

In the name of ALLAH
the most Beneficent and the most merciful

## Chi Square Test

- ' $\chi$ 'is a Greek letter,
- not equivalent of English letter ' X ',
- written as "chi, and
- pronounced as "Kye" and
- typed as ' $\chi$ '


## Chi Square Test

1.First, a table is prepared out of qualitative data. Actual observed frequencies of 2 sets of events are entered in a two-way table, which is also known as "Contigency table" (Latin, con= together: tangere=to touch)
Since, this table also helps to know the association between two sets of events, table is also called as "Association table"

## Chi Square Test

2. Null Hypothesis is setup stating

- there is no association between the events.
- $\chi^{2}$ - test can also be applied when there are more than two classes or groups, such as social classes I, II, III and IV among smokers and non-smokers


## Chi Square Test

3. Expected frequency for each cell is calculated on the assumption of no association, using the formula

Row total $\times$ column total

$$
\mathrm{E}=\frac{\mathrm{Grand} \text { total }}{}
$$

## Chi Square Test

4. Then the difference between the
observed and the expected frequencies
for each cell is found i.e., O - E
$5 \cdot \chi^{2}$ - value for each cell is calculated by using the formula

$$
(O-E)^{2}
$$

$$
\chi^{2}=
$$

E

## Chi Square Test

6. Then the total of $\chi^{2}$ for all the four cells is calculated by the formula(summation of all 4 cells $\chi^{2}$ - values)

$$
(O-E)^{2}
$$

Total $\chi^{2}=\sum$

$$
\text { E } \quad(a d-b c)^{2} \times G
$$

Alternate formula, $\chi^{2}=$

$$
(a+b)(c+d)(b+d)(a+c)
$$

## Chi Square Test

7. Degree of freedom (D.F) is calculated by using the formula

$$
\text { D.F }=(c-1)(r-1)
$$

Where
$\mathrm{c}=$ no. of columns
$r=$ no. of rows

Chi Square Test
Lastly to know whether the calculated $\chi^{2}-$ value is significant or not, we have to refer to "Fisher's $\chi^{2}$ - table"
If the calculated value is higher than the table- value, it is concluded that it is significant and the Null hypothesis is to be rejected.
If the calculated value is LOWER than the table- value, Null hypothesis is accepted

## Chi-Square Distribution

Degrees of
Freedom
(df)

|  | $\mathbf{0 . 1 0}$ | $\mathbf{0 . 0 5}$ |
| :--- | :--- | :--- |
| 1 | 2.706 | 3.841 |
| 2 | 4.605 | 5.991 |
| 3 | 6.251 | 7.815 |
| 4 | 7.779 | 9.488 |
| 5 | 9.236 | 11.071 |
| 6 | 10.645 | 12.592 |
| 7 | 12.017 | 14.067 |
| 8 | 13.362 | 15.507 |
| 9 | 14.684 | 16.919 |
| 10 | 15.987 | 18.307 |

## Area in Upper Tail

| $\mathbf{0 . 0 1}$ | $\mathbf{0 . 0 0 1}$ |
| :--- | :--- |
| 6.635 | 10.828 |
| 9.210 | 13.816 |
| 11.345 | 16.267 |
| 13.277 | 18.467 |
| 15.086 | 20.515 |
| 16.812 | 22.458 |
| 18.475 | 24.322 |
| 20.090 | 26.125 |
| 21.666 | 27.877 |
| 23.209 | 29.588 |

Apply $\chi^{2}$-test to find efficacy of a drug from the data given below
Outcome(result)of treatment with drug \& placebo

| Group | Died | Survived | Total |
| :---: | :---: | :---: | :---: |
| A. Control (on placebo) | (O) $10 \quad$ ( a ) | ( O ) 25 ( b ) | $35(a+b)$ |
| B. Experimenta 1 (on Drug) | ( O ) 5 (c) | ( O ) 6o (d) | $65 \quad(\mathrm{c}+\mathrm{d})$ |
| Total | $15(a+c)$ | $85(b+d)$ | $\mathrm{G}=100$ |

## Chi Square Test

| Group | Died | Survived | Total |
| :---: | :---: | :---: | :---: |
| A. Control(on placebo) | (O) $10 \quad$ ( a ) <br> (E) 5.25 | (O) 25 (b) <br> ( E ) 29.25 | $35(\mathrm{a}+\mathrm{b})$ |
| B. <br> Experimenta <br> l(on) <br> Drug | (O) 5 (c) <br> ( E) 9.75 | $\begin{aligned} & \text { (O) } 60 \text { (d) } \\ & \text { (E) } 55.25 \end{aligned}$ | $65(c+d)$ |
| Total | $15(a+c)$ | $85(\mathrm{~b}+\mathrm{d})$ | $\mathrm{G}=100$ |

## Chi Square Test

The null hypothesis that the drug has no effect
(Drug \& placebo are same), (there is no difference between the sample proportions and the population proportion of 100 )
The expected( E ) value and $\chi^{2}$-value is calculated for each cell as follows

## Chi Square Test

(a) expected number and $\chi^{2}$-value of "died" in control group

## Row total $\times$ Column total

$$
E=
$$

Grand total

$$
=\xlongequal{35 \times 15}=5.25
$$

100

## Chi Square Test

$$
\begin{aligned}
& \chi^{2}=\frac{(O-E)^{2}}{E}=\frac{(10-5.25)^{2}}{5.25} \\
& \chi^{2}=\frac{(4.75)^{2}}{5.25}=\frac{22.5226}{5.25}=4.29
\end{aligned}
$$

## Chi Square Test

b) expected number and $\chi^{2}$-value of "survived" in control group

$$
\begin{aligned}
& E=\frac{85 \times 35}{100}=29.75 \\
& X^{2}=\frac{(O-E)^{2}}{E}=\frac{(25-29.75)^{2}}{29.75}
\end{aligned}
$$

## Chi Square Test

$$
(-4.75)^{2} \quad 22.56
$$

$$
\chi^{2}=
$$

$$
29.75
$$

$$
29.75
$$

$$
\chi^{2}=0.76
$$

## Chi Square Test

c) expected number and $\chi^{2}$-value of "died" in experimental group

$$
15 \times 65
$$

$\mathrm{E}=$

$$
=\square=9.75
$$

100
4

## Chi Square Test

$$
(O-E)^{2} \quad(5-9.75)^{2}
$$

$\chi^{2}=$
E
9.75
$(-4.75)^{2}$
22.56

$$
\chi^{2}=\frac{\square}{9.75}=\square
$$

$$
=\square=2.31
$$

## Chi Square Test

d) expected number and $\chi^{2}$-value of "survived" in experimental group
$85 \times 65$

$$
E=\square=85 \times .65=55.25
$$

100

## Chi Square Test

$$
(O-E)^{2} \quad(60-55.25)^{2}
$$

$$
\chi^{2}=\square=\square
$$

$$
\chi^{2}=\frac{\begin{array}{c}
\mathrm{E} \\
(5.25)^{2}
\end{array}}{55.25}=\frac{\begin{array}{l}
55.25 \\
22.56
\end{array}}{55.25}=0.408
$$

## Chi Square Test

$\sum \chi^{2}=$ Total $\chi^{2}$ value of all 4 cells

$$
\begin{aligned}
& =4.29+0.76+2.31+0.41 \\
& =7.77
\end{aligned}
$$

$\mathrm{DF}=(\mathrm{c}-1)(\mathrm{r}-1)=(2-1)(2-1)=(1 \mathrm{x} 1)=1$
Where
DF= Degree of freedom c= no of columns $\mathrm{r}=$ no. of rows

## Chi Square Test

On referring to Fisher's $\chi^{2}$ - table with 1 df, the tabulated $\chi^{2}$ - value, corresponding to probability of 0.05 (at $95 \%$ significance level) is 3.84
Since the calculated value( 7.77 ) is more than table value(3.84),the null hypothesis is rejected ,accepting the alternative hypothesis

## YATES’ CORRECTION

- When the expected frequency in any cell of the fourfold table is less than 5 , Yates' correction, also known as correction for continuity, should be applied as shown below to obtain a more accurate value of chi square.
- by using the formula $\chi 2=$
$\{(\mathrm{O}-\mathrm{E})-0.5\}^{2}$
E

