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 PT6.1 MOTIVATION

Calculus is the mathematics of change. Because engineers must continuously deal with sys-
tems and processes that change, calculus is an essential tool of our profession. Standing at 
the heart of calculus are the related mathematical concepts of differentiation and integration.
 According to the dictionary defi nition, to differentiate means “to mark off by differences; 
distinguish; . . . to perceive the difference in or between.” Mathematically, the derivative, 
which serves as the fundamental vehicle for differentiation, represents the rate of change of 
a dependent variable with respect to an independent variable. As depicted in Fig. PT6.1, the 
mathematical defi nition of the derivative begins with a difference approximation:

¢y

¢x
5

f(xi 1 ¢x) 2 f(xi)

¢x
 (PT6.1)

where y and f(x) are alternative representatives for the dependent variable and x is the 
independent variable. If Dx is allowed to approach zero, as occurs in moving from 
Fig. PT6.1a to c, the difference becomes a derivative
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FIGURE PT6.1
The graphical defi nition of a derivative: as Dx approaches zero in going from (a) to (c), the 
difference approximation becomes a derivative.
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588 NUMERICAL DIFFERENTIATION AND INTEGRATION

where dyydx [which can also be designated as y9 or f9(xi)] is the fi rst derivative of y with 
respect to x evaluated at xi. As seen in the visual depiction of Fig. PT6.1c, the derivative 
is the slope of the tangent to the curve at xi.
 The second derivative represents the derivative of the fi rst derivative,

d 
2y

dx2 5
d

dx
 ady

dx
b

Thus, the second derivative tells us how fast the slope is changing. It is commonly  referred 
to as the curvature, because a high value for the second derivative means high curvature.
 Finally, partial derivatives are used for functions that depend on more than one 
variable. Partial derivatives can be thought of as taking the derivative of the function at 
a point with all but one variable held constant. For example, given a function f that 
depends on both x and y, the partial derivative of f with respect to x at an arbitrary point 
(x, y) is defi ned as

0f
0x

5 lim
¢xS0

 f(x 1 ¢x, y) 2 f (x, y)

¢x

Similarly, the partial derivative of f with respect to y is defi ned as

0f
0y

5 lim
¢yS0

 f(x, y 1 ¢y) 2 f(x, y)

¢y

 To get an intuitive grasp of partial derivatives, recognize that a function that depends 
on two variables is a surface rather than a curve. Suppose you are mountain climbing 
and have access to a function, f, that yields elevation as a function of longitude (the 
east-west oriented x-axis) and latitude (the north-south oriented y-axis). If you stop at a 
particular point, (x0, y0), the slope to the east would be 0f(x0, y0)y0x and the slope to the 
north would be 0f(x0, y0)y0y.
 The inverse process to differentiation in calculus is integration. According to the 
dictionary defi nition, to integrate means “to bring together, as parts, into a whole; to 
unite; to indicate the total amount . . . .” Mathematically, integration is represented by

I 5 #
b

a
 
f(x) dx (PT6.2)

which stands for the integral of the function f(x) with respect to the independent variable 
x, evaluated between the limits x 5 a to x 5 b. The function f(x) in Eq. (PT6.2) is 
 referred to as the integrand.
 As suggested by the dictionary defi nition, the “meaning” of Eq. (PT6.2) is the total 
value, or summation, of f(x) dx over the range x 5 a to b. In fact, the symbol e is actu-
ally a stylized capital S that is intended to signify the close connection between integra-
tion and summation.
 Figure PT6.2 represents a graphical manifestation of the concept. For functions lying 
above the x axis, the integral expressed by Eq. (PT6.2) corresponds to the area under the 
curve of f(x) between x 5 a and b.1

1It should be noted that the process represented by Eq. (PT6.2) and Fig. PT6.2 is called defi nite integration. 
There is another type called indefi nite integration in which the limits a and b are unspecifi ed. As will be 
discussed in Part Seven, indefi nite integration deals with determining a function whose derivative is given.
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 PT6.1 MOTIVATION 589

 As outlined above, the “marking off” or “discrimination” of differentiation and the 
“bringing together” of integration are closely linked processes that are, in fact, inversely 
related (Fig. PT6.3). For example, if we are given a function y(t) that specifi es an object’s 
position as a function of time, differentiation provides a means to determine its velocity, 
as in (Fig. PT6.3a).

y(t) 5
d

dt
  y(t)

Conversely, if we are provided with velocity as a function of time, integration can be 
used to determine its position (Fig. PT6.3b),

y(t) 5 #
t

0
 
y(t) dt

Thus, we can make the general claim that the evaluation of the integral

I 5 #
b

a
 
f(x) dx

is equivalent to solving the differential equation

dy

dx
5 f(x)

for y(b) given the initial condition y(a) 5 0.
 Because of this close relationship, we have opted to devote this part of the book to 
both processes. Among other things, this will provide the opportunity to highlight their 

f (x)

a b x

FIGURE PT6.2
Graphical representation of the integral of f(x) between the limits x 5 a to b. The integral is 
equivalent to the area under the curve.
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590 NUMERICAL DIFFERENTIATION AND INTEGRATION

similarities and differences from a numerical perspective. In addition, our discussion will 
have relevance to the next parts of the book where we will cover differential equations.

PT6.1.1 Noncomputer Methods for Differentiation and Integration

The function to be differentiated or integrated will typically be in one of the following 
three forms:

1. A simple continuous function such as a polynomial, an exponential, or a trigonomet-
ric function.

2. A complicated continuous function that is diffi cult or impossible to differentiate or 
integrate directly.

3. A tabulated function, where values of x and f(x) are given at a number of discrete 
points, as is often the case with experimental or fi eld data.

 In the fi rst case, the derivative or integral of a simple function may be evaluated 
analytically using calculus. For the second case, analytical solutions are often impractical, 
and sometimes impossible, to obtain. In these instances, as well as in the third case of 
discrete data, approximate methods must be employed.
 A noncomputer method for determining derivatives from data is called equal-area 
graphical differentiation. In this method, the (x, y) data are tabulated and, for each in-
terval, a simple divided difference DyyDx is employed to estimate the slope. Then these 
values are plotted as a stepped curve versus x (Fig. PT6.4). Next, a smooth curve is 
drawn that attempts to approximate the area under the stepped curve. That is, it is drawn 

FIGURE PT6.3
The contrast between (a) differ-
entiation and (b) integration.
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 PT6.1 MOTIVATION 591

so that visually, the positive and negative areas are balanced. The rates at given values 
of x can then be read from the curve.
 In the same spirit, visually oriented approaches were employed to integrate tabulated 
data and complicated functions in the precomputer era. A simple intuitive approach is to 
plot the function on a grid (Fig. PT6.5) and count the number of boxes that approximate 
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FIGURE PT6.4
Equal-area differentiation. 
(a) Centered fi nite divided dif-
ferences are used to estimate 
the derivative for each interval 
between the data points. 
(b) The derivative estimates are 
plotted as a bar graph. A 
smooth curve is superimposed 
on this plot to approximate the 
area under the bar graph. This 
is accomplished by drawing the 
curve so that equal positive and 
negative areas are balanced. 
(c) Values of dyydx can then be 
read off the smooth curve.

FIGURE PT6.5
The use of a grid to approxi-
mate an integral.
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592 NUMERICAL DIFFERENTIATION AND INTEGRATION

the area. This number multiplied by the area of each box provides a rough estimate of 
the total area under the curve. This estimate can be refi ned, at the expense of additional 
effort, by using a fi ner grid.
 Another commonsense approach is to divide the area into vertical segments, or strips, 
with a height equal to the function value at the midpoint of each strip (Fig. PT6.6). The 
area of the rectangles can then be calculated and summed to estimate the total area. In 
this approach, it is assumed that the value at the midpoint provides a valid approximation 
of the average height of the function for each strip. As with the grid method, refi ned 
estimates are possible by using more (and thinner) strips to approximate the integral.
 Although such simple approaches have utility for quick estimates, alternative nu-
merical techniques are available for the same purpose. Not surprisingly, the simplest of 
these methods is similar in spirit to the noncomputer techniques.
 For differentiation, the most fundamental numerical techniques use fi nite divided 
differences to estimate derivatives. For data with error, an alternative approach is to fi t 
a smooth curve to these data with a technique such as least-squares regression and then 
differentiate this curve to obtain derivative estimates.
 In a similar spirit, numerical integration or quadrature methods are available to 
obtain integrals. These methods, which are actually easier to implement than the grid 
approach, are similar in spirit to the strip method. That is, function heights are multiplied 
by strip widths and summed to estimate the integral. However, through clever choices 
of weighting factors, the resulting estimate can be made more accurate than that from 
the simple strip method.
 As in the simple strip method, numerical integration and differentiation techniques 
utilize data at discrete points. Because tabulated information is already in such a form, 
it is naturally compatible with many of the numerical approaches. Although continuous 
functions are not originally in discrete form, it is usually a simple proposition to use the 
given equation to generate a table of values. As depicted in Fig. PT6.7, this table can 
then be evaluated with a numerical method.

f (x)

a b x

FIGURE PT6.6
The use of rectangles, or strips, 
to approximate the integral.
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 PT6.1 MOTIVATION 593

PT6.1.2 Numerical Differentiation and Integration in Engineering

The differentiation and integration of a function has so many engineering applications 
that you were required to take differential and integral calculus in your fi rst year at 
college. Many specifi c examples of such applications could be given in all fi elds of 
engineering.
 Differentiation is commonplace in engineering because so much of our work in-
volves characterizing the changes of variables in both time and space. In fact, many of 
the laws and other generalizations that fi gure so prominently in our work are based on 
the predictable ways in which change manifests itself in the physical world. A prime 
example is Newton’s second law, which is not couched in terms of the position of an 
object but rather in its change of position with respect to time.
 Aside from such temporal examples, numerous laws governing the spatial behavior 
of variables are expressed in terms of derivatives. Among the most common of these are 
those laws involving potentials or gradients. For example, Fourier’s law of heat conduction 
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FIGURE PT6.7
Application of a numerical inte-
gration method: (a) A compli-
cated, continuous function. 
(b) Table of discrete values of 
f(x) generated from the function. 
(c) Use of a numerical method 
(the strip method here) to estimate 
the integral on the basis of the 
discrete points. For a tabulated 
function, the data are already in 
tabular form (b); therefore, step 
(a) is unnecessary.
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594 NUMERICAL DIFFERENTIATION AND INTEGRATION

quantifi es the observation that heat fl ows from regions of high to low temperature. For 
the one-dimensional case, this can be expressed mathematically as

Heat flux 5 2k¿  
dT

dx

Thus, the derivative provides a measure of the intensity of the temperature change, 
or gradient, that drives the transfer of heat. Similar laws provide workable models 
in many other areas of engineering, including the modeling of fl uid dynamics, mass 
transfer, chemical reaction kinetics, and electromagnetic fl ux. The ability to accu-
rately estimate derivatives is an important facet of our capability to work effectively 
in these areas.
 Just as accurate estimates of derivatives are important in engineering, the calculation 
of integrals is equally valuable. A number of examples relate directly to the idea of the 
integral as the area under a curve. Figure PT6.8 depicts a few cases where integration is 
used for this purpose.
 Other common applications relate to the analogy between integration and summa-
tion. For example, a common application is to determine the mean of continuous func-
tions. In Part Five, you were introduced to the concept of the mean of n discrete data 
points [recall Eq. (PT5.1)]:

Mean 5
a

n

i51
yi

n
 (PT6.3)

FIGURE PT6.8
Examples of how integration is used to evaluate areas in engineering applications. (a) A 
surveyor might need to know the area of a fi eld bounded by a meandering stream and two 
roads. (b) A water-resource engineer might need to know the cross-sectional area of a river. 
(c) A structural engineer might need to determine the net force due to a nonuniform wind 
blowing against the side of a skyscraper.

(a () b () c)
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 PT6.1 MOTIVATION 595

where yi are individual measurements. The determination of the mean of discrete points 
is depicted in Fig. PT6.9a.
 In contrast, suppose that y is a continuous function of an independent variable x, as 
depicted in Fig. PT6.9b. For this case, there are an infi nite number of values between a 
and b. Just as Eq. (PT6.3) can be applied to determine the mean of the discrete readings, 
you might also be interested in computing the mean or average of the continuous func-
tion y 5 f(x) for the interval from a to b. Integration is used for this purpose, as speci-
fi ed by the formula

Mean 5

#
b

a
 
f(x) dx

b 2 a
 (PT6.4)

This formula has hundreds of engineering applications. For example, it is used to calcu-
late the center of gravity of irregular objects in mechanical and civil engineering and to 
determine the root-mean-square current in electrical engineering.
 Integrals are also employed by engineers to evaluate the total amount or quantity of 
a given physical variable. The integral may be evaluated over a line, an area, or a volume. 
For example, the total mass of chemical contained in a reactor is given as the product 
of the concentration of chemical and the reactor volume, or

Mass 5 concentration 3 volume

y

0 4 62

Mean

3 51
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y = f (x)

Mean

(b)

x
FIGURE PT6.9
An illustration of the mean for 
(a) discrete and (b) continuous 
data.
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596 NUMERICAL DIFFERENTIATION AND INTEGRATION

where concentration has units of mass per volume. However, suppose that concentration 
varies from location to location within the reactor. In this case, it is necessary to sum 
the products of local concentrations ci and corresponding elemental volumes DVi:

Mass 5 a
n

i51
ci ¢Vi

where n is the number of discrete volumes. For the continuous case, where c(x, y, z) is 
a known function and x, y, and z are independent variables designating position in 
 Cartesian coordinates, integration can be used for the same purpose:

Mass 5 # # #  c(x, y, z) dx dy dz

or

Mass 5 # #
V

#  
c(V) dV

which is referred to as a volume integral. Notice the strong analogy between summation 
and integration.
 Similar examples could be given in other fi elds of engineering. For example, the 
total rate of energy transfer across a plane where the fl ux (in calories per square centi-
meter per second) is a function of position is given by

Heat transfer 5 #
A
#  

flux dA

which is referred to as an areal integral, where A 5 area.
 Similarly, for the one-dimensional case, the total mass of a variable-density rod with 
constant cross-sectional area is given by

m 5 A#
L

0
 
r(x) dx

where m 5 total weight (kg), L 5 length of the rod (m), r(x) 5 known density (kg/m3) 
as a function of length x (m), and A 5 cross-sectional area of the rod (m2).
 Finally, integrals are used to evaluate differential or rate equations. Suppose the 
velocity of a particle is a known continuous function of time y (t),

dy

dt
5 y(t)

The total distance y traveled by this particle over a time t is given by (Fig. PT6.3b)

y 5 #
t

0
 
y(t) dt (PT6.5)

These are just a few of the applications of differentiation and integration that you might 
face regularly in the pursuit of your profession. When the functions to be analyzed are 
simple, you will normally choose to evaluate them analytically. For example, in the falling 
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 PT6.2 MATHEMATICAL BACKGROUND 597

parachutist problem, we determined the solution for velocity as a function of time 
[Eq. (1.10)]. This relationship could be substituted into Eq. (PT6.5), which could then 
be integrated easily to determine how far the parachutist fell over a time period t. For 
this case, the integral is simple to evaluate. However, it is diffi cult or impossible when 
the function is complicated, as is typically the case in more realistic examples. In addi-
tion, the underlying function is often unknown and defi ned only by measurement at 
discrete points. For both these cases, you must have the ability to obtain approximate 
values for derivatives and integrals using numerical techniques. Several such techniques 
will be discussed in this part of the book.

 PT6.2 MATHEMATICAL BACKGROUND

In high school or during your fi rst year of college, you were introduced to differential 
and integral calculus. There you learned techniques to obtain analytical or exact deriva-
tives and integrals.
 When we differentiate a function analytically, we generate a second function that 
can be used to compute the derivative for different values of the independent vari-
able. General rules are available for this purpose. For example, in the case of the 
monomial

y 5 xn

the following simple rule applies (n ? 0):

dy

dx
5 nxn21

which is the expression of the more general rule for

y 5 un

where u 5 a function of x. For this equation, the derivative is computed via

dy

dx
5 nun21

 
du

dx

Two other useful formulas apply to the products and quotients of functions. For example, 
if the product of two functions of x(u and y) is represented as y 5 uy, then the derivative 
can be computed as

dy

dx
5 u 

dy

dx
1 y 

du

dx

For the division, y 5 uyy, the derivative can be computed as

dy

dx
5

y 
du

dx
2 u 

dy

dx

y2

Other useful formulas are summarized in Table PT6.1.
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598 NUMERICAL DIFFERENTIATION AND INTEGRATION

TABLE PT6.1 Some commonly used derivatives.

 
d
dx

 sin x 5 cos x 
d
dx

 cot x 5 2csc2 x

 
d
dx

 cos x 5 2sin x 
d
dx

 sec x 5 sec x tan x

 
d
dx

 tan x 5 sec2 x 
d
dx

 csc x 5 2csc x cot x

 
d
dx

 ln x 5
1
x

 
d
dx

 loga x 5
1

x ln a

 
d
dx

 ex 5 ex 
d
dx

 ax 5 ax ln a

 Similar formulas are available for defi nite integration, which deals with determining 
an integral between specifi ed limits, as in

I 5 #
b

a
 
f(x) dx (PT6.6)

According to the fundamental theorem of integral calculus, Eq. (PT6.6) is evaluated as

#
b

a
 
f(x) dx 5 F(x)Zba

where F(x) 5 the integral of f(x)—that is, any function such that F9(x) 5 f(x). The 
 nomenclature on the right-hand side stands for

F(x)Z ba 5 F(b) 2 F(a) (PT6.7)

 An example of a defi nite integral is

I 5 #
0.8

0

(0.2 1 25x 2 200x2 1 675x3 2 900x4 1 400x5) dx (PT6.8)

For this case, the function is a simple polynomial that can be integrated analytically by 
evaluating each term according to the rule

#
b

a
 
xn dx 5

x 

n11

n 1 1
` b
a
 (PT6.9)

where n cannot equal 21. Applying this rule to each term in Eq. (PT6.8) yields

I 5 0.2x 1 12.5x2 2
200

3
 x3 1 168.75x4 2 180x5 1

400

6
 x6 ` 0.8

0
 (PT6.10)

which can be evaluated according to Eq. (PT6.7) as I 5 1.6405333. This value is equal 
to the area under the original polynomial [Eq. (PT6.8)] between x 5 0 and 0.8.
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 PT6.3 ORIENTATION 599

 The foregoing integration depends on knowledge of the rule expressed by Eq. (PT6.9). 
Other functions follow different rules. These “rules” are all merely instances of antidif-
ferentiation, that is, fi nding F(x) so that F9(x) 5 f(x). Consequently, analytical integration 
depends on prior knowledge of the answer. Such knowledge is acquired by training and 
experience. Many of the rules are summarized in handbooks and in tables of integrals. 
We list some commonly encountered integrals in Table PT6.2. However, many functions 
of practical importance are too complicated to be contained in such tables. One reason 
why the techniques in the present part of the book are so valuable is that they provide a 
means to evaluate relationships such as Eq. (PT6.8) without knowledge of the rules.

 PT6.3 ORIENTATION

Before proceeding to the numerical methods for integration, some further orientation 
might be helpful. The following is intended as an overview of the material discussed in 
Part Six. In addition, we have formulated some objectives to help focus your efforts when 
studying the material.

PT6.3.1 Scope and Preview

Figure PT6.10 provides an overview of Part Six. Chapter 21 is devoted to the most 
common approaches for numerical integration—the Newton-Cotes formulas. These 

TABLE PT6.2  Some simple integrals that are used in Part Six. The a and b in this table 
are constants and should not be confused with the limits of integration 
discussed in the text.

#u dv 5 uv 2 #v du

#un du 5
un11

n 1 1
1 C  n ? 21

#abx dx 5
abx

b ln a
1 C  a . 0, a ? 1

#dx
x

5 ln 0 x 0 1 C  x ? 0

#sin (ax 1 b) dx 5 2
1
a

 cos (ax 1 b) 1 C

#cos (ax 1 b) dx 5
1
a

 sin (ax 1 b) 1 C

# ln 0 x 0  dx 5 x ln 0 x 0 2 x 1 C

#eax dx 5
eax

a
1 C

#xeax dx 5
eax

a2
 (ax 2 1) 1 C

# dx
a 1 bx2

5
1

2ab
 tan212ab

a
 x 1 C
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600 NUMERICAL DIFFERENTIATION AND INTEGRATION

 relationships are based on replacing a complicated function or tabulated data with a 
simple polynomial that is easy to integrate. Three of the most widely used Newton-Cotes 
 formulas are discussed in detail: the trapezoidal rule, Simpson’s 1y3 rule, and Simpson’s 
3y8 rule. All these formulas are designed for cases where the data to be integrated are 

FIGURE PT6.10
Schematic of the organization of material in Part Six: Numerical Integration and Differentiation.
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 PT6.3 ORIENTATION 601

evenly spaced. In addition, we also include a discussion of numerical integration of 
unequally spaced data. This is a very important topic because many real-world applica-
tions deal with data that are in this form.
 All the above material relates to closed integration, where the function values at the 
ends of the limits of integration are known. At the end of Chap. 21, we present open 
integration formulas, where the integration limits extend beyond the range of the known 
data. Although they are not commonly used for defi nite integration, open integration 
formulas are presented here because they are utilized extensively in the solution of or-
dinary differential equations in Part Seven.
 The formulations covered in Chap. 21 can be employed to analyze both tabulated 
data and equations. Chapter 22 deals with three techniques that are expressly designed 
to integrate equations and functions: Romberg integration, adaptive quadrature, and 
Gauss quadrature. Computer algorithms are provided for these methods. In addition, 
methods for evaluating improper integrals are discussed.
 In Chap. 23, we present additional information on numerical differentiation to sup-
plement the introductory material from Chap. 4. Topics include high-accuracy fi nite-
difference formulas, Richardson’s extrapolation, and the differentiation of unequally 
spaced data. The effect of errors on both numerical differentiation and integration is 
discussed. Finally, the chapter is concluded with a description of the application of sev-
eral software packages for integration and differentiation.
 Chapter 24 demonstrates how the methods can be applied for problem solving. As 
with other parts of the book, applications are drawn from all fi elds of engineering.
 A review section, or epilogue, is included at the end of Part Six. This review includes 
a discussion of trade-offs that are relevant to implementation in engineering practice. In 
addition, important formulas are summarized. Finally, we present a short review of ad-
vanced methods and alternative references that will facilitate your further studies of 
numerical differentiation and integration.

PT6.3.2 Goals and Objectives

Study Objectives. After completing Part Six, you should be able to solve many nu-
merical integration and differentiation problems and appreciate their application for en-
gineering problem solving. You should strive to master several techniques and assess 
their reliability. You should understand the trade-offs involved in selecting the “best’’ 
method (or methods) for any particular problem. In addition to these general objectives, 
the specifi c concepts listed in Table PT6.3 should be assimilated and mastered.

Computer Objectives. You will be provided with software and simple computer 
algorithms to implement the techniques discussed in Part Six. All have utility as learn-
ing tools.
 Algorithms are provided for most of the other methods in Part Six. This information 
will allow you to expand your software library to include techniques beyond the trapezoi-
dal rule. For example, you may fi nd it useful from a professional viewpoint to have 
software to implement numerical integration and differentiation of unequally spaced data. 
You may also want to develop your own software for Simpson’s rules, Romberg integra-
tion, adaptive integration, and Gauss quadrature, which are usually more effi cient and 
accurate than the trapezoidal rule.
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602 NUMERICAL DIFFERENTIATION AND INTEGRATION

 Finally, one of your most important goals should be to master several of the general-
purpose software packages that are widely available. In particular, you should become 
adept at using these tools to implement numerical methods for engineering problem 
solving.

TABLE PT6.3 Specifi c study objectives for Part Six.

 1. Understand the derivation of the Newton-Cotes formulas; know how to derive the trapezoidal rule 
and how to set up the derivation of both of Simpson’s rules; recognize that the trapezoidal and 
Simpson’s 1y3 and 3y8 rules represent the areas under fi rst-, second-, and third-order polynomials, 
respectively.

 2. Know the formulas and error equations for (a) the trapezoidal rule, (b) the multiple-application 
trapezoidal rule, (c) Simpson’s 1y3 rule, (d) Simpson’s 3y8 rule, and (e) the multiple-application 
Simpson’s rule. Be able to choose the “best” among these formulas for any particular 
problem context.

 3. Recognize that Simpson’s 1y3 rule is fourth-order accurate even though it is based on only three 
points; realize that all the even-segment–odd-point Newton-Cotes formulas have similar enhanced 
accuracy.

 4. Know how to evaluate the integral and derivative of unequally spaced data.
 5. Recognize the difference between open and closed integration formulas.
 6. Understand how to evaluate multiple integrals numerically.
 7. Understand the theoretical basis of Richardson extrapolation and how it is applied in the Romberg 

integration algorithm and for numerical differentiation.
 8. Understand the fundamental difference between Newton-Cotes and Gauss quadrature formulas.
 9. Recognize why both Romberg integration, adaptive quadrature, and Gauss quadrature have utility 

when integrating equations (as opposed to tabular or discrete data).
10. Know how open integration formulas are employed to evaluate improper integrals.
11. Understand the application of high-accuracy numerical-differentiation formulas.
12. Know how to differentiate unequally spaced data.
13. Recognize the differing effects of data error on the processes of numerical integration and 

differentiation.

cha9792x_p06_586-602.indd Page 602  29/10/13  9:55 PM F-468 cha9792x_p06_586-602.indd Page 602  29/10/13  9:55 PM F-468 /207/MH02101/cha9792x_disk1of1/007339792x/cha9792x_pagefiles/207/MH02101/cha9792x_disk1of1/007339792x/cha9792x_pagefiles




