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Newton-Cotes Integration 
Formulas

The Newton-Cotes formulas are the most common numerical integration schemes. They 
are based on the strategy of replacing a complicated function or tabulated data with an 
approximating function that is easy to integrate:

I 5 #
b

a

 f(x) dx >#
b

a
 
fn(x) dx (21.1)

where fn(x) 5 a polynomial of the form

fn(x) 5 a0 1 a1x 1 p 1 an21x
n21 1 an 

xn

where n is the order of the polynomial. For example, in Fig. 21.1a, a fi rst-order polyno-
mial (a straight line) is used as an approximation. In Fig. 21.1b, a parabola is employed 
for the same purpose.
 The integral can also be approximated using a series of polynomials applied piece-
wise to the function or data over segments of constant length. For example, in Fig. 21.2, 

FIGURE 21.1
The approximation of an inte-
gral by the area under (a) a sin-
gle straight line and (b) a single 
parabola.
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604 NEWTON-COTES INTEGRATION FORMULAS

three straight-line segments are used to approximate the integral. Higher-order polynomi-
als can be utilized for the same purpose. With this background, we now recognize that 
the “strip method” in Fig. PT6.6 employed a series of zero-order polynomials (that is, 
constants) to approximate the integral.
 Closed and open forms of the Newton-Cotes formulas are available. The closed 
forms are those where the data points at the beginning and end of the limits of integra-
tion are known (Fig. 21.3a). The open forms have integration limits that extend beyond 
the range of the data (Fig. 21.3b). In this sense, they are akin to extrapolation as discussed 
in Sec. 18.5. Open Newton-Cotes formulas are not generally used for defi nite integration. 

FIGURE 21.2
The approximation of an inte-
gral by the area under three 
straight-line segments.

f (x)

a b x

FIGURE 21.3
The difference between 
(a) closed and (b) open integra-
tion formulas.
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 21.1 THE TRAPEZOIDAL RULE 605

However, they are utilized for evaluating improper integrals and for the solution of 
 ordinary differential equations. This chapter emphasizes the closed forms. However, 
 material on open Newton-Cotes formulas is briefl y introduced at the end of this chapter.

 21.1 THE TRAPEZOIDAL RULE

The trapezoidal rule is the fi rst of the Newton-Cotes closed integration formulas. It cor-
responds to the case where the polynomial in Eq. (21.1) is fi rst order:

I 5 #
b

a
 
f(x) dx >#

b

a
 
f1(x) dx

Recall from Chap. 18 that a straight line can be represented as [Eq. (18.2)]

f1(x) 5 f(a) 1
f(b) 2 f(a)

b 2 a
 (x 2 a) (21.2)

The area under this straight line is an estimate of the integral of f(x) between the limits 
a and b:

I 5 #
b

a
 
c f(a) 1

f(b) 2 f(a)

b 2 a
 (x 2 a) ddx

The result of the integration (see Box 21.1 for details) is

I 5 (b 2 a) 
f(a) 1 f(b)

2
 (21.3)

which is called the trapezoidal rule.

 Box 21.1 Derivation of Trapezoidal Rule

Before integration, Eq. (21.2) can be expressed as

f1(x) 5
f (b) 2 f (a)

b 2 a
 x 1 f (a) 2

a f (b) 2 a f (a)

b 2 a

Grouping the last two terms gives

f1(x) 5
f (b) 2 f (a)

b 2 a
 x 1

b f (a) 2 a f (a) 2 a f (b) 1 a f (a)

b 2 a

or

f1(x) 5
f (b) 2 f (a)

b 2 a
 x 1

b f (a) 2 a f (b)

b 2 a

which can be integrated between x 5 a and x 5 b to yield

I 5
f (b) 2 f (a)

b 2 a
 
x2

2
1

b f (a) 2 a f (b)

b 2 a
 x ` b

a

This result can be evaluated to give

I 5
f (b) 2 f (a)

b 2 a
 
(b2 2 a2)

2
1

b f (a) 2 a f (b)

b 2 a
 (b 2 a)

Now, since b2 2 a2 5 (b 2 a)(b 1 a),

I 5 [ f (b) 2 f (a) ] 

b 1 a

2
1 b f (a) 2 a f (b)

Multiplying and collecting terms yields

I 5 (b 2 a) 

f (a) 1 f (b)

2

which is the formula for the trapezoidal rule.
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606 NEWTON-COTES INTEGRATION FORMULAS

 Geometrically, the trapezoidal rule is equivalent to approximating the area of the 
trapezoid under the straight line connecting f(a) and f(b) in Fig. 21.4. Recall from 
 geometry that the formula for computing the area of a trapezoid is the height times the 
average of the bases (Fig. 21.5a). In our case, the concept is the same but the trapezoid 
is on its side (Fig. 21.5b). Therefore, the integral estimate can be represented as

I > width 3 average height (21.4)

FIGURE 21.4
Graphical depiction of the trapezoidal rule.
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f (a)

f (b)

a b x

FIGURE 21.5
(a) The formula for computing the area of a trapezoid: height times the average of the bases. 
(b) For the trapezoidal rule, the concept is the same but the trapezoid is on its side.
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 21.1 THE TRAPEZOIDAL RULE 607

or

I > (b 2 a) 3 average height (21.5)

where, for the trapezoidal rule, the average height is the average of the function values 
at the end points, or [ f(a) 1 f(b)]y2.
 All the Newton-Cotes closed formulas can be expressed in the general format of 
Eq. (21.5). In fact, they differ only with respect to the formulation of the average height.

21.1.1 Error of the Trapezoidal Rule

When we employ the integral under a straight-line segment to approximate the integral 
under a curve, we obviously can incur an error that may be substantial (Fig. 21.6). An 
estimate for the local truncation error of a single application of the trapezoidal rule is 
(Box. 21.2)

Et 5 2
1

12
  f –(j)(b 2 a)3 (21.6)

where j lies somewhere in the interval from a to b. Equation (21.6) indicates that if the 
function being integrated is linear, the trapezoidal rule will be exact. Otherwise, for 
functions with second- and higher-order derivatives (that is, with curvature), some error 
can occur.

FIGURE 21.6
Graphical depiction of the use of a single application of the trapezoidal rule to approximate the 
integral of f(x) 5 0.2 1 25x 2 200x2 1 675x3 2 900x4 1 400x5 from x 5 0 to 0.8.
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608 NEWTON-COTES INTEGRATION FORMULAS

 EXAMPLE 21.1 Single Application of the Trapezoidal Rule

Problem Statement. Use Eq. (21.3) to numerically integrate

f(x) 5 0.2 1 25x 2 200x2 1 675x3 2 900x4 1 400x5

from a 5 0 to b 5 0.8. Recall from Sec. PT6.2 that the exact value of the integral can 
be determined analytically to be 1.640533.

Solution. The function values

f(0) 5 0.2

f(0.8) 5 0.232

can be substituted into Eq. (21.3) to yield

I > 0.8
0.2 1 0.232

2
5 0.1728

which represents an error of

Et 5 1.640533 2 0.1728 5 1.467733

which corresponds to a percent relative error of et 5 89.5%. The reason for this large 
error is evident from the graphical depiction in Fig. 21.6. Notice that the area under the 
straight line neglects a signifi cant portion of the integral lying above the line.
 In actual situations, we would have no foreknowledge of the true value. Therefore, 
an approximate error estimate is required. To obtain this estimate, the function’s second 

 Box 21.2 Derivation and Error Estimate of the Trapezoidal Rule

An alternative derivation of the trapezoidal rule is possible by inte-
grating the forward Newton-Gregory interpolating polynomial. Re-
call that for the fi rst-order version with error term, the integral 
would be (Box 18.2)

I 5 #
b

a
 
c f (a) 1 ¢f (a)a 1

f –(j)
2

 a(a 2 1)h2 d  

dx (B21.2.1)

To simplify the analysis, realize that because a 5 (x 2 a)yh,

dx 5 h da

Inasmuch as h 5 b 2 a (for the one-segment trapezoidal rule), the 
limits of integration a and b correspond to 0 and 1, respectively. 
Therefore, Eq. (B21.2.1) can be expressed as

I 5 h#
1

0
 
c f (a) 1 ¢f (a)a 1

f –(j)
2

 a(a 2 1)h2 d  

da

If it is assumed that, for small h, the term f 0(j) is approximately 

constant, this equation can be integrated:

I 5 h ca f (a) 1
a2

2
 ¢f (a) 1 aa3

6
2
a2

4
b  f –(j)h2 d 1

0

and evaluated as

I 5 h c f (a) 1
¢f (a)

2
d 2

1

12
 f –(j)h3

Because Df(a) 5 f(b) 2 f(a), the result can be written as

I 5 h 
f (a) 1 f (b)

2
2

1

12
 f –(j)h3

 Trapezoidal rule Truncation error

Thus, the fi rst term is the trapezoidal rule and the second is an 
 approximation for the error.
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 21.1 THE TRAPEZOIDAL RULE 609

derivative over the interval can be computed by differentiating the original function twice 
to give

f –(x) 5 2400 1 4050x 2 10,800x2 1 8000x3

The average value of the second derivative can be computed using Eq. (PT6.4):

f  –(x) 5

#
0.8

0

(2400 1 4050x 2 10,800x2 1 8000x3) dx

0.8 2 0
5 260

which can be substituted into Eq. (21.6) to yield

Ea 5 2
1

12
 (260)(0.8)3 5 2.56

which is of the same order of magnitude and sign as the true error. A discrepancy does 
exist, however, because of the fact that for an interval of this size, the average second 
derivative is not necessarily an accurate approximation of f 0(j). Thus, we denote that the 
error is approximate by using the notation Ea, rather than exact by using Et.

21.1.2 The Multiple-Application Trapezoidal Rule

One way to improve the accuracy of the trapezoidal rule is to divide the integration 
interval from a to b into a number of segments and apply the method to each segment 
(Fig. 21.7). The areas of individual segments can then be added to yield the integral for 
the entire interval. The resulting equations are called multiple-application, or composite, 
integration formulas.
 Figure 21.8 shows the general format and nomenclature we will use to characterize 
multiple-application integrals. There are n 1 1 equally spaced base points (x0, x1, x2, . . . , 
xn). Consequently, there are n segments of equal width:

h 5
b 2 a

n
 (21.7)

 If a and b are designated as x0 and xn, respectively, the total integral can be repre-
sented as

I 5 #
x1

x0

 
f(x) dx 1 #

x2

x1

 
f(x) dx 1 p 1 #

xn

xn21

 
f(x) dx

Substituting the trapezoidal rule for each integral yields

I 5 h 
 f(x0) 1 f(x1)

2
1 h 

 f(x1) 1 f(x2)

2
1 p 1 h 

 f(xn21) 1 f(xn)

2
 (21.8)

or, grouping terms,

I 5
h

2
 c f(x0) 1 2a

n21

i51
 
f(xi) 1 f(xn) d  (21.9)
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610 NEWTON-COTES INTEGRATION FORMULAS

FIGURE 21.7
Illustration of the multiple-application trapezoidal rule. (a) Two segments, (b) three segments, 
(c) four segments, and (d) fi ve segments.
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 21.1 THE TRAPEZOIDAL RULE 611

or, using Eq. (21.7) to express Eq. (21.9) in the general form of Eq. (21.5),

I 5 (b 2 a) 

 f(x0) 1 2a
n21

i51
 f(xi) 1 f(xn)

2n
 (21.10)

 Width Average height

Because the summation of the coeffi cients of f(x) in the numerator divided by 2n is equal 
to 1, the average height represents a weighted average of the function values. According 
to Eq. (21.10), the interior points are given twice the weight of the two end points f(x0) 
and f(xn).
 An error for the multiple-application trapezoidal rule can be obtained by summing 
the individual errors for each segment to give

Et 5 2
(b 2 a)3

12n3 a
n

i51
 
f –(ji) (21.11)

 

FIGURE 21.8
The general format and nomen-
clature for multiple-application 
integrals.
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612 NEWTON-COTES INTEGRATION FORMULAS

where f 0(ji) is the second derivative at a point ji located in segment i. This result can 
be simplifi ed by estimating the mean or average value of the second derivative for the 
entire interval as [Eq. (PT6.3)]

f – > 
a

n

i51
 
f –(ji)

n
 (21.12)

Therefore, g f –(ji) > n f – and Eq. (21.11) can be rewritten as

Ea 5 2
(b 2 a)3

12n2  f – (21.13)

Thus, if the number of segments is doubled, the truncation error will be quartered. Note 
that Eq. (21.13) is an approximate error because of the approximate nature of Eq. (21.12).

 EXAMPLE 21.2 Multiple-Application Trapezoidal Rule

Problem Statement. Use the two-segment trapezoidal rule to estimate the integral of

f(x) 5 0.2 1 25x 2 200x2 1 675x3 2 900x4 1 400x5

from a 5 0 to b 5 0.8. Employ Eq. (21.13) to estimate the error. Recall that the correct 
value for the integral is 1.640533.

Solution. n 5 2 (h 5 0.4):

 f(0) 5 0.2  f(0.4) 5 2.456  f(0.8) 5 0.232

 I 5 0.8
0.2 1 2(2.456) 1 0.232

4
5 1.0688

 Et 5 1.640533 2 1.0688 5 0.57173  et 5 34.9%

 Ea 5 2
0.83

12(2)2 (260) 5 0.64

where 260 is the average second derivative determined previously in Example 21.1.

 The results of the previous example, along with three- through ten-segment applica-
tions of the trapezoidal rule, are summarized in Table 21.1. Notice how the error decreases 
as the number of segments increases. However, also notice that the rate of decrease is 
gradual. This is because the error is inversely related to the square of n [Eq. (21.13)]. 
Therefore, doubling the number of segments quarters the error. In subsequent sections we 
develop higher-order formulas that are more accurate and that converge more quickly on 
the true integral as the segments are increased. However, before investigating these formu-
las, we will fi rst discuss computer algorithms to implement the trapezoidal rule.

21.1.3 Computer Algorithms for the Trapezoidal Rule

Two simple algorithms for the trapezoidal rule are listed in Fig. 21.9. The fi rst (Fig. 21.9a) 
is for the single-segment version. The second (Fig. 21.9b) is for the multiple-segment 
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 21.1 THE TRAPEZOIDAL RULE 613

version with a constant segment width. Note that both are designed for data that are in 
tabulated form. A general program should have the capability to evaluate known func-
tions or equations as well. We will illustrate how functions are handled in Chap. 22.

 EXAMPLE 21.3 Evaluating Integrals with the Computer

Problem Statement. Use software based on Fig. 21.9b to solve a problem related to 
our friend, the falling parachutist. As you recall from Example 1.1, the velocity of the 
parachutist is given as the following function of time:

y(t) 5
gm

c
 (1 2 e2(cym)t) (E21.3.1)

where y 5 velocity (m/s), g 5 the gravitational constant of 9.8 m/s2, m 5 mass of the 
parachutist equal to 68.1 kg, and c 5 the drag coeffi cient of 12.5 kg/s. The model predicts 
the velocity of the parachutist as a function of time as described in Example 1.l.

TABLE 21.1  Results for multiple-application trapezoidal 
rule to estimate the integral of f(x) 5 0.2 1 
25x 2 200x2 1 675x3 2 900x4 1 400x5 
from x 5 0 to 0.8. The exact value is 
1.640533.

 n h I Et (%)

 2 0.4 1.0688 34.9
 3 0.2667 1.3695 16.5
 4 0.2 1.4848 9.5
 5 0.16 1.5399 6.1
 6 0.1333 1.5703 4.3
 7 0.1143 1.5887 3.2
 8 0.1 1.6008 2.4
 9 0.0889 1.6091 1.9
 10 0.08 1.6150 1.6

(a) Single-segment (b) Multiple-segment

FUNCTION Trap (h, fO, f1) FUNCTION Trapm (h, n, f)

  Trap 5 h * (fO 1 f1)y2   sum 5 fO
END Trap   DOFOR i 5 1, n 2 1

     sum 5 sum 1 2 * fi
   END DO

   sum 5 sum 1 fn
   Trapm 5 h * sum y 2
 END Trapm

FIGURE 21.9
Algorithms for the (a) single-segment and (b) multiple-segment trapezoidal rule.
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614 NEWTON-COTES INTEGRATION FORMULAS

 Suppose we would like to know how far the parachutist has fallen after a certain 
time t. This distance is given by [Eq. (PT6.5)]

d 5 #
t

0
 
y(t) dt

where d is the distance in meters. Substituting Eq. (E21.3.1),

d 5
gm

c #
t

0

(1 2 e2(cym)t) dt

Use your software to determine this integral with the multiple-segment trapezoidal rule 
using different numbers of segments. Note that performing the integration analytically 
and substituting known parameter values results in an exact value of d 5 289.43515 m.

Solution. For the case where n 5 10 segments, a calculated integral of 288.7491 is 
obtained. Thus, we have attained the integral to three signifi cant digits of accuracy. 
 Results for other numbers of segments can be readily generated.

 Segments Segment Size Estimated d, m Et (%)

 10 1.0 288.7491 0.237
 20 0.5 289.2636 0.0593
 50 0.2 289.4076 9.5 3 1023

 100 0.1 289.4282 2.4 3 1023

 200 0.05 289.4336 5.4 3 1024

 500 0.02 289.4348 1.2 3 1024

 1000 0.01 289.4360 23.0 3 1024

 2000 0.005 289.4369 25.9 3 1024

 5000 0.002 289.4337 5.2 3 1024

 10,000 0.001 289.4317 1.2 3 1023

 Up to about 500 segments, the multiple-application trapezoidal rule attains excellent 
accuracy. However, notice how the error changes sign and begins to increase in absolute 
value beyond the 500-segment case. The 10,000-segment case actually seems to be di-
verging from the true value. This is due to the intrusion of round-off error because of 
the great number of computations for this many segments. Thus, the level of precision 
is limited, and we would never reach the exact result of 289.4351 obtained analytically. 
This limitation and ways to overcome it will be discussed in further detail in Chap. 22.

 Three major conclusions can be drawn from the Example 21.3:

 For individual applications with nicely behaved functions, the multiple-segment 
trapezoidal rule is just fine for attaining the type of accuracy required in many 
engineering applications.

 If high accuracy is required, the multiple-segment trapezoidal rule demands a great deal 
of computational effort. Although this effort may be negligible for a single application, 
it could be very important when (a) numerous integrals are being evaluated or (b) where 
the function itself is time consuming to evaluate. For such cases, more efficient approaches 
(like those in the remainder of this chapter and the next) may be necessary.
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 21.2 SIMPSON’S RULES 615

 Finally, round-off errors can limit our ability to determine integrals. This is due both 
to the machine precision as well as to the numerous computations involved in simple 
techniques like the multiple-segment trapezoidal rule.

 We now turn to one way in which effi ciency is improved. That is, by using higher-
order polynomials to approximate the integral.

 21.2 SIMPSON’S RULES

Aside from applying the trapezoidal rule with fi ner segmentation, another way to obtain 
a more accurate estimate of an integral is to use higher-order polynomials to connect the 
points. For example, if there is an extra point midway between f(a) and f(b), the three 
points can be connected with a parabola (Fig. 21.10a). If there are two points equally 
spaced between f(a) and f(b), the four points can be connected with a third-order poly-
nomial (Fig. 21.10b). The formulas that result from taking the integrals under these 
polynomials are called Simpson’s rules.

21.2.1 Simpson’s 1/3 Rule

Simpson’s 1y3 rule results when a second-order interpolating polynomial is substituted 
into Eq. (21.1):

I 5 #
b

a
 
f(x) dx >#

b

a
 
f2(x) dx

If a and b are designated as x0 and x2 and f2(x) is represented by a second-order Lagrange 
polynomial [Eq. (18.23)], the integral becomes

I 5 #
x2

x0

c (x 2 x1) (x 2 x2)

(x0 2 x1) (x0 2 x2)
 f(x0) 1

(x 2 x0) (x 2 x2)

(x1 2 x0) (x1 2 x2)
 f(x1)

    1
(x 2 x0) (x 2 x1)

(x2 2 x0) (x2 2 x1)
 f(x2) ddx

FIGURE 21.10
(a) Graphical depiction of 
Simpson’s 1/3 rule: It consists 
of taking the area under a 
 parabola connecting three 
points. (b) Graphical depiction 
of Simpson’s 3/8 rule: It 
 consists of taking the area under 
a cubic equation connecting 
four points.

f (x)

(a)
x

f (x)

(b)
x
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616 NEWTON-COTES INTEGRATION FORMULAS

After integration and algebraic manipulation, the following formula results:

I > 
h

3
 [ f(x0) 1 4 f(x1) 1 f(x2) ] (21.14)

where, for this case, h 5 (b 2 a)y2. This equation is known as Simpson’s 1y3 rule. It 
is the second Newton-Cotes closed integration formula. The label “1y3” stems from the 
fact that h is divided by 3 in Eq. (21.14). An alternative derivation is shown in Box 21.3 
where the Newton-Gregory polynomial is integrated to obtain the same formula.
 Simpson’s 1y3 rule can also be expressed using the format of Eq. (21.5):

I > (b 2 a) 
 f(x0) 1 4 f(x1) 1 f(x2)

6
 (21.15)

 Width Average height
 

 Box 21.3 Derivation and Error Estimate of Simpson’s 1/3 Rule

As was done in Box 21.2 for the trapezoidal rule, Simpson’s 1y3 
rule can be derived by integrating the forward Newton-Gregory 
interpolating polynomial (Box 18.2):

I 5 #
x2

x0

 
c f (x0) 1 ¢f (x0)a 1

¢2 f (x0)

2
 a(a 2 1)

      1
¢3 f (x0)

6
 a(a 2 1)(a 2 2)

      1
 f  

(4)(j)

24
 a(a 2 1)(a 2 2)(a 2 3)h4 d  

dx

Notice that we have written the polynomial up to the fourth-order 
term rather than the third-order term as would be expected. The 
reason for this will be apparent shortly. Also notice that the limits 
of integration are from x0 to x2. Therefore, when the simplifying 
substitutions are made (recall Box 21.2), the integral is from a 5 
0 to 2:

I 5 h#
2

0
 

c f (x0) 1 ¢f (x0)a 1
¢2 f (x0)

2
 a(a 2 1)

      1
¢3 f (x0)

6
 a(a 2 1)(a 2 2)

      1
f  

(4)(j)

24
 a(a 2 1)(a 2 2)(a 2 3)h4 d  

da

which can be integrated to yield

I 5 h ca f (x0) 1
a2

2
 ¢f (x0) 1 aa3

6
2
a2

4
b ¢2 f (x0)

      1 aa4

24
2
a3

6
1
a2

6
b ¢3 f (x0)

      1 a a5

120
2
a4

16
1

11a3

72
2
a2

8
b  f (4)(j)h4 d 2

0

and evaluated for the limits to give

I 5 h c 2 f (x0) 1 2¢  f (x0) 1
¢2 f (x0)

3

      1 (0)¢3 f (x0) 2
1

90
 f  

(4)(j)h4 d  (B21.3.1)

Notice the signifi cant result that the coeffi cient of the third divided 
difference is zero. Because Df(x0) 5 f(x1) 2 f(x0) and D2f(x0) 5 
f(x2) 2 2f(x1) 1 f(x0), Eq. (B21.3.1) can be rewritten as

I 5
h

3
 [ f (x0) 1 4 f (x1) 1 f (x2) ] 2

1

90
 f (4)(j)h5

 Simpson’s 1y3 Truncation error

Thus, the fi rst term is Simpson’s 1y3 rule and the second is the 
truncation error. Because the third divided difference dropped 
out, we obtain the signifi cant result that the formula is third-order 
accurate.
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 21.2 SIMPSON’S RULES 617

where a 5 x0, b 5 x2, and x1 5 the point midway between a and b, which is given by 
(b 1 a)y2. Notice that, according to Eq. (21.15), the middle point is weighted by two-
thirds and the two end points by one-sixth.
 It can be shown that a single-segment application of Simpson’s 1y3 rule has a trun-
cation error of (Box 21.3)

Et 5 2
1

90
 h5f 

(4)(j)

or, because h 5 (b 2 a)y2,

Et 5 2
(b 2 a)5

2880
 f 

(4)(j) (21.16)

where j lies somewhere in the interval from a to b. Thus, Simpson’s 1Y3 rule is more 
accurate than the trapezoidal rule. However, comparison with Eq. (21.6) indicates that it 
is more accurate than expected. Rather than being proportional to the third derivative, 
the error is proportional to the fourth derivative. This is because, as shown in Box 21.3, 
the coeffi cient of the third-order term goes to zero during the integration of the interpo-
lating polynomial. Consequently, Simpson’s 1Y3 rule is third-order accurate even though 
it is based on only three points. In other words, it yields exact results for cubic polyno-
mials even though it is derived from a parabola!

 EXAMPLE 21.4 Single Application of Simpson’s 1/3 Rule

Problem Statement. Use Eq. (21.15) to integrate

f(x) 5 0.2 1 25x 2 200x2 1 675x3 2 900x4 1 400x5

from a 5 0 to b 5 0.8. Recall that the exact integral is 1.640533.

Solution.

f(0) 5 0.2  f(0.4) 5 2.456  f(0.8) 5 0.232

Therefore, Eq. (21.15) can be used to compute

I > 0.8 

0.2 1 4(2.456) 1 0.232

6
5 1.367467

which represents an exact error of

Et 5 1.640533 2 1.367467 5 0.2730667  et 5 16.6%

which is approximately 5 times more accurate than for a single application of the trap-
ezoidal rule (Example 21.1).
 The estimated error is [Eq . (21.16)]

Ea 5 2
(0.8)5

2880
 (22400) 5 0.2730667

where 22400 is the average fourth derivative for the interval as obtained using Eq. (PT6.4). 
As was the case in Example 21.1, the error is approximate (Ea) because the average fourth 
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618 NEWTON-COTES INTEGRATION FORMULAS

derivative is not an exact estimate of f (4)(j). However, because this case deals with a fi fth-
order polynomial, the result matches.

21.2.2 The Multiple-Application Simpson’s 1/3 Rule

Just as with the trapezoidal rule, Simpson’s rule can be improved by dividing the integra-
tion interval into a number of segments of equal width (Fig. 21.11):

h 5
b 2 a

n
 (21.17)

The total integral can be represented as

I 5 #
x2

x0

 
f(x) dx 1 #

x4

x2

 
f(x) dx 1 p 1 #

xn

xn22

 
f(x) dx

Substituting Simpson’s 1y3 rule for the individual integral yields

I > 2h 
 f(x0) 1 4 f(x1) 1 f(x2)

6
1 2h 

 f(x2) 1 4 f(x3) 1 f(x4)

6

1 p 1 2h 
 f(xn22) 1 4 f(xn21) 1 f(xn)

6

or, combining terms and using Eq. (21.17),

I > (b 2 a)  

 f(x0) 1 4 a
n21

i51, 3, 5
  f(xi) 1 2 a

n22

j52, 4, 6
  f(xj) 1 f(xn)

3n
 (21.18)

  
 Width Average height

FIGURE 21.11
Graphical representation of 
the multiple application of 
Simpson’s 1y3 rule. Note that 
the method can be employed 
only if the number of segments 
is even.

f (x)

xba

cha9792x_ch21_603-632.indd Page 618  29/10/13  9:45 PM F-468 cha9792x_ch21_603-632.indd Page 618  29/10/13  9:45 PM F-468 /207/MH02101/cha9792x_disk1of1/007339792x/cha9792x_pagefiles/207/MH02101/cha9792x_disk1of1/007339792x/cha9792x_pagefiles



 21.2 SIMPSON’S RULES 619

Notice that, as illustrated in Fig. 21.11, an even number of segments must be utilized to 
implement the method. In addition, the coeffi cients “4” and “2” in Eq. (21.18) might 
seem peculiar at fi rst glance. However, they follow naturally from Simpson’s 1y3 rule. 
The odd points represent the middle term for each application and hence carry the weight 
of 4 from Eq. (21.15). The even points are common to adjacent applications and hence 
are counted twice.
 An error estimate for the multiple-application Simpson’s rule is obtained in the same 
fashion as for the trapezoidal rule by summing the individual errors for the segments 
and averaging the derivative to yield

Ea 5 2
(b 2 a)5

180n4   f  
(4) (21.19)

where f  

(4) is the average fourth derivative for the interval.

 EXAMPLE 21.5 Multiple-Application Version of Simpson’s 1y3 Rule

Problem Statement. Use Eq. (21.18) with n 5 4 to estimate the integral of

f(x) 5 0.2 1 25x 2 200x2 1 675x3 2 900x4 1 400x5

from a 5 0 to b 5 0.8. Recall that the exact integral is 1.640533.

Solution. n 5 4 (h 5 0.2):

f(0) 5 0.2 f(0.2) 5 1.288

f(0.4) 5 2.456 f(0.6) 5 3.464

f(0.8) 5 0.232

From Eq. (21.18),

 I 5 0.8 
0.2 1 4(1.288 1 3.464) 1 2(2.456) 1 0.232

12
5 1.623467

 Et 5 1.640533 2 1.623467 5 0.017067  et 5 1.04%

The estimated error [Eq. (21.19)] is

Ea 5 2
(0.8)5

180(4)4 (22400) 5 0.017067

 The previous example illustrates that the multiple-application version of Simp-
son’s 1y3 rule yields very accurate results. For this reason, it is considered superior 
to the trapezoidal rule for most applications. However, as mentioned previously, it is 
limited to cases where the values are equispaced. Further, it is limited to situations 
where there are an even number of segments and an odd number of points. Conse-
quently, as discussed in the next section, an odd-segment–even-point formula known 
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620 NEWTON-COTES INTEGRATION FORMULAS

as Simpson’s 3y8 rule is used in conjunction with the 1y3 rule to permit evaluation 
of both even and odd numbers of segments.

21.2.3 Simpson’s 3/8 Rule

In a similar manner to the derivation of the trapezoidal and Simpson’s 1y3 rule, a third-
order Lagrange polynomial can be fi t to four points and integrated:

I 5 #
b

a
 
f(x) dx > #

b

a
 
f3(x) dx

to yield

I > 
3h

8
 [ f(x0) 1 3 f(x1) 1 3 f(x2) 1 f(x3) ]

where h 5 (b 2 a)y3. This equation is called Simpson’s 3y8 rule because h is multiplied 
by 3y8. It is the third Newton-Cotes closed integration formula. The 3y8 rule can also 
be expressed in the form of Eq. (21.5):

I > (b 2 a)  
 f(x0) 1 3 f(x1) 1 3 f(x2) 1 f(x3)

8
 (21.20)

Thus, the two interior points are given weights of three-eighths, whereas the end points 
are weighted with one-eighth. Simpson’s 3y8 rule has an error of

Et 5 2
3

80
 h5 f  

(4)(j)

or, because h 5 (b 2 a)y3,

Et 5 2
(b 2 a)5

6480
 f  

(4)(j) (21.21)

Because the denominator of Eq. (21.21) is larger than for Eq. (21.16), the 3y8 rule is 
somewhat more accurate than the 1y3 rule.
 Simpson’s 1y3 rule is usually the method of preference because it attains third-
order accuracy with three points rather than the four points required for the 3y8 
version. However, the 3y8 rule has utility when the number of segments is odd. For 
instance, in Example 21.5 we used Simpson’s rule to integrate the function for four 
segments. Suppose that you desired an estimate for five segments. One option would 
be to use a multiple-application version of the trapezoidal rule as was done in Ex-
amples 21.2 and 21.3. This may not be advisable, however, because of the large 
truncation error associated with this method. An alternative would be to apply Simp-
son’s 1y3 rule to the first two segments and Simpson’s 3y8 rule to the last three 
(Fig. 21.12). In this way, we could obtain an estimate with third-order accuracy 
across the entire interval.

 
 Width Average height
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 21.2 SIMPSON’S RULES 621

 EXAMPLE 21.6 Simpson’s 3y8 Rule

Problem Statement.

(a) Use Simpson’s 3y8 rule to integrate

f(x) 5 0.2 1 25x 2 200x2 1 675x3 2 900x4 1 400x5

 from a 5 0 to b 5 0.8.
(b) Use it in conjunction with Simpson’s 1y3 rule to integrate the same function for fi ve 

segments.

Solution.

(a) A single application of Simpson’s 3y8 rule requires four equally spaced points:

f(0) 5 0.2 f(0.2667) 5 1.432724

f(0.5333) 5 3.487177 f(0.8) 5 0.232

 Using Eq. (21.20),

 I > 0.8 
0.2 1 3(1.432724 1 3.487177) 1 0.232

8
5 1.519170

 Et 5 1.640533 2 1.519170 5 0.1213630  et 5 7.4%

 Ea 5 2
(0.8)5

6480
 (22400) 5 0.1213630

FIGURE 21.12
Illustration of how Simpson’s 
1y3 and 3y8 rules can be 
applied in tandem to handle 
multiple applications with odd 
numbers of intervals.

f (x)

x0.80.60.40.2

3/8 rule1/3 rule

0

3

2

1

0
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622 NEWTON-COTES INTEGRATION FORMULAS

(b) The data needed for a fi ve-segment application (h 5 0.16) is

 f(0) 5 0.2 f(0.16) 5 1.296919

f(0.32) 5 1.743393 f(0.48) 5 3.186015

f(0.64) 5 3.181929 f(0.80) 5 0.232

 The integral for the fi rst two segments is obtained using Simpson’s 1y3 rule:

I > 0.32 
0.2 1 4(1.296919) 1 1.743393

6
5 0.3803237

 For the last three segments, the 3y8 rule can be used to obtain

I > 0.48 
1.743393 1 3(3.186015 1 3.181929) 1 0.232

8
5 1.264754

 The total integral is computed by summing the two results:

 I 5 0.3803237 1 1.264753 5 1.645077

 Et 5 1.640533 2 1.645077 5 20.00454383  et 5 20.28%

21.2.4 Computer Algorithms for Simpson’s Rules

Pseudocodes for a number of forms of Simpson’s rule are outlined in Fig. 21.13. Note 
that all are designed for data that are in tabulated form. A general program should have 
the capability to evaluate known functions or equations as well. We will illustrate how 
functions are handled in Chap. 22.
 Notice that the program in Fig. 21.13d is set up so that either an even or odd num-
ber of segments may be used. For the even case, Simpson’s 1y3 rule is applied to each 
pair of segments, and the results are summed to compute the total integral. For the odd 
case, Simpson’s 3y8 rule is applied to the last three segments, and the 1y3 rule is applied 
to all the previous segments.

21.2.5 Higher-Order Newton-Cotes Closed Formulas

As noted previously, the trapezoidal rule and both of Simpson’s rules are members of a 
family of integrating equations known as the Newton-Cotes closed integration formulas. 
Some of the formulas are summarized in Table 21.2 along with their truncation-error 
estimates.
 Notice that, as was the case with Simpson’s 1y3 and 3y8 rules, the fi ve- and six-
point formulas have the same order error. This general characteristic holds for the higher-
point formulas and leads to the result that the even-segment–odd-point formulas (for 
example, 1y3 rule and Boole’s rule) are usually the methods of preference.
 However, it must also be stressed that, in engineering practice, the higher-order (that 
is, greater than four-point) formulas are rarely used. Simpson’s rules are suffi cient for 
most applications. Accuracy can be improved by using the multiple-application version. 
Furthermore, when the function is known and high accuracy is required, methods such 

cha9792x_ch21_603-632.indd Page 622  29/10/13  9:45 PM F-468 cha9792x_ch21_603-632.indd Page 622  29/10/13  9:45 PM F-468 /207/MH02101/cha9792x_disk1of1/007339792x/cha9792x_pagefiles/207/MH02101/cha9792x_disk1of1/007339792x/cha9792x_pagefiles



 21.2 SIMPSON’S RULES 623

(a)
FUNCTION Simp13 (h, f0, f1, f2)

  Simp13 5 2*h* (f014*f11f2) / 6

END Simp13

(b)
FUNCTION Simp38 (h, f0, f1, f2, f3)

  Simp38 5 3*h* (f013*(f11f2)1f3) / 8

END Simp38

(c)
FUNCTION Simp13m (h, n, f)

  sum 5 f(0)

  DOFOR i 5 1, n 2 2, 2

    sum 5 sum 1 4 * fi 1 2 * fi11

  END DO

  sum 5 sum 1 4 * fn21 1 fn
  Simp13m 5 h * sum / 3

END Simp13m

(d )
FUNCTION SimpInt(a,b,n,f)

  h 5 (b 2 a) / n

  IF n 5 1 THEN

    sum 5 Trap(h,fn21,fn)

  ELSE

    m 5 n

    odd 5 n / 2 2 INT(n / 2)

    IF odd . 0 AND n . 1 THEN

      sum 5 sum1Simp38(h,fn23,fn22,fn21,fn)

      m 5 n 2 3

    END IF

    IF m . 1 THEN

      sum 5 sum 1 Simp13m(h,m,f)

    END IF

  END IF

  SimpInt 5 sum

END SimpInt

TABLE 21.2  Newton-Cotes closed integration formulas. The formulas are presented in the 
format of Eq. (21.5) so that the weighting of the data points to estimate the
average height is apparent. The step size is given by h 5 (b 2 a)/n.

 Segments 
 (n) Points Name Formula Truncation Error

 1 2 Trapezoidal rule (b 2 a) 
f (x0) 1 f (x1)

2
 2 (1y12)h3f''(j)

 2 3 Simpson’s 1/3 rule (b 2 a) 
f (x0) 1 4f (x1) 1 f (x2)

6
 2 (1y90)h5f (4)(j)

 3 4 Simpson’s 3/8 rule (b 2 a) 
f (x0) 1 3f (x1) 1 3f (x2) 1 f (x3)

8
 2 (3y80)h5f (4)(j)

 4 5 Boole’s rule (b 2 a) 
7f (x0) 1 32f (x1) 1 12f (x2) 1 32f (x3) 1 7f (x4)

90
 2 (8y945)h7f (6)(j)

 5 6  (b 2 a) 
19f (x0) 1 75f (x1) 1 50f (x2) 1 50f (x3) 1 75f (x4) 1 19f (x5)

288
 2 (275y12,096)h7f (6)(j)

FIGURE 21.13
Pseudocode for Simpson’s rules. (a) Single-application Simpson’s 1y3 rule, (b) single-
application Simpson’s 3y8 rule, (c) multiple-application Simpson’s 1y3 rule, and (d) multiple-
application Simpson’s rule for both odd and even number of segments. Note that for all cases, 
n must be $1.
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624 NEWTON-COTES INTEGRATION FORMULAS

as Romberg integration or Gauss quadrature, described in Chap. 22, offer viable and 
attractive alternatives.

 21.3 INTEGRATION WITH UNEQUAL SEGMENTS

To this point, all formulas for numerical integration have been based on equally spaced 
data points. In practice, there are many situations where this assumption does not hold 
and we must deal with unequal-sized segments. For example, experimentally derived data 
are often of this type. For these cases, one method is to apply the trapezoidal rule to 
each segment and sum the results:

I 5 h1 
 f(x0) 1 f(x1)

2
1 h2 

 f(x1) 1 f(x2)

2
1 p 1 hn 

 f(xn21) 1 f(xn)

2
 (21.22)

where hi 5 the width of segment i. Note that this was the same approach used for the 
multiple-application trapezoidal rule. The only difference between Eqs. (21.8) and (21.22) 
is that the h’s in the former are constant. Consequently, Eq. (21.8) could be simplifi ed 
by grouping terms to yield Eq. (21.9). Although this simplifi cation cannot be applied to 
Eq. (21.22), a computer program can be easily developed to accommodate unequal-sized 
segments. Before describing such an algorithm, we will illustrate in the following ex-
ample how Eq. (21.22) is applied to evaluate an integral.

 EXAMPLE 21.7 Trapezoidal Rule with Unequal Segments

Problem Statement. The information in Table 21.3 was generated using the same poly-
nomial employed in Example 21.1. Use Eq. (21.22) to determine the integral for these 
data. Recall that the correct answer is 1.640533.

Solution. Applying Eq. (21.22) to these data in Table 21.3 yields

 I 5 0.12 
1.309729 1 0.2

2
1 0.10 

1.305241 1 1.309729

2
1 p 1 0.10 

0.232 1 2.363

2

 5 0.090584 1 0.130749 1 p 1 0.12975 5 1.594801

which represents an absolute percent relative error of et 5 2.8%.

TABLE 21.3  Data for f (x) 5 0.2 1 25x 2 200x2 1 675x3 2 
900x4 1 400x5, with unequally spaced values 
of x.

 x f (x) x f(x)

0.0 0.200000 0.44 2.842985
0.12 1.309729 0.54 3.507297
0.22 1.305241 0.64 3.181929
0.32 1.743393 0.70 2.363000
0.36 2.074903 0.80 0.232000
0.40 2.456000
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 21.3 INTEGRATION WITH UNEQUAL SEGMENTS 625

 The data from Example 21.7 are depicted in Fig. 21.14. Notice that some adjacent 
segments are of equal width and, consequently, could have been evaluated using Simpson’s 
rules. This usually leads to more accurate results, as illustrated by the following example.

 EXAMPLE 21.8 Inclusion of Simpson’s Rules in the Evaluation of Uneven Data

Problem Statement. Recompute the integral for the data in Table 21.3, but use Simpson’s 
rules for those segments where they are appropriate.

Solution. The fi rst segment is evaluated with the trapezoidal rule:

I 5 0.12 
1.309729 1 0.2

2
5 0.09058376

Because the next two segments from x 5 0.12 to 0.32 are of equal length, their integral 
can be computed with Simpson’s 1y3 rule:

I 5 0.2 
1.743393 1 4(1.305241) 1 1.309729

6
5 0.2758029

The next three segments are also equal and, as such, may be evaluated with the 3y8 rule 
to give I 5 0.2726863. Similarly, the 1y3 rule can be applied to the two segments from 
x 5 0.44 to 0.64 to yield I 5 0.6684701. Finally, the last two segments, which are of 
unequal length, can be evaluated with the trapezoidal rule to give values of 0.1663479 
and 0.1297500, respectively. The area of these individual segments can be summed to 

FIGURE 21.14
Use of the trapezoidal rule to determine the integral of unevenly spaced data. Notice how the 
shaded segments could be evaluated with Simpson’s rule to attain higher accuracy.

f (x)

x0.5

1/3 rule

3/8 rule

1/3 rule

0

3

0
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626 NEWTON-COTES INTEGRATION FORMULAS

yield a total integral of 1.603641. This represents an error of et 5 2.2%, which is supe-
rior to the result using the trapezoidal rule in Example 21.7.

Computer Program for Unequally Spaced Data. It is a fairly simple proposition to 
program Eq. (21.22). Such an algorithm is listed in Fig. 21.15a.
 However, as demonstrated in Example 21.8, the approach is enhanced if it imple-
ments Simpson’s rules wherever possible. For this reason, we have developed a second 
algorithm that incorporates this capability. As depicted in Fig 21.15b, the algorithm 
checks the length of adjacent segments. If two consecutive segments are of equal length, 
Simpson’s 1y3 rule is applied. If three are equal, the 3y8 rule is used. When adjacent 
segments are of unequal length, the trapezoidal rule is implemented.

(a)
FUNCTION Trapun (x, y, n)

  LOCAL i, sum

  sum 5 0

  DOFOR i 5 1, n

    sum 5 sum 1 (xi 2 xi21)*(yi21 1 yi) /2

  END DO

  Trapun 5 sum

END Trapun

(b)
FUNCTION Uneven (n,x,f)

  h 5 x1 2 x0
  k 5 1

  sum 5 0.

  DOFOR j 5 1, n

    hf 5 xj11 2 xj
    IF ABS (h 2 hf) , .000001 THEN

      IF k 5 3 THEN

        sum 5 sum 1 Simp13 (h,fj23,fj22,fj21)

        k 5 k 2 1

      ELSE

        k 5 k 1 1

      END IF

    ELSE

      IF k 5 1 THEN

        sum 5 sum 1 Trap (h,fj21,fj)

      ELSE

        IF k 5 2 THEN

          sum 5 sum 1 Simp13 (h,fj22,fj21,fj)

        ELSE

          sum 5 sum 1 Simp38 (h,fj23,fj22,fj21,fj)

        END IF

        k 5 1

      END IF

    END IF

    h 5 hf

  END DO

  Uneven 5 sum

END Uneven

FIGURE 21.15
Pseudocode for integrating unequally spaced data. (a) Trapezoidal rule and (b) combination 
Simpson’s and trapezoidal rules.

cha9792x_ch21_603-632.indd Page 626  29/10/13  9:46 PM F-468 cha9792x_ch21_603-632.indd Page 626  29/10/13  9:46 PM F-468 /207/MH02101/cha9792x_disk1of1/007339792x/cha9792x_pagefiles/207/MH02101/cha9792x_disk1of1/007339792x/cha9792x_pagefiles



 21.5 MULTIPLE INTEGRALS 627

 Thus, not only does it allow evaluation of unequal segment data, but if equally 
spaced information is used, it reduces to using Simpson’s rules. As such, it represents a 
basic, all-purpose algorithm for the determination of the integral of tabulated data.

 21.4 OPEN INTEGRATION FORMULAS

Recall from Fig 21.3b that open integration formulas have limits that extend beyond the 
range of these data. Table 21.4 summarizes the Newton-Cotes open integration formulas. 
The formulas are expressed in the form of Eq. (21.5) so that the weighting factors are 
evident. As with the closed versions, successive pairs of the formulas have the same-
order error. The even-segment–odd-point formulas are usually the methods of preference 
because they require fewer points to attain the same accuracy as the odd-segment–even-
point formulas.
 The open formulas are not often used for defi nite integration. However, as discussed 
in Chap. 22, they have utility for analyzing improper integrals. In addition, they will 
have relevance to our discussion of multistep methods for solving ordinary differential 
equations in Chap. 26.

 21.5 MULTIPLE INTEGRALS

Multiple integrals are widely used in engineering. For example, a general equation to 
compute the average of a two-dimensional function can be written as (recall Eq. PT6.4)

f 5

#
d

c
 
a #

b

a
 
f(x, y)dxb dy

(d 2 c)(b 2 a)
 (21.23)

The numerator is called a double integral.

TABLE 21.4  Newton-Cotes open integration formulas. The formulas are presented in the
format of Eq. (21.5) so that the weighting of the data points to estimate 
the average height is apparent. The step size is given by h 5 (b 2 a)/n.

 Segments
 (n) Points Name Formula Truncation Error

 2 1 Midpoint method (b 2 a) f (x1) (1y3)h3f''(j)

 3 2  (b 2 a) 
f  (x1) 1 f (x2)

2
 (3y4)h3f''(j)

 4 3  (b 2 a) 
2f  (x1) 2 f  (x2) 1 2f (x3)

3
 (14y45)h5f (4)(j)

 5 4  (b 2 a) 
11f (x1) 1 f  (x2) 1 f  (x3) 1 11f  (x4)

24
 (95y144)h5f (4)(j)

 6 5  (b 2 a) 
11f (x1) 2 14f (x2) 1 26f (x3) 2 14f (x4) 1 11f (x5)

20
 (41y140)h7f (6)(j)
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628 NEWTON-COTES INTEGRATION FORMULAS

 The techniques discussed in this chapter (and the following chapter) can be readily 
employed to evaluate multiple integrals. A simple example would be to take the double 
integral of a function over a rectangular area (Fig. 21.16).
 Recall from calculus that such integrals can be computed as iterated integrals

#
d

c

a #
b

a
 
f(x, y) dxb dy 5 #

b

a

a #
d

c

f(x, y)dyb dx (21.24)

Thus, the integral in one of the dimensions is evaluated fi rst. The result of this fi rst in-
tegration is integrated in the second dimension. Equation (21.24) states that the order of 
integration is not important.
 A numerical double integral would be based on the same idea. First, methods like 
the multiple-segment trapezoidal or Simpson’s rule would be applied in the fi rst dimension 
with each value of the second dimension held constant. Then the method would be applied 
to integrate the second dimension. The approach is illustrated in the following example.

 EXAMPLE 21.9 Using Double Integral to Determine Average Temperature

Problem Statement. Suppose that the temperature of a rectangular heated plate is de-
scribed by the following function:

T (x, y) 5 2xy 1 2x 2 x2 2 2y2 1 72

If the plate is 8-m long (x dimension) and 6-m wide (y dimension), compute the average 
temperature.

FIGURE 21.16
Double integral as the area under the function surface.

f(x, y)

a

b

x

c

d

y
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 PROBLEMS 629

Solution. First, let us merely use two-segment applications of the trapezoidal rule in each 
dimension. The temperatures at the necessary x and y values are depicted in Fig. 21.17. 
Note that a simple average of these values is 47.33. The function can also be evaluated 
analytically to yield a result of 58.66667.
 To make the same evaluation numerically, the trapezoidal rule is fi rst implemented 
along the x dimension for each y value. These values are then integrated along the y 
dimension to give the fi nal result of 2688. Dividing this by the area yields the average 
temperature as 2688y(6 3 8) 5 56.
 Now we can apply a single-segment Simpson’s 1y3 rule in the same fashion. This results 
in an integral of 2816 and an average of 58.66667, which is exact. Why does this occur? 
Recall that Simpson’s 1y3 rule yielded perfect results for cubic polynomials. Since the highest 
order term in the function is second order, the same exact result occurs for the present case.
 For higher-order algebraic functions as well as transcendental functions, it would be 
necessary to use multi-segment applications to attain accurate integral estimates. In ad-
dition, Chap. 22 introduces techniques that are more effi cient than the Newton-Cotes 
formulas for evaluating integrals of given functions. These often provide a superior means 
to implement the numerical integrations for multiple integrals.

40

70

64

0

54

72

48

54

24

(8 – 0)
0 + 2(40) + 48

4

(8 – 0)
54 + 2(70) + 54

4

(8 – 0)
72 + 2(64) + 24

4

(6 – 0) = 2688
256 + 2(496) + 448

4

256

448

496

x

y

FIGURE 21.17
Numerical evaluation of a double integral using the two-segment trapezoidal rule.

PROBLEMS

21.1 Evaluate the following integral:

#
py2

0

(6 1 3 cos x) dx

(a) analytically; (b) single application of the trapezoidal rule; 
(c) multiple-application trapezoidal rule, with n 5 2 and 4; 
(d) single application of Simpson’s 1y3 rule; (e) multiple-application 

Simpson’s 1y3 rule, with n 5 4; (f) single application of Simpson’s 
3y8 rule; and (g) multiple-application Simpson’s rule, with n 5 5. 
For each of the numerical estimates (b) through (g), determine the 
percent relative error based on (a).
21.2 Evaluate the following integral:

#
3

0
 
(1 2 e22x) dx
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630 NEWTON-COTES INTEGRATION FORMULAS

rule; (f) the midpoint method; (g) the 3-segment–2-point open integra-
tion formula; and (h) the 4-segment–3-point open integration formula.

#
3

0
 
(5 1 3 cos x) dx

Compute percent relative errors for the numerical results.
21.9 Suppose that the upward force of air resistance on a falling 
object is proportional to the square of the velocity. For this case, the 
velocity can be computed as

y(t) 5
A

gm

cd
 tanh a

A

gcd

m
 tb

where cd 5 a second-order drag coeffi cient. (a) If g 5 9.81 m/s2, m 5 
68.1 kg, and cd 5 0.25 kg/m, use analytical integration to determine 
how far the object falls in 10 s. (b) Make the same evaluation, but 
evaluate the integral with the multiple-segment trapezoidal rule. Use a 
suffi ciently high n that you get three signifi cant digits of accuracy.
21.10 Evaluate the integral of the following tabular data with 
(a) the trapezoidal rule and (b) Simpson’s rules:

x 0 0.1 0.2 0.3 0.4 0.5

f (x) 1 8 4 3.5 5 1

21.11 Evaluate the integral of the following tabular data with (a) 
the trapezoidal rule and (b) Simpson’s rules:

x 22 0 2 4 6 8 10

f (x) 35 5 210 2 5 3 20

21.12 Determine the mean value of the function

f (x) 5 246 1 45x 2 14x2 1 2x3 2 0.075x4

between x 5 2 and 10 by (a) graphing the function and visually 
estimating the mean value, (b) using Eq. (PT6.4) and the analytical 
evaluation of the integral, and (c) using Eq. (PT6.4) and a fi ve-
segment version of Simpson’s rule to estimate the integral. Calcu-
late the relative percent error.
21.13 The function f(x) 5 2e21.5x can be used to generate the fol-
lowing table of unequally spaced data:

x 0 0.05 0.15 0.25 0.35 0.475 0.6

f (x) 2 1.8555 1.5970 1.3746 1.1831 0.9808 0.8131

Evaluate the integral from a 5 0 to b 5 0.6 using (a) analytical 
means, (b) the trapezoidal rule, and (c) a combination of the trap-
ezoidal and Simpson’s rules; employ Simpson’s rules wherever 
possible to obtain the highest accuracy. For (b) and (c), compute 
the percent relative error (et).
21.14 Evaluate the following double integral:

#
1

21
#

2

0
 
(x2 2 2y2 1 xy3) dx dy

(a) analytically; (b) single application of the trapezoidal rule; 
(c) multiple-application trapezoidal rule, with n 5 2 and 4; (d) sin-
gle application of Simpson’s 1y3 rule; (e) multiple-application 
Simpson’s 1y3 rule, with n 5 4; (f) single application of Simpson’s 
3y8 rule; and (g) multiple-application Simpson’s rule, with n 5 5. 
For each of the numerical estimates (b) through (g), determine the 
percent relative error based on (a).
21.3 Evaluate the following integral:

#
4

22
 
(1 2 x 2 4x3 1 2x5) dx

(a) analytically; (b) single application of the trapezoidal rule; 
(c) composite trapezoidal rule, with n 5 2 and 4; (d) single applica-
tion of Simpson’s 1y3 rule; (e) Simpson’s 3y8 rule; and (f) Boole’s 
rule. For each of the numerical estimates (b) through (f) determine 
the percent relative error based on (a).
21.4 Integrate the following function analytically and using the 
trapezoidal rule, with n 5 1, 2, 3, and 4:

#
2

1
 
(x 1 2yx)2 dx

Use the analytical solution to compute true percent relative errors 
to evaluate the accuracy of the trapezoidal approximations.
21.5 Integrate the following function both analytically and using 
Simpson’s rules, with n 5 4 and 5. Discuss the results.

#
5

23
 
(4x 2 3)3 dx

21.6 Integrate the following function both analytically and numer-
ically. Use both the trapezoidal and Simpson’s 1y3 rules to numeri-
cally integrate the function. For both cases, use the multiple-application 
version, with n 5 4. Compute percent relative errors for the numerical 
results.

#
3

0
 
x2ex dx

21.7 Integrate the following function both analytically and numeri-
cally. For the numerical evaluations use (a) a single application of 
the trapezoidal rule, (b) Simpson’s 1y3 rule, (c) Simpson’s 3y8 rule, 
(d) Boole’s rule, (e) the midpoint method, (f) the 3-segment–2-point 
open integration formula, and (g) the 4-segment–3-point open integra-
tion formula. Compute percent relative errors for the numerical results.

#
1

0
 
142x dx

21.8 Integrate the following function both analytically and numeri-
cally. For the numerical evaluations use (a) single application of the 
trapezoidal rule; (b) Simpson’s 1y3 rule; (c) Simpson’s 3y8 rule; 
(d) multiple application of Simpson’s rules, with n 5 5; (e) Boole’s 
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21.21 An 11-m beam is subjected to a load, and the shear force 
follows the equation

V(x) 5 5 1 0.25x2

where V is the shear force and x is length in distance along the 
beam. We know that V 5 dMydx, and M is the bending moment. 
Integration yields the relationship

M 5 Mo 1 #
x

0
 
V dx

If Mo is zero and x 5 11, calculate M using (a) analytical integration, 
(b) multiple-application trapezoidal rule, and (c) multiple-application 
Simpson’s rules. For (b) and (c) use 1-m increments.
21.22 The work produced by a constant temperature, pressure-
volume thermodynamic process can be computed as

W 5 #  p dV

where W is work, p is pressure, and V is volume. Using a combi-
nation of the trapezoidal rule, Simpson’s 1y3 rule, and Simpson’s 
3y8 rule, use the following data to compute the work in kJ 
(kJ 5 kN ? m):

Pressure (kPa) 336 294.4 266.4 260.8 260.5 249.6 193.6 165.6

Volume (m3) 0.5 2 3 4 6 8 10 11

21.23 Determine the distance traveled for the following data:

t, min 1 2 3.25 4.5 6 7 8 9 9.5 10

v, m/s 5 6 5.5 7 8.5 8 6 7 7 5

(a) Use the trapezoidal rule, (b) the best combination of the trape-
zoidal and Simpson’s rules, and (c) analytically integrating second- 
and third-order polynomials determined by regression.
21.24 The total mass of a variable density rod is given by

m 5 #
L

0
 
r(x)Ac(x) dx

where m 5 mass, r (x) 5 density, Ac(x) 5 cross-sectional area, x 5 
distance along the rod, and L 5 the total length of the rod. The fol-
lowing data have been measured for a 10-m length rod. Determine 
the mass in kilograms to the best possible accuracy.

x, m 0 2 3 4 6 8 10

r, g/cm3 4.00 3.95 3.89 3.80 3.60 3.41 3.30 

Ac, cm2 100 103 106 110 120 133 150

21.25 A transportation engineering study requires that you deter-
mine the number of cars that pass through an intersection traveling 

(a) analytically; (b) using a multiple-application trapezoidal rule, 
with n 5 2; and (c) using single applications of Simpson’s 1y3 rule. 
For (b) and (c), compute the percent relative error (et).
21.15 Evaluate the following triple integral (a) analytically and (b) 
using single applications of Simpson’s 1y3 rule. For (b) compute 
the percent relative error (et).

#
2

22
#

2

0
#

1

23
 
(x3 2 3yz) dx dy dz

21.16 Develop a user-friendly computer program for the multiple-
application trapezoidal rule based on Fig. 21.9. Test your program 
by duplicating the computation from Example 21.2.
21.17 Develop a user-friendly computer program for the multiple-
application version of Simpson’s rule based on Fig. 21.13c. Test it 
by duplicating the computations from Example 21.5.
21.18 Develop a user-friendly computer program for integrating 
unequally spaced data based on Fig. 21.15b. Test it by duplicating 
the computation from Example 21.8.
21.19 The following data was collected for a cross-section of a 
river (y 5 distance from bank, H 5 depth, and U 5 velocity):

y, m 0 1 3 5 7 8 9 10

H, m 0 1 1.5 3 3.5 3.2 2 0

U, m/s 0 0.1 0.12 0.2 0.25 0.3 0.15 0

Use numerical integration to compute the (a) average depth, 
(b) cross-sectional area, (c) average velocity, and (d) the fl ow rate. 
Note that the cross-sectional area (Ac) and the fl ow rate (Q) can be 
computed as

Ac 5 #
y

0
 
H(y) dy       Q 5 #

y

0
 
H(y)U(y) dy

21.20 The outfl ow concentration from a reactor is measured at a 
number of times over a 24-hr period:

t, hr 0 1 5.5 10 12 14 16 18 20 24

c, mg/L 1 1.5 2.3 2.1 4 5 5.5 5 3 1.2

The fl ow rate for the outfl ow in m3/s can be computed with the 
following equation:

Q(t) 5 20 1 10 sin a2p

24
 (t 2 10)b

Use the best numerical integration method to determine the fl ow-
weighted average concentration leaving the reactor over the 24-hr 
period,

c 5
#
t
0

 Q(t)c(t)dt

#
t
0 Q(t)dt
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632 NEWTON-COTES INTEGRATION FORMULAS

during morning rush hour. You stand at the side of the road and 
count the number of cars that pass every 4 minutes at several times 
as tabulated below. Use the best numerical method to determine (a) 
the total number of cars that pass between 7:30 and 9:15, and (b) 
the rate of cars going through the intersection per minute. (Hint: Be 
careful with units.)

Time (hr) 7:30 7:45 8:00 8:15 8:45 9:15

Rate (cars per 4 min) 18 24 14 24 21 9

21.26 Determine the average value for the data in Fig. P21.26. 
Perform the integral needed for the average in the order shown by 
the following equation:

I 5 #
xn

x0

c #
ym

y0

 
f(x, y)dy d  dx

FIGURE P21.26
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