
6
Bézier Approximation

Bézier methods for curves and surfaces are popular, are commonly used in practical work,
and are described here in detail. Two approaches to the design of a Bézier curve are
described, one using Bernstein polynomials and the other using the mediation operator.
Both rectangular and triangular Bézier surface patches are discussed, with examples.

Historical Notes

Pierre Etienne Bézier (pronounced “Bez-yea” or “bez-ee-ay”) was an applied math-
ematician with the French car manufacturer Renault. In the early 1960s, encouraged by
his employer, he began searching for ways to automate the process of designing cars. His
methods have been the basis of the modern field of Computer Aided Geometric Design
(CAGD), a field with practical applications in many areas.

It is interesting to note that Paul de Faget de Casteljau, an applied mathematician
with Citroën, was the first, in 1959, to develop the various Bézier methods but—because
of the secretiveness of his employer—never published it (except for two internal technical
memos that were discovered in 1975). This is why the entire field is named after the
second person, Bézier, who developed it.

Bézier and de Casteljau did their work while working for car manufacturers. It is
little known that Steven Anson Coons of MIT did most of his work on surfaces (around
1967) while a consultant for Ford. Another mathematician, William J. Gordon, has
generalized the Coons surfaces, in 1969, as part of his work for General Motors research
labs. In addition, airplane designer James Ferguson also came up with the same ideas
for the construction of curves and surfaces. It seems that car and airplane manufacturers
have been very innovative in the CAGD field. Detailed historical surveys of CAGD can
be found in [Farin 04] and [Schumaker 81].

176 6. Bézier Approximation

6.1 The Bézier Curve

The Bézier curve is a parametric curve P(t) that is a polynomial function of the param-
eter t. The degree of the polynomial depends on the number of points used to define
the curve. The method employs control points and produces an approximating curve
(note the title of this chapter). The curve does not pass through the interior points but
is attracted by them (however, see Exercise 6.7 for an exception). It is as if the points
exert a pull on the curve. Each point influences the direction of the curve by pulling
it toward itself, and that influence is strongest when the curve gets nearest the point.
Figure 6.1 shows some examples of cubic Bézier curves. Such a curve is defined by four
points and is a cubic polynomial. Notice that one has a cusp and another one has a
loop. The fact that the curve does not pass through the points implies that the points
are not “set in stone” and can be moved. This makes it easy to edit, modify and reshape
the curve, which is one reason for its popularity. The curve can also be edited by adding
new points, or deleting points. These techniques are discussed in Sections 6.8 and 6.9,
but they are cumbersome because the mathematical expression of the curve depends on
the number of points, not just on the points themselves.

-2
0

2
-2

0

2
0
1

2

3

-2
0

2

P0

P0P0

P1

P1
P1

P2

P2P2

P3

P3
P3 P0

P2

P1

P3

x

y

z

Figure 6.1: Four Plane Cubic and One Space Bézier Curves With Their Control Points and Polygons.

The control polygon of the Bézier curve is the polygon obtained when the control
points are connected, in their natural order, with straight segments.

How does one go about deriving such a curve? We describe two approaches to the
design—a weighted sum and a linear interpolation—and show that they are identical.

6.1 The Bézier Curve 177

6.1.1 Pascal Triangle and the Binomial Theorem

The Pascal triangle and the binomial theorem are related because both employ the same
numbers. The Pascal triangle is an infinite triangular matrix that’s built from the edges
inside

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
.

We first fill the left and right edges with ones, then compute each interior element as the
sum of the two elements directly above it. As can be expected, it is not hard to obtain
an explicit expression for the general element of the Pascal triangle. We first number the
rows from 0 starting at the top, and the columns from 0 starting on the left. A general
element is denoted by

(
i
j

)
. We then observe that the top two rows (corresponding to

i = 0, 1) consist of 1’s and that every other row can be obtained as the sum of its
predecessor and a shifted version of its predecessor. For example,

1 3 3 1
+ 1 3 3 1

1 4 6 4 1

This shows that the elements of the triangle satisfy(
i

0

)
=
(

i

i

)
= 1, i = 0, 1, . . . ,(

i

j

)
=
(

i − 1
j − 1

)
+
(

i − 1
j

)
, i = 2, 3, . . . , j = 1, 2, . . . , (i − 1).

From this it is easy to derive the explicit expression(
i

j

)
=
(

i − 1
j − 1

)
+
(

i − 1
j

)

=
(i − 1)!

(j − 1)!(i − j)!
+

(i − 1)!
j!(i − 1 − j)!

=
j(i − 1)!
j!(i − j)!

+
(i − j)(i − 1)!

j!(i − j)!

=
i!

j!(i − j)!
.

Thus, the general element of the Pascal triangle is the well-known binomial coefficient(
i

j

)
=

i!
j!(i − j)!

.

178 6. Bézier Approximation

The binomial coefficient is one of Newton’s many contributions to mathematics.
His binomial theorem states that

(a + b)n =
n∑

i=0

(
n

i

)
aibn−i. (6.1)

This equation can be written in a symmetric way by denoting j = n − i. The result is

(a + b)n =
i+j=n∑
i,j≥0

(i + j)!
i!j!

aibj , (6.2)

from which we can easily guess the trinomial theorem (which is used in Section 6.23)

(a + b + c)n =
i+j+k=n∑
i,j,k≥0

(i + j + k)!
i!j!k!

aibjck. (6.3)

6.2 The Bernstein Form of the Bézier Curve

The first approach to the Bézier curve expresses it as a weighted sum of the points (with,
of course, barycentric weights). Each control point is multiplied by a weight and the
products are added. We denote the control points by P0, P1, . . . ,Pn (n is therefore
defined as 1 less than the number of points) and the weights by Bi. The expression of
weighted sum is

P(t) =
n∑

i=0

PiBi, 0 ≤ t ≤ 1.

The result, P(t), depends on the parameter t. Since the points are given by the user,
they are fixed, so it is the weights that must depend on t. We therefore denote them by
Bi(t). How should Bi(t) behave as a function of t?

We first examine B0(t), the weight associated with the first point P0. We want
that point to affect the curve mostly at the beginning, i.e., when t is close to 0. Thus,
as t grows toward 1 (i.e., as the curve moves away from P0), B0(t) should drop down to
0. When B0(t) = 0, the first point no longer influences the shape of the curve.

Next, we turn to B1(t). This weight function should start small, should have a max-
imum when the curve approaches the second point P1, and should then start dropping
until it reaches zero. A natural question is: When (for what value of t) does the curve
reach its closest approach to the second point? The answer is: It depends on the number
of points. For three points (the case n = 2), the Bézier curve passes closest to the second
point (the interior point) when t = 0.5. For four points, the curve is nearest the second
point when t = 1/3. It is now clear that the weight functions must also depend on n
and we denote them by Bn,i(t). Hence, B3,1(t) should start at 0, have a maximum at
t = 1/3, and go down to 0 from there. Figure 6.2 shows the desired behavior of Bn,i(t)

6.2 The Bernstein Form of the Bézier Curve 179

1 1 1

B20(t) B22(t) B30(t) B33(t) B40(t) B44(t)

B43(t)B41(t)
B42(t)

B31(t) B32(t)
B21(t)

t t t

(* Just the base functions bern. Note how "pwr" handles 0^0 *)
Clear[pwr,bern];
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i] (* t^i x (1-t)^(n-i) *)
Plot[Evaluate[Table[bern[5,i,t], {i,0,5}]], {t,0,1}, DefaultFont->{"cmr10", 10}];

Figure 6.2: The Bernstein Polynomials for n = 2, 3, 4.

for n = 2, 3, and 4. The five different weights B4,i(t) have their maxima at t = 0, 1/4,
1/2, 3/4, and 1.

The functions chosen by Bézier (and also by de Casteljau) were derived by the
Russian mathematician Sergĕı Natanovich Bernshtĕın in 1912, as part of his work on
approximation theory (see Chapter 6 of [Davis 63]). They are known as the Bernstein
polynomials and are defined by

Bn,i(t) =
(

n
i

)
ti(1 − t)n−i, where

(n

i

)
=

n!
i!(n − i)!

(6.4)

are the binomial coefficients. These polynomials feature the desired behavior and have a
few more useful properties that are discussed here. (In calculating the curve, we assume
that the quantity 00, which is normally undefined, equals 1.)

The Bézier curve is now defined as

P(t) =
n∑

i=0

PiBn,i(t), where Bn,i(t) =
(

n
i

)
ti(1 − t)n−i and 0 ≤ t ≤ 1. (6.5)

Each control point (a pair or a triplet of coordinates) is multiplied by its weight, which
is in the range [0, 1]. The weights act as blending functions that blend the contributions
of the different points.

Here is Mathematica code to calculate and plot the Bernstein polynomials and the
Bézier curve:

(* Just the base functions bern. Note how "pwr" handles 0^0 *)
Clear[pwr,bern,n,i,t]
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i]
(* t^i \[Times] (1-t)^(n-i) *)
Plot[Evaluate[Table[bern[5,i,t], {i,0,5}]], {t,0,1},
DefaultFont->{"cmr10", 10}]

180 6. Bézier Approximation

Clear[i,t,pnts,pwr,bern,bzCurve,g1,g2]; (* Cubic Bezier curve *)
(* either read points from file
pnts=ReadList["DataPoints",{Number,Number}]; *)
(* or enter them explicitly *)
pnts={{0,0},{.7,1},{.3,1},{1,0}}; (* 4 points for a cubic curve *)
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i]
bzCurve[t_]:=Sum[pnts[[i+1]]bern[3,i,t], {i,0,3}]
g1=ListPlot[pnts, Prolog->AbsolutePointSize[4], PlotRange->All,
AspectRatio->Automatic, DisplayFunction->Identity]
g2=ParametricPlot[bzCurve[t], {t,0,1}, DisplayFunction->Identity]
Show[g1,g2, DisplayFunction->$DisplayFunction]

Next is similar code for a three-dimensional Bézier curve. It was used to draw the
space curve of Figure 6.1.

Clear[pnts,pwr,bern,bzCurve,g1,g2,g3]; (* General 3D Bezier curve *)
pnts={{1,0,0},{0,-3,0.5},{-3,0,0.75},{0,3,1},{3,0,1.5},{0,-3,1.75},{-1,0,2}};
n=Length[pnts]-1;
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,t_]:=Binomial[n,i]pwr[t,i]pwr[1-t,n-i] (* t^i x (1-t)^(n-i) *)
bzCurve[t_]:=Sum[pnts[[i+1]]bern[n,i,t], {i,0,n}];
g1=ParametricPlot3D[bzCurve[t], {t,0,1}, Compiled->False,
DisplayFunction->Identity];
g2=Graphics3D[{AbsolutePointSize[2], Map[Point,pnts]}];
g3=Graphics3D[{AbsoluteThickness[2], (* control polygon *)
Table[Line[{pnts[[j]],pnts[[j+1]]}], {j,1,n}]}];
g4=Graphics3D[{AbsoluteThickness[1.5], (* the coordinate axes *)
Line[{{0,0,3},{0,0,0},{3,0,0},{0,0,0},{0,3,0}}]}];
Show[g1,g2,g3,g4, AspectRatio->Automatic, PlotRange->All, DefaultFont->{"cmr10", 10},
Boxed->False, DisplayFunction->$DisplayFunction];

� Exercise 6.1: Design a heart-shaped Bézier curve based on nine control points.

When Bézier started searching for such functions in the early 1960s, he set the
following requirements [Bézier 86]:

1. The functions should be such that the curve passes through the first and last
control points.

2. The tangent to the curve at the start point should be P1 − P0, i.e., the curve
should start at point P0 moving toward P1. A similar property should hold at the last
point.

3. The same requirement is generalized for higher derivatives of the curve at the
two extreme endpoints. Hence, Ptt(0) should depend only on the first point P0 and
its two neighbors P1 and P2. In general, P(k)(0) should only depend on P0 and its k
neighbors P1 through Pk. This feature provides complete control over the continuity at
the joints between separate Bézier curve segments (Section 6.5).

4. The weight functions should be symmetric with respect to t and (1 − t). This
means that a reversal of the sequence of control points would not affect the shape of the
curve.

5. The weights should be barycentric, to guarantee that the shape of the curve is
independent of the coordinate system.

6. The entire curve lies within the convex hull of the set of control points. (See
property 8 of Section 6.4 for a discussion of this point.)

6.2 The Bernstein Form of the Bézier Curve 181

The definition shown in Equation (6.5), using Bernstein polynomials as the weights,
satisfies all these requirements. In particular, requirement 5 is proved when Equa-
tion (6.1) is written in the form [t + (1 − t)]n = · · · (see Equation (6.12) if you cannot
figure this out). Following are the explicit expressions of these polynomials for n = 2,
3, and 4.

Example: For n = 2 (three control points), the weights are

B2,0(t) = (2
0)t0(1 − t)2−0 = (1 − t)2,

B2,1(t) = (2
1)t1(1 − t)2−1 = 2t(1 − t),

B2,2(t) = (2
2)t2(1 − t)2−2 = t2,

and the curve is

P(t) = (1 − t)2P0 + 2t(1 − t)P1 + t2P2

=
(
(1 − t)2, 2t(1 − t), t2

)
(P0,P1,P2)

T

= (t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 0 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ . (6.6)

This is the quadratic Bézier curve.

� Exercise 6.2: Given three points P1, P2, and P3, calculate the parabola that goes
from P1 to P3 and whose start and end tangent vectors point in directions P2 −P1 and
P3 − P2, respectively.

In the special case n = 3, the four weight functions are

B3,0(t) = (3
0)t0(1 − t)3−0 = (1 − t)3,

B3,1(t) = (3
1)t1(1 − t)3−1 = 3t(1 − t)2,

B3,2(t) = (3
2)t2(1 − t)3−2 = 3t2(1 − t),

B3,3(t) = (3
3)t3(1 − t)3−3 = t3,

and the curve is

P(t) = (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3 (6.7)

=
[
(1 − t)3, 3t(1 − t)2, 3t2(1 − t), t3

] [
P0,P1,P2,P3

]T
=
[
(1 − 3t + 3t2 − t3), (3t − 6t2 + 3t3), (3t2 − 3t3), t3

] [
P0,P1,P2,P3

]T
= (t3, t2, t, 1)

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ . (6.8)

It is clear that P(t) is a cubic polynomial in t. It is the cubic Bézier curve. In general,
the Bézier curve for points P0, P1,. . . , Pn is a polynomial of degree n.

182 6. Bézier Approximation

� Exercise 6.3: Given the curve P(t) = (1 + t + t2, t3), find its control points.

� Exercise 6.4: The cubic curve of Equation (6.8) is drawn when the parameter t varies
in the interval [0, 1]. Show how to substitute t with a new parameter u such that the
curve will be drawn when −1 ≤ u ≤ +1.

� Exercise 6.5: Calculate the Bernstein polynomials for n = 4.

It can be proved by induction that the general, (n + 1)-point Bézier curve can be
represented by

P(t) = (tn, tn−1, . . . , t, 1)N

⎛
⎜⎜⎜⎜⎝

P0

P1
...

Pn−1

Pn

⎞
⎟⎟⎟⎟⎠ = T(t) · N · P, (6.9)

where

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
n
0

)(
n
n

)
(−1)n

(
n
1

)(
n−1
n−1

)
(−1)n−1 · · · (

n
n

)(
n−n
n−n

)
(−1)0(

n
0

)(
n

n−1

)
(−1)n−1

(
n
1

)(
n−1
n−2

)
(−1)n−2 · · · 0

...
... · · · 0(

n
0

)(
n
1

)
(−1)1

(
n
1

)(
n−1

0

)
(−1)0 · · · 0(

n
0

)(
n
0

)
(−1)0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (6.10)

Matrix N is symmetric and its elements below the second diagonal are all zeros. Its
determinant therefore equals (up to a sign) the product of the diagonal elements, which
are all nonzero. A nonzero determinant implies a nonsingular matrix. Thus, matrix N
always has an inverse. N can also be written as the product AB, where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
n
n

)
(−1)n

(
n
1

)(
n−1
n−1

)
(−1)n−1 · · · (

n
n

)(
n−n
n−n

)
(−1)0(

n
n−1

)
(−1)n−1

(
n
1

)(
n−1
n−2

)
(−1)n−2 · · · 0

...
... · · · 0(

n
1

)
(−1)1

(
n
1

)(
n−1

0

)
(−1)0 · · · 0(

n
0

)
(−1)0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

B =

⎛
⎜⎜⎜⎝
(
n
0

)
0 · · · 0

0
(
n
1

) · · · 0
...

. . .
...

0 0 · · · (
n
n

)

⎞
⎟⎟⎟⎠ .

Figure 6.3 shows the Bézier N matrices for n = 1, 2, . . . , 7.

� Exercise 6.6: Calculate the Bézier curve for the case n = 1 (two control points). What
kind of a curve is it?

6.2 The Bernstein Form of the Bézier Curve 183

N1 =
(−1 1

1 0

)
,

N2 =

⎛
⎝ 1 −2 1

−2 2 0
1 0 0

⎞
⎠ ,

N3 =

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠ ,

N4 =

⎛
⎜⎜⎜⎝

1 −4 6 −4 1
−4 12 −12 4 0
6 −12 6 0 0
−4 4 0 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎠ ,

N5 =

⎛
⎜⎜⎜⎜⎜⎝

−1 5 −10 10 −5 1
5 −20 30 −20 5 0

−10 30 −30 10 0 0
10 −20 10 0 0 0
−5 5 0 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

N6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −6 15 −20 15 −6 1
−6 30 −60 60 −30 6 0
15 −60 90 −60 15 0 0
−20 60 −60 20 0 0 0
15 −30 15 0 0 0 0
−6 6 0 0 0 0 0
1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

N7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 7 −21 35 −35 21 −7 1
7 −42 105 −140 105 −42 7 0

−21 105 −210 210 −105 21 0 0
35 −140 210 −140 35 0 0 0
−35 105 −105 35 0 0 0 0
21 −42 21 0 0 0 0 0
−7 7 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Figure 6.3: The First Seven Bézier Basis Matrices.

184 6. Bézier Approximation

� Exercise 6.7: Generally, the Bézier curve passes through the first and last control
points, but not through the intermediate points. Consider the case of three points P0,
P1, and P2 on a straight line. Intuitively, it seems that the curve will be a straight line
and would therefore pass through the interior point P1. Is that so?

The Bézier curve can also be represented in a very compact and elegant way as
P(t) = (1 − t + tE)nP0, where E is the shift operator defined by EPi = Pi+1 (i.e.,
applying E to point Pi produces point Pi+1). The definition of E implies EP0 = P1,
E2P0 = P2, and EiP0 = Pi.

The Bézier curve can now be written

P(t) =
n∑

i=0

(
n

i

)
ti(1 − t)n−iPi =

n∑
i=0

(
n

i

)
ti(1 − t)n−iEiP0

=
n∑

i=0

(
n

i

)
(tE)i(1 − t)n−iP0 =

(
tE + (1 − t)

)n
P0,

where the last step is an application of the binomial theorem, Equation (6.1).
Example: For n = 1, this representation amounts to

P(t) = (1 − t + tE)P0 = P0(1 − t) + P1t.

For n = 2, we get

P(t) = (1 − t + tE)2P0

= (1 − t + tE − t + t2 − t2E + tE − t2E + t2E2)P0

= P0(1 − 2t + t2) + P1(2t − 2t2) + P2t
2

= P0(1 + t)2 + P12t(1 − t) + P2t
2.

Given n + 1 control points P0 through Pn, we can represent the Bézier curve for
the points by P(n)

n (t), where the quantity P(j)
i (t) is defined recursively by

P(j)
i (t) =

{
(1 − t)P(j−1)

i−1 (t) + tP(j−1)
i (t), for j > 0,

Pi, for j = 0.
(6.11)

The following examples show how the definition above is used to generate the quantities
P(j)

i (t) and why P(n)
n (t) is the degree-n curve:

P(0)
0 (t) = P0, P(0)

1 (t) = P1, P(0)
2 (t) = P2, . . . ,P(0)

n (t) = Pn,

P(1)
1 (t) = (1 − t)P(0)

0 (t) + tP(0)
1 (t) = (1 − t)P0 + tP1,

P(2)
2 (t) = (1 − t)P(1)

1 (t) + tP(1)
2 (t)

= (1 − t)
(
(1 − t)P0 + tP1

)
+ t

(
(1 − t)P1 + tP2

)
= (1 − t)2P0 + 2t(1 − t)P1 + t2P2,

P(3)
3 (t) = (1 − t)P(2)

2 (t) + tP(2)
3 (t)

6.3 Fast Calculation of the Curve 185

= (1 − t)
(
(1 − t)P(1)

1 (t) + tP(1)
2 (t)

)
+ t

(
(1 − t)P(1)

2 (t) + tP(1)
3 (t)

)
= (1 − t)2P(1)

1 (t) + 2t(1 − t)P(1)
2 (t) + t2P(1)

3 (t)
= (1 − t)2

(
(1 − t)P0 + tP1

)
+ 2t(1 − t)

(
(1 − t)P1 + tP2

)
+ t2

(
(1 − t)P2 + tP3

)
= (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3.

6.3 Fast Calculation of the Curve

Calculating the Bézier curve is straightforward but slow. However, with a little thinking,
it can be speeded up considerably, a feature that makes this curve very useful in practice.
This section discusses three methods.

Method 1: We notice the following:

The calculation involves the binomials (n
i) for i = 0, 1, . . . , n, which, in turn, require

the factorials 0!, 1!, . . . , n!. The factorials can be precalculated once (each one from its
predecessor) and stored in a table. They can then be used to calculate all the necessary
binomials and those can also be stored in a table.

The calculation involves terms of the form ti for i = 0, 1, . . . , n and for many t values
in the interval [0, 1]. These can also be precalculated and stored in a two-dimensional
table where they can be accessed later, using t and i as indexes. This has the advantage
that the values of (1 − t)n−i can be read from the same table (using 1 − t and n − i as
row and column indexes).

The calculation now reduces to a sum where each term is a product of four quanti-
ties, one control point and three numbers from tables. Instead of computing

n∑
i=0

(
n

i

)
ti(1 − t)n−iPi,

we need to compute the simple sum

n∑
i=0

Table1[i, n] · Table2[t, i] · Table2[1 − t, n − i] · Pi.

The parameter t is a real number that varies from 0 to 1, so a practical implemen-
tation of this method should use an integer T related to t. For example, if we increment
t in 100 steps, then T should be the integer 100t.

Method 2: Once n is known, each of the n + 1 Bernstein polynomials Bn,i(t),
i = 0, 1, . . . , n, can be precalculated for all the necessary values of t and stored in a
table. The curve can now be calculated as the sum

n∑
i=0

Table[t, i]Pi,

186 6. Bézier Approximation

indicating that each point on the computed curve requires n + 1 table lookups, n + 1
multiplications, and n additions. Again, an integer index T should be used instead of t.

Method 3: Use forward differences in combination with the Taylor series represen-
tation, to speed up the calculation significantly. The Bézier curve, which we denote by
B(t), is drawn pixel by pixel in a loop where t is incremented from 0 to 1 in fixed, small
steps of ∆t. The principle of forward differences (Section 1.5.1) is to find a quantity dB
such that B(t+∆t) = B(t)+dB for any value of t. If such a dB can be found, then it is
enough to calculate B(0) (which, as we know, is simply P0) and use forward differences
to calculate

B(0 + ∆t) = B(0) + dB,

B(2∆t) = B(∆t) + dB = B(0) + 2dB,

and, in general,
B(i∆t) = B

(
(i − 1)∆t

)
+ dB = B(0) + idB.

The point is that dB should not depend on t. If dB turns out to depend on t, then
as we advance t from 0 to 1, we would have to use different values of dB, slowing down
the calculations. The fastest way to calculate the curve is to precalculate dB before the
loop starts and to repeatedly add this precalculated value to B(t) inside the loop.

We calculate dB by using the Taylor series representation of the Bézier curve. In
general, the Taylor series representation of a function f(t) at a point f(t + ∆t) is the
infinite sum

f(t + ∆t) = f(t) + f ′(t)∆t +
f ′′(t)∆2t

2!
+

f ′′′(t)∆3t

3!
+ · · · .

In order to avoid dealing with an infinite sum, we limit our discussion to cubic Bézier
curves. These are the most common Bézier curves and are used by many popular graph-
ics applications. They are defined by four control points and are given by Equations (6.7)
and (6.8):

B(t) = (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3

= (t3, t2, t, 1)

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ .

These curves are cubic polynomials in t, implying that only their first three derivatives
are nonzero. In order to simplify the calculation of their derivatives, we need to express
these curves in the form B(t) = at3 + bt2 + ct + d [Equation (3.1)]. This is done by

B(t) = (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3

=
(
3(P1 − P2) − P0 + P3

)
t3 +

(
3(P0 + P2) − 6P1

)
t2 + 3(P1 − P0)t + P0

= at3 + bt2 + ct + d,

6.3 Fast Calculation of the Curve 187

so a = 3(P1 − P2) − P0 + P3, b = 3(P0 + P2) − 6P1, c = 3(P1 − P0), and d = P0.
These relations can also be expressed in matrix notation

⎛
⎜⎝

a
b
c
d

⎞
⎟⎠ =

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ .

The curve is now easy to differentiate

Bt(t) = 3at2 + 2bt + c, Btt(t) = 6at + 2b, Bttt(t) = 6a;

and the Taylor series representation yields

dB = B(t + ∆t) − B(t)

= Bt(t)∆t +
Btt(t)∆2t

2
+

Bttt(t)∆3t

6
= 3a t2∆t + 2b t∆t + c∆t + 3a t∆2t + b∆2t + a∆3t.

This seems like a failure since the value obtained for dB is a function of t (it should
be denoted by dB(t) instead of just dB) and is also slow to calculate. However, the
original cubic curve B(t) is a degree-3 polynomial in t, whereas dB(t) is only a degree-2
polynomial. This suggests a way out of our dilemma. We can try to express dB(t) by
means of the Taylor series, similar to what we did with the original curve B(t). This
should result in a forward difference ddB(t) that’s a polynomial of degree 1 in t. The
quantity ddB(t) can, in turn, be represented by another Taylor series to produce a
forward difference dddB that’s a degree-0 polynomial, i.e., a constant. Once we do
that, we will end up with an algorithm of the form

precalculate certain quantities;
B = P0;
for t:=0 to 1 step ∆t do
PlotPixel(B);
B:=B+dB; dB:=dB+ddB; ddB:=ddB+dddB;
endfor;

The quantity ddB(t) is obtained by

dB(t + ∆t) = dB(t) + ddB(t) = dB(t) + dBt(t)∆t +
dB(t)tt∆2t

2
,

yielding

ddB(t) = dBt(t)∆t +
dB(t)tt∆2t

2

= (6a t∆t + 2b∆t + 3a∆2t)∆t +
6a∆t∆2t

2
= 6a t∆2t + 2b∆2t + 6a∆3t.

188 6. Bézier Approximation

Finally, the constant dddB is similarly obtained by

ddB(t + ∆t) = ddB(t) + dddB = ddB(t) + ddBt(t)∆t,

yielding dddB = ddBt(t)∆t = 6a∆3t.
The four quantities involved in the calculation of the curve are therefore

B(t) = at3 + bt2 + ct + d,

dB(t) = 3a t2∆t + 2b t∆t + c∆t + 3a t∆2t + b∆2t + a∆3t,

ddB(t) = 6a t∆2t + 2b∆2t + 6a∆3t,

dddB = 6a∆3t.

They all have to be calculated at t = 0, as functions of the four control points Pi, before
the loop starts:

B(0) = d = P0,

dB(0) = c∆t + b∆2t + a∆3t

= 3∆t(P1 − P0) + ∆2t
(
3(P0 + P2) − 6P1

)
+ ∆3t

(
3(P1 − P2) − P0 + P3

)
= 3∆t(P1 − P0) + 3∆2t(P0 − 2P1 + P2)

+ ∆3t
(
3(P1 − P2) − P0 + P3

)
,

ddB(0) = 2b∆2t + 6a∆3t

= 2∆2t
(
3(P0 + P2) − 6P1

)
+ 6∆3t

(
3(P1 − P2) − P0 + P3

)
= 6∆2t(P0 − 2P1 + P2) + 6∆3t

(
3(P1 − P2) − P0 + P3

)
,

dddB = 6a∆3t = 6∆3t
(
3(P1 − P2) − P0 + P3

)
.

The above relations can be expressed in matrix notation as follows:

⎛
⎜⎝

dddB
ddB(0)
dB(0)
B(0)

⎞
⎟⎠ =

⎛
⎜⎝

6 0 0 0
6 2 0 0
1 1 1 0
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

∆3t 0 0 0
0 ∆2t 0 0
0 0 ∆t 0
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

a
b
c
d

⎞
⎟⎠

=

⎛
⎜⎝

6 0 0 0
6 2 0 0
1 1 1 0
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

∆3t 0 0 0
0 ∆2t 0 0
0 0 ∆t 0
0 0 0 1

⎞
⎟⎠
⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

=

⎛
⎜⎝

−6∆3t 18∆3t −18∆3t 6∆3t
6∆2t − 6∆3t −12∆2t + 18∆3t 6∆2t − 18∆3t 6∆3t

3∆2t − ∆3t − 3∆t −6∆2t + 3∆3t + 3∆t 3∆2t − 3∆3t ∆3t
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

6.3 Fast Calculation of the Curve 189

= Q

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ ,

where Q is a 4×4 matrix that can be calculated once ∆t is known.
A detailed examination of the above expressions shows that the following quantities

have to be precalculated: 3∆t, 3∆2t, ∆3t, 6∆2t, 6∆3t, P0−2P1 +P2, and 3(P1−P2)−
P0 + P3. We therefore end up with the simple, fast algorithm shown in Figure 6.4. For
those interested in a quick test, the corresponding Mathematica code is also included.

Q1:=3∆t;
Q2:=Q1×∆t; // 3∆2t
Q3:=∆3t;
Q4:=2Q2; // 6∆2t
Q5:=6Q3; // 6∆3t
Q6:=P0 − 2P1 + P2;
Q7:=3(P1 − P2) − P0 + P3;
B:=P0;
dB:=(P1 − P0)Q1+Q6×Q2+Q7×Q3;
ddB:=Q6×Q4+Q7×Q5;
dddB:=Q7×Q5;
for t:=0 to 1 step ∆t do
Pixel(B);
B:=B+dB; dB:=dB+ddB; ddB:=ddB+dddB;
endfor;

n=3; Clear[q1,q2,q3,q4,q5,Q6,Q7,B,dB,ddB,dddB,p0,p1,p2,p3,tabl];
p0={0,1}; p1={5,.5}; p2={0,.5}; p3={0,1}; (* Four points *)
dt=.01; q1=3dt; q2=3dt^2; q3=dt^3; q4=2q2; q5=6q3;
Q6=p0-2p1+p2; Q7=3(p1-p2)-p0+p3;
B=p0; dB=(p1-p0) q1+Q6 q2+Q7 q3; (* space indicates *)
ddB=Q6 q4+Q7 q5; dddB=Q7 q5; (* multiplication *)
tabl={};
Do[{tabl=Append[tabl,B], B=B+dB, dB=dB+ddB, ddB=ddB+dddB},

{t,0,1,dt}];
ListPlot[tabl];

Figure 6.4: A Fast Bézier Curve Algorithm.

Each point of the curve (i.e., each pixel in the loop) is calculated by three additions
and three assignments only. There are no multiplications and no table lookups. This is
a very fast algorithm indeed!

190 6. Bézier Approximation

6.4 Properties of the Curve

The following useful properties are discussed in this section:
1. The weights add up to 1 (they are barycentric). This is easily shown from

Newton’s binomial theorem (a + b)n =
∑n

i=0

(
n
i

)
aibn−i:

1 =
(
t + (1 − t)

)n =
n∑

i=0

(
n

i

)
ti(1 − t)n−i =

n∑
i=0

Bn,i(t). (6.12)

2. The curve passes through the two endpoints P0 and Pn. We assume that 00 = 1
and observe that

Bn,0(0) =
(

n
0

)
00(1 − 0)n−0 = 1 · 1 · 1n = 1,

which implies

P(0) =
n∑

i=0

PiBn,i(0) = P0Bn,0(0) = P0.

Also, the relation

Bn,n(1) =
(

n
n

)
1n(1 − 1)(n−n) = 1 · 1 · 00 = 1,

implies

P(1) =
n∑

i=0

PiBn,i(1) = PnBn,n(1) = Pn.

3. Another interesting property of the Bézier curve is its symmetry with respect
to the numbering of the control points. If we number the points Pn, Pn−1, . . . ,P0, we
end up with the same curve, except that it proceeds from right (point P0) to left (point
Pn). The Bernstein polynomials satisfy the identity Bn,j(t) = Bn,n−j(1− t), which can
be proved directly and which can be used to prove the symmetry

n∑
j=0

PjBn,j(t) =
n∑

j=0

Pn−jBn,j(1 − t).

4. The first derivative (the tangent vector) of the curve is straightforward to derive

Pt(t) =
n∑

i=0

PiB
′
n,i(t)

=
n∑
0

Pi(n
i)
[
i ti−1(1 − t)n−i + ti(n − i)(1 − t)n−i−1(−1)

]

=
n∑
0

Pi(n
i)i ti−1(1 − t)n−i −

n−1∑
0

Pi(n
i)ti(n − i)(1 − t)n−1−i

(using the identity n(n−1
i−1) = i(n

i), we get)

6.4 Properties of the Curve 191

= n

n∑
1

Pi(n−1
i−1)ti−1(1 − t)(n−1)−(i−1) − n

n−1∑
0

Pi(n−1
i)ti(1 − t)n−1−i

(but (n−1
i−1)ti−1(1 − t)(n−1)−(i−1) = Bn−1,i−1(t), so)

= n

n−1∑
0

Pi+1Bn−1,i(t) − n

n−1∑
0

PiBn−1,i(t)

= n

n−1∑
0

[Pi+1 − Pi]Bn−1,i(t)

= n

n−1∑
0

∆PiBn−1,i(t), where ∆Pi = Pi+1 − Pi. (6.13)

Note that the tangent vector is a Bézier weighted sum (of n terms) where each Bernstein
polynomial is the weight of a “control point” ∆Pi (∆Pi is the difference of two points,
hence it is a vector, but since it is represented by a pair or a triplet, we can conveniently
consider it a point). As a result, the second derivative is obviously another Bézier sum
based on the n − 1 “control points” ∆2Pi = ∆Pi+1 − ∆Pi = Pi+2 − 2Pi+1 + Pi.

5. The weight functions Bn,i(t) have a maximum at t = i/n. To see this, we first
differentiate the weights

B′
n,i(t) = (n

i)
[
i ti−1(1 − t)n−i + ti(n − i)(1 − t)n−i−1(−1)

]
= (n

i)i ti−1(1 − t)n−i − (n
i)ti(n − i)(1 − t)n−1−i,

then equate the derivative to zero (n
i)i ti−1(1 − t)n−i − (n

i)ti(n − i)(1 − t)n−1−i = 0.
Dividing by ti−1(1 − t)n−i−1 yields i(1 − t) − t(n − i) = 0 or t = i/n.

6. The two derivatives Pt(0) and Pt(1) are easy to derive from Equation (6.13) and
are used to reshape the curve. They are Pt(0) = n(P1−P0) and Pt(1) = n(Pn−Pn−1).
Since n is always positive, we conclude that Pt(0), the initial tangent of the curve, points
in the direction from P0 to P1. This initial tangent can easily be controlled by moving
point P1. The situation for the final tangent is similar.

7. The Bézier curve features global control. This means that moving one control
point Pi modifies the entire curve. Most of the change, however, occurs at the vicinity
of Pi. This feature stems from the fact that the weight functions Bn,i(t) are nonzero for
all values of t except t = 0 and t = 1. Thus, any change in a control point Pi affects the
contribution of the term PiBn,i(t) for all values of t. The behavior of the global control
of the Bézier curve is easy to analyze. When a control point Pk is moved by a vector
(α, β) to a new location Pk + (α, β), the curve P(t) is changed from the original sum∑

Bni(t)Pi to

n∑
i=0

Bni(t)Pi + Bnk(t)(α, β) = P(t) + Bnk(t)(α, β).

Thus, every point P(t0) on the curve is moved by the vector Bnk(t0)(α, β). The points
are all moved in the same direction, but by different amounts, depending on t0. This

192 6. Bézier Approximation

behavior is demonstrated by Figure 6.19b. (In principle, the figure is for a rational
curve, but the particular choice of weights in the figure results in a standard curve.)

8. The concept of the convex hull of a set of points was introduced in Section 2.2.5.
Here, we show a connection between the Bézier curve and the convex hull. Let P1,
P2,. . . , Pn be a given set of points and let a point P be constructed as a barycentric
sum of these points with nonnegative weights, i.e.,

P =
n∑

i=1

aiPi, where
∑

ai = 1 and ai ≥ 0. (6.14)

It can be shown that the set of all points P satisfying Equation (6.14) lies in the convex
hull of P1, P2 through Pn. The Bézier curve, Equation (6.5), satisfies Equation (6.14)
for all values of t, so all its points lie in the convex hull of the set of control points. Thus,
the curve is said to have the convex hull property. The significance of this property is
that it makes the Bézier curve more predictable. A designer specifying a set of control
points needs just a little experience to visualize the shape of the curve, since the convex
hull property guarantees that the curve will not “stray” far from the control points.

9. The control polygon of a Bézier curve intersects the curve at the first and the
last points and in general may intersect the curve at a certain number m, of points
(Figure 6.1, where m is 2, 3, or 4, may help to visualize this). If we take a straight
segment and maneuver it to intersect the curve as many times as possible, we find that
the number of intersection points is always less than or equal m. This property of the
Bézier curve may be termed variation diminution.

10. Imagine that each control point is moved 10 units to the left. Such a transfor-
mation will move every point on the curve to the left by the same amount. Similarly,
if the control points are rotated, reflected, or are subject to any other affine transfor-
mation, the entire curve will be transformed in the same way. We say that the Bézier
curve is invariant under affine transformations. However, the curve is not invariant un-
der projections. If we compute a three-dimensional Bézier curve and project every point
on the curve by a perspective projection, we end up with a two-dimensional curve P(t).
If we then project the three-dimensional control points and compute a two-dimensional
Bézier curve Q(t) from the projected, two-dimensional points, the two curves P(t) and
Q(t) will be different. Invariance under projections can be achieved by switching from
the standard Bézier curve to the rational Bézier curve (Section 6.15).

6.5 Connecting Bézier Curves

The Bézier curve is a polynomial of degree n, which makes it slow to compute for large
values of n. It is therefore preferable to connect several Bézier segments, each defined
by a few points, typically four to six, into one smooth curve. The condition for smooth
connection of two such segments is easy to derive. We assume that the control points are
divided into two sets P0,P1, . . . ,Pn and Q0,Q1, . . . ,Qm. In order for the two segments
to connect, Pn must equal Q0. We already know that the extreme tangent vectors of
the Bézier curve satisfy

Qt(0) = m(Q1 − Q0) and Pt(1) = n(Pn − Pn−1).

6.5 Connecting Bézier Curves 193

The condition for a smooth connection is Qt(0) = Pt(1) or mQ1−mQ0 = nPn−nPn−1.
Substituting Q0 = Pn yields

Pn =
m

m + n
Q1 +

n

m + n
Pn−1. (6.15)

The three points Pn−1, Pn, and Q1 must therefore be dependent. Hence, the condition
for smooth linking is that the three points Pn−1, Pn, and Q1 be collinear. In the special
case where n = m, Equation (6.15) reduces to Pn = 0.5Q1 + 0.5Pn−1, implying that
Pn should be the midpoint between Q1 and Pn−1.

Example: Given that P4 = Q0 = (6,−1), Q1 = (7, 0), and m = 5, we compute
P3 by

(6,−1) =
5

4 + 5
(7, 0) +

4
4 + 5

P3,

which yields P3 = (21/4,−9/4).

� Exercise 6.8: A more general condition for a smooth connection of two curve segments
is αQt(0) = Pt(1). The two tangents at the connection point are in the same direction,
but have different magnitudes. Discuss this condition and what it means for the three
control points Pn−1, Pn = Q0, and Q1.

Breaking large curves into short segments has the additional advantage of easy
control. The Bézier curve offers only global control, but if it is constructed of separate
segments, a change in the control points in one segment will not affect the other segments.
Figure 6.5 is an example of two Bézier segments connected smoothly.

P0

P1

P2

P3=Q0

Q1

Q2

Q3

Q4

Figure 6.5: Connecting Bézier Segments.

194 6. Bézier Approximation

6.6 The Bézier Curve as a Linear Interpolation

The original form of the Bézier curve, as developed by de Casteljau in 1959, is based
on an approach entirely different from that of Bézier. Specifically, it employs linear
interpolation and the mediation operator. Before we start, Figure 6.6 captures the
essence of the concepts discussed here. The figure shows how a set of straight segments
(or, equivalently, a single segment that slides along the base lines) creates the illusion
(some would say, the magic) of a curve. Such a curve is called the envelope of the set,
and the linear interpolation method of this section shows how to extend this simple
construction to more than three points and two segments.

P01
(t)

P
12(t)

P0

P1

P2

Figure 6.6: A Curve as an Envelope of Straight Segments.

Figure 6.6 involves only three points, which makes it easy to derive the expression
of the envelope. The equation of the straight segment from P0 to P1 is P01(t) =
(1−t)P0+tP1 and the equation of the segment between P1 and P2 is similarly P12(t) =
(1− t)P1 + tP2. If we fix t at a certain value, then P01(t) and P12(t) become points on
the two segments. The straight segment connecting these points has the familiar form

P(t) = (1 − t)P01(t) + tP12(t) = (1 − t)2P0 + 2t(1 − t)P1 + t2P2.

For a fixed t, this is a point on the Bézier curve defined by P0, P1, and P2. When t
is varied, the entire curve segment is obtained. Thus, the magical envelope has become
a familiar curve. We can call this envelope a multilinear curve. Linear, because it
is constructed from straight segments, and multi, because several such segments are
required.

In order to extend this method to more than three points, we need appropriate
notation. We start with a simple definition. The mediation operator t[[P0,P1]] between
two points P0 and P1 is defined as the familiar linear interpolation*

t[[P0,P1]] = (1 − t)P0 + tP1 = t(P1 − P0) + P0, where 0 ≤ t ≤ 1.

The general definition, for any number of points, is recursive. The mediation operator

* The term “mediation” seems to have originated in [Knuth 86].

6.6 The Bézier Curve as a Linear Interpolation 195

can be applied to any number of points according to

t[[P0, . . . ,Pn]] = t[[t[[P0, . . . ,Pn−1]], t[[P1, . . . ,Pn]]]],
...

t[[P0,P1,P2,P3]] = t[[t[[P0,P1,P2]], t[[P1,P2,P3]]]],
t[[P0,P1,P2]] = t[[t[[P0,P1]], t[[P1,P2]]]],

t[[P0,P1]] = (1 − t)P0 + tP1 = t(P1 − P0) + P0, where 0 ≤ t ≤ 1.

This operator creates curves that interpolate between the points. It has the advantages of
being a simple mathematical function (and therefore fast to calculate) and of producing
interpolation curves whose shape can easily be predicted. We examine cases involving
more and more points.

Case 1. Two points. Given the two points P0 and P1, we denote the straight
segment connecting them by L01. It is easy to see that L01 = t[[P0,P1]], because the
mediation operator is a linear function of t and because 0[[P0,P1]] = P0 and 1[[P0,P1]] =
P1. Notice that values of t below 0 or above 1 correspond to those parts of the line
that don’t lie between the two points. Such values may be of interest in certain cases
but not in the present context. The interpolation curve between the two points is
denoted by P1(t) and is simply selected as the line L01 connecting the points. Hence,
P1(t) = L01 = t[[P0,P1]]. Notice that a straight line is also a polynomial of degree 1.

P1

P0

P012

P12

P2

P01

L012 L12

L01

Figure 6.7: Repeated Linear Interpolation.

Case 2. Three points. Given the three points P0, P1, and P2 (Figure 6.7), the
mediation operator can be used to construct an interpolation curve between them in the
following steps:

1. Construct the two lines L01 = t[[P0,P1]] and L12 = t[[P1,P2]].
2. For some 0 ≤ t0 ≤ 1, consider the two points P01 = t0[[P0,P1]] and P12 =

t0[[P1,P2]]. Connect the points with a line L012. The equation of this line is, of course,
t[[P01,P12]] and it equals

L012 = t[[P01,P12]] = t[[t[[P0,P1]], t[[P1,P2]]]] = t[[P0,P1,P2]].

196 6. Bézier Approximation

3. For the same t0, select point P012 = t0[[P0,P1,P2]] on L012. The point can be
expressed as

P012 = t0[[P0,P1,P2]] = t0[[P01,P12]] = t0[[t0[[P0,P1]], t0[[P1,P2]]]].

Now, release t0 and let it vary from 0 to 1. Point P012 slides along the line L012, whose
endpoints will, in turn, slide along L01 and L12. The curve described by point P012 as
it is sliding is the interpolation curve for P0, P1, and P2 that we are seeking. It is the
equivalent of the envelope curve of Figure 6.6. We denote it by P2(t) and its expression
is easy to calculate, using the definition of t[[Pi,Pj]]:

P2(t) = t[[P0,P1,P2]]
= t[[t[[P0,P1]], t[[P1,P2]]]]
= t[[tP1 + (1 − t)P0, tP2 + (1 − t)P1]]
= t[tP2 + (1 − t)P1] + (1 − t)[tP1 + (1 − t)P0]

= P0(1 − t)2 + 2P1t(1 − t) + P2t
2.

P2(t) is therefore the Bézier curve for three points.
Case 3. Four points. Given the four points P0, P1, P2, and P3, we follow similar

steps:
1. Construct the three lines L01 = t[[P0,P1]], L12 = t[[P1,P2]], and L23 = t[[P2,P3]].
2. Select three points, P01 = t0[[P0,P1]], P12 = t0[[P1,P2]], and P23 = t0[[P2,P3]],

and construct lines L012 = t[[P0,P1,P2]] = t[[P01,P12]] and L123 = t[[P1,P2,P3]] =
t[[P12,P23]].

3. Select two points, P012 = t0[[P01,P12]] on segment L012 and P123 = t0[[P12,P23]]
on segment L123. Construct a new segment L0123 as the mediation t[[P0,P1,P2,P3]] =
t[[P012,P123]].

4. Select point P0123 = t0[[P012,P123]] on L0123.

P1

P0

P01

P012

P123

P23

P2P12

P0123

P3

Figure 6.8: Scaffolding for k = 3.

6.6 The Bézier Curve as a Linear Interpolation 197

When t0 varies from 0 to 1, point P0123 slides along L0123, whose endpoints, in
turn, slide along L012 and L123, which also slide. The entire structure, which resembles
a scaffolding (Figure 6.8), slides along the original three lines. The interpolation curve
for the four original points is denoted by P3(t) and its expression is not hard to calculate,
using the expression for P2(t) = t[[P0,P1,P2]]:

P3(t) = t[[P0,P1,P2,P3]] = t[[t[[P0,P1,P2]], t[[P1,P2,P3]]]]

= t[t2P3 + 2t(1 − t)P2 + (1 − t)2P1]

+ (1 − t)[t2P2 + 2t(1 − t)P1 + (1 − t)2P0]

= t3P3 + 3t2(1 − t)P2 + 3t(1 − t)2P1 + (1 − t)3P0.

P3(t) is therefore the Bézier curve for four points.
Case 4. In the general case, n + 1 points P0, P1,. . . , Pn are given. The interpo-

lation curve is, similarly, t[[P0,P1, . . . ,Pn]] = t[[P01...n−1,P12...n]]. It can be proved by
induction that its value is the degree-n polynomial

Pn(t) =
n∑

i=0

PiBn,i(t), where Bn,i(t) = (n
i)t

i(1 − t)n−i,

that is the Bézier curve for n + 1 points. The two approaches to curve construction,
using Bernstein polynomials and using scaffolding, are therefore equivalent.

� Exercise 6.9: The scaffolding algorithm illustrated in Figure 6.8 is easy to understand
because of the special placement of the four control points. The resulting curve is similar
to a circular arc and doesn’t have an inflection point (Section 1.6.8). Prove your grasp of
this algorithm by performing it on the curve of Figure 6.9. Try to select the intermediate
points so as to end up with the inflection point.

P0

P1

P2

P3

Figure 6.9: Scaffolding With an Inflection Point.

198 6. Bézier Approximation

Figure 6.10 summarizes the process of scaffolding in the general case. The process
takes n steps. In the first step, n new points are constructed between the original n + 1
control points. In the second step, n − 1 new points are constructed, between the n
points of step 1 and so on, up to step n, where one point is constructed. The total
number of points constructed during the entire process is therefore

n + (n − 1) + (n − 2) + · · · + 2 + 1 = n(n + 1)/2.

of
Step Points constructed points

1 P01 P12 P23 . . .Pn−1,n n
2 P012 P123 P234 . . .Pn−2,n−1,n n − 1
3 P0123 P1234 P2345 . . .Pn−3,n−2,n−1,n n − 2
...

...
...

n P0123...n 1 P0123

P01 P12 P23

P0 P1 P2 P3

P012 P123

Figure 6.10: The n Steps of Scaffolding.

6.7 Blossoming

The curves derived and discussed in the preceding chapters are based on polynomials. A
typical curve is a pair or a triplet of polynomials of a certain degree n in t. Mathemati-
cians know that a degree-n polynomial Pn(t) of a single variable can be associated with
a function f(u1, u2, . . . , un) in n variables that’s linear (i.e., degree-1) in each variable
and is symmetric with respect to the order of its variables. Such functions were named
blossom by Lyle Ramshaw in [Ramshaw 87] to denote arrival at a promising stage. (The
term pole was originally used by de Casteljau for those functions.) [Gallier 00] is a
general, detailed reference for this topic.

Given a Bézier curve, this section shows how to derive its blossom and how to use the
blossom to label the intermediate points obtained in the scaffolding construction. Other
sections show how to apply blossoms to curve algorithms, such as curve subdivision
(Section 6.8) and degree elevation (Section 6.9).

Dictionary definitions
Blossom:
Noun: The period of greatest prosperity or productivity.
Verb: To develop or come to a promising stage (Youth blossomed into maturity).
Blossoming: The process of budding and unfolding of blossoms.

6.7 Blossoming 199

We start by developing a special notation for use with blossoms. The equation
of the straight segment from point P0 to point P1 is the familiar linear interpolation
P(u) = (1 − u)P0 + uP1. Its start point is P(0), its end point is P(1), and a general
point on this segment is P(u) for 0 ≤ u ≤ 1. Because a straight segment has zero
curvature, parameter values indicate arc lengths. Thus, the distance between P(0) and
P(u) is proportional to u and the distance between P(u) and P(1) is proportional to
1 − u. We can therefore consider parameter values u in the interval [0, 1] a measure of
distance (called affine distance) from the start of the segment. We introduce the symbol
〈u〉 to denote point P(u). Similarly, points P(0) and P(1) are denoted by 〈0〉 and 〈1〉,
respectively (Figure 6.11a).

〈0〉
〈1〉P(0)

P(u)
P(1)

〈u〉

(a) (b) (c)

〈0〉 〈0〉

〈1〉
〈1〉

〈00〉 〈11〉

〈01〉=〈10〉

Figure 6.11: Blossom Notation For Points (Two Segments).

A spline consists of segments connected at the interior points, so we consider two
straight segments connected at a common point. The endpoints of each segment are
denoted by 〈0〉 and 〈1〉, but this creates an ambiguity. There are now two points labeled
〈0〉 (Figure 6.11b). We distinguish between them by appending a bit to the symbol of
each point. The two endpoints of one segment are now denoted by 〈00〉 and 〈01〉, while
the two endpoints of the other segment are denoted by 〈10〉 and 〈11〉 (Figure 6.11c).
The common point can be denoted by either 〈01〉 or 〈10〉. So far, it seems that the
order of the individual indexes, 01 or 10, is immaterial. The new notation is symmetric
with respect to the order of point indexes.

We now select a point with a parameter value u on each segment. The two new
points are denoted by 〈0u〉 and 〈1u〉 (Figure 6.12a), but they can also be denoted by
〈u0〉 and 〈u1〉, respectively. The two points are now connected by a segment and a
new point selected at affine distance u on that segment (Figure 6.12b). The new point
deserves the label 〈uu〉 because the endpoints of its segment have the common index u.

〈0u〉 〈1u〉

(a)

〈00〉 〈11〉

〈01〉=〈10〉
〈0u〉

〈1u〉
〈uu〉

(b)

〈00〉

〈01〉=〈10〉
〈0u〉

〈1u〉

(c)

Figure 6.12: Blossom Notation For Points (Two Segments).

200 6. Bézier Approximation

At this point it is clear that the simple scaffolding construction of Figure 6.12b is
identical to the de Casteljau algorithm of Section 6.6, which implies that point 〈uu〉
is located on the Bézier curve defined by the three points 〈00〉, 〈01〉, and 〈11〉 (Fig-
ure 6.12c).

To illustrate this process for more points, it is applied to three line segments in
Figure 6.13. Two bits are appended to each point in order to distinguish between the
segments. Thus, a point is denoted by a triplet of the form 〈00x〉, 〈01x〉, or 〈11x〉.
Notice that our indexes are symmetric, so 〈01x〉 = 〈10x〉, which is why we use 〈11x〉
instead of 〈10x〉 to identify the third segment.

〈00u〉

〈0u1〉

〈u11〉

〈000〉

〈001〉
〈010〉 〈011〉

〈110〉

〈111〉

〈001〉

〈001〉

〈011〉

〈011〉

〈000〉

〈000〉

〈111〉

〈111〉
〈0uu〉

〈uu1〉 〈uuu〉 〈uuu〉

Figure 6.13: Blossom Notation For Points (Three Segments).

Again, our familiarity with the Bézier curve and the de Casteljau algorithm indicates
intuitively that point 〈uuu〉 is located on the Bézier curve defined by the four control
points 〈000〉, 〈001〉, 〈011〉, and 〈111〉.
Let us be grateful to people who make us happy, they are the charming gardeners
who make our souls blossom.

—Marcel Proust.

An actual construction of the scaffolding for this case verifies our intuitive feeling.
Given points 〈0uu〉 and 〈uu1〉, we can write them as 〈0uu〉 and 〈1uu〉, which imme-
diately produces point 〈uuu〉 (it’s located an affine distance u from 〈0uu〉). Similarly,
given points 〈00u〉 and 〈0u1〉, we can write them as 〈00u〉 and 〈01u〉, which immedi-
ately produces point 〈0uu〉. A similar step produces 〈00u〉 if points 〈000〉 and 〈001〉
are given. Thus, we conclude that knowledge of the four control points can produce
all the intermediate points in the scaffolding construction and lead to one point 〈uuu〉
that’s located on the Bézier curve defined by the control points. This is an informal
statement of the blossoming principle.

This principle can be illustrated in a different way. We know that point 〈0u1〉 is
obtained from points 〈001〉 and 〈011〉 as the linear interpolation 〈0u1〉 = (1−u)〈001〉+
u〈011〉. We can therefore start from point 〈uuu〉 and figure out its dependence on the

6.7 Blossoming 201

four original points 〈000〉, 〈001〉, 〈011〉, and 〈111〉 as follows:

〈uuu〉 = (1 − u)〈0uu〉 + u〈1uu〉
= (1 − u)

[
(1 − u)〈00u〉 + u〈01u〉]+ u

[
(1 − u)〈10u〉 + u〈11u〉]

= (1 − u)2〈00u〉 + 2u(1 − u)〈01u〉 + u2〈11u〉
= (1 − u)2

[
(1 − u)〈000〉 + u〈001〉]+ 2u(1 − u)

[
(1 − u)〈010〉 + u〈011〉]

+ u2
[
(1 − u)〈110〉 + u〈111〉]

= (1 − u)3〈000〉 + 3u(1 − u)2〈001〉 + 3u2(1 − u)〈011〉 + u3〈111〉
= B3,0(u)〈000〉 + B3,1(u)〈001〉 + B3,2(u)〈011〉 + B3,3(u)〈111〉,

where B3,i are the Bernstein polynomials for n = 3. This again shows that point 〈uuu〉
lies on the Bézier curve whose control points are 〈000〉, 〈001〉, 〈011〉, and 〈111〉.

So far, blossoming has been used to assign labels to the control points and to the
intermediate points. Even this simple application illustrates some of the power and
elegance of the blossoming approach. Section 6.6 employs the notation P234, while
various authors denote intermediate point i of scaffolding step j by dj

i . The blossom
labels 〈u1u2 . . .un〉 are much more natural and useful.

We are now ready to see the actual blossom associated with the degree-n polynomial
Pn(t) as given by [Ramshaw 87]. The blossom of Pn(t) is a function f(u1, u2, . . . , un)
that satisfies the following:

1. f is linear in each variable ui.
2. f is symmetric; the order of variables is irrelevant. Thus, f(u1, u2, . . . , un) =

f(u2, u1, . . . , un) or any other permutation of the n variables.
3. The diagonal f(u, u, . . . , u) of f equals Pn(u).
Requirement 1 suggests the name “multilinear function” but [Ramshaw 87] explains

why the term “multiaffine” is more appropriate.
Given Pn(t), such a multiaffine function is easy to derive and is also unique. Here is

an example for n = 3. Given the cubic polynomial P (t) = −3t3+6t2+3t, we are looking
for a function f(u, v, w) that’s linear in each of its three parameters and is symmetric
with respect to their order. The general form of such a function is

f(u, v, w) = a1uvw + a2uv + a3uw + a4vw + a5u + a6v + a7w + a8.

If we also require that f(u, v, w) satisfies f(t, t, t) = P (t) for any t, it becomes obvious
that a1 must equal the coefficient of t3. Because of the required symmetry, the sum
a2 + a3 + a4 must equal the coefficient of t2 and the sum a5 + a6 + a7 must equal the
coefficient of t. Finally, a8 must equal the free term of P (t). Thus, we end up with the
blossom f(u, v, w) = −3uvw+2(uv+uw+vw)+(u+v+w)+0. This blossom is unique.

In general, given an n-degree polynomial, the corresponding multiaffine blossom
function is easy to construct in this way. Here are some examples.

Degree-0. P (t) = a → f(u, v, w) = a,

Degree-1. P (t) = at → f(u, v, w) =
a

3
(u + v + w),

202 6. Bézier Approximation

Degree-2. P (t) = at2 → f(u, v, w) =
a

3
(uv + uw + vw), (6.16)

Degree-3. P (t) = a3t
3 + a2t

2 + a1 + a0

→ f(u, v, w) = a3uvw +
a2

3
(uv + uw + vw) +

a1

3
(u + v + w) + a0.

The discussion above shows that the kth control point of the degree-n polynomial
is associated with blossom value f(00 . . . 0︸ ︷︷ ︸

n−k

11 . . . 1︸ ︷︷ ︸
k

). Notice that there are n + 1 such

values, corresponding to the n + 1 control points, and that blossom symmetry implies
f(011) = f(101) = f(110). If t varies in the general interval [a, b] instead of in [0, 1],
then the kth control point is associated with the blossom value f(aa . . . a︸ ︷︷ ︸

n−k

bb . . . b︸ ︷︷ ︸
k

).

� Exercise 6.10: Given the four points P0 = (0, 1, 1), P1 = (1, 1, 0), P2 = (4, 2, 0), and
P3 = (6, 1, 1), compute the Bézier curve defined by them, construct the three blossoms
associated with this curve, and show that the four blossom values f(0, 0, 0), f(0, 0, 1),
f(0, 1, 1), and f(1, 1, 1) yield the control points.

6.8 Subdividing the Bézier Curve

Bézier methods are interactive. It is possible to control the shape of the curve by moving
the control points and by smoothly connecting individual segments. Imagine a situation
where the points are moved and maneuvered for a while, but the curve “refuses” to get
the right shape. This indicates that there are not enough points. There are two ways to
increase the number of points. One is to add a point to a segment while increasing its
degree. This is called degree elevation and is discussed in Section 6.9.

An alternative is to subdivide a Bézier curve segment into two segments such that
there is no change in the shape of the curve. If the original segment is of degree n (i.e.,
based on n + 1 control points), this is done by adding 2n − 1 new control points and
deleting n − 1 of the original points, bringing the number of points to (n + 1) + (2n −
1)− (n− 1) = 2n + 1. Each new segment is based on n + 1 points and they share one of
the new points. With more points, it is now possible to manipulate the control points
of the two segments in order to fine-tune the shape of the segments. The advantage of
this approach is that both the original and the new curves are based on n + 1 points, so
only one set of Bernstein polynomials is needed.

The new points being added consist of some of the ones constructed in the last k
steps of the scaffolding process. For the case k = 2 (quadratic curve segments), the three
points P01, P12, and P012 are added and the single point P1 is deleted (Figure 6.7).
The two new segments consist of points P0, P01, and P012, and P012, P12, and P2. For
the case k = 3 (cubic segments), the five points P01, P23, P012, P123, and P0123 are
added and the two points P1 and P2 are deleted (Figure 6.8, duplicated here, where
the inset shows the two segments with their control polygons). The two new segments
consist of points P0, P01, P012, and P0123 and P0123, P123, P23, and P3.

6.8 Subdividing the Bézier Curve 203

P1

P0

P01

P012

P123

P23

P2P12

P0123

P3

Figure 6.8: Scaffolding and Subdivision for k = 3 (Duplicate).

Using the mediation operator to express the new points in the scaffolding in terms
of the original control points produces, for the quadratic case

P01 = αP0+(1−α)P1, P12 = αP1+(1−α)P2, P012 = α2P0+2α(1−α)P1+(1−α)2P2,

where α is any value in the range [0, 1]. We can therefore write

⎛
⎝ P0

P01

P012

⎞
⎠ =

⎛
⎝ 1 0 0

α 1 − α 0
α2 2α(1 − α) (1 − α)2

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ ,

⎛
⎝P012

P12

P2

⎞
⎠ =

⎛
⎝α2 2α(1 − α) (1 − α)2

0 α 1 − α
0 0 1

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ ,

for the left and right segments, respectively.

� Exercise 6.11: Use the mediation operator to calculate the scaffolding for the cubic
case (four control points). Use α = 1/2 and write the results in terms of matrices, as
above.

In the general case where an (n + 1)-point Bézier curve is subdivided, the n − 1
points being deleted are P1, P2,. . . , Pn−1 (the original n − 1 interior control points).
The 2n − 1 points added are the first and last points constructed in each scaffolding
step (except the last step, where only one point is constructed). Figure 6.10 shows
that these are points P01, Pn−1,n (from step 1), P012, Pn−2,n−1,n (from step 2), P0123,
Pn−3,n−2,n−1,n (from step 3), up to P0123...n from step n.

The 2n − 1 points being added are therefore

P01,P012,P0123, . . . ,P0123...n,P123...n,P23...n, . . . ,Pn−1,n.

204 6. Bézier Approximation

These points can be computed in two ways as follows:

1. Perform the entire scaffolding procedure and save all the points, then use only
the appropriate 2n − 1 points.

2. Compute just the required points. This is done by means of the two relations

(a) P0123...k =
k∑

j=0

Bk,j(t)Pj , and (b) Pn−k,n−k+1,...,n =
k∑

j=0

Bk,j(t)Pn−k+j . (6.17)

(These expressions can be proved by induction.)

The first decision that has to be made when subdividing a curve, is at what point
(what value of t) to break the original curve into two segments. Breaking a curve P(t)
into two segments at t = 0.1 will result in a short segment followed by a long segment,
each defined by n + 1 control points. Obviously, the first segment will be easier to edit.
Once the value of t has been determined, the software computes the 2n− 1 new points.
The original n− 1 interior control points are easy to delete, and the set of 2n + 1 points
is partitioned into two sets. The procedure that computed the original curve is now
invoked twice, to compute and display the two segments.

� Exercise 6.12: Given the four points P0 = (0, 1, 1), P1 = (1, 1, 0), P2 = (4, 2, 0), and
P3 = (6, 1, 1), apply Equation (6.17)a,b to subdivide the Bézier curve

∑
B3,i(t)Pi at

t = 1/3.

Figure 6.14 illustrates how blossoms are applied to the problem of curve subdivision.
The points on the left edge of the triangle become the control points of the first segment.
In blossom notation these are points 〈00 . . .0︸ ︷︷ ︸

n−k

tt . . . t︸ ︷︷ ︸
k

〉. Similarly, the points on the right

edge of the triangle become the control points of the second segment. In blossom notation
these are points 〈11 . . .1︸ ︷︷ ︸

n−k

tt . . . t︸ ︷︷ ︸
k

〉. There are n + 1 points on each edge, but the total is

2n − 1 because the top of the triangle has just one point, namely 〈ttt〉.

〈000〉 〈001〉 〈011〉 〈111〉

〈00t〉 〈01t〉 〈11t〉

〈0tt〉 〈1tt〉

〈ttt〉

Figure 6.14: Blossoming for Subdivision.

6.9 Degree Elevation 205

6.9 Degree Elevation

Degree elevation of the Bézier curve is a process that starts with a Bézier curve Pn(t) of
degree n (i.e., defined by n + 1 control points) and adds a control point, thereby ending
up with a curve Pn+1(t).

The advantage of degree elevation is that the new curve is based on more control
points and is therefore easier to edit by maneuvering the points. Its shape can be better
fine-tuned than that of the original curve.

Just adding a control point is not very useful because the new point will change the
shape of the curve globally. Degree elevation is useful only if it is done without modifying
the shape of the curve. The principle of degree elevation is therefore to compute a new
set of n + 2 control points Qi from the original set of n + 1 points Pi, such that the
Bézier curve Pn+1(t) defined by the new points will have the same shape as the original
curve Pn(t).

We start with the innocuous identity that’s true for any Bézier curve P(t)

P(t) =
(
t + (1 − t)

)
P(t) = tP(t) + (1 − t)P(t).

The two Bézier curves on the right-hand side are polynomials of degree n, but because
each is multiplied by t, the polynomial on the left-hand side is of degree n + 1. Thus,
we can represent a degree-(n+1) curve as the weighted sum of two degree-n curves and
write the identity in the form Pn+1(t) = (1 − t)Pn(t) + tPn(t). We use the notation

Pn(t) =
n∑

i=0

(
n
i

)
ti(1 − t)n−iPi

def= 〈〈P0,P1, . . . ,Pn〉〉.

(Recall that the angle bracket notation indicates blossoms. The double-angle bracket
notation used here implies that each point should be multiplied by the corresponding
Bernstein polynomial and the products summed.)

The first step is to express tPn(t) in the new notation

tPn(t) =
n∑

i=0

(
n
i

)
ti+1(1 − t)n−iPi =

m∑
k=1

(
m − 1
k − 1

)
tk(1 − t)m−kPk−1

=
m∑

k=0

(
m

k

)
tk(1 − t)m−k k

m
Pk−1 =

〈〈
0,

P0

n + 1
,

2P1

n + 1
, · · · , nPn−1

n + 1
,Pn

〉〉
.

Here, we first use the substitutions k = i + 1 and m = n + 1, and then the identity(
m − 1
k − 1

)
=

k

m

(
m

k

)
.

The next step is to similarly express (1 − t)Pn(t) in the new notation:

(1 − t)Pn(t) =
〈〈

P0,
nP1

n + 1
,
(n − 1)P2

n + 1
, · · · , Pn

n + 1
, 0
〉〉

.

206 6. Bézier Approximation

Adding the two expressions produces

Pn+1(t) = (1 − t)Pn(t) + tPn(t)

=
〈〈

0,
P0

n + 1
,

2P1

n + 1
, · · · , nPn−1

n + 1
,Pn

〉〉

+
〈〈

P0,
nP1

n + 1
,
(n − 1)P2

n + 1
, · · · , Pn

n + 1
, 0
〉〉

=
〈〈

P0,
P0+nP1

n + 1
,
2P1+(n−1)P2

n + 1
, · · · , nPn−1+Pn

n + 1
,Pn

〉〉
, (6.18)

which shows the n + 2 control points that define the new, degree-elevated Bézier curve.
If the new control points are denoted by Qi, then the expression above can be

summarized by the following notation:

Q0 = P0,

Qi = aiPi−1 + (1 − ai)Pi, where ai =
i

n + 1
, i = 1, 2, . . . , n, (6.19)

Qn+1 = Pn.

� Exercise 6.13: Given the quadratic Bézier curve defined by the three control points
P0, P1, and P2, elevate its degree twice and list the five new control points.

It is possible to elevate the degree of a curve many times. Each time the degree
is elevated, the new set of control points grows by one point and also approaches the
curve. At the limit, the set consists of infinitely many points that are located on the
curve.

� Exercise 6.14: Given the four control points P0 = (0, 0), P1 = (1, 2), P2 = (3, 2), and
P3 = (2, 0), elevate the degree of the Bézier curve defined by them.

The degree elevation algorithm summarized by Equation (6.19) can also be derived
as an application of blossoms. We define a three-parameter function f?(u1, u2, u3) as a
sum of blossoms of two parameters

f?(u1, u2, u3) =
1
3
[
f2(u1, u2) + f2(u1, u3) + f2(u2, u3)

]
=

1
3
[
[a2u1u2 +

a1

2
(u1 + u2) + a0] + [a2u1u3 +

a1

2
(u1 + u3) + a0]

+ [a2u2u3 +
a1

2
(u2 + u3) + a0]

]
=

a2

3
(u1u2 + u1u3 + u2u3) + a1(u1 + u2 + u3) + a0. (6.20)

We notice that f?(u1, u2, u3) satisfies the following three conditions

1. It is linear in each of its three parameters.
2. It is symmetric with respect to the order of the parameters.
3. Its diagonal, f?(u, u, u), yields the polynomial P2(t) = a2t

2 + a1t + a0.

6.10 Reparametrizing the Curve 207

We therefore conclude that f?(u1, u2, u3) is the (n + 1)-blossom of P2(t). It should
be denoted by f3(u1, u2, u3). It can be shown that the extension of Equation (6.20) to
any fn+1(u1, u2, . . . , un+1) is

fn+1(u1, . . . , un+1) =
1

n + 1

n+1∑
i=1

fn(u1, . . . , ui, . . . , un+1). (6.21)

(where the underline indicates a missing parameter).
Section 6.7 shows that control point Pk of a Bézier curve Pn(t) is given by the

blossom f(0 . . . 0︸ ︷︷ ︸
n−k

1 . . . 1︸ ︷︷ ︸
k

). Equation (6.21) implies that the same control point Qk of a

Bézier curve Pn+1(t) is given as the sum

Qk =
n + 1 − k

n + 1
Pk +

k

n + 1
Pk−1,

which is identical to Equation (6.19).

6.10 Reparametrizing the Curve

The parameter t varies normally in the range [0, 1]. It is, however, easy to reparametrize
the Bézier curve such that its parameter varies in an arbitrary range [a, b], where a and
b are real and a ≤ b. The new curve is denoted by Pab(t) and is simply the original
curve with a different parameter:

Pab(t) = P
(

t − a

b − a

)
.

The two functions Pab(t) and P(t) produce the same curve when t varies from a to b in
the former and from 0 to 1 in the latter. Notice that the new curve has tangent vector

Pt
ab(t) =

1
b − a

Pt

(
t − a

b − a

)
.

Reparametrization can also be used to answer the question: Given a Bézier curve
P(t) where 0 ≤ t ≤ 1, how can we calculate a curve Q(t) that’s defined on an arbitrary
part of P(t)? More specifically, if P(t) is defined by control points Pi and if we select
an interval [a, b], how can we calculate control points Qi such that the curve Q(t) based
on them will go from P(a) to P(b) [i.e., Q(0) = P(a) and Q(1) = P(b)] and will be
identical in shape to P(t) in that interval? As an example, if [a, b] = [0, 0.5], then Q(t)
will be identical to the first half of P(t). The point is that the interval [a, b] does not
have to be inside [0, 1]. We may select, for example, [a, b] = [0.9, 1.5] and end up with a
curve Q(t) that will go from P(0.9) to P(1.5) as t varies from 0 to 1. Even though the
Bézier curve was originally designed with 0 ≤ t ≤ 1 in mind, it can still be calculated for
t values outside this range. If we like its shape in the range [0.2, 1.1], we may want to

208 6. Bézier Approximation

calculate new control points Qi and obtain a new curve Q(t) that has this shape when
its parameter varies in the standard range [0, 1].

Our approach is to define the new curve Q(t) as P([b − a]t + a) and express the
control points Qi of Q(t) in terms of the control points Pi and a and b. We illustrate
this technique with the cubic Bézier curve. This curve is given by Equation (6.8) and
we can therefore write

Q(t) = P([b − a]t + a)

=
(
([b−a]t + a)3, ([b−a]t + a)2, ([b−a]t + a), 1

)⎛⎜⎝
−1 3 −3 1

3 −6 3 0
−3 3 0 0

1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

= (t3, t2, t, 1)

⎛
⎜⎝

(b−a)3 0 0 0
3a(b−a)2 (b−a)2 0 0
3a2(b−a) 2a(b−a) b−a 0

a3 a2 a 1

⎞
⎟⎠
⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

= T(t)·A·M·P
= T(t)·M·M−1 ·A·M·P
= T(t)·M·(M−1 ·A·M)·P
= T(t)·M·B·P
= T(t)·M·Q,

where

B = M−1 · A · M

=

⎛
⎜⎜⎜⎝

(1 − a)3 3(a − 1)2a 3(1 − a)a2 a3

(a − 1)2(1 − b) (a − 1)(−2a − b + 3ab) a(a + 2b − 3ab) a2b

(1 − a)(−1 + b)2 (b − 1)(−a − 2b + 3ab) b(2a + b − 3ab) ab2

(1 − b)3 3(b − 1)2b 3(1 − b)b2 b3

⎞
⎟⎟⎟⎠ .

(6.22)

The four new control points Qi, i = 0, 1, 2, 3 are therefore obtained by selecting spe-
cific values for a and b, calculating matrix B, and multiplying it by the column P =
(P0,P1,P2,P3)T .

� Exercise 6.15: Show that the new curve Q(t) is independent of the particular coordi-
nate system used.

Example: We select values b = 2 and a = 1. The new curve Q(t) will be identical
to the part of P(t) from P(1) to P(2) (normally, of course, we don’t calculate this part,
but this example assumes that we are interested in it). Matrix B becomes, in this case

B =

⎛
⎜⎝

0 0 0 1
0 0 −1 2
0 1 −4 4
−1 6 −12 8

⎞
⎟⎠

6.10 Reparametrizing the Curve 209

(it is easy to verify that each row sums up to 1) and the new control points are

⎛
⎜⎝

Q0

Q1

Q2

Q3

⎞
⎟⎠ = B

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ =

⎛
⎜⎝

P3

−P2 + 2P3

P1 − 4P2 + 4P3

−P0 + 6P1 − 12P2 + 8P3

⎞
⎟⎠ .

To understand the geometrical meaning of these points, we define three auxiliary points
Ri as follows:

R1 = P1 + (P1 − P0),
R2 = P2 + (P2 − P1),
R3 = R2 + (R2 − R1) = P0 − 4P1 + 4P2,

and write the Qi’s in the form
Q0 = P3,

Q1 = P3 + (P3 − P2),
Q2 = Q1 + (Q1 − R2) = P1 − 4P2 + 4P3,

Q3 = Q2 + (Q2 − R3) = −P0 + 6P1 − 12P2 + 8P3.

Figure 6.15 illustrates how the four new points Qi are obtained from the four original
points Pi.

P0

P1

P2
P

3=Q
0

R1
R2

R3

Q1

Q2

Q3

P(t)

Q(t)

Figure 6.15: Control Points for the Case [a, b] = [1, 2].

210 6. Bézier Approximation

Example: We select b = 2 and a = 0. The new curve Q(t) will be identical to
P(t) from P(0) to P(2). Matrix B becomes

B =

⎛
⎜⎝

1 0 0 0
−1 2 0 0

1 −4 4 0
−1 6 −12 8

⎞
⎟⎠ ,

and the new control points Vi are⎛
⎜⎝

V0

V1

V2

V3

⎞
⎟⎠ = B

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ =

⎛
⎜⎝

P0

−P0 + 2P1

P0 − 4P1 + 4P2

−P0 + 6P1 − 12P2 + 8P3

⎞
⎟⎠ ,

and it is easy to see that they satisfy V0 = P0, V1 = R1, V2 = R3, and V3 = Q3.

� Exercise 6.16: (1) Calculate matrix B for a = 1 and b = a + x (where x is positive);
(2) calculate the four new control points Qi as functions of the Pi’s and of b; and (3)
recalculate them for x = 0.75.

� Exercise 6.17: Calculate matrix B and the four new control points Qi for a = 0 and
b = 0.5 (the first half of the curve).

6.11 Cubic Bézier Segments with Tension

Adding a tension parameter to a cubic Bézier segment is done by manipulating tangent
vectors similar to how tension is added to the Cardinal spline (Section 5.4). We use
Hermite interpolation [Equation (4.7)] to calculate a PC segment that starts at point P0

and ends at point P3 and whose extreme tangent vectors are s(P1−P0) and s(P3−P2)
[see Equation (6.23).]

� Exercise 6.18: Any set of four given control points P0, P1, P2, and P3 determines a
unique (cubic) Bézier curve. Show that there is a Hermite curve that has an identical
shape and is determined by the 4-tuple

(P0,P3, 3(P1 − P0), 3(P3 − P2)). (6.23)

Substituting these values in Equation (4.7), we manipulate it so that it ends up
looking like a cubic Bézier segment, Equation (6.8)

P(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P3

s(P1 − P0)
s(P3 − P2)

⎞
⎟⎠

= (t3, t2, t, 1)

⎛
⎜⎝

2 − s s −s s − 2
2s − 3 −2s s 3 − s
−s s 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ . (6.24)

6.11 Cubic Bézier Segments with Tension 211

A quick check verifies that Equation (6.24) reduces to the cubic Bézier segment, Equa-
tion (6.8), for s = 3. This value is therefore considered the “neutral” or “standard” value
of the tension parameter s. Since s controls the length of the tangent vectors, small val-
ues of s should produce the effects of higher tension and, in the extreme, the value s = 0
should result in indefinite tangent vectors and in the curve segment becoming a straight
line. To show this, we rewrite Equation (6.24) for s = 0:

P(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 0 0 −2
−3 0 0 3

0 0 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

= (2t3 − 3t2 + 1)P0 + (−2t3 + 3t2)P3.

Substituting T = 3t2 − 2t3 for t changes the expression above to the form P(T) =
(P3 − P0)T + P0, i.e., a straight line from P(0) = P0 to P(1) = P3.

The tangent vector of Equation (6.24) is

Pt(t) = (3t2, 2t, 1, 0)

⎛
⎜⎝

2 − s s −s s − 2
2s − 3 −2s s 3 − s
−s s 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

=
(
3t2(2 − s) + 2t(2s − 3) − s

)
P0 +

(
3st2 − 4st + s

)
P1

+
(−3st2 + 2st

)
P2 +

(
3t2(s − 2) + 2t(3 − s)

)
P3.

(6.25)

The extreme tangents are Pt(0) = s(P1 − P0) and Pt(1) = s(P3 − P2). Substituting
s = 0 in Equation (6.25) yields the tangent vector for the case of infinite tension (compare
with Exercise 5.8)

Pt(t) = 6(t2 − t)P0 − 6(t2 − t)P3 = 6(t − t2)(P3 − P0). (6.26)

� Exercise 6.19: Since the spline segment is a straight line in this case, its tangent vector
should always point in the same direction. Use Equation (6.26) to show that this is so.

See also Section 7.4 for a discussion of cubic B-spline with tension.

We interrupt this program to increase dramatic tension.
—Joe Leahy (as the Announcer) in Freakazoid! (1995).

212 6. Bézier Approximation

6.12 An Interpolating Bézier Curve: I

Any set of four control points P1, P2, P3, and P4 determines a unique Catmull–Rom
segment that’s a cubic polynomial going from point P2 to point P3. It turns out that
such a segment can also be written as a four-point Bézier curve from P2 to P3. All that
we have to do is find two points, X and Y, located between P2 and P3, such that the
Bézier curve based on P2, X, Y, and P3 will be identical to the Catmull–Rom segment.
This turns out to be an easy task. We start with the expressions for a Catmull–Rom
segment defined by P1, P2, P3, and P4, and for a four-point Bézier curve defined by
P2, X, Y, and P3 [Equations (5.33) and (6.8)]:

(t3, t2, t, 1)

⎛
⎜⎝

−0.5 1.5 −1.5 0.5
1 −2.5 2 −0.5

−0.5 0 0.5 0
0 1 0 0

⎞
⎟⎠
⎛
⎜⎝

P1

P2

P3

P4

⎞
⎟⎠ ,

(t3, t2, t, 1)

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

P2

X
Y
P3

⎞
⎟⎠ .

These have to be equal for each power of t, which yields the four equations

−0.5P1+1.5P2−1.5P3+0.5P4= −P2+3X−3Y+P3,
P1−2.5P2+2.0P3−0.5P4= 3P2−6X+3Y,

−0.5P1 +0.5P3 =−3P2+3X,
P2 = P2.

P1

P2 P3

P4

X Y

Figure 6.16: Calculating Points X and Y.

These are easily solved to produce

X = P2 +
1
6
(P3 − P1) and Y = P3 − 1

6
(P4 − P2). (6.27)

The difference (P3 − P1) is the vector from P1 to P3. Thus, point X is obtained
by adding 1/6 of this vector to point P2 (Figure 6.16). Similarly, Y is obtained by
subtracting 1/6 of the difference (P4 − P2) from point P3.

This simple result suggests a novel approach to the problem of interactive curve
design, an approach that combines the useful features of both cubic splines and Bézier

6.12 An Interpolating Bézier Curve: I 213

curves. A cubic spline passes through the (data) points but is not highly interactive. It
can be edited only by modifying the two extreme tangent vectors. A Bézier curve does
not pass through the (control) points, but it is easy to manipulate and edit by moving
the points. The new approach constructs an interpolating Bézier curve in the following
steps:

1. The user is asked to input n points, through which the final curve will pass.
2. The program divides the points into overlapping groups of four points each and

applies Equation (6.27) to compute two auxiliary points X and Y for each group.
3. A Bézier segment is then drawn from the second to the third point of each group,

using points X and Y as its other two control points. Note that points Y and P3 of a
group are on a straight line with point X of the next group. This guarantees that the
individual segments will connect smoothly.

4. It is also possible to draw a Bézier segment from P1 to P2 (and, similarly, from
Pn−1 to Pn). This segment uses the two auxiliary control points X = P1 + 1

6 (P2 −P1)
and Y = P2 − 1

6 (P3 − P1).
Users find it natural to specify such a curve, because they don’t have to worry about

the positions of the control points. The curve consists of n − 1 segments and the two
auxiliary control points of each segment are calculated automatically.

Such a curve is usually pleasing to the eye and rarely needs to be edited. However,
if it is not satisfactory, it can be modified by moving the auxiliary control points. There
are 2(n − 1) of them, which allows for flexible control. A good program should display
the auxiliary points and should make it easy for the user to grab and move any of them.

The well-known drawing program Adobe Illustrator [Adobe 04] uses a similar ap-
proach. The user specifies points with the mouse. At each point Pi, the user presses the
mouse button to fix Pi, then drags the mouse before releasing the button, which defines
two symmetrical points, X (following Pi) and Y (preceding it). Releasing the button is
a signal to the program to draw the segment from Pi−1 to Pi (Figure 6.17).

Pi

Xi

Yi−1

drag

press

Bezier segment

release

Pi−1

Xi−1

Figure 6.17: Construction of Xi and Yi by Click and Drag.

Example: We apply this method to the six points P0 = (1/2, 0), P1 = (1/2, 1/2),
P2 = (0, 1), P3 = (1, 3/2), P4 = (3/2, 1), and P5 = (1, 1/2). The six points yield three

214 6. Bézier Approximation

curve segments and the main step is to calculate the two intermediate points for each
of the three segments. This is trivial and it results in:

X1 = P1 + (P2 − P0)/6 = (5/12, 2/3), Y1 = P2 − (P3 − P1)/6 = (−1/12, 5/6),
X2 = P2 + (P3 − P1)/6 = (1/12, 7/6), Y2 = P3 − (P4 − P2)/6 = (3/4, 3/2),
X3 = P3 + (P4 − P2)/6 = (5/4, 3/2), Y3 = P4 − (P5 − P3)/6 = (3/2, 7/6).

Once the points are available, the three segments can easily be calculated. Each is a
cubic Bézier segment based on a group of four points. The groups are

[P1,X1,Y1,P2], [P2,X2,Y2,P3], [P3,X3,Y3,P4],

and the three curve segments are

P1(t) = (1 − t)3P1 + 3t(1 − t)2X1 + 3t2(1 − t)Y1 + t3P2

=
(
(2 − t − 5t2 + 4t3)/4, (1 + t)/2

)
,

P2(t) = (1 − t)3P2 + 3t(1 − t)2X2 + 3t2(1 − t)Y2 + t3P3

=
(
(t + 7t2 − 4t3)/4, (2 + t + t2 − t3)/2

)
,

P3(t) = (1 − t)3P3 + 3t(1 − t)2X3 + 3t2(1 − t)Y3 + t3P4

=
(
(4 + 3t − t3)/4, (3 − 2t2 + t3)/2

)
.

The 12 points and the three segments are shown in Figure 6.18 (where the segments
have been separated intentionally), as well as the code for the entire example.

6.13 An Interpolating Bézier Curve: II

The approach outlined in this section calculates an interpolating Bézier curve by solving
equations. Given a set of n+1 data points Q0, Q1,. . . , Qn, we select n+1 values ti such
that P(ti) = Qi. We require that whenever t reaches one of the values ti, the curve will
pass through a point Qi. The values ti don’t have to be equally spaced, which provides
control over the “speed” of the curve. All that’s needed to calculate the curve is to
compute the right set of n+1 control points Pi. This is done by setting and solving the
set of n + 1 linear equations P(t0) = Q0, P(t1) = Q1,. . . , P(tn) = Qn that’s expressed
in matrix notation as follows:⎛

⎜⎜⎝
Bn,0(t0) Bn,1(t0) . . . Bn,n(t0)
Bn,0(t1) Bn,1(t1) . . . Bn,n(t1)

...
...

. . .
...

Bn,0(tn) Bn,1(tn) . . . Bn,n(tn)

⎞
⎟⎟⎠
⎛
⎜⎜⎝

P0

P1
...

Pn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Q0

Q1
...

Qn

⎞
⎟⎟⎠ . (6.28)

This set of equations can be expressed as MP = Q and it is easily solved by inverting
M numerically. The solution is P = M−1Q. If we select t0 = 0, the top row of
Equation (6.28) yields P0 = Q0. Similarly, if we select tn = 1, the bottom row of

6.13 An Interpolating Bézier Curve: II 215

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

P0

P1

P2

P3

P4

P5

X1

X2

X3

Y1

Y2

Y3

P1(t)

P2(t)
P3(t)

(* Interpolating Bezier Curve: I *)
Clear[p0,p1,p2,p3,p4,p5,x1,x2,x3,y1,y2,y3,c1,c2,c3,g1,g2,g3,g4];
p0={1/2,0}; p1={1/2,1/2}; p2={0,1};
p3={1,3/2}; p4={3/2,1}; p5={1,1/2};
x1=p1+(p2-p0)/6;
x2=p2+(p3-p1)/6;
x3=p3+(p4-p2)/6;
y1=p2-(p3-p1)/6;
y2=p3-(p4-p2)/6;
y3=p4-(p5-p3)/6;
c1[t_]:=Simplify[(1-t)^3 p1+3t(1-t)^2 x1+3t^2(1-t) y1+t^3 p2]
c2[t_]:=Simplify[(1-t)^3 p2+3t(1-t)^2 x2+3t^2(1-t) y2+t^3 p3]
c3[t_]:=Simplify[(1-t)^3 p3+3t(1-t)^2 x3+3t^2(1-t) y3+t^3 p4]
g1=ListPlot[{p0,p1,p2,p3,p4,p5,x1,x2,x3,y1,y2,y3},
Prolog->AbsolutePointSize[4], PlotRange->All,
AspectRatio->Automatic, DisplayFunction->Identity]
g2=ParametricPlot[c1[t], {t,0,.9}, DisplayFunction->Identity]
g3=ParametricPlot[c2[t], {t,0.1,.9}, DisplayFunction->Identity]
g4=ParametricPlot[c3[t], {t,0.1,1}, DisplayFunction->Identity]
Show[g1,g2,g3,g4, DisplayFunction->$DisplayFunction]

Figure 6.18: An Interpolating Bézier Curve.

216 6. Bézier Approximation

Equation (6.28) yields Pn = Qn. This decreases the number of equations from n + 1 to
n − 1.

The disadvantage of this approach is that any changes in the ti’s require a recalcu-
lation of M and, consequently, of M−1.

If controlling the speed of the curve is not important, we can select the n + 1
equally-spaced values ti = i/n. Equation (6.28) can now be written

⎛
⎜⎜⎝

Bn,0(0/n) Bn,1(0/n) . . . Bn,n(0/n)
Bn,0(1/n) Bn,1(1/n) . . . Bn,n(1/n)

...
...

. . .
...

Bn,0(n/n) Bn,1(n/n) . . . Bn,n(n/n)

⎞
⎟⎟⎠
⎛
⎜⎜⎝

P0

P1
...

Pn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Q0

Q1
...

Qn

⎞
⎟⎟⎠ . (6.29)

Now, if the data points Qi are moved, matrix M (or, rather, M−1) doesn’t have to be
recalculated. If we number the rows and columns of M 0 through n, then a general
element of M is given by

Mij = Bn,j(i/n) =
(

n

j

)
(i/n)j(1 − i/n)n−j =

n!(n − i)n−jij

j!(n − j)!nn
.

Such elements can be calculated, if desired, as exact rational integers, instead of (ap-
proximate) floating-point numbers.

Example: We use Equation (6.29) to compute the interpolating Bézier curve that
passes through the four points Q0 = (0, 0), Q1 = (1, 1), Q2 = (2, 1), and Q3 = (3, 0).
Since the curve has to pass through the first and last point, we get P0 = Q0 = (0, 0)
and P3 = Q3 = (3, 0). Since the four given points are equally spaced, it makes sense
to assume that P(1/3) = Q1 and P(2/3) = Q2. We therefore end up with the two
equations

3(1/3)(1 − 1/3)2P1 + 3(1/3)2(1 − 1/3)P2 + (1/3)3(3, 0) = (1, 1),

3(2/3)(1 − 2/3)2P1 + 3(2/3)2(1 − 2/3)P2 + (2/3)3(3, 0) = (2, 1),

that are solved to yield P1 = (1, 3/2) and P2 = (2, 3/2). The curve is

P(t) = (1 − t)3(0, 0) + 3t(1 − t)2(1, 3/2) + 3t2(1 − t)(2, 3/2) + t3(3, 0).

� Exercise 6.20: Plot the curve and the eight points.

6.14 Nonparametric Bézier Curves 217

6.14 Nonparametric Bézier Curves

The explicit representation of a curve (Section 1.3) has the familiar form y = f(x). The
Bézier curve is, of course, parametric, but it can be represented in a nonparametric
form, similar to explicit curves. Given n + 1 real values (not points) Pi, we start with
the polynomial c(t) =

∑
PiBni(t) and employ the identity

n∑
i=0

(i/n)Bni(t) = t (6.30)

to create the curve

P(t) =
(
t, c(t)

)
=

n∑
i=0

(i/n, Pi)Bni(t).

(This identity is satisfied by the Bernstein polynomials and can be proved by induction.)
It is clear that this version of the curve is defined by the control points (i/n, Pi) which
are equally-spaced on the x axis.

This version of the Bézier curve exists only for two-dimensional curves. In the
general case, where t varies in the interval [a, b], the control points are

(
(a + i(b −

a))/n, Pi

)
.

6.15 Rational Bézier Curves

The rational Bézier curve is an extension of the original Bézier curve [Equation (6.5)] to

P(t) =
∑n

i=0 wiPiBn,i(t)∑n
j=0 wjBn,j(t)

=
n∑

i=0

Pi

[
wiBn,i(t)∑n

j=0 wjBn,j(t)

]
=

n∑
i=0

PiRn,i(t), 0 ≤ t ≤ 1.

The new weight functions Rn,i(t) are ratios of polynomials (which is the reason for the
term rational) and they also depend on weights wi that act as additional parameters
that control the shape of the curve. Note that negative weights might lead to a zero de-
nominator, which is why nonnegative weights are normally used. A rational curve seems
unnecessarily complicated (and for many applications, it is), but it has the following
advantages:

1. It is invariant under projections. Section 6.4 mentions that the Bézier curve is
invariant under affine transformations. If we want to rotate, reflect, scale, or shear such
a curve, we can apply the affine transformation to the control points, then use the new
points to compute the transformed curve. The Bézier curve, however, is not invariant
under projections. If we compute a three-dimensional Bézier curve and project every
point of the curve by a perspective projection, we end up with a plane curve P(t). If
we then project the three-dimensional control points and compute a plane Bézier curve
Q(t) from the projected, two-dimensional points, the two curves P(t) and Q(t) will
generally be different. One advantage of the rational Bézier curve is its invariance under
projections.

218 6. Bézier Approximation

2. The rational Bézier curve provides for accurate control of curve shape, such as
precise representation of conic sections (Appendix A).

Section 7.5 shows that the Bézier curve is a special case of the B-spline curve. As
a result, many current software systems use the rational B-spline (Section 7.14) when
rational curves are required. Such a system can produce the rational Bézier curve as a
special case.

Here is a quick example showing how the rational Bézier curve can be useful. Given
the three points P0 = (1, 0), P1 = (1, 1), and P2 = (0, 1), The Bézier curve defined by
the points is quadratic and is therefore a parabola P(t) = (1−t)2P0+2t(1−t)P1+t2P2 =
(1 − t2, 2t(1 − t)), but the rational Bézier curve with weights w0 = w1 = 1 and w2 = 2
results in the more complex expression

P(t) =
(1 − t)2P0 + 2t(1 − t)P1 + 2t2P2

(1 − t)2 + 2t(1 − t) + 2t2
=
(

1 − t2

1 + t2
,

2t

1 + t2

)

which is a circle, as illustrated by Figure 1.6a.
In general, a quadratic rational Bézier curve with weights w0 = w2 = 1 is a parabola

when w1 = 1, an ellipse for w1 < 1, and a hyperbola for w1 > 1. A quarter circle is
obtained when w1 = cos(α/2) where α is the angle formed by the three control points P0,
P1, and P2 (the control points must also be placed as the three corners of an isosceles
triangle). Page 261 of [Beach 91] proves this construction for the special case α = 90◦.

Appendix A shows, among other features, that the canonical ellipse is represented
as the rational expression(

a
1 − t2

1 + t2
, b

2t

1 + t2

)
, −∞ < t < ∞, (A.7)

and the canonical hyperbola is represented as the rational(
a
1 + t2

1 − t2
, b

2t

1 − t2

)
, −∞ < t < ∞. (A.8)

Accurate control of the shape of the curve is provided by either moving the control
points or varying the weights, and Figure 6.19 illustrates the different responses of the
curve to these changes. Part (a) of the figure shows four curves where weight w1 is
increased from 1 to 4. The curve is pulled toward P1 in such a way that individual
points on the curve converge at P1. In contrast, part (b) of the figure illustrates how
the curve behaves when P1 itself is moved (while all the weights remain set to 1). The
curve is again pulled toward P1, but in such a way that every point on the curve moves
in the same direction as P1 itself.

� Exercise 6.21: Use mathematical software to compute Figure 6.19 or a similar illus-
tration.

Section 6.22 extends the techniques presented here to rectangular Bézier surface
patches.

6.16 Rectangular Bézier Surfaces 219

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 6.19: (a) Varying Weights and (b) Moving Points in a Rational Bézier Curve.

6.16 Rectangular Bézier Surfaces

The Bézier surface patch, like its relative the Bézier curve, is popular and is commonly
used in practice. We discuss the rectangular and the triangular Bézier surface methods,
and this section covers the former.

We start with an (m + 1) × (n + 1) grid of control points arranged in a roughly
rectangular grid

Pm,0 Pm,1 . . . Pm,n

...
...

...
P1,0 P1,1 . . . P1,n

P0,0 P0,1 . . . P0,n

and construct the rectangular Bézier surface patch for the points by applying the tech-
nique of Cartesian product (Section 1.9) to the Bézier curve. Equation (1.28) produces

P(u, w) =
m∑

i=0

n∑
j=0

Bm,i(u)Pi,jBn,j(w)

= (Bm,0(u), Bm,1(u), . . . , Bm,m(u))P

⎛
⎜⎜⎝

Bn,0(w)
Bn,1(w)

...
Bn,n(w)

⎞
⎟⎟⎠

= Bm(u)PBn(w), (6.31)

where P =

⎛
⎜⎜⎝

P0,0 P0,1 . . . P0,n

P1,0 P1,1 . . . P1,n

...
...

. . .
...

Pm,0 Pm,1 . . . Pm,n

⎞
⎟⎟⎠ .

220 6. Bézier Approximation

The surface can also be expressed, by analogy with Equation (6.9), as

P(u, w) = UNPNT WT , (6.32)

where U = (um, um−1, . . . , u, 1), W = (wn, wn−1, . . . , w, 1), and N is defined by Equa-
tion (6.10).

Notice that both P(u0, w) and P(u, w0) (for constants u0 and w0) are Bézier curves
on the surface. A Bézier curve is defined by n + 1 control points, it passes through the
two extreme points, and employs the interior points to determine its shape. Similarly,
a rectangular Bézier surface patch is defined by a rectangular grid of (m + 1) × (n + 1)
control points, it is anchored at the four corner points and employs the other grid points
to determine its shape.

Figure 6.20 is an example of a biquadratic Bézier surface patch with the Mathemat-
ica code that generated it. Notice how the surface is anchored at the four corner points
and how the other control points pull the surface toward them.

Example: Given the six three-dimensional points

P10 P11 P12

P00 P01 P02

the corresponding Bézier surface is generated in the following three steps:

1. Find the orders m and n of the surface. Since the points are numbered starting
from 0, the two orders of the surface are m = 1 and n = 2.

2. Calculate the weight functions B1i(w) and B2j(u). For m = 1, we get

B1i(w) =
(

1
i

)
wi(1 − w)1−i,

which yields the two functions

B10(w) =
(

1
0

)
w0(1 − w)1−0 = 1 − w, B11(w) =

(
1
1

)
w1(1 − w)1−1 = w.

For n = 2, we get

B2j(u) =
(

2
j

)
uj(1 − u)2−j ,

which yields the three functions

B20(u) =
(

2
0

)
u0(1 − u)2−0 = (1 − u)2,

B21(u) =
(

2
1

)
u1(1 − u)2−1 = 2u(1 − u),

B22(u) =
(

2
2

)
u2(1 − u)2−2 = u2.

6.16 Rectangular Bézier Surfaces 221

0
1

4

0
1

2

0

1

2

0
1

0
1

x

y

z

(* biquadratic bezier surface patch *)
Clear[pwr,bern,spnts,n,bzSurf,g1,g2];
n=2;
<<:Graphics:ParametricPlot3D.m
spnts={{{0,0,0},{1,0,1},{0,0,2}},
{{1,1,0},{4,1,1},{1,1,2}}, {{0,2,0},{1,2,1},{0,2,2}}};
(* Handle Indeterminate condition *)
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,u_]:=Binomial[n,i]pwr[u,i]pwr[1-u,n-i]
bzSurf[u_,w_]:=Sum[bern[n,i,u] spnts[[i+1,j+1]] bern[n,j,w],
{i,0,n}, {j,0,n}]
g1=ParametricPlot3D[bzSurf[u,w],{u,0,1}, {w,0,1},
Ticks->{{0,1,4},{0,1,2},{0,1,2}},
Compiled->False, DisplayFunction->Identity];
g2=Graphics3D[{AbsolutePointSize[3],
Table[Point[spnts[[i,j]]],{i,1,n+1},{j,1,n+1}]}];
Show[g1,g2, ViewPoint->{2.783, -3.090, 1.243}, PlotRange->All,
DefaultFont->{"cmr10", 10}, DisplayFunction->$DisplayFunction];

Figure 6.20: A Biquadratic Bézier Surface Patch.

3. Substitute the weight functions in the general expression for the surface [Equa-
tion (6.31)]:

P(u, w) =
1∑

i=0

2∑
j=0

B1i(w)PijB2j(u)

= B10(w)
2∑

j=0

P0jB2j(u) + B11(w)
2∑

j=0

P1jB2j(u)

= (1 − w) [P00B20(u) + P01B21(u) + P02B22(u)]
+ w [P10B20(u) + P11B21(u) + P12B22(u)]

222 6. Bézier Approximation

= (1 − w)
[
P00(1 − u)2 + P012u(1 − u) + P02u

2
]

+ w
[
P10(1 − u)2 + P112u(1 − u) + P12u

2
]

= P00(1 − w)(1 − u)2 + P01(1 − w)2u(1 − u) + P02(1 − w)u2

+ P10w(1 − u)2 + P11w2u(1 − u) + P12wu2. (6.33)

The final expression is linear in w since the surface is defined by just two points in
the w direction. Surface lines in this direction are straight. In the u direction, where
the surface is defined by three points, each line is a polynomial of degree 2 in u. This
expression can also be written in the form

(1 − w)
∑

B2,i(u)P0i + w
∑

B2,i(u)P1i = (1 − w)P(u, 0) + wP(u, 1),

which is a lofted surface [Equation (2.14)].

A good technique to check the final expression is to calculate it for the four values
(u, w) = (0, 0), (0, 1), (1, 0), and (1, 1). This should yield the coordinates of the four
original corner points.

The entire surface can now be easily displayed, as a wire frame, by performing
two loops. One draws curves in the u direction and the other draws the curves in the w
direction. Notice that the expression of the patch is the same regardless of the particular
points used. The user may change the points to modify the surface, and the new surface
can be displayed (Figure 6.21) by calculating Equation (6.33).

� Exercise 6.22: Given the 3×4 array of control points

P20 = (0, 2, 0) P21 = (1, 2, 1) P22 = (2, 2, 1) P23 = (3, 2, 0)

P10 = (0, 1, 0) P11 = (1, 1, 1) P12 = (2, 1, 1) P13 = (3, 1, 0)

P00 = (0, 0, 0) P01 = (1, 0, 1) P02 = (2, 0, 1) P03 = (3, 0, 0),

calculate the order-2×3 Bézier surface patch defined by them.

Notice that the order-2×2 Bézier surface patch defined by only four control points
is a bilinear patch. Its form is given by Equation (2.8).

6.16.1 Scaffolding Construction

The scaffolding construction (or de Casteljau algorithm) of Section 6.6 can be directly
extended to the rectangular Bézier patch. Figure 6.22 illustrates the principle. Part (a)
of the figure shows a rectangular Bézier patch defined by 3×4 control points (the circles).
The de Casteljau algorithm for curves is applied to each row of three points to compute
two intermediate points (the squares), followed by a final point (the triangle). The final
point is located on the Bézier curve defined by the row of three points. The result of
applying the de Casteljau algorithm to the four rows is four points (the triangles). The
algorithm is now applied to those four points (Figure 6.22b) to compute one point (the
heavy circle) that’s located both on the curve defined by the four (black triangle) points
and on the Bézier surface patch defined by the 3×4 control points. (This is one of the
many curve algorithms that can be directly extended to surfaces.)

6.16 Rectangular Bézier Surfaces 223

0
1 2

0

1

0

0.5

1

(* A Bezier surface example. Given the six two-dimensional... *)
Clear[pnts,b1,b2,g1,g2,vlines,hlines];
pnts={{{0,1,0},{1,1,1},{2,1,0}},{{0,0,0},{1,0,0},{2,0,0}}};
b1[w_]:={1-w,w}; b2[u_]:={(1-u)^2,2u(1-u),u^2};
comb[i_]:=(b1[w].pnts)[[i]] b2[u][[i]];
g1=ParametricPlot3D[comb[1]+comb[2]+comb[3], {u,0,1},{w,0,1}, Compiled->False,
DefaultFont->{"cmr10", 10}, DisplayFunction->Identity,
AspectRatio->Automatic, Ticks->{{0,1,2},{0,1},{0,.5}}];
g2=Graphics3D[{AbsolutePointSize[5],
Table[Point[pnts[[i,j]]],{i,1,2},{j,1,3}]}];
vlines=Graphics3D[{AbsoluteThickness[2],
Table[Line[{pnts[[1,j]],pnts[[2,j]]}], {j,1,3}]}];
hlines=Graphics3D[{AbsoluteThickness[2],
Table[Line[{pnts[[i,j]],pnts[[i,j+1]]}], {i,1,2}, {j,1,2}]}];
Show[g1,g2,vlines,hlines, ViewPoint->{-0.139, -1.179, 1.475},
DisplayFunction->$DisplayFunction, PlotRange->All, Shading->False,
DefaultFont->{"cmr10", 10}];

Figure 6.21: A Lofted Bézier Surface Patch.

(a) (b)

Figure 6.22: Scaffolding in a Rectangular Bézier Patch.

224 6. Bézier Approximation

Referring to Equation (6.31), we can summarize this process as follows:

1. Construct the n + 1 curves

Pj(u) =
m∑

i=0

Bmi(u)Pij , j = 0, 1, . . . , n.

2. Apply the de Casteljau algorithm to each curve to end up with n+1 points, one
on each curve.

3. Apply the same algorithm to the n + 1 points to end up with one point.

Alternatively, we can first construct the m + 1 curves

Pi(w) =
n∑

j=0

PijBnj(w), i = 0, 1, . . . , m,

then apply the de Casteljau algorithm to each curve to end up with m + 1 points, and
finally apply the same algorithm to the m + 1 points, and end up with one point.

6.17 Subdividing Rectangular Patches

A rectangular Bézier patch is computed from a given rectangular array of m×n control
points. If there are not enough points, the patch may not have the right shape. Just
adding points is not a good solution because this changes the shape of the surface, forcing
the designer to start reshaping it from the beginning. A better solution is to subdivide
the patch into four connected surface patches, each based on m×n control points. The
technique described here is similar to that presented in Section 6.8 for subdividing the
Bézier curve. It employs the scaffolding construction of Section 6.6.

Figure 6.22a shows a grid of 4×3 control points. The first step in subdividing the
surface patch defined by this grid is for the user to select values for u and w. This
determines a point on the surface, a point that will be common to the four new patches.
The de Casteljau algorithm is then applied to each of the three columns of control points
(the black circles of Figure 6.23a) separately. Each column of four control points P0,
P1, P2, and P3 results in several points, of which the following seven are used for the
subdivision (refer to Figure 6.8) P0, P01, P012, P0123, P123, P23, and P3. The result
of this step is three columns of seven points each (Figure 6.23b where the black circles
indicate original control points).

(a) (b) (c)

Figure 6.23: Subdividing a Rectangular 3×4 Bézier Patch.

6.18 Degree Elevation 225

The next step is to apply the de Casteljau algorithm to each of the seven rows of
three points, to obtain five points (refer to Figure 6.7). The resulting grid of 7×5 is
shown in Figure 6.23c. This grid is divided into four overlapping subgrids of 4×3 control
points each, and each subgrid serves to compute a new rectangular Bézier patch.

6.18 Degree Elevation

Degree elevation of the rectangular Bézier surface is similar to elevating the degree of
the Bézier curve (Section 6.9). Specifically, Equation (6.19) is extended in the following
way. Given a rectangular Bézier patch of degree m×n (i.e., defined by (m + 1)×(n + 1)
control points), expressed as a double-polynomial by Equation (6.31)

Pmn(u, w) =
m∑

i=0

n∑
j=0

Bm,i(u)Pi,jBn,j(w), (6.31)

we first write the patch as a double polynomial of degree (m + 1)×n defined by inter-
mediate control points Rij

n∑
j=0

[
m+1∑
i=0

Bm+1,i(u)Ri,j

]
Bn,j(w).

Based on the result of Section 6.9 the intermediate points are given by

Rij =
i

m + 1
Pi−1,j + (1 − i

m + 1
)Pi,j . (6.34)

We then repeat this process to increase the degree to (m + 1)×(n + 1) and write

Pm+1,n+1(u, w) =
m+1∑
i=0

n+1∑
j=0

Bm+1,i(u)Qi,jBn+1,j(w),

where the new (m + 2)× (n + 2) control points Qij can be obtained either from the
intermediate points Rij by an expression similar to Equation (6.34) or directly from the
original control points Pij by a bilinear interpolation

Qij =
(

i

m + 1
, 1 − i

m + 1

)[
Pi−1,j−1 Pi−1,j

Pi,j−1 Pi,j

] [j
n+1

1 − j
n+1

]
, (6.35)

for i = 0, 1, . . . , m + 1, and j = 0, 1, . . . , n + 1.

If i = 0 or j = 0, indexes of the form i − 1 or j − 1 are negative, but (the nonexistent)
points with such indexes are multiplied by zero, which is why this bilinear interpolation
works well in this case. Similarly, when i = m + 1, point Pi,j does not exist, but the
factor 1 − i/(m + 1) that multiplies it is zero and when j = n + 1, point Pi,j does not

226 6. Bézier Approximation

exist, but the factor 1 − j/(n + 1) that multiplies it is also zero. Thus, Equation (6.35)
always works.

Example: Starting with the 2×3 control points

P10 P11 P12

P00 P01 P02
,

(this implies that m = 1 and n = 2), we perform two steps to elevate the degree of the
rectangular patch defined by them from 1×2 to 2×3. The first step is to elevate the
degree of each of the three columns from 1 (two control points P0i and P1i) to 2 (three
intermediate points R0i, R1i, and R2i). This step produces the nine intermediate points

R20 R21 R22

R10 R11 R12

R00 R01 R02

.

For the leftmost column, the two extreme points R00 and R20 equal the two original
control points P00 and P10, respectively. The middle point R10 is computed from
Equation (6.34) as

R10 = 1
2P00 + (1 − 1

2)P10.

Similarly, the middle column yields

R01 = P01, R21 = P11, R11 = 1
2P01 + (1 − 1

2)P11

and the rightmost column results in

R02 = P02, R22 = P12, R12 = 1
2P02 + (1 − 1

2)P12.

The second step is to elevate the degree of each of the three rows from 2 (three
points Ri0, Ri1, and Ri2) to 3 (four new points Qi0, Qi1, Qi2, and Qi3). This step
produces the 12 new control points

Q20 Q21 Q22 Q23

Q10 Q11 Q12 Q13

Q00 Q01 Q02 Q03

.

For the bottom row, the two extreme points Q00 and Q03 equal the two intermediate
control points R00 and R02, respectively. These, together with the two interior points
Q01 and Q02 are computed from Equations (6.34) and (6.35) as

Q00 = R00 = P00 = (0, 1 − 0)
(

P−1,−1 P−1,0

P0,−1 P00

)(
0
1

)
,

Q01 = 1
3R00 + 2

3R01 = 1
3P00 + 2

3P01 = (0, 1)
(

P−1,0 P−1,1

P0,−1 P01

)(
1/3

1 − 1/3

)
,

Q02 = 2
3R01 + 1

3R02 = 2
3P01 + 1

3P02 = (0, 1)
(

P−1,1 P−1,2

P01 P02

)(
2/3

1 − 2/3

)
,

Q03 = R02 = P02 = (0, 1 − 0)
(

P−1,2 P−1,3

P0,2 P03

)(
1
0

)
.

6.19 Nonparametric Rectangular Patches 227

The middle row yields

Q10 = R10 = 1
2P00 + (1 − 1

2)P10 = (1
2 , 1 − 1

2)
(

P0,−1 P00

P1,−1 P10

)(
0
1

)
,

Q11 = 1
3R10 + 2

3R11 = 1
3 (1

2P00 + 1
2P10) + 2

3 (1
2P01 + 1

2P11)

= (1
2 , 1 − 1

2)
(

P00 P01

P10 P11

)(
1/3

1 − 1/3

)
,

Q12 = 2
3R11 + 1

3R12 = 2
3 (1

2P01 + 1
2P11) + 1

3 (1
2P02 + 1

2P12)

= (1
2 , 1 − 1

2)
(

P01 P02

P11 P12

)(
2/3

1 − 2/3

)
,

Q13 = R12 = 1
2P02 + (1 − 1

2)P12 = (1
2 , 1 − 1

2)
(

P02 P03

P12 P13

)(
1
0

)
.

Finally, the third row of intermediate points produces the four new control points

Q20 = R20 = P10 = (1, 0)
(

P1,−1 P10

P2,−1 P20

)(
0
1

)
,

Q21 = 1
3R20 + 2

3R21 = 1
3P10 + 2

3P11 = (1, 0)
(

P10 P11

P20 P21

)(
1/3

1 − 1/3

)
,

Q22 = 2
3R21 + 1

3R22 = 2
3P11 + 1

3P12 = (1, 0)
(

P11 P12

P21 P22

)(
2/3
1/3

)
,

Q23 = R22 = P12 = (1, 0)
(

P12 P13

P22 P23

)(
1
0

)
.

Figure 6.24 lists code for elevating the degree of a rectangular Bézier patch based
on 2×3 control points. In part (a) of the figure each point is a symbol, such as p00, and
in part (b) each point is a triplet of coordinates. The points are stored in a 2×3 array
p and are transferred to a 4×5 array r, parts of which remain undefined.

6.19 Nonparametric Rectangular Patches

The explicit representation of a surface (Section 1.8) is z = f(x, y). The rectangular
Bézier surface is, of course, parametric, but it can be represented in a nonparametric
form, similar to explicit surfaces. The derivation in this section is similar to that of
Section 6.14. Given (n + 1)×(m + 1) real values (not points) Pij , we start with the
double polynomial

s(u, w) =
n∑

i=0

m∑
j=0

Bni(u)PijBmj(w)

and employ the identity of Equation (6.30) twice, for u and for w, to create the surface
patch

P(u, w) =
(
u, w, s(u, w)

)
=

n∑
i=0

m∑
j=0

Bni(u)(i/m, j/n, Pij)Bmj(w).

228 6. Bézier Approximation

(* Degree elevation of a rect Bezier surface from 2x3 to 4x5 *)
Clear[p,q,r];
m=1; n=2;
p={{p00,p01,p02},{p10,p11,p12}}; (* array of points *)
r=Array[a, {m+3,n+3}]; (* extended array, still undefined *)
Part[r,1]=Table[a, {i,-1,m+2}];
Part[r,2]=Append[Prepend[Part[p,1],a],a];
Part[r,3]=Append[Prepend[Part[p,2],a],a];
Part[r,n+2]=Table[a, {i,-1,m+2}];
MatrixForm[r] (* display extended array *)
q[i_,j_]:=({i/(m+1),1-i/(m+1)}. (* dot product *)
{{r[[i+1,j+1]],r[[i+1,j+2]]},{r[[i+2,j+1]],r[[i+2,j+2]]}}).
{j/(n+1),1-j/(n+1)}
q[2,3] (* test *)

(a)
(* Degree elevation of a rect Bezier surface from 2x3 to 4x5 *)
Clear[p,r,comb];
m=1; n=2; (* set p to an array of 3D points *)
p={{{0,0,0},{1,0,1},{2,0,0}},{{0,1,0},{1,1,.5},{2,1,0}}};
r=Array[a, {m+3,n+3}]; (* extended array, still undefined *)
Part[r,1]=Table[{a,a,a}, {i,-1,m+2}];
Part[r,2]=Append[Prepend[Part[p,1],{a,a,a}],{a,a,a}];
Part[r,3]=Append[Prepend[Part[p,2],{a,a,a}],{a,a,a}];
Part[r,n+2]=Table[{a,a,a}, {i,-1,m+2}];
MatrixForm[r] (* display extended array *)
comb[i_,j_]:=({i/(m+1),1-i/(m+1)}.
{{r[[i+1,j+1]],r[[i+1,j+2]]},{r[[i+2,j+1]],r[[i+2,j+2]]}})[[1]]{j/(n+1),1-j/(n+1)}[[1]]+
({i/(m+1),1-i/(m+1)}.
{{r[[i+1,j+1]],r[[i+1,j+2]]},{r[[i+2,j+1]],r[[i+2,j+2]]}})[[2]]{j/(n+1),1-j/(n+1)}[[2]];
MatrixForm[Table[comb[i,j], {i,0,2},{j,0,3}]]

(b)

Figure 6.24: Code for Degree Elevation of a Rectangular Bézier Surface.

This version of the Bézier surface is defined by the control points (i/m, j/n, Pij) which
form a regular grid on the xy plane.

6.20 Joining Rectangular Bézier Patches

It is easy, although tedious, to explore the conditions for the smooth joining of two
Bézier surface patches. Figure 6.25 shows a typical example of this problem. It shows
parts of two patches P and Q. It is not difficult to see that the former is based on 4× 5
control points and the latter on 4 × n points, where n ≥ 2. It is also easy to see that
they are joined such that the eight control points along the joint satisfy Pi4 = Qi0 for
i = 0, 1, 2, 3.

The condition for smooth joining of the two surface patches is that the two tangent
vectors at the common boundary are in the same direction, although they may have
different magnitudes. This condition is expressed as

∂P(u, w)
∂w

∣∣∣∣
w=1

= α
∂Q(u, w)

∂w

∣∣∣∣
w=0

.

6.20 Joining Rectangular Bézier Patches 229

P03
Q01

P13
Q11

P23

Q21

P33

Q31

P04=Q00

P14=Q10

P24=Q20

P34=Q30

u=1

w=1 w=0

u=0

P(u,w)

Q(u,w)

Figure 6.25: Smoothly Joining Rectangular Bézier Patches.

The two tangents are calculated from Equation (6.32) (and the B3 and B4 matrices
given by Figure 6.3). For the first patch, we have

∂P(u, w)
∂w

∣∣∣∣
w=1

= (u3, u2, u, 1)B3

⎛
⎜⎝

P00 P01 P02 P03 P04

P10 P11 P12 P13 P14

P20 P21 P22 P23 P24

P30 P31 P32 P33 P34

⎞
⎟⎠BT

4

⎛
⎜⎜⎜⎝

4w3

3w2

2w
1
0

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣
w=1

= 4(u3, u2, u, 1)B3

⎛
⎜⎝

P04 − P03

P14 − P13

P24 − P23

P34 − P33

⎞
⎟⎠ .

Similarly, for the second patch,

∂Q(u, w)
∂w

∣∣∣∣
w=0

= 4(u3, u2, u, 1)B3

⎛
⎜⎝

Q01 − Q00

Q11 − Q10

Q21 − Q20

Q31 − Q30

⎞
⎟⎠ .

The conditions for a smooth join are therefore

⎛
⎜⎝

P04 − P03

P14 − P13

P24 − P23

P34 − P33

⎞
⎟⎠ = α

⎛
⎜⎝

Q01 − Q00

Q11 − Q10

Q21 − Q20

Q31 − Q30

⎞
⎟⎠ ,

or Pi4 −Pi3 = α(Qi1 −Qi0) for i = 0, 1, 2, and 3. This can also be expressed by saying

230 6. Bézier Approximation

that the three points Pi3, Pi4 = Qi0, and Qi1 should be on a straight line, although not
necessarily equally spaced.

Example: Each of the two patches in Figure 6.26 is based on 3×3 points (n = 2).
The patches are smoothly connected along the curve defined by the common points
(0, 2, 0), (0, 0, 0), and (0,−2, 0). Note that in the diagram they are slightly separated,
but this was done intentionally. The smooth connection is obtained by making sure
that the points (−2, 2, 0), (0, 2, 0), and (2, 2, 0) are collinear (find the other two collinear
triplets). The coordinates of the points are

−2, 2, 2 −2, 2, 0 0, 2, 0
−4, 0, 2 −4, 0, 0 0, 0, 0
−2,−2, 2 −2,−2, 0 0,−2, 0

0, 2, 0 2, 2, 0 2, 2,−2
0, 0, 0 4, 0, 0 4, 0,−2

0,−2, 0 2,−2, 0 2,−2,−2

The famous Utah teapot was designed in the 1960s at the University of Utah
by digitizing a real teapot (now at the computer museum in Boston) and creating 32
smoothly-connected Bézier patches defined by a total of 306 control points. [Crow 87]
has a detailed description. The coordinates of the points are publicly available, as is
a program to display the entire surface. The program is part of a public-domain gen-
eral three-dimensional graphics package called SIPP (SImple Polygon Processor). SIPP
was originally written in Sweden and is distributed by the Free Software Foundation
[Free 04]. It can be downloaded anonymously from several sources and for different
platforms. A more recent source for this important surface is a Mathematica notebook
by Jan Mangaldan, available at [MathSource 05].

She finished pouring the tea and put down the pot.
“That’s an old teapot,” remarked Harold.
“Sterling silver,” said Maude wistfully. “It was my dear mother-in-law’s, part of a
dinner set of fifty pieces. It was sent to me, one of the few things that survived.” Her
voice trailed off and she absently sipped her tea.

—Colin Higgins, Harold and Maude (1971).

6.21 An Interpolating Bézier Surface Patch

An interpolating rectangular Bézier surface patch solves the following problem. Given
a set of (m + 1)×(n + 1) data points Qkl, compute a set of (m + 1)×(n + 1) control
points Pij , such that the rectangular Bézier surface patch P(u, w) defined by the Pij ’s
will pass through all the data points Qkl.

Section 6.13 discusses the same problem for the Bézier curve, and here we apply the
same approach to the rectangular Bézier surface. We select m + 1 values uk and n + 1
values wl and require that the (m + 1)×(n + 1) surface points P(uk, wl) equal the data
points Qkl for k = 0, 1, . . . , m and l = 0, 1, . . . , n. This results in a set of (m+1)×(n+1)
equations with the control points Pij as the unknowns. Such a set of equations may be

6.21 An Interpolating Bézier Surface Patch 231

0

2

4 −2

−1
0

1
2
−2

−1

0

1

2

−4

−2

0

2

0

n=2; Clear[n,bern,p1,p2,g3,bzSurf,patch];
<<:Graphics:ParametricPlot3D.m
p1={{{-2,2,2},{-2,2,0},{0,2,0}},
{{-4,0,2},{-4,0,0},{0,0,0}},
{{-2,-2,2},{-2,-2,0},{0,-2,0}}};
p2={{{0,2,0},{2,2,0},{2,2,-2}},
{{0,0,0},{4,0,0},{4,0,-2}},
{{0,-2,0},{2,-2,0},{2,-2,-2}}};
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,u_]:=Binomial[n,i]pwr[u,i]pwr[1-u,n-i]
bzSurf[p_]:={Sum[p[[i+1,j+1,1]]bern[n,i,u]bern[n,j,w],
{i,0,n,1}, {j,0,n,1}],
Sum[p[[i+1,j+1,2]]bern[n,i,u]bern[n,j,w],
{i,0,n,1}, {j,0,n,1}],
Sum[p[[i+1,j+1,3]]bern[n,i,u]bern[n,j,w],
{i,0,n,1}, {j,0,n,1}]};
patch[s_]:=
ParametricPlot3D[bzSurf[s],{u,0,1,.1}, {w,0.02,.98,.1}];
g3=Graphics3D[{AbsolutePointSize[3],
Table[Point[p1[[i,j]]],{i,1,n+1},{j,1,n+1}]}]
g4=Graphics3D[{AbsolutePointSize[3],
Table[Point[p2[[i,j]]],{i,1,n+1},{j,1,n+1}]}]
Show[patch[p1],patch[p2],g3,g4,
DisplayFunction->$DisplayFunction]

Figure 6.26: Two Bézier Surface Patches.

232 6. Bézier Approximation

big, but is easy to solve with appropriate mathematical software. A general equation in
this set is

P(uk, wl) = Bm(uk)PBn(wl) = Qkl for k = 0, 1, . . . , m and l = 0, 1, . . . , n.

Example: We choose m = 3 and n = 2. The system of equations becomes

[
(1 − uk)3, 3uk(1 − uk)2, 3u2

k(1 − uk), u3
k

] ⎡⎢⎣
P00 P01 P02

P10 P11 P12

P20 P21 P22

P30 P31 P32

⎤
⎥⎦
⎡
⎣ (1 − wl)2

2wl(1 − wl)
w2

l

⎤
⎦ = Qkl,

for k = 0, 1, 2, 3 and l = 0, 1, 2. This is a system of 12 equations in the 12 unknowns
Pij . In most cases the uk values can be equally spaced between 0 and 1 (in our case 0,
0.25, 0.5, 0.75, and 1), and the same for the wl values (in our case, 0, 0.5, and 1).

6.22 Rational Bézier Surfaces

Section 6.15 describe the rational Bézier curve. The principle of this type of curve can be
extended to surfaces, and this section discusses the rational rectangular Bézier surface
patch. This type of surface is expressed by

P(u, w) =

∑n
i=0

∑m
j=0 wijBn,i(u)PijBm,j(w)∑n

k=0

∑m
l=0 wklBn,k(u)Bm,l(w)

0 ≤ u, w ≤ 1. (6.36)

When all the weights wij are set to 1, Equation (6.36) reduces to the original rectangular
Bézier surface patch. The weights serve as additional parameters and provide fine,
accurate control of the shape of the surface. Figure 6.27 shows how the surface patch of
Figure 6.20 can be pulled toward the center point [point (4, 1, 1)] by assigning w22 = 5,
while keeping the other weights set to 1.

Note that weights of 0 and negative weights can also be used, as long as the de-
nominator of Equation (6.36) is not zero.

� Exercise 6.23: Use the code of Figure 6.27 to construct a closed rational Bézier surface
patch based on a grid of 2×4 control points.

6.22 Rational Bézier Surfaces 233

(* A Rational Bezier Surface *)
Clear[pwr,bern,spnts,n,m,wt,bzSurf,cpnts,patch,vlines,hlines,axes];
<<:Graphics:ParametricPlot3D.m
spnts={{{0,0,0},{1,0,1},{0,0,2}},
{{1,1,0},{4,1,1},{1,1,2}}, {{0,2,0},{1,2,1},{0,2,2}}};
m=Length[spnts[[1]]]-1; n=Length[Transpose[spnts][[1]]]-1;
wt=Table[1, {i,1,n+1},{j,1,m+1}];
wt[[2,2]]=5;
pwr[x_,y_]:=If[x==0 && y==0, 1, x^y];
bern[n_,i_,u_]:=Binomial[n,i]pwr[u,i]pwr[1-u,n-i]
bzSurf[u_,w_]:=
Sum[wt[[i+1,j+1]]spnts[[i+1,j+1]]bern[n,i,u]bern[m,j,w], {i,0,n}, {j,0,m}]/
Sum[wt[[i+1,j+1]]bern[n,i,u]bern[m,j,w], {i,0,n}, {j,0,m}];
patch=ParametricPlot3D[bzSurf[u,w],{u,0,1}, {w,0,1},
Compiled->False, DisplayFunction->Identity];
cpnts=Graphics3D[{AbsolutePointSize[4], (* control points *)
Table[Point[spnts[[i,j]]], {i,1,n+1},{j,1,m+1}]}];
vlines=Graphics3D[{AbsoluteThickness[1], (* control polygon *)
Table[Line[{spnts[[i,j]],spnts[[i+1,j]]}], {i,1,n}, {j,1,m+1}]}];
hlines=Graphics3D[{AbsoluteThickness[1],
Table[Line[{spnts[[i,j]],spnts[[i,j+1]]}], {i,1,n+1}, {j,1,m}]}];
maxx=Max[Flatten[Table[Part[spnts[[i,j]], 1], {i,1,n+1}, {j,1,m+1}]]];
maxy=Max[Flatten[Table[Part[spnts[[i,j]], 2], {i,1,n+1}, {j,1,m+1}]]];
maxz=Max[Flatten[Table[Part[spnts[[i,j]], 3], {i,1,n+1}, {j,1,m+1}]]];
axes=Graphics3D[{AbsoluteThickness[1.5], (* the coordinate axes *)
Line[{{0,0,maxz},{0,0,0},{maxx,0,0},{0,0,0},{0,maxy,0}}]}];
Show[cpnts,hlines,vlines,axes,patch, PlotRange->All, DefaultFont->{"cmr10",10},
DisplayFunction->$DisplayFunction, ViewPoint->{2.783, -3.090, 1.243}];

Figure 6.27: A Rational Bézier Surface Patch.

234 6. Bézier Approximation

6.23 Triangular Bézier Surfaces

The first surface to be derived with Bézier methods was the triangular patch, not the
rectangular. It was developed in 1959 by de Casteljau at Citroën. The triangular Bézier
patch, and its properties, is the topic of this section, but it should be noted that the
ideas and techniques described here can be extended to Bézier surface patches with any
number of edges. [DeRose and Loop 89] discusses one approach, termed S-patch, to this
problem.

The triangular Bézier patch is based on control points Pijk arranged in a roughly
triangular shape. Each control point is three-dimensional and is assigned three indexes
ijk such that 0 ≤ i, j, k ≤ n and i + j + k = n. The value of n is selected by the user
depending on how large and complex the patch should be and how many points are
given. Generally, a large n allows for a finer control of surface details but involves more
computations. The following convention is used here. The first index, i, corresponds to
the left side of the triangle, the second index, j, corresponds to the base, and the third
index, k, corresponds to the right side. The indexing convention for n = 1, 2, 3, and 4
are shown in Figure 6.28. There are n+1 points on each side of the triangle and because
of the way the points are arranged there is a total of 1

2 (n + 1)(n + 2) control points:

P010

P001 P100

P020

P011 P110

P002 P101 P200

P030

P021 P120

P012 P111 P210

P003 P102 P201 P300

P040

P031 P130

P022 P121 P220

P013 P112 P211 P310

P004 P103 P202 P301 P400

Figure 6.28: Control Points for Four Triangular Bézier Patches.

The surface patch itself is defined by the trinomial theorem [Equation (6.3)] as

P(u, v, w) =
∑

i+j+k=n

Pijk
n!

i! j! k!
uivjwk =

∑
i+j+k=n

PijkBn
ijk(u, v, w), (6.37)

where u + v + w = 1. Note that even though P(u, v, w) seems to depend on three
parameters, it only depends on two since their sum is constant. The quantities

Bn
ijk(u, v, w) =

n!
i! j! k!

uivjwk

are the Bernstein polynomials in two variables (bivariate). They are listed here for
n = 1, 2, 3, and 4

v
w u

v2

2vw 2uv
w2 2uw u2

v3

3v2w 3uv2

3vw2 6uvw 3u2v
w3 3uw2 3u2w u3

v4

4v3w 4uv3

6v2w2 12uv2w 6u2v2

4vw3 12uvw2 12u2vw 4u3v
w4 4uw3 6u2w2 4u3w u4

6.23 Triangular Bézier Surfaces 235

The three boundary curves are obtained from Equation (6.37) by setting each of
the three parameters in turn to zero. Setting, for example, u = 0 causes all terms of
Equation (6.37) except those with i = 0 to vanish. The result is

P(0, v, w) =
∑

j+k=n

P0jk
n!

j! k!
vjwk, where v + w = 1. (6.38)

Since v + w = 1, Equation (6.38) can be written

P(v) =
∑

j+k=n

P0jk
n!

j! k!
vj(1 − v)k =

n∑
j=0

P0j,n−j
n!

j! (n − j)!
vj(1 − v)n−j , (6.39)

and this is a Bézier curve.
Example: We illustrate the case n = 2. There should be three control points on

each side of the triangle, for a total of 1
2 (2 + 1)(2 + 2) = 6 points. We select simple

coordinates:

(1, 3, 1)
(0.5, 1, 0) (1.5, 1, 0)

(0, 0, 0) (1, 0,−1) (2, 0, 0)

Note that four points have z = 0 and are therefore on the same plane. It is only the
other two points, with z = ±1, that cause this surface to be nonflat.

The expression of the surface is

P(u, v, w) =
∑

i+j+k=2

Pijk
n!

i! j! k!
uivjwk

= P002
2!

0! 0! 2!
w2 + P101

2!
1! 0! 1!

uw + P200
2!

2! 0! 0!
u2

+ P011
2!

0! 1! 1!
vw + P110

2!
1! 1! 0!

uv + P020
2!

0! 2! 0!
v2

= (0, 0, 0)w2 + (1, 0,−1)2uw + (2, 0, 0)u2

+ (0.5, 1, 0)2vw + (1.5, 1, 0)2uv + (1, 3, 1)v2

= (2uw + 2u2 + vw + 3uv + v2, 2vw + 2uv + 3v2,−2uw + v2).

It is now easy to verify that the following special values of u, v, and w produce the three
corner points:

u v w point

0 0 1 (0,0,0)
0 1 0 (1,3,1)
1 0 0 (2,0,0)

But the most important feature of this triangular surface patch is the way it is displayed
as a wireframe. The principle is to display this surface as a mesh of three families of
curves (compare this with the two families in the case of a rectangular surface patch).

236 6. Bézier Approximation

(a) (b)

u=
.1

.2
.3

1
.9

Figure 6.29: (a) Lines in the u Direction. (b) The Complete Surface Patch.

Each family consists of curves that are roughly parallel to one side of the triangle (Fig-
ure 6.29a,b).

� Exercise 6.24: Write pseudo-code to draw the three families of curves.

A triangle of points can be stored in a one-dimensional array in computer memory.
A simple way of doing this is to store the top point P0n0 at the beginning of the array,
followed by a short segment consisting of the two points P0,n−1,1 and P1,n−1,0 of the
next row down, followed by a longer segment with three points, and so on, ending with
a segment with the n + 1 points P00n, P1,0,n−1, through Pn00 of the bottom row of the
triangle. A direct check verifies that the points Pijk of triangle row j, where 0 ≤ j ≤ n,
start at location j(j +1)/2+1 of the array, so they can be indexed by j(j +1)/2+1+ i.

Figure 6.30 lists Mathematica code to compute one point on such a surface patch.
Note that j is incremented from 0 to n (from the bottom to the top of the triangle), so
the first iteration needs the points in the last segment of the array and the last iteration
needs the single point at the start of the array. This is why the index to array pnts
depends on j as (n − j)(n − j + 1)/2 + 1 instead of as j(j + 1)/2 + 1.

(* Triangular Bezier surface patch *)
pnts={{3,3,0}, {2,2,0},{4,2,1}, {1,1,0},{3,1,1},{5,1,2},
{0,0,0},{2,0,1},{4,0,2},{6,0,3}};
B[i_,j_,k_]:=(n!/(i! j! k!))u^i v^j w^k;
n=3; u=1/6; v=2/6; w=3/6; Tsrpt={0,0,0};
indx:=(n-j)(n-j+1)/2+1+i;
Do[{k=n-i-j, Tsrpt=Tsrpt+B[i,j,k] pnts[[indx]]}, {j,0,n}, {i,0,n-j}];
Tsrpt

Figure 6.30: Code for One Point in a Triangular Bézier Patch.

Figure 6.31 shows a triangular Bézier surface patch for n = 3. Note how the
wireframe consists of three sets of curves and how the curves remain roughly parallel and
don’t converge toward the three corners. (This should be compared with the triangular
Coons patch of Figure 3.14 and with the lofted sweep surface of Figure 9.3. Each of these
surfaces is displayed as two families of curves and has one dark corner as a result.) The
control points and control polygon are also shown. The Mathematica code for this type

6.23 Triangular Bézier Surfaces 237

x

y
z

(* Triangular Bezier patch by Garry Helzer *)
rules=Solve[{u{a1,b1}+v{a2,b2}+w{a3,b3}=={x,y},u+v+w==1},{u,v,w}]
BarycentricCoordinates[Polygon[{{a1_,b1_},{a2_,b2_},{a3_,b3_}}]] \
[{x_,y_}]={u,v,w}/.rules//Flatten
Subdivide[l_]:=l/. Polygon[{p_,q_,r_}] :> Polygon /@ \
({{p+p,p+q,p+r},{p+q,q+q,q+r},{p+r,q+r,r+r},{p+q,q+r,r+p}}/2)
Transform[F_][L_]:= L /. Polygon[l_] :> Polygon[F /@ l]
P[L_][{u_,v_,w_}]:=
Module[{x,y,z,n=(Sqrt[8Length[L]+1]-3)/2},
((List @@ Expand[(x+y+z)^n]) /. {x->u,y->v,z->w}).L]
Param[T_,L_][{x_,y_}]:=With[{p=BarycentricCoordinates[T][{x, y}]},P[L][p]]

Run the code below in a separate cell

(* Triangular bezier patch for n=3 *)
T=Polygon[{{1, 0}, {0, 1}, {0, 0}}];
L={P300,P210,P120,P030, P201,P111,P021, P102,P012, P003} \
={{3,0,0},{2.5,1,.5},{2,2,0},{1.5,3,0},
{2,0,1},{1.5,1,2},{1,2,.5}, {1,0,1},{.5,1,.5}, {0,0,0}};
SubT=Nest[Subdivide, T, 3];
Patch=Transform[Param[T, L]][SubT];
cpts={PointSize[0.02], Point/@L};
coord={AbsoluteThickness[1],
Line/@{{{0,0,0},{3.2,0,0}},{{0,0,0},{0,3.4,0}},{{0,0,0},{0,0,1.3}}}};
cpolygon={AbsoluteThickness[2],
Line[{P300,P210,P120,P030,P021,P012,P003,P102,P201,P300}],
Line[{P012,P102,P111,P120,P021,P111,P201,P210,P111,P012}]};
Show[Graphics3D[{cpolygon,cpts,coord,Patch}], Boxed->False, PlotRange->All,
ViewPoint->{2.620, -3.176, 2.236}];

Figure 6.31: A Triangular Bézier Surface Patch For n = 3.

When an object is digitized mechanically, the result is a large set of points. Such a
set can be converted to a set of triangles by the Delaunay triangulation algorithm.
This method produces a collection of edges that satisfy the following property: For
each edge we can find a circle containing the edge’s endpoints but not containing any
other points.

238 6. Bézier Approximation

of surface is due to Garry Helzer and it works by recursively subdividing the triangular
patch into subtriangles. Figure C.2 shows two triangular Bézier patches for n = 2 and
n = 4.

6.23.1 Scaffolding Construction

The scaffolding construction (or de Casteljau algorithm) of Section 6.6 can be directly
extended to triangular Bézier patches. The bivariate Bernstein polynomials that are the
basis of this type of surface are given by Equation (6.3), rewritten here

Bn
i,j,k(u, v, w) =

i+j+k=n∑
i,j,k≥0

(i + j + k)!
i!j!k!

uivjwk =
i+j+k=n∑
i,j,k≥0

n!
i!j!k!

uivjwk. (6.3)

Direct checking verifies that these polynomials satisfy the recursion relation

Bn
i,j,k(u, v, w) = uBn−1

i−1,jk(u, v, w) + vBn−1
i,j−1,k(u, v, w) + wBn−1

i,j,k−1(u, v, w), (6.40)

and this relation is the basis of the de Casteljau algorithm for the triangular Bézier
patch.

The algorithm starts with the original control points Pijk which are labeled P0
ijk.

The user selects a triplet (u, v, w) where u + v + w = 1 and performs the following step
n times to compute intermediate points Pr

i,j,k for r = 1, . . . , n and i + j + k = n − r

Pr
i,j,k = uPr−1

i+1,j,k + vPr−1
i,j+1,k + wPr−1

i,j,k+1.

The last step produces the single point Pn
000 that’s also the point produced by the

selected triplet (u, v, w) on the triangular Bézier patch.
The algorithm is illustrated here for n = 3. Figure 6.28 shows the 10 control

points. Assuming that the user has selected appropriate values for the parameter triplet
(u, v, w), the first step of the algorithm produces the six intermediate points for n = 2
(Figure 6.32)

P1
002 = uP0

102 + vP0
012 + wP0

003, P1
101 = uP0

201 + vP0
111 + wP0

102,

P1
200 = uP0

300 + vP0
210 + wP0

201, P1
011 = uP0

111 + vP0
021 + wP0

012,

P1
110 = uP0

210 + vP0
120 + wP0

111, P1
020 = uP0

120 + vP0
030 + wP0

021.

The second step produces the three intermediate points for n = 1

P2
001 = uP1

101 + vP1
011 + wP1

002,

P2
100 = uP1

200 + vP1
110 + wP1

101,

P2
010 = uP1

110 + vP1
020 + wP1

011.

And the third step produces the single point

P3
000 = uP2

100 + vP2
010 + wP2

001.

This is the point that corresponds to the particular triplet (u, v, w) on the triangular
patch defined by the 10 original control points.

6.23 Triangular Bézier Surfaces 239

003 102 201

012
111

021

030

120

210

300

××

× × ×

×

× ×

×

×

002 101 200

110011

020

001 100

010

Figure 6.32: Scaffolding in a Triangular Bézier Patch.

� Exercise 6.25: Illustrate this algorithm for n = 4. Start with the 15 original control
points and list the four steps of the scaffolding. The final result should be the single
point P4

000. Assume that the user has selected appropriate values for the parameter
triplet (u, v, w),

� Exercise 6.26: Assuming the values u = 1/6, v = 2/6, and w = 3/6, and the 10 control
points

(3, 3, 0)
(2, 2, 0) (4, 2, 1)

(1, 1, 0) (3, 1, 1) (5, 1, 2)
(0, 0, 0) (2, 0, 1) (4, 0, 2) (6, 0, 3)

apply the de Casteljau algorithm to compute point P3
000, then use Equation (6.37) to

compute surface point P(1/6, 2/6/3/6) and show that the two points are identical.

It can be shown that a general intermediate point Pr
i,j,k(u, v, w) obtained in the

scaffolding process can be computed directly from the control points without having to
go through the intermediate steps of the scaffolding construction, as follows

Pr
ijk(u, v, w) =

∑
a+b+c=r

Br
abc(u, v, w)Pi+a,j+b,k+c.

Example: For n = 3 and r = 1, point P1
002 is computed directly from the control

points as the sum

P1
002 =

∑
a+b+c=1

B1
abc(u, v, w)P0+a,0+b,2+c = uP102 + vP012 + wP003.

For n = 3 and r = 2, point P2
001 is computed directly as the sum

P2
001 =

∑
a+b+c=2

B2
abc(u, v, w)P0+a,0+b,1+c

= v2P021 + 2vwP012 + 2uvP111 + w2P003 + 2uwP102 + u2P201.

� Exercise 6.27: For n = 4, compute intermediate points P3
001 and P1

111 directly from
the control points.

240 6. Bézier Approximation

6.23.2 Subdivision

A triangular Bézier patch can be subdivided into three triangular Bézier patches by a
process similar to the one described in Section 6.8 for the Bézier curve. New control
points for the three new patches are computed in two steps. First, all the intermediate
points generated in the scaffolding steps are computed, then the original interior control
points are deleted. We illustrate this process first for n = 3 and n = 4, then for the
general case.

A triangular Bézier patch for n = 3 is defined by 10 control points, of which nine
are exterior. The user first selects the point inside the surface patch where the three
new triangles will meet. This is done by selecting a barycentric triplet (u, v, w). The
user then executes three steps of the scaffolding process to generate 6 + 3 + 1 = 10 new
intermediate points. The new points are added to the nine exterior control points and
the single interior point P111 is deleted. The resulting 19 points are divided into three
overlapping sets of 10 points each (Figure 6.33) that define three adjacent triangular
Bézier patches inside the original patch.

111

Figure 6.33: Subdividing the Triangular Bézier Patch for n = 3.

A triangular Bézier patch for n = 4 is defined by 15 control points, of which 12
are exterior. The user selects a barycentric triplet (u, v, w) and executes four steps of
the scaffolding process to generate 9 + 6 + 3 + 1 = 19 new intermediate points. The
new points are added to the 12 exterior control points and the three interior points are
deleted. The resulting 31 points are divided into three overlapping sets of 15 points each
that define three adjacent triangular Bézier patches inside the original patch.

� Exercise 6.28: Draw a diagram for this case, similar to Figure 6.33.

In general, a triangular Bézier patch is defined by 1
2 (n+1)(n+2) control points, of

which 1+2+2 + · · · + 2︸ ︷︷ ︸
n−2

+(n+1) = 3n points are exterior. The scaffolding construction

is then performed, creating 3(n − 1) points in step 1, 3(n − 2) points in step 2, and so
on, down to 3[n − (n − 1)] = 3 points in step n − 1 and one point in step n, for a total
of 3n

2 (n − 1) + 1 points. For n = 3 through 7, these numbers are 10, 19, 31, 46, and 64.
(Note that there are no interior points for n = 1 and n = 2.) These new points, added
to the original exterior points, provide 3n

2 (n − 1) + 1 + 3n = 3n
2 (n + 1) + 1 points. For

n = 3 through 7, these numbers are 19, 31, 46, 64, and 84. These numbers are enough

6.23 Triangular Bézier Surfaces 241

to construct three adjacent triangular Bézier patches defined by 1
2 (n + 1)(n + 2) control

points each.
The user always starts a subdivision by selecting a surface point P(u, v, w) where

the three new triangular patches will meet. A special case occurs if this point is located
on an edge of the original triangular patch (i.e., if one of u, v, or w is zero). In such
a case, the original triangle is subdivided into two, instead of three triangular patches.
This may be useful in cases where only a few extra points are required to reshape the
surface.

6.23.3 Degree Elevation

Section 6.9 describes how to elevate the degree of a Bézier curve. This section employs
the same ideas to elevate the degree of a triangular Bézier patch. Given a triangular
patch of order n defined by 1

2 (n + 1)(n + 2) control points Pijk, it is easy to compute a
new set of control points Qijk that represent the same surface as a triangular patch of
order n + 1. The basic relation is

i+j+k=n∑
i,j,k≥0

PijkBn
i,j,k(u, v, w) =

∑
i+j+k=n+1

QijkBn+1
i,j,k(u, v, w).

It can be shown, employing methods similar to those of Section 6.9, that the new points
Qijk are obtained from the original control points Pijk by

Qijk =
1

n + 1
[iPi−1,j,k + jPi,j−1,k + kPi,j,k−1] .

Example: We elevate the degree of a triangular Bézier patch from n = 2 to n = 3.
The 10 new control points are obtained from the six original ones by

Q003 = P002, Q102 = 1
3 (P002 + 2P101), Q201 = 1

3 (2P101 + P200), Q300 = P200,

Q012 = 1
3 (P002 + 2P011), Q111 = 1

3 (P011 + P101 + P110), Q210 = 1
3 (2P110 + P200),

Q021 = 1
3 (2P011 + P020), Q120 = 1

3 (P020 + 2P110), Q030 = P020.

It is possible to elevate the degree of a patch repeatedly. Each degree elevation
increases the number of control points and moves them closer to the actual surface.
At the limit, the number of control points approaches infinity and the net of points
approaches the surface patch.

242 6. Bézier Approximation

6.24 Joining Triangular Bézier Patches

The triangular Bézier surface patch is used in cases where a large surface happens to
be easier to break up into triangular patches than into rectangular ones. It is therefore
important to discover the conditions for smooth joining of these surface patches. The
conditions should be expressed in terms of constraints on the control points.

These constraints are developed here for cubic surface patches, but the principles
are the same for higher-degree patches. The idea is to calculate three vectors that
are tangent to the surface at the common boundary curve. Intuitively, the condition
for a smooth join is that these vectors be coplanar (although they can have different
magnitudes). We proceed in three steps:

Step 1. Figure 6.34 shows two triangular Bézier cubic patches, P(u, v, w) and
Q(u, v, w), joined at the common boundary curve P(0, v, w) = Q(0, v, w). Equation (6.39)
shows how the boundary curves can be expressed as Bézier curves. Based on this equa-
tion, our common boundary curve can be written

P(v) =
∑

j+k=3

3!
j! k!

vj(1 − v)3−jP0jk.

This is easy to differentiate with respect to v and the result is

dP(v)
dv

= 3v2(P030 − P021) + 6v(1 − v)(P021 − P012) + 3(1 − v)2(P012 − P003)

= 3v2B3 + 6v(1 − v)B2 + (1 − v)2B1, (6.41)

where each of the Bi vectors is defined as the difference of two control points. They can
be seen in the figure as thick arrows going from P003 to P030.

Step 2. Another vector is computed that’s tangent to the patch P(u, v, w) along
the common boundary. This is done by calculating the tangent vector to the surface
in the u direction and substituting u = 0. We first write the expression for the surface
patch without the parameter w (it can be eliminated because w = 1 − u − v):

P(u, v) =
∑

i+j+k=3

3!
i! j! k!

uivj(1 − u − v)kPijk.

This is easy to differentiate with respect to u and it yields

∂P(u, v)
∂u

∣∣∣∣
u=0

= 3v2(P120 − P021) + 6v(1 − v)(P111 − P012)

+ 3(1 − v)2(P102 − P003)

= 3v2A3 + 6v(1 − v)A2 + 3(1 − v)2A1,

(6.42)

where each of the Ai vectors is again defined as the difference of two control points.
They can be seen in the figure as thick arrows going, for example, from P003 to P102.

6.24 Joining Triangular Bézier Patches 243

P003
Q003

P012 Q012

P021
Q021

P030
Q030

P120

Q120

P111
Q111

P102

Q102

P201

Q201

P210

Q210

P300 Q300

v=0

w=0

u=0

v=0

w=0

P(u,v,w)
Q(u,v,w)

Figure 6.34: Joining Triangular Bézier Patches Smoothly.

Step 3. The third vector is the tangent to the other surface patch Q(u, v, w) along
the common boundary. It is expressed as

∂Q(u, v)
∂u

∣∣∣∣
u=0

= 3v2(Q120 − Q021) + 6v(1 − v)(Q111 − Q012)

+ 3(1 − v)2(Q102 − Q003)

= 3v2C3 + 6v(1 − v)C2 + 3(1 − v)2C1,

(6.43)

where each of the Ci vectors is again defined as the difference of two control points.
They can be seen in the figure as thick arrows going, for example, from Q003 to Q102.

The condition for smooth joining is that the vectors defined by Equations (6.41)
through (6.43) be coplanar for any value of v. This can be expressed as

3v2B3 + 6v(1 − v)B2 + (1 − v)2B1

= α(3v2A3 + 6v(1 − v)A2 + 3(1 − v)2A1)

+ β(3v2C3 + 6v(1 − v)C2 + 3(1 − v)2C1),

(6.44)

or, equivalently,

v2(B3 − αA3 − βC3) + 2v(1 − v)(B2 − αA2 − βC2) + (1 − v)2(B1 − αA1 − βC1) = 0.

244 6. Bézier Approximation

Since this should hold for any value of v, it can be written as the set of three equations:

B1 = αA1 + βC1,

B2 = αA2 + βC2,

B3 = αA3 + βC3.

(6.45)

Each of the three sets of vectors Bi, Ai, and Ci (i = 1, 2, 3) should therefore be coplanar.
This condition can be expressed for the control points by saying that each of the three
quadrilaterals given by

P003 = Q003, P102, P012 = Q012, Q102,

P012 = Q012, P111, P021 = Q021, Q111,

P021 = Q021, P120, P030 = Q030, Q120,

should be planar. In the special case α = β = 1, each quadrilateral should be a square.
Otherwise, each should have the same ratio of height to width.

The condition for such a set of three vectors to be coplanar is simple to derive.
Figure 6.35 shows a quadrilateral with four corner points A, B, C, and D. Two dashed
segments are shown, connecting A to B and C to D. The condition for a flat quadri-
lateral (four coplanar corners) is that the two segments intersect. The first segment can
be expressed parametrically as (1− u)A + uB and the second segment can be similarly
expressed as (1 − w)C + wD. If there exist u and w in the interval [0, 1] such that
(1 − u)A + uB = (1 − w)C + wD, then the quadrilateral is flat.

A
BD

C

Figure 6.35: A Quadrilateral.

6.24.1 Joining Rectangular and Triangular Bézier Patches

A smooth joining of a rectangular and a triangular surface patches, both of order n,
may be useful in many practical applications. Figure 6.36a shows the numbering of
the control points for the case n = 4. Points Qijk define the triangular patch and
points Pij define the rectangular patch. There are four pairs (in general, n pairs) of
identical points. The problem of joining surface patches of such different topologies
can be greatly simplified by elevating the degree (Section 6.23.3) of the two rightmost
columns of control points of the triangular patch. The column of four points Q0jk where
j + k = 3 is transformed to five points R0jk where j + k = 4, and the column of three
points Q1jk where 1 + j + k = 3 is transformed to four points R1jk where 1 + j + k = 4.
Figure 6.36b shows the new points and how, together with the column of four points
P10 through P13, they create four quadrilaterals. The condition for smooth joining of
the patches is that each quadrilateral be flat.

6.24 Joining Triangular Bézier Patches 245

Q003=P00
P10

Q012=P01
P11

Q021=P02 P12

Q030=P03
P13

Q120

Q111

Q102

Q201

Q210

Q300

R004

P10

R013

P11

R022

P12

R040

P13

R121

R112

R103

R031

R130

(a) (b)

Figure 6.36: Smooth Joining of Triangular and Rectangular Bézier Surface Patches.

In general, there are n + 1 such quadrilaterals, and each condition can be written
explicitly, as an equation, in terms of some of the points P1i, Q0jk, and Q1jk. A general
equation is

(1 − α)R0,i,n−i + αR0,i+1,n−i = (1 − β)R1,i,n−i + βP1,i, for i = 0, 1, . . . , n.

When the Rijk points are expressed in terms of the original Qijk points, this relation
becomes

1 − α

n
[iQ0,i−1,n−i + (n − i)Q0,i,n−i] +

α

n
[(i + 1)Q0,i,n−i + (n − i)Q0,i+1,n−i−1]

=
β

n
[Q0,i,n−i + iQ1,i−1,n−i + (n − i)Q1,i,n−i−1] + βP1i.

Note that the quantities α and β in these equations should be indexed by i. In general,
each quadrilateral has its own αi and βi, but the surface designer can start by guessing
values for these 2(n + 1) quantities, then use them as parameters and vary them (while
still keeping each quadrilateral flat), until the surface is molded to the desired shape.

If the rectangular patch is given and the triangular patch has to be designed and
manipulated to connect smoothly to it, then the n points Q1jk (the column to the left
of the common boundary) are the unknowns. Conversely, if we start from the triangular
patch and want to select control points for the rectangular patch, then the unknowns
are the n + 1 control points P1i (the column to the right of the common boundary).
[Liu and Hoschek 89] has a detailed analysis of the conditions for smooth connection of
various types of Bézier surface patches.

246 6. Bézier Approximation

6.25 Reparametrizing the Bézier Surface

We illustrate the method described here by applying it to the bicubic Bézier surface
patch. The expression for this patch is given by Equations (6.32) and (6.31):

P(u, w) =
3∑

i=0

3∑
j=0

B3,i(u)Pi,jB3,j(w)

=
3∑

i=0

3∑
j=0

(u3, u2, u, 1)MPM−1(w3, w2, w, 1)T ,

where M is the basis matrix

M =

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠

and P is the 4×4 matrix of control points

⎛
⎜⎝

P3,0 P3,1 P3,2 P3,3

P2,0 P2,1 P2,2 P2,3

P1,0 P1,1 P1,2 P1,3

P0,0 P0,1 P0,2 P0,3

⎞
⎟⎠ .

This surface patch can be reparametrized with the method of Section 6.10. We select
part of patch P(u, w), e.g., the part where u varies from a to b, and define it as a new
patch Q(u, w) where both u and w vary in the range [0, 1]. The method discussed here
shows how to obtain the control points Qij of patch Q(u, w) as functions of a, b and
points Pij .

B-splines are the defacto standard that drives today’s sophisticated computer
graphics applications. This method is also responsible for the developments that
have transformed computer-aided geometric design from the era of hand-built
models and manual measurements to fast computations and three-dimensional
renderings.

Suppose that we want to reparametrize the “left” part of P(u, w), i.e., the part
where 0 ≤ u ≤ 0.5. Applying the methods of Section 6.10, we select a = 0, b = 0.5 and
can write

P(u/2, w) = (u3, u2, u, 1)MBPM−1(w3, w2, w, 1)T ,

where B is given by Equation (6.22)

B =

⎛
⎜⎝

(1 − a)3 3(a − 1)2a 3(1 − a)a2 a3

(a − 1)2(1 − b) (a − 1)(−2a − b + 3ab) a(a + 2b − 3ab) a2b
(1 − a)(−1 + b)2 (b − 1)(−a − 2b + 3ab) b(2a + b − 3ab) ab2

(1 − b)3 3(b − 1)2b 3(1 − b)b2 b3

⎞
⎟⎠ .

6.25 Reparametrizing the Bézier Surface 247

Exercise 6.17 shows that selecting a = 0 and b = 0.5 reduces matrix B to

B =

⎛
⎜⎜⎝

1 0 0 0
1
2

1
2 0 0

1
4

1
2

1
4 0

1
8

3
8

3
8

1
8

⎞
⎟⎟⎠ .

The new control points for our surface patch are therefore

⎛
⎜⎝

Q3,0 Q3,1 Q3,2 Q3,3

Q2,0 Q2,1 Q2,2 Q2,3

Q1,0 Q1,1 Q1,2 Q1,3

Q0,0 Q0,1 Q0,2 Q0,3

⎞
⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
1
2

1
2 0 0

1
4

1
2

1
4 0

1
8

3
8

3
8

1
8

⎞
⎟⎟⎠
⎛
⎜⎝

P3,0 P3,1 P3,2 P3,3

P2,0 P2,1 P2,2 P2,3

P1,0 P1,1 P1,2 P1,3

P0,0 P0,1 P0,2 P0,3

⎞
⎟⎠

=

⎛
⎜⎜⎝

P3,0 P3,1
1
2P3,0 + 1

2P2,0
1
2P3,1 + 1

2P2,1
1
4P3,0 + 1

2P2,0 + 1
4P1,0

1
4P3,1 + 1

2P2,1 + 1
4P1,1

1
8P3,0 + 3

8P2,0 + 3
8P1,0 + 1

8P0,0
1
8P3,1 + 3

8P2,1 + 3
8P1,1 + 1

8P1,0

P3,2 P3,3
1
2P3,2 + 1

2P2,2
1
2P3,3 + 1

2P2,3
1
4P3,2 + 1

2P2,2 + 1
4P1,2

1
4P3,3 + 1

2P2,3 + 1
4P1,3

1
8P3,2 + 3

8P2,2 + 3
8P1,2 + 1

8P2,0
1
8P3,3 + 3

8P2,3 + 3
8P1,3 + 1

8P3,0

⎞
⎟⎟⎠ .

In general, suppose we want to reparametrize that portion of patch P(u, w) where
a ≤ u ≤ b and c ≤ w ≤ d. We can write

Q(u, w)
= P([b − a]u + a, [d − c]w + c)

=
(
([b−a]u+a)3, ([b−a]u+a)2, ([b−a]u+a), 1

)
M · P · M−1

⎛
⎜⎝

([d−c]w+c)3

([d−c]w+c)2

[d−c]w+c
1

⎞
⎟⎠

= (u3, u2, u, 1)AabM · P · MT · AT
cd(w

3, w2, w, 1)T

= (u3, u2, u, 1)M(M−1 · Aab · M)P(MT · AT
cd · (MT)−1)MT (w3, w2, w, 1)T

= (u3, u2, u, 1)M · Bab · P · BT
cd · MT (w3, w2, w, 1)T

= (u3, u2, u, 1)M · Q · MT (w3, w2, w, 1)T , (6.46)

where Bab = M−1 · Aab · M, BT
cd = MT · AT

cd · (MT)−1, Q = Bab · P · BT
cd, and

Aab =

⎛
⎜⎝

(b − a)3 0 0 0
3a(b − a)2 (b − a)2 0 0
3a2(b − a) 2a(b − a) b − a 0

a3 a2 a 1

⎞
⎟⎠ .

The elements of Q depend on a, b, c, and d, and the Pij ’s and are quite complex. They
can be produced by the following Mathematica code:

248 6. Bézier Approximation

B={{(1 - a)^3, 3*(-1 + a)^2*a, 3*(1 - a)*a^2, a^3},
{(-1 + a)^2*(1 - b), (-1 + a)*(-2*a - b + 3*a*b),
a*(a + 2*b - 3*a*b),
a^2*b}, {(1 - a)*(-1 + b)^2, (-1 + b)*(-a - 2*b + 3*a*b),
b*(2*a + b - 3*a*b), a*b^2},

{(1 - b)^3, 3*(-1 + b)^2*b, 3*(1 - b)*b^2, b^3}};
TB={{(1 - c)^3, (-1 + c)^2*(1 - d), (1 - c)*(-1 + d)^2,

(1 - d)^3},
{3*(-1 + c)^2*c, (-1 + c)*(-2*c - d + 3*c*d),
(-1 + d)*(-c - 2*d + 3*c*d), 3*(-1 + d)^2*d},
{3*(1 - c)*c^2, c*(c + 2*d - 3*c*d), d*(2*c + d - 3*c*d),
3*(1 - d)*d^2},
{c^3, c^2*d, c*d^2, d^3}};

P={{P30,P31,P32,P33},{P20,P21,P22,P23},
{P10,P11,P12,P13},{P00,P01,P02,P03}};
Q=Simplify[B.P.TB]

6.26 The Gregory Patch

John A. Gregory developed this method to extend the Coons surface patch. The Gregory
method, however, becomes very practical when it is applied to extend the bicubic Bézier
patch. Recall that such a patch is based on 4×4 = 16 control points (Figure 6.37a).
We can divide the 16 points into two groups: the interior points, consisting of the four
points P11, P12, P21, and P22, and the boundary points, consisting of the remaining 12
points. Experience shows that there are too few interior points to fine-tune the shape of
the patch. Moving point P11, for example, affects both the direction from P01 to P11,
and the direction from P10 to P11.

P00

P01

P10

P11

P02

P03

P12

P13

P20

P21

P22

P23

P33

P32

P31

P30

P111

P110

P121

P120

P221

P220

P210

P211

(a) (b)

Figure 6.37: (a) A Bicubic Bézier Patch. (b) A Gregory Patch.

6.26 The Gregory Patch 249

The idea in the Gregory patch is to split each of the four interior points into two
points. Hence, instead of point P11, for example, there should be two points P110 and
P111, both in the vicinity of the original P11. Moving P110 affects the shape of the patch
only in the direction from P10 to P110. The shape of the patch around point P01 is not
affected (at least, not significantly). Thus, the bicubic Gregory patch is defined by 20
points (Figure 6.37b), eight interior points and 12 boundary points. Points P110 and
P111 can initially be set equal to P11, then moved interactively in different directions to
obtain the right shape of the surface.

To calculate the surface, we first define 16 new points Qij , then use Equation (6.31)
with the new points as control points and with n = m = 3. Twelve of the Q points
are boundary points and are identical to the boundary P points. The remaining four
Q points are interior and each is calculated from a pair of interior P points. Their
definitions are the following

Q11(u, w) =
uP110 + wP111

u + w
, Q21(u, w) =

(1 − u)P210 + wP211

1 − u + w
,

Q12(u, w) =
uP120 + (1 − w)P121

u + 1 − w
, Q22(u, w) =

(1 − u)P220 + (1 − w)P221

1 − u + 1 − w
.

Note that Q11(u, w) is a barycentric sum of two P points, so it is well defined. Even
though u and w are independent and each is varied from 0 to 1 independently of the
other, the sum is always a point on the straight segment connecting P110 to P111. The
same is true for the other three interior Q points.

After calculating the new points, the Gregory patch is defined as the bicubic Bézier
patch

P(u, w) =
3∑

i=0

3∑
j=0

B3,i(w)Qi,jB3,j(u).

(Note that four of the 16 points Qi,j depend on the parameters u and w.)

6.26.1 The Gregory Tangent Vectors

The first derivatives of the Gregory patch are more complex than those of the bicubic
Bézier patch, because four of the control points depend on the parameters u and w. The
derivatives are

∂P(u, w)
∂u

=
3∑

i=0

3∑
j=0

dB3,i(u)
du

B3,j(w)Qi,j(u, w) +
3∑

i=0

3∑
j=0

B3,i(u)B3,j(w)
∂Qi,j(u, w)

∂u
,

∂P(u, w)
∂w

=
3∑

i=0

3∑
j=0

B3,i(u)
dB3,j(w)

dw
Qi,j(u, w) +

3∑
i=0

3∑
j=0

B3,i(u)B3,j(w)
∂Qi,j(u, w)

∂w
.

250 6. Bézier Approximation

Each derivative is the sum of two similar terms, each of which has the same format
as a derivative of the bicubic Bézier patch. Therefore, only one procedure is needed
to calculate the derivatives numerically. This procedure is called twice for each partial
derivative. The second call involves the derivatives of the control points, which are
shown here.

The 12 boundary Q points don’t depend on u or w, so their derivatives are zero.
The eight derivatives of the four interior points are

∂Q11(u, w)
∂u

=
w(P110 − P111)

(u + w)2
,

∂Q11(u, w)
∂w

=
u(P110 − P111)

(u + w)2
,

∂Q21(u, w)
∂u

=
w(P210 − P211)
(1 − u + w)2

,
∂Q21(u, w)

∂w
=

(1 − u)(P210 − P211)
(1 − u + w)2

,

∂Q12(u, w)
∂u

=
(1 − w)(P120 − P121)

(u + 1 − w)2
,

∂Q12(u, w)
∂w

=
u(P120 − P121)
(u + 1 − w)2

,

∂Q22(u, w)
∂u

=
(1 − w)(P220 − P221)

(1 − u + 1 − w)2
,

∂Q22(u, w)
∂w

=
(1 − u)(P220 − P221)

(1 − u + 1 − w)2
.

After the first derivatives (the tangent vectors) have been calculated numerically at
a point, they are used to numerically calculate the normal vector at the point.

It is interesting to observe that the Bernshtĕın polynomial of

degree 1, i.e., the function z(t) = (1 − t) z1 + t z2, is precisely the

mediation operator t[z1, z2] that we discussed in the previous chapter.

Donald Knuth, The MetafontBook (1986)

