.23
Water exerting pressure on the upstream face of a dam: (a) side view showing force increasing 
linearly with depth; (b) front view showing width of dam in meters.
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Compute the net force and the line of action due to this distributed 
wind.
24.23 Water exerts pressure on the upstream face of a dam as 
shown in Fig. P24.23. The pressure can be characterized by

ft 5 #
D

0
 
rgw(z) (D 2 z) dz

where w(z) 5 width of the dam face (m) at elevation z (Fig. P24.23b). 
The line of action can also be obtained by evaluating
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As(z) 5 2
dV

dz
 (z)

where V 5 volume (m3) and z 5 depth (m) as measured from the 
surface down to the bottom. The average concentration of a sub-
stance that varies with depth c (g/m3) can be computed by integration

c 5

#
Z

0
 
c(z)As(z) dz

#
Z

0
 
As(z) dz

where Z 5 the total depth (m). Determine the average concentra-
tion based on the following data:

z, m 0 4 8 12     16

V, 106 m3 9.8175 5.1051 1.9635 0.3927 0.0000

c, g/m3 10.2 8.5 7.4 5.2     4.1

Electrical Engineering
24.28 Perform the same computation as in Sec. 24.3, but for the 
current as specifi ed by

i(t) 5 5e21.25t sin 2pt  for 0 # t # Ty2

i(t) 5 0  for Ty2 , t # T

where T 5 1 s. Use fi ve-point Gauss quadrature to estimate the 
 integral.
24.29 Repeat Prob. 24.28, but use fi ve applications of Simpson’s 
1y3 rule.
24.30 Repeat Prob. 24.28, but use Romberg integration to es 5 1%.
24.31 Faraday’s law characterizes the voltage drop across an in-
ductor as

VL 5 L 

di

dt

where VL 5 voltage drop (V), L 5 inductance (in henrys; 1 H 5 1 V ? 
s/A), i 5 current (A), and t 5 time (s). Determine the voltage drop as 
a function of time from the following data for an inductance of 4 H.

t 0 0.1 0.2 0.3 0.5 0.7

i 0 0.16 0.32 0.56 0.84 2.0

24.32 Based on Faraday’s law (Prob. 24.31), use the following 
voltage data to estimate the inductance in henrys if a current of 2 A 
is passed through the inductor over 400 milliseconds.

t, ms 0 10 20 40 60 80 120 180 280 400

V, volts 0 18 29 44 49 46 35 26 15    7

24.33 Suppose that the current through a resistor is described by 
the function

i(t) 5 (60 2 t)2 1 (60 2 t) sin(1t)

d 5

#
D

0
 
rgzw(z) (D 2 z) dz

#
D

0
 
rgw(z) (D 2 z) dz

Use Simpson’s rule to compute ft and d. Check the results with your 
computer program for the trapezoidal rule.
24.24 To estimate the size of a new dam, you have to determine the 
total volume of water (m3) that fl ows down a river in a year’s time. 
You have available the following long-term average data for the river:

Date
Mid-
Jan.

Mid-
Feb.

Mid-
Mar.

Mid-
Apr.

Mid-
June

Mid-
Sept.

Mid-
Oct.

Mid-
Nov.

Mid-
Dec.

Flow, m3/s 30 38 82 125 95 20 22 24   35

Determine the volume. Be careful of units, and take care to make a 
proper estimate of fl ow at the end points.
24.25 The data listed in the following table gives hourly measure-
ments of heat fl ux q (cal/cm2/h) at the surface of a solar collector. 
As an architectural engineer, you must estimate the total heat ab-
sorbed by a 150,000-cm2 collector panel during a 14-h period. The 
panel has an absorption effi ciency eab of 45%. The total heat ab-
sorbed is given by

h 5 eab #
t

0
 
q A dt

where A 5 area and q 5 heat fl ux.

t 0 2 4 6 8 10 12 14

q 0.10 5.32 7.80 8.00 8.03 6.27 3.54 0.20

24.26 The heat fl ux q is the quantity of heat fl owing through a unit 
area of a material per unit time. It can be computed with Fourier’s law,

J 5 2k 
dT

dx

where J has units of J/m2/s or W/m2 and k is a coeffi cient of ther-
mal conductivity that parameterizes the heat-conducting proper-
ties of the material and has units of Wy(8C ? m). T 5 temperature 
(8C); and x 5 distance (m) along the path of heat fl ow. Fourier’s 
law is used routinely by architectural engineers to determine heat 
fl ow through walls. The following temperatures are measured 
from the surface (x 5 0) into a stone wall:

x, cm 0 0.08 0.16

T, °C 20 17     15

If the fl ux at x 5 0 is 60 W/m2, compute k.
24.27 The horizontal surface area As (m

2) of a lake at a particular 
depth can be computed from volume by differentiation,
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24.40 The rate of cooling of a body (Fig. P24.40) can be expressed as

dT

dt
5 2k(T 2 Ta)

where T 5 temperature of the body (8C), Ta 5 temperature of the 
surrounding medium (8C), and k 5 a proportionality constant 
(per minute). Thus, this equation (called Newton’s law of cool-
ing) specifi es that the rate of cooling is proportional to the differ-
ence in the temperatures of the body and of the surrounding 
medium. If a metal ball heated to 808C is dropped into water that 
is held constant at Ta 5 208C, the temperature of the ball changes, 
as in

Time, min 0 5 10 15 20      25

T, 8C 80 44.5 30.0 24.1 21.7 20.7

Utilize numerical differentiation to determine dTydt at each value 
of time. Plot dTydt versus T 2 Ta and employ linear regression to 
evaluate k.
24.41 A rod subject to an axial load (Fig. P24.41a) will be de-
formed, as shown in the stress-strain curve in Fig. P24.41b. The 
area under the curve from zero stress out to the point of rupture is 
called the modulus of toughness of the material. It provides a 
measure of the energy per unit volume required to cause the mate-
rial to rupture. As such, it is representative of the material’s ability 
to withstand an impact load. Use numerical integration to com-
pute the modulus of toughness for the stress-strain curve seen in 
Fig. P24.41b.
24.42 If the velocity distribution of a fl uid fl owing through a pipe 
is known (Fig. P24.42), the fl ow rate Q (that is, the volume of water 
passing through the pipe per unit time) can be computed by 
Q 5 ey dA, where y is the velocity and A is the pipe’s cross- 
sectional area. (To grasp the meaning of this relationship physically, 
recall the close connection between summation and integration.) For 
a circular pipe, A 5 pr2 and dA 5 2pr dr. Therefore,

Q 5 #
r

0
 
y(2pr) dr

and the resistance is a function of the current,

R 5 10i 1 2i2y3

Compute the average voltage over t 5 0 to 60 using the multiple-
segment Simpson’s 1y3 rule.
24.34 If a capacitor initially holds no charge, the voltage across it 
as a function of time can be computed as

V(t) 5
1

C #
t

0
 
i(t) dt

If C 5 1025 farad, use the following current data to develop a plot 
of voltage versus time:

t, s 0 0.2 0.4 0.6 0.8 1    1.2

i, 1023 A 0.2 0.3683 0.3819 0.2282 0.0486 0.0082 0.1441

Mechanical/Aerospace Engineering
24.35 Perform the same computation as in Sec. 24.4, but use the 
following equations:

F(x) 5 1.6x 2 0.045x2

u(x) 5 0.8 1 0.125x 2 0.009x2 1 0.0002x3

Use 4-, 8-, and 16-segment trapezoidal rules to compute the 
 integral.
24.36 Repeat Prob. 24.35, but use (a) Simpson’s 1y3 rule, (b) Rom-
berg integration to es 5 0.5%, and (c) Gauss quadrature.
24.37 Compute work as described in Sec. 24.4, but use the follow-
ing equations for F(x) and u(x):

F(x) 5 1.6x 2 0.045x2

u(x) 5 20.00055x3 1 0.0123x2 1 0.13x

The force is in newtons and the angle is in radians. Perform the 
 integration from x 5 0 to 30 m.
24.38 As was done in Sec. 24.4, determine the work performed if a 
constant force of 1 N applied at an angle u results in the following 
displacements. Use the MATLAB function cumtrapz to deter-
mine the cumulative work and plot the result versus u.

x, m 0 1 2.7 3.8 3.7 3     1.4

u, deg 0 30 60 90 120 150 180

24.39 The work done on an object is equal to the force times the 
distance moved in the direction of the force. The velocity of an 
object in the direction of a force is given by

y 5 4t  0 # t # 4

y 5 16 1 (4 2 t)2  4 # t # 14

where y 5 mys. Employ the multiple-application Simpson’s rule to 
determine the work if a constant force of 200 N is applied for all t.

T

Ta

FIGURE P24.40
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t, s 0 0.52 1.04 1.75 2.37 3.25 3.83

x, m 153 185 208 249 261 271    273

where x is the distance from the end of the carrier. Estimate (a) velocity 
(dxydt) and (b) acceleration (dyydt) using numerical differentiation.
24.45 Employ the multiple-application Simpson’s rule to evaluate 
the vertical distance traveled by a rocket if the vertical velocity is 
given by

y 5 11t2 2 5t  0 # t # 10

y 5 1100 2 5t  10 # t # 20

y 5 50t 1 2(t 2 20)2  20 # t # 30

In addition, use numerical differentiation to develop graphs of the 
acceleration (dvydt) and the jerk (d2vydt2) versus time for t 5 0 to 
30. Note that the jerk is very important because it is highly corre-
lated with injuries such as whiplash.
24.46 The upward velocity of a rocket can be computed by the 
 following formula:

y 5 u ln a m0

m0 2 qt
b 2 gt

where y 5 upward velocity, u 5 velocity at which fuel is expelled 
relative to the rocket, m0 5 initial mass of the rocket at time t 5 0, 

where r is the radial distance measured outward from the center of 
the pipe. If the velocity distribution is given by

y 5 2 a1 2
r

r0
b1y6

where r0 is the total radius (in this case, 3 cm), compute Q using the 
multiple-application trapezoidal rule. Discuss the results.
24.43 Using the following data, calculate the work done by stretch-
ing a spring that has a spring constant of k 5 300 N/m to x 5 0.35 m:

F, 103N 0 0.01 0.028 0.046 0.063 0.082 0.11 0.13

x, m 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35

24.44 A jet fi ghter’s position on an aircraft carrier’s runway was 
timed during landing:

FIGURE P24.41
(a) A rod under axial loading and (b) the resulting stress-strain curve where stress is in kips 
per square inch (103 lb/in2) and strain is dimensionless.
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692 CASE STUDIES: NUMERICAL INTEGRATION AND DIFFERENTIATION

H #
P

0
 
aV 2 T a 0V

0T
b

P
b

 
d P

 V, L

P, atm T 5 350 K T 5 400 K T 5 450 K

 0.1 220 250 282.5
 5 4.1 4.7 5.23
 10 2.2 2.5 2.7
 20 1.35 1.49 1.55
 25 1.1 1.2 1.24
 30 0.90 0.99 1.03
 40 0.68 0.75 0.78
 45 0.61 0.675 0.7
 50 0.54 0.6 0.62

q 5 fuel consumption rate, and g 5 downward acceleration of 
gravity (assumed constant 5 9.8 m/s2). If u 5 1800 m/s, m0 5 
160,000 kg, and q 5 2500 kg/s, use six-segment trapezoidal and 
Simpson’s 1y3 rule, six-point Gauss quadrature, and O(h8) Romberg 
methods to determine how high the rocket will fl y in 30 s. In addition, 
use numerical differentiation to generate a graph of acceleration as a 
function of time.
24.47 Referring to the data from Problem 20.61, fi nd the strain 
rate using fi nite difference methods. Use second-order accurate 
derivative approximations and plot your results. Looking at the 
graph, it is apparent that there is some experimental startup 
 error. Find the mean and standard deviation of the strain rate 
after eliminating the data points representing the experimental 
startup error.
24.48 Fully developed fl ow moving through a 40-cm diameter pipe 
has the following velocity profi le:

Radius, r, cm 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Velocity, v, m/s 0.914 0.890 0.847 0.795 0.719 0.543 0.427 0.204       0

Find the volume fl ow rate Q using the relationship Q 5 eR
0  2pry dr, 

where r is the radial axis of the pipe, R is the radius of the pipe, 
and y is the velocity. Solve the problem using two different 
 approaches.
(a) Fit a polynomial curve to the velocity data and integrate 

 analytically.
(b) Use multiple-application Simpson’s 1y3 rule to integrate.
(c) Find the percent error using the integral of the polynomial fi t as 

the more correct value.
24.49 Fully developed fl ow of a Bingham plastic fl uid moving 
through a 12-in diameter pipe has the given velocity profi le. The 
fl ow of a Bingham fl uid does not shear the center core, producing 
plug fl ow in the region around the centerline.

Radius, r, in 0 1 2 3 4 5    6

Velocity, v, ft/s 5.00 5.00 4.62 4.01 3.42 1.69 0.00

Find the total volume fl ow rate Q using the relationship 
Q 5 e r2

r1   
2pr y dr 1 yc 

Ac, where r is the radial axis of the pipe, y is 
the velocity, yc is the velocity at the core, and Ac is the cross- 
sectional area of the plug. Solve the problem using two different 
approaches.
(a) Fit a polynomial curve to the noncore data and integrate.
(b) Use multiple-application Simpson’s rule to integrate.
(c) Find the percent error using the integral of the polynomial fi t as 

the more correct value.
24.50 The enthalpy of a real gas is a function of pressure as 
 described below. These data were taken for a real fl uid. Estimate 
the enthalpy of the fl uid at 400 K and 50 atm (evaluate the integral 
from 0.1 atm to 50 atm).

24.51 Given the data below, fi nd the isothermal work done on the 
gas as it is compressed from 23 L to 3 L (remember that 
W 5 2eV2

V1  P dV ).

V, L 3 8 13 18   23

P, atm 12.5 3.5 1.8 1.4 1.2

(a) Find the work performed on the gas numerically, using the 1-, 
2-, and 4-segment trapezoidal rule.

(b) Compute the ratios of the errors in these estimates and relate 
them to the error analysis of the multiple-application trapezoidal 
rule discussed in Chap. 21.

24.52 The Rosin-Rammler-Bennet (RRB) equation is used to de-
scribe size distribution in fi ne dust. F(x) represents the cumulative 
mass of dust particles of diameter x and smaller. x9 and n9 are con-
stants equal to 30 mm and 1.44, respectively. The mass density 
distribution f(x) or the mass of dust particles of a diameter x is 
found by taking the derivative of the cumulative distribution

F(x) 5 1 2 e2(xyx¿)n¿
 f (x) 5

dF(x)

dx

(a) Numerically calculate the mass density distribution f(x) and 
graph both f(x) and the cumulative distribution F(x).

(b) Using your results from part (a), calculate the mode size of the 
mass density distribution—that is, the size at which the deriva-
tive of f(x) is equal to zero.

(c) Find the surface area per mass of the dust Sm (cm2/g) using

Sm 5
6
r

 #
q

dmin

 
 f (x)

x
 dx
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 PROBLEMS 693

(a) Determine the pressure drop for a 10-cm length tube for a vis-
cous liquid (m 5 0.005 N ? s/m2, density 5 r 5 1 3 103 kg/m3) 
with a fl ow of 10 3 1026 m3/s and the following varying radii 
along its length,

x, cm 0 2 4 5 6 7 10

r, mm 2 1.35 1.34 1.6 1.58 1.42    2

(b) Compare your result with the pressure drop that would have 
occurred if the tube had a constant radius equal to the average 
radius.

(c) Determine the average Reynolds number for the tube to verify 
that fl ow is truly laminar (Re 5 ryDym , 2100 where y 5 
velocity).

24.55 Velocity data for air are collected at different radii from the 
centerline of a circular 16-cm-diameter pipe as tabulated below:

r, cm 0 1.60 3.20 4.80 6.40 7.47 7.87 7.95 8

v, m/s 10 9.69 9.30 8.77 7.95 6.79 5.57 4.89 0

Use numerical integration to determine the mass fl ow rate, which 
can be computed as

#
R

0
 
ry2pr dr

where r 5 density (5 1.2 kg/m3). Express your results in kg/s.

The equation is valid only for spherical particles. Assume a density 
r 5 1 g cm23 and a minimum diameter of dust included in the dis-
tribution dmin of 1 mm.
24.53 For fl uid fl ow over a surface, the heat fl ux to the surface can 
be computed as

J 5 2k 

dT

dy

where J 5 heat fl ux (W/m2), k 5 thermal conductivity (W/m ? K), 
T 5 temperature (K), and y 5 distance normal to the surface (m). 
The following measurements are made for air fl owing over a fl at 
plate that is 200 cm long and 50 cm wide:

y, cm 0 1 3     5

T, K 900 480 270 200

If k 5 0.028 J/s ? m ? K, (a) determine the fl ux at the surface and 
(b) the heat transfer in watts. Note that 1 J 5 1 W ? s.
24.54 The pressure gradient for laminar fl ow through a constant 
radius tube is given by

dp

dx
5 2

8m Q

pr4

where p 5 pressure (N/m2), x 5 distance along the tube’s centerline 
(m), m 5 dynamic viscosity (N ? s/m2), Q 5 fl ow (m3/s), and r 5 
radius (m).
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