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  23 C H A P T E R  23

Numerical Differentiation

We have already introduced the notion of numerical differentiation in Chap. 4. Recall 
that we employed Taylor series expansions to derive fi nite-divided-difference approxima-
tions of derivatives. In Chap. 4, we developed forward, backward, and centered difference 
approximations of fi rst and higher derivatives. Recall that, at best, these estimates had 
errors that were O(h2)—that is, their errors were proportional to the square of the step 
size. This level of accuracy is due to the number of terms of the Taylor series that were 
retained during the derivation of these formulas. We will now illustrate how to develop 
more accurate formulas by retaining more terms.

 23.1 HIGH-ACCURACY DIFFERENTIATION FORMULAS

As noted above, high-accuracy divided-difference formulas can be generated by includ-
ing additional terms from the Taylor series expansion. For example, the forward Taylor 
series expansion can be written as [Eq. (4.21)]

f(xi11) 5 f(xi) 1 f ¿(xi)h 1
f –(xi)

2
 h2 1 p (23.1)

which can be solved for

f ¿(xi) 5
f(xi11) 2 f(xi)

h
2

f –(xi)

2
 h 1 O(h2) (23.2)

 In Chap. 4, we truncated this result by excluding the second- and higher-derivative 
terms and were thus left with a fi nal result of

f ¿(xi) 5
f(xi11) 2 f(xi)

h
1 O(h) (23.3)

 In contrast to this approach, we now retain the second-derivative term by substitut-
ing the following approximation of the second derivative [recall Eq. (4.24)]

f –(xi) 5
f(xi12) 2 2 f(xi11) 1 f(xi)

h2 1 O(h) (23.4)
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656 NUMERICAL DIFFERENTIATION

into Eq. (23.2) to yield

f ¿(xi) 5
f(xi11) 2 f(xi)

h
2

f(xi12) 2 2 f(xi11) 1 f(xi)

2h2  h 1 O(h2)

or, by collecting terms,

f ¿(xi) 5
2f(xi12) 1 4 f(xi11) 2 3 f(xi)

2h
1 O(h2) (23.5)

 Notice that inclusion of the second-derivative term has improved the accuracy to 
O(h2). Similar improved versions can be developed for the backward and centered for-
mulas as well as for the approximations of the higher derivatives. The formulas are 
summarized in Figs. 23.1 through 23.3 along with all the results from Chap. 4. The 
following example illustrates the utility of these formulas for estimating derivatives.

FIGURE 23.1
Forward fi nite-divided-difference formulas: two versions are presented for each derivative. The 
latter version incorporates more terms of the Taylor series expansion and is, consequently, more 
accurate.

First Derivative Error

f ¿(xi) 5
f (xi11) 2 f (xi)

h
 O(h)

f ¿(xi) 5
2f (xi12) 1 4f (xi11) 2 3f (xi)

2h
 O(h2)

Second Derivative

f–(xi) 5
f (xi12) 2 2f (xi11) 1 f (xi)

h2
 O(h)

f–(xi) 5
2f (xi13) 1 4f (xi12) 2 5f (xi11) 1 2f (xi)

h2
 O(h2)

Third Derivative

f‡(xi) 5
f (xi13) 2 3f (xi12) 1 3f (xi11) 2 f (xi)

h3
 O(h)

f‡(xi) 5
23f (xi14) 1 14f (xi13) 2 24f (xi12) 1 18f (xi11) 2 5f (xi)

2h3
 O(h2)

Fourth Derivative

f––(xi) 5
f (xi14) 2 4f (xi13) 1 6f (xi12) 2 4f (xi11) 1 f (xi)

h4
 O(h)

f––(xi) 5
22f (xi15) 1 11f (xi14) 2 24f (xi13) 1 26f (xi12) 2 14f (xi11) 1 3f (xi)

h4
 O(h2)
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 23.1 HIGH-ACCURACY DIFFERENTIATION FORMULAS 657

FIGURE 23.2
Backward fi nite-divided-
difference formulas: two 
versions are presented for each 
derivative. The latter version 
incorporates more terms of the 
Taylor series expansion and is, 
consequently, more accurate.

First Derivative Error

f ¿(xi) 5
f (xi) 2 f (xi21)

h
 O(h)

f ¿(xi) 5
3f (xi) 2 4f (xi21) 1 f (xi22)

2h
 O(h2)

Second Derivative

f–(xi) 5
f (xi) 2 2f (xi21) 1 f (xi22)

h2
 O(h)

f–(xi) 5
2f (xi) 2 5f (xi21) 1 4f (xi22) 2 f (xi23)

h2
 O(h2)

Third Derivative

f‡(xi) 5
f (xi) 2 3f (xi21) 1 3f (xi22) 2 f (xi23)

h3
 O(h)

f‡(xi) 5
5f (xi) 2 18f (xi21) 1 24f (xi22) 2 14f (xi23) 1 3f (xi24)

2h3
 O(h2)

Fourth Derivative

f––(xi) 5
f (xi) 2 4f (xi21) 1 6f (xi22) 2 4f (xi23) 1 f (xi24)

h4
 O(h)

f––(xi) 5
3f (xi) 2 14f (xi21) 1 26f (xi22) 2 24f  (xi23) 1 11f (xi24) 2 2f (xi25)

h4
 O(h2)

FIGURE 23.3
Centered fi nite-divided- 
difference formulas: two 
 versions are presented for each 
derivative. The latter version 
 incorporates more terms of the 
Taylor series expansion and is, 
consequently, more accurate.

First Derivative Error

f ¿(xi) 5
f (xi11) 2 f (xi21)

2h
 O(h2)

f ¿(xi) 5
2f (xi12) 1 8f (xi11) 2 8f (xi21) 1 f (xi22)

12h
 O(h4)

Second Derivative

f–(xi) 5
f (xi11) 2 2f (xi) 1 f (xi21)

h2
 O(h2)

f–(xi) 5
2f (xi12) 1 16f (xi11) 2 30f (xi) 1 16f (xi21) 2 f (xi22)

12h2
 O(h4)

Third Derivative

f‡(xi) 5
f (xi12) 2 2f (xi11) 1 2f (xi21) 2 f (xi22)

2h3
 O(h2)

f‡(xi) 5
2f (xi13) 1 8f (xi12) 2 13f (xi11) 1 13f (xi21) 2 8f (xi22) 1 f (xi23)

8h3
 O(h4)

Fourth Derivative

f––(xi) 5
f (xi12) 2 4f (xi11) 1 6f (xi) 2 4f (xi21) 1 f (xi22)

h4
 O(h2)

f––(xi) 5
2f (xi13) 1 12f (xi12) 2 39f (xi11) 1 56f (xi) 2 39f (xi21) 1 12f (xi22) 2 f (xi23)

6h4
 O(h4)
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658 NUMERICAL DIFFERENTIATION

 EXAMPLE 23.1 High-Accuracy Differentiation Formulas

Problem Statement. Recall that in Example 4.4 we estimated the derivative of

f(x) 5 20.1x4 2 0.15x3 2 0.5x2 2 0.25x 1 1.2

at x 5 0.5 using fi nite divided differences and a step size of h 5 0.25,

 Forward Backward Centered
 O(h) O(h) O(h2)

Estimate 21.155 20.714 20.934
et (%) 226.5 21.7 22.4

where the errors were computed on the basis of the true value of 20.9125. Repeat this com-
putation, but employ the high-accuracy formulas from Figs. 23.1 through 23.3.

Solution. The data needed for this example are

xi22 5 0 f(xi22) 5 1.2

xi21 5 0.25 f(xi21) 5 1.1035156

xi 5 0.5 f(xi) 5 0.925

xi11 5 0.75 f(xi11) 5 0.6363281

xi12 5 1 f(xi12) 5 0.2

The forward difference of accuracy O(h2) is computed as (Fig. 23.1)

f ¿(0.5) 5
20.2 1 4(0.6363281) 2 3(0.925)

2(0.25)
5 20.859375  et 5 5.82%

The backward difference of accuracy O(h2) is computed as (Fig. 23.2)

f ¿(0.5) 5
3(0.925) 2 4(1.1035156) 1 1.2

2(0.25)
5 20.878125  et 5 3.77%

The centered difference of accuracy O(h4) is computed as (Fig. 23.3)

f ¿(0.5) 5
20.2 1 8(0.6363281) 2 8(1.1035156) 1 1.2

12(0.25)
5 20.9125  et 5 0%

 As expected, the errors for the forward and backward differences are considerably 
more accurate than the results from Example 4.4. However, surprisingly, the centered 
difference yields a perfect result. This is because the formulas based on the Taylor series 
are equivalent to passing polynomials through the data points.

 23.2 RICHARDSON EXTRAPOLATION

To this point, we have seen that there are two ways to improve derivative estimates when 
employing fi nite divided differences: (1) decrease the step size or (2) use a higher-order 
formula that employs more points. A third approach, based on Richardson extrapolation, 
uses two derivative estimates to compute a third, more accurate approximation.
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 23.2 RICHARDSON EXTRAPOLATION 659

 Recall from Sec. 22.2.1 that Richardson extrapolation provided a means to obtain 
an improved integral estimate I by the formula [Eq. (22.4)]

I > I(h2) 1
1

(h1yh2)2 2 1
 [I(h2) 2 I(h1) ] (23.6)

where I(h1) and I(h2) are integral estimates using two step sizes h1 and h2. Because of 
its convenience when expressed as a computer algorithm, this formula is usually written 
for the case where h2 5 h1y2, as in

I > 
4

3
 I(h2) 2

1

3
 I(h1) (23.7)

In a similar fashion, Eq. (23.7) can be written for derivatives as

D > 
4

3
 D(h2) 2

1

3
 D(h1) (23.8)

For centered difference approximations with O(h2), the application of this formula will 
yield a new derivative estimate of O(h4).

 EXAMPLE 23.2 Richardson Extrapolation

Problem Statement. Using the same function as in Example 23.1, estimate the fi rst 
derivative at x 5 0.5 employing step sizes of h1 5 0.5 and h2 5 0.25. Then use Eq. (23.8) 
to compute an improved estimate with Richardson extrapolation. Recall that the true value 
is 20.9125.

Solution. The fi rst-derivative estimates can be computed with centered differences as

D(0.5) 5
0.2 2 1.2

1
5 21.0  et 5 29.6%

and

D(0.25) 5
0.6363281 2 1.1035156

0.5
5 20.934375  et 5 22.4%

The improved estimate can be determined by applying Eq. (23.8) to give

D 5
4

3
 (20.934375) 2

1

3
 (21) 5 20.9125

which for the present case is a perfect result.

 The previous example yielded a perfect result because the function being analyzed 
was a fourth-order polynomial. The perfect outcome was due to the fact that Richardson 
extrapolation is actually equivalent to fi tting a higher-order polynomial through these 
data and then evaluating the derivatives by centered divided differences. Thus, the pres-
ent case matched the derivative of the fourth-order polynomial precisely. For most other 
functions, of course, this would not occur and our derivative estimate would be improved 
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660 NUMERICAL DIFFERENTIATION

but not perfect. Consequently, as was the case for the application of Richardson ex-
trapolation, the approach can be applied iteratively using a Romberg algorithm until the 
result falls below an acceptable error criterion.

 23.3 DERIVATIVES OF UNEQUALLY SPACED DATA

The approaches discussed to this point are primarily designed to determine the derivative 
of a given function. For the fi nite-divided-difference approximations of Sec. 23.1, these 
data had to be evenly spaced. For the Richardson extrapolation technique of Sec. 23.2, 
these data had to be evenly spaced and generated for successively halved intervals. Such 
control of data spacing is usually available only in cases where we can use a function 
to generate a table of values.
 In contrast, empirically derived information—that is, data from experiments or fi eld 
studies—is often collected at unequal intervals. Such information cannot be analyzed 
with the techniques discussed to this point.
 One way to handle nonequispaced data is to fi t a second-order Lagrange interpolat-
ing polynomial [recall Eq. (18.23)] to each set of three adjacent points. Remember that 
this polynomial does not require that the points be equispaced. The second-order poly-
nomial can be differentiated analytically to give

 f ¿(x) 5 f(xi21) 
2x 2 xi 2 xi11

(xi21 2 xi)(xi21 2 xi11)
1 f(xi) 

2x 2 xi21 2 xi11

(xi 2 xi21) (xi 2 xi11)

 1 f(xi11) 
2x 2 xi21 2 xi

(xi11 2 xi21) (xi11 2 xi)
 (23.9)

where x is the value at which you want to estimate the derivative. Although this equation 
is certainly more complicated than the fi rst-derivative approximations from Figs. 23.1 
through 23.3, it has some important advantages. First, it can be used to estimate the 
derivative anywhere within the range prescribed by the three points. Second, the points 
themselves do not have to be equally spaced. Third, the derivative estimate is of the same 
accuracy as the centered difference [Eq. (4.22)]. In fact, for equispaced points, Eq. (23.9) 
evaluated at x 5 xi reduces to Eq. (4.22).

 EXAMPLE 23.3 Differentiating Unequally Spaced Data

Problem Statement. As in Fig. 23.4, a temperature gradient can be measured down 
into the soil. The heat fl ux at the soil-air interface can be computed with Fourier’s law,

q(z 5 0) 5 2krC 
dT

dz
`
z50

where q 5 heat fl ux (W/m2), k 5 coeffi cient of thermal diffusivity in soil (> 3.5 3 
1027 m2/s), r 5 soil density (> 1800 kg/m3), and C 5 soil specifi c heat (> 840 J/(kg ? 8C)). 
Note that a positive value for fl ux means that heat is transferred from the air to the soil. 
Use numerical differentiation to evaluate the gradient at the soil-air interface and employ 
this estimate to determine the heat fl ux into the ground.
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 23.4 DERIVATIVES AND INTEGRALS FOR DATA WITH ERRORS 661

Solution. Equation (23.9) can be used to calculate the derivative as

 f ¿(x) 5 13.5 
2(0) 2 1.25 2 3.75

(0 2 1.25)(0 2 3.75)
1 12 

2(0) 2 0 2 3.75

(1.25 2 0)(1.25 2 3.75)

 1 10 
2(0) 2 0 2 1.25

(3.75 2 0)(3.75 2 1.25)

 5 214.4 1 14.4 2 1.333333 5 21.333333°C/cm

which can be used to compute (note that 1 W 5 1 J/s),

 q(z 5 0) 5 23.5 3 1027
 
m2

s
 a1800 

kg

m3b a840 
J

kg ? °C
b a2133.3333 

°C
m
b

 5 70.56 W/m2

 23.4 DERIVATIVES AND INTEGRALS FOR DATA WITH ERRORS

Aside from unequal spacing, another problem related to differentiating empirical data is 
that it usually includes measurement error. A shortcoming of numerical differentiation is 
that it tends to amplify errors in the data. Figure 23.5a shows smooth, error-free data that 
when numerically differentiated yield a smooth result (Fig. 23.5c). In contrast, Fig. 23.5b 
uses the same data, but with some points raised and some lowered slightly. This minor 
modifi cation is barely apparent from Fig. 23.5b. However, the resulting effect in Fig. 23.5d 
is signifi cant because the process of differentiation amplifi es errors.
 As might be expected, the primary approach for determining derivatives for imprecise 
data is to use least-squares regression to fi t a smooth, differentiable function to these data. 
In the absence of any other information, a lower-order polynomial regression might be a good 
fi rst choice. Obviously, if the true functional relationship between the dependent and inde-
pendent variable is known, this relationship should form the basis for the least-squares fi t.

FIGURE 23.4
Temperature versus depth into the soil.

z, cm

T(�C)10Air

Soil

3.75

13.512

1.25
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662 NUMERICAL DIFFERENTIATION

23.4.1 Differentiation versus Integration of Uncertain Data

Just as curve-fi tting techniques like regression can be used to differentiate uncertain data, 
a similar process can be employed for integration. However, because of the difference 
in stability between differentiation and integration, this is rarely done.
 As depicted in Fig. 23.5, differentiation tends to be unstable—that is, it amplifi es 
errors. In contrast, the fact that integration is a summing process tends to make it very 
forgiving with regard to uncertain data. In essence, as points are summed to form an 
integral, random positive and negative errors tend to cancel out. In contrast, because 
differentiation is subtractive, random positive and negative errors tend to add.

 23.5 PARTIAL DERIVATIVES

Partial derivatives along a single dimension are computed in the same fashion as ordinary 
derivatives. For example, suppose that we want to determine to partial derivatives for a 
two-dimensional function, f(x, y). For equally-spaced data, the partial fi rst derivatives can 
be approximated with centered differences,

0f
0x

5
f(x 1 ¢x, y) 2 f(x 2 ¢x, y)

2¢x
 (23.10)

0f
0y

5
f(x, y 1 ¢y) 2 f(x, y 2 ¢y)

2¢y
 (23.11)

FIGURE 23.5
Illustration of how small data 
 errors are amplifi ed by 
 numerical differentiation: 
(a) data with no error, (b) data 
modifi ed slightly, (c) the resulting 
numerical differentiation of 
curve (a), and (d) the resulting 
differentiation of curve (b) mani-
festing increased variability. In 
contrast, the reverse operation 
of integration [moving from 
(d) to (b) by taking the area un-
der (d)] tends to  attenuate or 
smooth data errors.
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 23.6 NUMERICAL INTEGRATION/DIFFERENTIATION WITH SOFTWARE PACKAGES 663

All the other formulas and approaches discussed to this point can be applied to evaluate 
partial derivatives in a similar fashion.
 For higher-order derivatives, we might want to differentiate a function with respect 
to two or more different variables. The result is called a mixed partial derivative. For 
example, we might want to take the partial derivative of f(x, y) with respect to both 
independent variables

02 f

0x0y
5
0
0x

 a 0f
0y
b (23.12)

To develop a fi nite-difference approximation, we can fi rst form a difference in x of the 
partial derivatives in y,

02 f

0x0y
5

0f
0y

 (x 1 ¢x, y) 2
0f
0y

 (x 2 ¢x, y)

2¢x
 (23.13)

Then, we can use fi nite differences to evaluate each of the partials in y,

02 f

0x0y
5

f(x 1 ¢x, y 1 ¢y) 2 f(x 1 ¢x, y 2 ¢y)

2¢y
2

f(x 2 ¢x, y 1 ¢y) 2 f(x 2 ¢x, y 2 ¢y)

2¢y

2¢x
 (23.14)

Collecting terms yields the fi nal result

02 f

0x0y
5

f(x 1 ¢x, y 1 ¢y) 2 f(x 1 ¢x, y 2 ¢y) 2 f(x 2 ¢x, y 1 ¢y) 1 f(x 2 ¢x, y 2 ¢y)

4¢x¢y
 (23.15)

 23.6 NUMERICAL INTEGRATION/DIFFERENTIATION
WITH SOFTWARE PACKAGES

Software packages have great capabilities for numerical integration and differentiation. 
In this section, we will give you a taste of some of the more useful ones.

23.6.1 MATLAB

MATLAB software has a variety of built-in functions that allow functions and data to 
be integrated and differentiated (Table 23.1). In this section, we will illustrate some of 
these capabilities.
 MATLAB can integrate both discrete data and functions. For example, trapz com-
putes the integral of discrete values using the multiple-application trapezoidal rule. A 
simple representation of its syntax is

q = trapz(x, y)

where the two vectors, x and y, hold the independent and dependent variables, respec-
tively, and q holds the resulting integral. It also has another function, cumtrapz, that 
computes the cumulative integral. For this case, the result is a vector whose elements 
q(k) hold the integral from x(1)to x(k).

S
O
F
T
W
A
R
E
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S
O
F
T
W
A
R
E

 When the integrand is available in functional form, quad generates the defi nite 
 integral using adaptive quadrature. A simple representation of its syntax is

q = quad(fun, a, b)

where fun is the function to be integrated, and a and b are the integration limits.

 EXAMPLE 23.4 Using Numerical Integration to Compute Distance from Velocity

Problem Statement. As described in Sec. PT6.1, integration can be used to compute 
the distance, y(t), of an object based on its velocity, v(t), as in,

y(t) 5 #
t

0
 
y(t) dt (E23.4.1)

Recall from Sec. 1.1, that the velocity of a free-falling parachutist, subject to linear drag 
and with zero initial velocity, can be computed with

y(t) 5
gm

c
 (1 2 e2(cym)t) (E23.4.2)

If we substitute, Eq. (E23.4.2) into Eq. (E23.4.1), the result can be integrated analytically, 
with the initial condition, y(0) 5 0, to yield

y(t) 5
gm

c
 t 2

gm2

c2  (1 2 e2 (cym)t)

This result can be used to compute that a 70-kg parachutist with a drag coeffi cient of 
12.5 kg/s will fall 799.73 m over a 20-s period.
 Use MATLAB functions to perform the same integration numerically. In addition, de-
velop a plot of the analytical and computed distances along with velocity on the same graph.

TABLE 23.1 MATLAB functions to implement (a) integration and (b) differentiation.

Function Description

(a) Integration:
cumtrapz Cumulative trapezoidal numerical integration
dblquad Numerically evaluate double integral
polyint Integrate polynomial analytically
quad Numerically evaluate integral, adaptive Simpson quadrature
quadgk Numerically evaluate integral, adaptive Gauss-Kronrod quadrature
quadl Numerically evaluate integral, adaptive Lobatto quadrature
quadv Vectorized quadrature
trapz Trapezoidal numerical integration
triplequad Numerically evaluate triple integral

(b) Differentiation:
del2 Discrete Laplacian
diff Differences and approximate derivatives
gradient Numerical gradient
polyder Polynomial derivative
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 23.6 NUMERICAL INTEGRATION/DIFFERENTIATION WITH SOFTWARE PACKAGES 665

Solution. We can fi rst use Eq. (E23.4.2) to generate some unequally-spaced times and 
velocities. We can then round these velocities so that they are more like measured values; 
that is, they are not exact,

>> format short g
>> t=[0 1 2 3 4.3 7 12 16];
>> g=9.81;m=70;c=12.5;
>> v=round(g*m/c*(1-exp(-c/m*t)));

The total distance can then be computed as

>> y=trapz (t,v)

y =
789.6

Thus, after 20 seconds, the jumper has fallen 789.6 m, which is reasonably close to the 
exact, analytical solution of 799.73 m.
 If we desire the cumulative distance travelled at each time, cumtrapz can be em-
ployed to compute,

>> yc=cumtrapz (t,v)

yc =
0  4.5  17  36.5  70.3  162.1  379.6  579.6  789.6

 A graph of the numerical and analytical solutions along with both the exact and 
rounded velocities are generated with the following commands,

>> ta=linspace (t(1), t(length(t)));
>> ya=g*m/c*ta-g*m^2/c^2*(1-exp(-c/m*ta));
>> plot (ta, ya, t, yc, 'o')
>> title ('Distance versus time')
>> xlabel ('t (s)'), ylabel ('x (m)')
>> legend ('analytical', 'numerical')

As in Fig. 23.6, the numerical and analytical results match fairly well.
 Finally, the quad function can be used to evaluate the integral with adaptive quadrature

>> va=@(t) g*m/c*(1-exp(-c/m*t));
>> yq=quad(va,t(1),t(length(t)))

yq =
799.73

This result is identical to the analytical solution to within the 5 signifi cant digits displayed.

 As listed in Table 23.1b, MATLAB has a number of built-in functions for evaluating 
derivatives including the diff and gradient functions. When it is passed a one- 
dimensional vector of length n, the diff function returns a vector of length n 2 1 
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666 NUMERICAL DIFFERENTIATION

containing the  differences between adjacent elements. These can then be employed to 
determine fi nite-difference approximations of fi rst-derivatives.
 The gradient function also returns differences. However, it does so in a manner 
that is more compatible with evaluating derivatives at the values themselves rather than 
in the intervals between values. A simple representation of its syntax is

fx = gradient(f)

where f 5 a one-dimensional vector of length n, and fx is a vector of length n contain-
ing differences based on f. Just as with the diff function, the fi rst value returned is 
the difference between the fi rst and second value. However, for the intermediate values, 
a centered difference based on the adjacent values is returned,

diffi 5
fi11 2 fi21

2

The last value is then computed as the difference between the fi nal two values. Hence, 
the results correspond to using centered differences for all the intermediate values, with 
forward and backward differences at the ends.
 Note that the spacing between points is assumed to be one. If the vector represents 
equally-spaced data, the following version divides all the results by the interval and hence 
returns the actual values of the derivatives,

fx = gradient(f, h)

where h 5 the spacing between points.

 EXAMPLE 23.5 Using diff and gradient for Differentiation

Problem Statement. Explore how the MATLAB’s diff and gradient functions can 
be employed to differentiate the function f(x) 5 0.2 1 25x 2 200x2 1 675x3 2 900x4 1 

FIGURE 23.6
Plot of distance versus time. The 
line was computed with the 
analytical solution, whereas 
the points were determined 
numerically with the cumtrapz 
function.
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400x5 from x 5 0 to 0.8. Compare your results with the exact solution: f9(x) 5 25 2 
400x2 1 2025x2 2 3600x3 1 2000x4.

Solution. We can fi rst express f(x) as an anonymous function

>> f=@(x) 0.2+25*x-200*x.^2+675*x.^3-900*x.^4+400*x.^5;

We then generate a series of equally-spaced values of the independent and dependent 
variables,

>> x=0:0.1:0.8;
>> y=f(x);

The diff function is to determine the differences between adjacent elements of each 
vector. For example,

>> format short g
>> diff(x)

0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

As expected, the result represents the differences between each pair of elements of x. 
To compute divided-difference approximations of the derivative, we merely perform a 
vector division of the y differences by the x differences by entering

>> d=diff(y)./diff(x)

10.89 -0.01 3.19 8.49 8.69 1.39 -11.01 -21.31

Note that because we are using equally-spaced values, after generating the x values, we 
could have simply performed the above computation concisely as

>> d=diff(f(x))/0.1;

The vector d now contains derivative estimates corresponding to the midpoint between 
adjacent elements. Therefore, in order to develop a plot of our results, we must fi rst 
generate a vector holding the x values for the midpoint of each interval

>> n=length(x);
>> xm=(x(1:n-1)+x(2:n))./2;

We can compute values for the analytical derivative at a fi ner level of resolution to 
 include on the plot for comparison.

>> xa=0:.01:.8;
>> ya=25-400*xa+3*675*xa.^2-4*900*xa.^3+5*400*xa.^4;

A plot of the numerical and analytical estimates is then generated with

subplot (1, 2, 1), plot (xm, d, 'o', xa, ya)
xlabel ('x'), ylabel ('y')
legend ('numerical', 'analytical'),title ('(a) diff')

As displayed in Fig. 23.7a, the results of the numerical approximation compare favorably 
with the exact, analytical solution for this case.
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FIGURE 23.7
Comparison of the exact deriva-
tive (line) with numerical esti-
mates (circles) computed with 
MATLAB’s (a) diff, and 
(b) gradient functions.

 We can also use the gradient function to determine the derivatives as

>> dy=gradient(y,0.1)

dy = 10.89 5.44 1.59 5.84 8.59 5.04 -4.81 -16.16 -21.31

As was done for the diff function, we can also display both the numerical and analytical 
estimates on a plot,

>> subplot(1,2,2), plot(x,dy,'o',xa,ya)
>> xlabel('x')
>> legend('numerical','analytical'),title('(b)gradient')

 The results (Fig. 23.7b) are not as accurate as those obtained with the diff function 
(Fig. 23.7a). This is due to the fact that gradient employs intervals that are two times 
(0.2) as wide as for those used for diff (0.1).

 Beyond one-dimensional vectors, the gradient function is particularly well-suited 
for determining the partial derivatives of matrices. For example, for a two-dimensional 
matrix, the function can be invoked as

[fx, fy] = gradient (f, h)

where f is a two-dimensional array, fx corresponds to the differences in the x (column) 
direction and fy corresponds to the differences in the y (row) direction, and h 5 the 

S
O
F
T
W
A
R
E

cha9792x_ch23_655-672.indd Page 668  09/12/13  9:12 AM F-468 cha9792x_ch23_655-672.indd Page 668  09/12/13  9:12 AM F-468 /207/MH02101/cha9792x_disk1of1/007339792x/cha9792x_pagefiles/207/MH02101/cha9792x_disk1of1/007339792x/cha9792x_pagefiles



 23.6 NUMERICAL INTEGRATION/DIFFERENTIATION WITH SOFTWARE PACKAGES 669

spacing between points. If h is omitted, the spacing between points in both dimensions 
is assumed to be one. In Sec. 31.4.2, we will illustrate how this capability can be used 
to visualize vector fi elds.

23.6.2 Mathcad

Mathcad has operators that perform numerical integration and differentiation. These 
 operators employ and look like the same traditional mathematical symbols you have used 
since high school or your fi rst semester of college.
 The integration operator uses a sequence of trapezoidal rule evaluations of the integral 
and the Romberg algorithm. Iterations are performed until successive results vary by less 
than a tolerance. The derivative operator uses a similar method to compute derivatives 
between order 0 and 5. This operator creates a table of approximations based on divided-
difference calculations of the derivative using various orders and step sizes. Extrapolation 
techniques are used to estimate values in a manner resembling Richardson’s method.
 Figure 23.8 shows a Mathcad example where f(x) is created using the defi nition 
symbol (:5), and then the integral is calculated over a range from x 5 0 to x 5 0.8. In 
this case, we used the simple polynomial we evaluated throughout Chap. 21. Note that 
the range as defi ned by the variables a and b is input with the defi nition symbol.
 Figure 23.9 shows a Mathcad example where a function f(x) is created with the 
defi nition symbol (:5) and then fi rst and third derivatives are calculated at a point where 
x 5 26. Note that the location of the point and the order of the derivative are input with 
the defi nition symbol.

FIGURE 23.8
Mathcad screen to determine 
the integral of a polynomial 
with Romberg integration.
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FIGURE 23.9
Mathcad screen to implement 
numerical differentiation.

PROBLEMS

23.1 Compute forward and backward difference approximations 
of O(h) and O(h2), and central difference approximations of O(h2) 
and O(h4) for the fi rst derivative of y 5 cos x at x 5 py4 using a 
value of h 5 py12. Estimate the true percent relative error et for 
each approximation.
23.2 Repeat Prob. 23.1, but for y 5 log x evaluated at x 5 25 with 
h 5 2.
23.3 Use centered difference approximations to estimate the fi rst 
and second derivatives of y 5 ex at x 5 2 for h 5 0.1. Employ both 
O(h2) and O(h4) formulas for your estimates.
23.4 Use Richardson extrapolation to estimate the fi rst deriva-
tive of y 5 cos x at x 5 py4 using step sizes of h1 5 py3 and 
h2 5 py6. Employ centered differences of O(h2) for the initial 
 estimates.
23.5 Repeat Prob. 23.4, but for the fi rst derivative of ln x at x 5 5 
using h1 5 2 and h2 5 1.
23.6 Employ Eq. (23.9) to determine the fi rst derivative of y 5 
2x4 2 6x3 2 12x 2 8 at x 5 0 based on values at x0 5 20.5, x1 5 1, 
and x2 5 2. Compare this result with the true value and with an 
estimate obtained using a centered difference approximation 
based on h 5 1.

23.7 Prove that for equispaced data points, Eq. (23.9) reduces to 
Eq. (4.22) at x 5 xi.
23.8 Compute the fi rst-order central difference approximations of 
O(h4) for each of the following functions at the specifi ed location 
and for the specifi ed step size:
(a) y 5 x3 1 4x 2 15 at x 5 0, h 5 0.25
(b) y 5 x2 cos x at x 5 0.4, h 5 0.1
(c) y 5 tan(xy3) at x 5 3, h 5 0.5
(d) y 5 sin(0.51x)yx at x 5 1, h 5 0.2
(e) y 5 ex 1 x at x 5 2, h 5 0.2
Compare your results with the analytical solutions.
23.9 The following data were collected for the distance traveled 
versus time for a rocket:

t, s 0 25 50 75 100 125

y, km 0 32 58 78 92 100

Use numerical differentiation to estimate the rocket’s velocity and 
acceleration at each time.
23.10 Develop a user-friendly program to apply a Romberg algo-
rithm to estimate the derivative of a given function.
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(a) Use MATLAB to integrate these data from x 5 21 to 1 and 22 
to 2 with the trap function.

(b) Use MATLAB to estimate the infl ection points of these data.
23.16 Evaluate 0fy0x, 0fy0y, and 0fy(0x0y) for the following 
function at x 5 y 5 1 (a) analytically and (b) numerically Dx 5 Dy 5 
0.0001,

f(x, y) 5 3xy 1 3x 2 x3 2 3y3

23.17 Evaluate the following integral with MATLAB,

#
2p

0

 
sin t

t
 dt

using both the quad and quadl functions. To learn more about 
quadl, type help quadl at the MATLAB prompt.
23.18 Use the diff command in MATLAB and compute the 
 fi nite-difference approximation to the fi rst and second derivative at 
each x-value in the table below, excluding the two end points. Use 
fi nite-difference approximations that are second-order correct, 
O(Dx2).

x 0 1 2 3 4 5 6 7 8 9 10

y 1.4 2.1 3.3 4.8 6.8 6.6 8.6 7.5 8.9 10.9 10

23.19 The objective of this problem is to compare second-order 
accurate forward, backward, and centered fi nite-difference approx-
imations of the fi rst derivative of a function to the actual value of 
the derivative. This will be done for

f(x) 5 e22x 2 x

(a) Use calculus to determine the correct value of the derivative at 
x 5 2.

(b) To evaluate the centered fi nite-difference approximations, start 
with x 5 0.5. Thus, for the fi rst evaluation, the x values for the 
centered difference approximation will be x 5 2 6 0.5 or 
x 5 1.5 and 2.5. Then, decrease in increments of 0.01 down to 
a minimum value of Dx 5 0.01.

(c) Repeat part (b) for the second-order forward and backward dif-
ferences. (Note that these can be done at the same time that the 
centered difference is computed in the loop.)

(d) Plot the results of (b) and (c) versus x. Include the exact result 
on the plot for comparison.

23.20 Use a Taylor series expansion to derive a centered fi nite-
difference approximation to the third derivative that is second-order 

23.11 Develop a user-friendly program to obtain fi rst-derivative 
estimates for unequally spaced data. Test it with the following data:

x 1 1.5 1.6 2.5 3.5

f(x) 0.6767 0.3734 0.3261 0.08422 0.01596

where f(x) 5 5e22xx. Compare your results with the true derivatives.
23.12 The following data are provided for the velocity of an object 
as a function of time,

t, s 0 4 8 12 16 20 24 28 32 36

v, m/s 0 34.7 61.8 82.8 99.2 112.0121.9129.7135.7140.4

(a) Using the best numerical method available, how far does the 
object travel from t 5 0 to 28 s?

(b) Using the best numerical method available, what is the object’s 
acceleration at t 5 28 s?

(c) Using the best numerical method available, what is the object’s 
acceleration at t 5 0 s?

23.13 Recall that for the falling parachutist problem, the velocity is 
given by

y(t) 5
gm

c
 (1 2 e2(cym)t) (P23.13.1)

and the distance traveled can be obtained by

d(t) 5
gm

c
 #

t

0
 
(1 2 e2(cym)t) dt (P23.13.2)

Given g 5 9.81, m 5 70, and c 5 12,
(a) Use MATLAB or Mathcad to integrate Eq. (P23.13.1) from 

t 5 0 to 10.
(b) Analytically integrate Eq. (P23.13.2) with the initial condition 

that d 5 0 at t 5 0. Evaluate the result at t 5 10 to confi rm (a).
(c) Use MATLAB or Mathcad to differentiate Eq. (P23.13.1) at 

t 5 10.
(d) Analytically differentiate Eq. (P23.13.1) at t 5 10 to confi rm (c).
23.14 The normal distribution is defi ned as

f(x) 5
1

22p
 e2x2y2

(a) Use MATLAB or Mathcad to integrate this function from 
x 5 21 to 1 and from 22 to 2.

(b) Use MATLAB or Mathcad to determine the infl ection points of 
this function.

23.15 The following data were generated from the normal 
 distribution:

x 22 21.5 21 20.5 0 0.5 1 1.5 2

f(x) 0.05399 0.12952 0.24197 0.35207 0.39894 0.35207 0.24197 0.12952 0.05399
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the shear stress t (N/m2) at the surface (y 5 0), using Newton’s 
viscosity law

t 5 m
dy

dy

Assume a value of dynamic viscosity m 5 1.8 3 1025 N ? s/m2.

y, m 0 0.002 0.006 0.012 0.018 0.024

v, m/s 0 0.287 0.899 1.915 3.048 4.299

23.27 Chemical reactions often follow the model:

dc

dt
5 2kcn

where c 5 concentration, t 5 time, k 5 reaction rate, and n 5 reac-
tion order. Given values of c and dcydt, k and n can be evaluated by 
a linear regression of the logarithm of this equation:

log a2dc

dt
b 5 log k 1 n log c

Use this approach along with the following data to estimate k and n:

t 10 20 30 40 50       60

c 3.52 2.48 1.75 1.23 0.87 0.61

23.28 The velocity profi le of a fl uid in a circular pipe can be repre-
sented as

y 5 10 a1 2
r

r0
b1yn

where v 5 velocity, r 5 radial distance measured out from the 
pipes centerline, r0 5 the pipe’s radius, and n 5 a parameter. Deter-
mine the fl ow in the pipe if r0 5 0.75 and n 5 7 using (a) Romberg 
integration to a tolerance of 0.1%, (b) two-point Gauss-Legendre 
formula, and (c) the MATLAB quad function. Note that fl ow is 
equal to velocity times area.
23.29 The amount of mass transported via a pipe over a period of 
time can be computed as

M 5 #
t2

t1

 
Q(t)c(t) dt

where M 5 mass (mg), t1 5 the initial time (min), t2 5 the fi nal 
time (min), Q(t) 5 fl ow rate (m3/min), and c(t) 5 concentration 
(mg/m3). The following functional representations defi ne the tem-
poral variations in fl ow and concentration,

Q(t) 5 9 1 4cos2(0.4t)

c(t) 5 5e20.5t 1 2e0.15t

Determine the mass transported between t1 5 2 and t2 5 8 min with 
(a) Romberg integration to a tolerance of 0.1%, and (b) the 
 MATLAB quad function.

accurate. To do this, you will have to use four different expansions 
for the points xi2 2, xi 2 1, xi 1 1, and xi 1 2. In each case, the expansion 
will be around the point xi. The interval Dx will be used in each case 
of i 2 1 and i 1 1, and 2Dx will be used in each case of i 2 2 and 
i 1 2. The four equations must then be combined in a way to elim-
inate the fi rst and second derivatives. Carry enough terms along in 
each expansion to evaluate the fi rst term that will be truncated to 
determine the order of the approximation.
23.21 Use the following data to fi nd the velocity and acceleration 
at t 5 10 seconds:

Time, t, s 0 2 4 6 8 10 12 14 16

Position, x, m 0 0.7 1.8 3.4 5.1 6.3 7.3 8.0 8.4

Use second-order correct (a) centered fi nite-difference, (b) forward 
fi nite-difference, and (c) backward fi nite-difference methods.
23.22 A plane is being tracked by radar, and data are taken every 
second in polar coordinates u and r.

t, s 200 202 204 206 208     210

u, rad 0.75 0.72 0.70 0.68 0.67    0.66

r, m 5120 5370 5560 5800 6030 6240

At 206 s, use the centered fi nite difference (second-order correct) to 
fi nd the vector expressions for velocity y

S
, and acceleration a

S
. The 

velocity and acceleration given in polar coordinates are:

y
S

5 r
#
e
S

r 1 ru
#
e
S
u and a

S
5 (r$ 2 r u

#
 2) e
S

r 1 (ru
$

1 2r#u
#
) e
S
u

23.23 Develop an Excel VBA macro program to read in adjacent 
columns of x and y values from a worksheet. Evaluate the deriva-
tives at each point using Eq. 23.9, and display the results in a third 
column adjacent to the x and y values back on the spreadsheet. Test 
your program by applying it to evaluate the velocities for the time–
position values from Prob. 23.21.
23.24 Use regression to estimate the acceleration at each time for the 
following data with second-, third-, and fourth-order polynomials. 
Plot the results.

t 1 2 3.25 4.5 6 7 8 8.5 9.3 10

v 10 12 11 14 17 16 12 14 14 10

23.25 You have to measure the fl ow rate of water through a small 
pipe. In order to do it, you place a bucket at the pipe’s outlet and 
measure the volume in the bucket as a function of time as tabulated 
below. Estimate the fl ow rate at t 5 7 s.

Time, s 0 1 5 8

Volume, cm3 0 1 8 16.4

23.26 The velocity y (m/s) of air fl owing past a fl at surface is mea-
sured at several distances y (m) away from the surface. Determine 
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