Examples, Solved Probelms and exercise of Chap. 2
Example 2.6
(a) Discuss the hermiticity of the operators $\left(\hat{A}+\hat{A}^{\dagger}\right), i\left(\hat{A}+\hat{A}^{\dagger}\right)$, and $i\left(\hat{A}-\hat{A}^{\dagger}\right)$.
(b) Find the Hermitian adjoint of $f(\hat{A})=\left(1+i \hat{A}+3 \hat{A}^{2}\right)\left(1-2 i \hat{A}-9 \hat{A}^{2}\right) /(5+7 \hat{A})$.
(c) Show that the expectation value of a Hermitian operator is real and that of an antiHermitian operator is imaginary.
Solution: (a) The operator $\hat{\underline{B}}=\hat{A}+\hat{A}^{+}$is Hermitian as

$$
\hat{B}^{+}=\left(\hat{A}+\hat{A}^{+}\right)^{+}=\hat{A}^{+}+\hat{A}=\hat{A}+\hat{A}^{+}
$$

and is Hermitian regarless of whether \hat{A} is Hermitian or not.

$$
\begin{array}{ll}
\Rightarrow & \hat{B}=i\left(\hat{A}+\hat{A}^{+}\right) \\
\text {so } & \hat{B}^{+}=-i\left(\hat{A}+\hat{A}^{+}\right)^{+}=-i\left(\hat{A}+\hat{A}^{+}\right)=-\hat{B}
\end{array}
$$

so it is anti-Hermitian

$$
\begin{aligned}
\Rightarrow \quad \hat{B}=i\left(\hat{A}-\hat{A}^{+}\right) & \\
\hat{B}^{+} & =\left[i\left(A-\hat{A}^{+}\right)\right]^{+}=-i\left(A-\hat{A}^{+}\right)+ \\
& \hat{B}^{+}=-i\left(\hat{A}^{+}-\hat{A}\right) \\
& =i\left(\hat{A}-\hat{A}^{+}\right)
\end{aligned}
$$

So $i\left(\hat{A}-\hat{A}^{+}\right)$is Hermitian.
(b)

Since we are given $f(\hat{A})=\left(1+i \hat{A}+3 \hat{A}^{2}\right)\left(1-2 i \hat{A}-9 \hat{A}^{2}\right) /(5+7 \hat{A})$
Here $f(\hat{A})$ is function of operator, and its Hermitian adjoint is

$$
(f(\hat{A}))^{t^{\prime}}=f^{*}\left(\hat{A}^{+}\right) \text {Since } f \text { may be either real or }
$$

complex. If it is real then $(f(A))^{+}=f^{*}\left(\hat{A}^{-1}\right)=f\left(\hat{A}^{+}\right)$and if \hat{A} is Hermitian ie., $\hat{A}^{\dagger}=A$ then $f\left(\hat{A}^{-1}\right)=f(A)$, so

$$
\begin{aligned}
& (f(\hat{A}))^{+}=\left[\left(1+i \hat{A}+3 \hat{A}^{2}\right)\left(1-2 i \hat{A}-9 \hat{A}^{2}\right) /(5+7 \hat{A})\right]^{+} \\
& f^{*}\left(\hat{A}^{+}\right)=\frac{\left(1-i \hat{A}^{+}+3 \hat{A}^{+2}\right)\left(1+2\left(\hat{A}^{+}-9 \hat{A}^{+2}\right)\right.}{\left(5+7 \hat{A}^{+}\right)}
\end{aligned}
$$

The expectation value of a Hermitian operator is real as $\hat{A}^{+}=\hat{A}$

$$
\text { So } \quad\langle\psi| \hat{A}|\psi\rangle^{\star}=\langle\psi| \hat{A}^{\dagger}|\psi\rangle=\langle\psi| \hat{A}|\psi\rangle=\text { real }
$$

since for anti-tlermitian operator $\hat{B}^{+}=-\hat{B}$

$$
\langle\psi| \hat{B}|\psi\rangle^{*}=\langle\psi| \hat{B}^{-1}|\psi\rangle=\langle\psi|-\hat{B}|\psi\rangle=-\langle\psi| \hat{B}|\psi\rangle
$$

So to hold the equality we must have

$$
\langle\psi| \hat{B}|\psi\rangle=-\langle\psi| \hat{B}|\psi\rangle^{*}
$$

which means that $\langle\psi| \hat{B}|\psi\rangle$ is purely imaginary. so

* expectation value of Hermitian operate is purely real.
* expectation value of anti-Hermitian operator is purely imaginary.

If we are given by $\Delta \hat{A}=\hat{A}-\langle\hat{A}\rangle \xi^{\prime} \Delta \hat{B}=\hat{B}-\langle\hat{B}\rangle$
One thing must be remembered that $\langle\hat{A}\rangle$ and $\langle\hat{B}\rangle$ are only numbers either complex or real so their preperties or discussed in previous article and above solved example. Let us try the commutation relation

$$
\begin{aligned}
& \text { Ned example. Let us try the commutation relation } \\
& {[D \hat{A}, \Delta \hat{B}]=[\hat{A}-\langle\hat{A}\rangle, \hat{B}-\langle\hat{B}\rangle]=[\hat{A}, \hat{B}]-[\hat{A},\langle\hat{B}\rangle]-[\langle\hat{A}\rangle, \hat{B}]+[\langle\hat{A}\rangle,\langle\hat{B}\rangle]}
\end{aligned}
$$

since $[\hat{A}, a]=0$ commutation of An operator wilt a scalar is zero
so

$$
[\Delta \hat{A}, \Delta \hat{B}]=[\hat{A}, \hat{B}]
$$

