Examples, Solved Probelms and exercise of Chap. 2

Example 2.6

(a) Discuss the hermiticity of the operators $(\hat{A} + \hat{A}^{\dagger})$, $i(\hat{A} + \hat{A}^{\dagger})$, and $i(\hat{A} - \hat{A}^{\dagger})$.

(b) Find the Hermitian adjoint of $f(\hat{A}) = (1 + i\hat{A} + 3\hat{A}^2)(1 - 2i\hat{A} - 9\hat{A}^2)/(5 + 7\hat{A}).$

(c) Show that the expectation value of a Hermitian operator is real and that of an anti-Hermitian operator is imaginary.

Solution: (a) The operator
$$\hat{B} = \hat{A} + \hat{A}^{\dagger}$$
 is Hermitian as
 $\hat{B}^{\dagger} = (\hat{A} + \hat{A}^{\dagger})^{\dagger} = \hat{A}^{\dagger} + \hat{A} = \hat{A} + \hat{A}^{\dagger}$
and is Hermitian regarders of whether \hat{A} is Hermitian or not.
 $\hat{B} = \hat{z}(\hat{A} + \hat{A}^{\dagger})^{\dagger} = -\hat{z}(\hat{A} + \hat{A}^{\dagger}) = -\hat{B}$
so $\hat{B}^{\dagger} = -\hat{z}(\hat{A} + \hat{A}^{\dagger})^{\dagger} = -\hat{z}(\hat{A} + \hat{A}^{\dagger}) = -\hat{B}$
so $\hat{B}^{\dagger} = -\hat{z}(\hat{A} - \hat{A}^{\dagger})$
 $\hat{B}^{\dagger} = \hat{z}(\hat{A} - \hat{A}^{\dagger}) = -\hat{z}(\hat{A} - \hat{A}^{\dagger})^{\dagger} = -\hat{z}(\hat{A}^{\dagger} - \hat{A})$
 $\hat{B}^{\dagger} = \hat{z}(\hat{A} - \hat{A}^{\dagger})$
 $\hat{B}^{\dagger} = \hat{z}(\hat{A} - \hat{A}^{\dagger})$
So $\hat{z}(\hat{A} - \hat{A}^{\dagger})$ is Hermitian.
(b)
Since we degree from $\hat{f}(\hat{A}) = (1+\hat{i}\hat{A}+\hat{s}\hat{A}^{\dagger})(1-\hat{z}\hat{i}\hat{A} - \hat{q}\hat{A}^{\dagger})/(\hat{s} + \hat{z}\hat{A})$
 $\mu_{ESE} = \hat{f}(\hat{A})$ is function of operator, and its Hermition adjoint is
 $(\hat{g}(\hat{A}))^{\dagger} = \hat{f}^{*}(\hat{A}^{\dagger})$ since \hat{f} may be either yeal or
complex. g_{i} it is real then $(\hat{f}(\hat{A}))^{\dagger} = \hat{f}^{*}(\hat{A}^{\dagger})$ and $i\hat{f}$ \hat{A} is Hermitian i.e.,
 $\hat{A}^{\dagger} = A$ then $\hat{f}(\hat{A}^{\dagger}) = \hat{f}(A)$, so
 $(\hat{f}(\hat{A}))^{\ddagger} = (1-\hat{i}\hat{A}+\hat{s}\hat{A}^{\dagger})(1-\hat{z}\hat{i}\hat{A}-\hat{q}\hat{A}+\hat{z}))^{\dagger}$
 $\hat{f}^{*}(\hat{A}^{\dagger}) = (1-\hat{i}\hat{A}+\hat{s}\hat{A}^{\dagger})(1-\hat{z}\hat{i}\hat{A}-\hat{q}\hat{A}+\hat{z})$
 $f = a periodion value a\hat{f}$ a Hermitian operator is real os $\hat{A}^{\dagger} = \hat{A}$
so $\langle \Psi(\hat{A}|\Psi\rangle^{\mp} = \langle \Psi(\hat{A}^{\dagger}|\Psi\rangle = \langle \Psi(\hat{A}|\Psi\rangle = sad$
 $\hat{S}ince \#s anitHermitian operator $\hat{B}^{\dagger} = -\hat{B}$
 $\langle \Psi(\hat{B}|\Psi\rangle^{\mp} = \langle \Psi(\hat{B}^{\dagger}|\Psi\rangle = \langle \Psi(\hat{B}|\Psi\rangle = -\langle \Psi(\hat{B}|\Psi\rangle = -\langle \Psi(\hat{B}|\Psi\rangle$$

so to hold the equality we must have

which means that <YIBIY> is purely imaginary. so * expectation value of Hermitian operator is purely real. * expectation value of anti-Hermitian operator is purely imaginary. Is we are given by DA = A - < A> & DB = B - < B> One thing must be remembered that < Â7 and < B> are only numbers either complex or real so their preperties or discussed in previous article and above solved example. Let us try the commutation relation scalar scalar $[\widehat{OR}, \widehat{OB}] = [\widehat{A} - \langle \widehat{A} \rangle, \widehat{B} - \langle \widehat{B} \rangle] - [\widehat{A}, \widehat{B}] - [\widehat{A}, \langle \widehat{B} \rangle] - [\langle \widehat{A} \rangle, \widehat{B}] + [\langle \widehat{A} \rangle, \langle \widehat{B} \rangle]$ since [Â, a]= 0 commutation of An operator with a scalar is zero so $[\delta \hat{A}, \delta \hat{B}] = [\hat{A}, \hat{B}]$