
2
Linear Interpolation

In order to achieve realism, the many algorithms and techniques employed in computer
graphics have to construct mathematical models of curved surfaces, models that are
based on curves. It seems that straight line segments and flat surface patches, which are
simple geometric figures, cannot play an important role in achieving realism, yet they
turn out to be useful in many instances. A smooth curve can be approximated by a
set of short straight segments. A smooth, curved surface can similarly be approximated
by a set of surface patches, each a small, flat polygon. Thus, this chapter discusses
straight lines and flat surfaces that are defined by points. The application of these
simple geometric figures to computer graphics is referred to as linear interpolation. The
chapter also presents two types of surfaces, bilinear and lofted, that are curved, but are
partly based on straight lines.

2.1 Straight Segments

We start with the parametric equation of a straight segment. Given any two points A
and C, the expression A + α(C−A) is the sum of a point and a vector, so it is a point
(see page 2) that we can denote by B. The vector C−A points from A to C, so adding
it to A results in a point on the line connecting A to C. Thus, we conclude that the
three points A, B, and C are collinear. Note that the expression B = A + α(C − A)
can be written B = (1 − α)A + αC, showing that B is a linear combination of A and
C with barycentric weights. In general, any of three collinear points can be written as
a linear combination of the other two. Such points are not independent.

We therefore conclude that given two arbitrary points P0 and P1, the parametric
representation of the line segment from P0 to P1 is

P(t) = (1 − t)P0 + tP1 = P0 + (P1 − P0)t = P0 + td, for 0 ≤ t ≤ 1. (2.1)
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The tangent vector of this line is the constant vector dP(t)
dt = P1−P0 = d, the direction

from P0 to P1.
If we think of Pi as the vector from the origin to

point Pi, then the figure on the right shows how the
straight line is obtained as a linear, barycentric combi-
nation of the two vectors P0 and P1, with coefficients
(1 − t) and t. We can think of this combination as
a vector that pivots from P0 to P1 while varying its
magnitude, so its tip always stays on the line.

The expression P0 + td is also useful. It describes
the line as the sum of the point P0 and the vector
td, a vector pointing from P0 to P1, whose magnitude
depends on t. This representation is useful in cases
where the direction of the line and one point on it are
known. Notice that varying t in the interval [−∞,+∞]
constructs the infinite line that contains P0 and P1.

P0 P1

2.1.1 Distance of a Point From a Line

Given a line in parametric form L(t) = P0 + tv (where v is a vector in the direction of
the line) and a point P, what is the distance between them? Assume that Q is the point
on L(t) that’s the closest to P. Point Q can be expressed as Q = L(t0) = P0 + t0v for
some t0. The vector from Q to P is P−Q. Since Q is the nearest point to P, this vector
should be perpendicular to the line. Thus, we end up with the condition (P−Q)•v = 0
or (P − P0 − t0v) • v = 0, which is satisfied by

t0 =
(P − P0) • v

v • v
.

Substituting this value of t0 in the line equation gives

Q = P0 +
(P − P0) • v

v • v
v. (2.2)

The distance between Q and P is the magnitude of vector P − Q.
This method always works since vector v cannot be zero (otherwise there would be

no line).
In the two-dimensional case, the line can be represented explicitly as y = ax+b and

the problem can be easily solved with just elementary trigonometry. Figure 2.1 shows
a general point P = (Px, Py) at a distance d from a line y = ax + b. It is easy to see
that the vertical distance e between the line and P is |Py −aPx − b|. We also know from
trigonometry that

1 = sin2 α + cos2 α = tan2 α cos2 α + cos2 α = cos2 α(1 + tan2 α),

implying

cos2 α =
1

1 + tan2 α
.
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We therefore get

d = e cos α = e
√

cos2 α =
e√

1 + tan2 α
=

|Py − aPx − b|√
1 + a2

. (2.3)

P=(Px,Py)

ed

y=ax+b(Px,aPx+b)

α

α

α
Py−aPx−b

x

y

Figure 2.1: Distance Between P and y = ax + b.

� Exercise 2.1: Many mathematics problems can be solved in more than one way and
this problem is a good example. It is easy to solve by approaching it from different
directions. Suggest some approaches to the solution.

A man who boasts about never changing his views is a man who’s decided always to
travel in a straight line—the kind of idiot who believes in absolutes.

—Honoré de Balzac, Père Goriot, 1834

2.1.2 Intersection of Lines

Here is a simple, fast algorithm for finding the intersection point(s) of two line segments.
Assuming that the two segments P1 + α(P2 − P1) and P3 + β(P4 − P3) are given
[Equation (2.1)], their intersection point satisfies

P1 + α(P2 − P1) = P3 + β(P4 − P3),

or
α(P2 − P1) − β(P4 − P3) + (P1 − P3) = 0.

This can also be written αA + βB + C = 0, where A = P2 − P1, B = P3 − P4, and
C = P1 − P3. The solutions are

α =
ByCx − BxCy

AyBx − AxBy
, β =

AxCy − AyCx

AyBx − AxBy
.

The calculation of A, B, and C requires six subtractions. The calculation of α and
β requires three subtractions, six multiplications (since the denominators are identical),
and two divisions.
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Example: To calculate the intersection of the line segment from P1 = (−1, 1) to
P2 = (1,−1) with the line segment from P3 = (−1,−1) to P4 = (1, 1), we first calculate

A = P2 − P1 = (2,−2), B = P3 − P4 = (−2,−2), C = P1 − P3 = (0, 2).

Then calculate
α =

0 + 4
4 + 4

=
1
2
, β =

4 − 0
4 + 4

=
1
2
.

The lines intersect at their midpoints.
Example: The line segment from P1 = (0, 0) to P2 = (1, 0) and the line segment

from P3 = (2, 0) to P4 = (2, 1) don’t intersect. However, the calculation shows the
values of α and β necessary for them to intersect,

A = P2 − P1 = (1, 0), B = P3 − P4 = (0,−1), C = P1 − P3 = (−2, 0),

yields

α =
2 − 0
0 + 1

= 2, β =
0 − 0
0 + 1

= 0.

The lines would intersect at α = 2 (i.e., if we extend the first segment to twice its length
beyond P2) and β = 0 (i.e., point P3).

� Exercise 2.2: How can we identify overlapping lines (i.e., the case of infinitely many
intersection points) and parallel lines (no intersection points)? See Figure 2.2.

Parallel

Overlapping

Figure 2.2: Parallel and Overlapped Lines.

The description of right lines and circles, upon which geometry is founded, belongs
to mechanics. Geometry does not teach us to draw these lines, but requires them to
be drawn.

—Isaac Newton, 1687.
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2.2 Polygonal Surfaces

A polygonal surface consists of a number of flat faces, each a polygon. A polygon in
such a surface is typically a triangle, because the three points of a triangle are always
on the same plane. With higher-order polygons, the surface designer should make sure
that all the corners of the polygon are on the same plane.

Each polygon is a collection of vertices (the points defining it) and edges (the lines
connecting the points). Such a surface is easy to display, either as a wire frame or as a
solid surface. In the former case, the edges of all the polygons should be displayed. In
the latter case, all the points in a polygon are assigned the same color and brightness.
They are all assumed to reflect the same amount of light, since the polygon is flat and
has only one normal vector. As a result, a polygonal surface shaded this way appears
angular and unnatural, but there is a simple method, known as Gouraud’s algorithm
[Gouraud 71], that smooths out the reflections from the individual polygons and makes
the entire polygonal surface look curved.

Three methods are described for representing such a surface in memory:

1. Explicit polygons. Each polygon is represented as a list

(
(x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)

)
of its vertices, and it is assumed that there is an edge from point 1 to point 2, from 2 to
3, and so on, and also an edge from point n to point 1.

This representation is simple but has two disadvantages:
I. A point may be shared by several polygons, so several copies have to be stored.

If the user decides to modify the point, all its copies have to be located and updated.
This is a minor problem, because an edge is rarely shared by more than two polygons.

II. An edge may also be shared by several polygons. When displaying the surface,
such an edge will be displayed several times, slowing down the entire process.

2. Polygon definition by pointers. There is one list

V =
(
(x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)

)
of all the vertices of the surface. A polygon is represented as a list of pointers, each
pointing to a vertex in V. Hence, P = (3, 5, 7, 10) implies that polygon P consists of
vertices 3, 5, 7, and 10 in V. Problem II still exists.

3. Explicit edges. List V is as before, and there is also an edge list

E = ( (v1, v6, p3), (v5, v7, p1, p3, p6, p8), . . .).

Each element of E represents an edge. It contains two pointers to the vertices of the edge
followed by pointers to all the polygons that share the edge. Each polygon is represented
by a list of pointers to E, for example, P1 = (e1, e4, e5). Problem II still exists, but it is
minor.
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2.2.1 Polygon Planarity

Given a polygon defined by points P1, P2, . . . , Pn, we use the scalar triple product
[Equation (1.7)] to test for polygon planarity (i.e., to check whether all the polygon’s
vertices Pi are on the same plane). Such a test is necessary only if n > 3. We select P1

as the “pivot” point and calculate the n− 1 pivot vectors vi = Pi −P1 for i = 2, . . . , n.
Next, we calculate the n− 3 scalar triple products vi • (v2 × v3) for i = 4, . . . , n. If any
of these products are nonzero, the polygon is not planar. Note that limited accuracy
on some computers may cause an otherwise null triple product to come out as a small
floating-point number.

� Exercise 2.3: Consider the polygon defined by the four points P1 = (1, 0, 0), P2 =
(0, 1, 0), P3 = (1, a, 1), and P4 = (0,−a, 0). For what values of a will it be planar?

2.2.2 Plane Equations

A polygonal surface consists of flat polygons (often triangles). To calculate the normal
to a polygon, we first need to know the polygon’s equation. The implicit equation of
a flat plane is Ax + By + Cz + D = 0. It seems that we need four equations in order
to calculate the four unknown coefficients A, B, C, and D, but it turns out that three
equations are enough. Assuming that the three points Pi = (xi, yi, zi), i = 1, 2, 3, are
given, we can write the four equations

Ax + By + Cz + D = 0,

Ax1 + By1 + Cz1 + D = 0,

Ax2 + By2 + Cz2 + D = 0,

Ax3 + By3 + Cz3 + D = 0.

The first equation is true for any point (x, y, z) on the plane. We cannot solve this
system of four equations in four unknowns, but we know that it has a solution if and
only if its determinant is zero. The expression below assumes this and also expands the
determinant by its top row:

0 =

∣∣∣∣∣∣∣
x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣
=x

∣∣∣∣∣∣
y1 z1 1
y2 z2 1
y3 z3 1

∣∣∣∣∣∣− y

∣∣∣∣∣∣
x1 z1 1
x2 z2 1
x3 z3 1

∣∣∣∣∣∣+ z

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ .
This expression is of the form Ax + By + Cz + D = 0 where

A =

∣∣∣∣∣∣
y1 z1 1
y2 z2 1
y3 z3 1

∣∣∣∣∣∣ B = −
∣∣∣∣∣∣
x1 z1 1
x2 z2 1
x3 z3 1

∣∣∣∣∣∣ C =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ D = −
∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ .
(2.4)
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� Exercise 2.4: Calculate the expression of the plane containing the z axis and passing
through the point (1, 1, 0).

� Exercise 2.5: In the plane equation Ax + By + Cz + D = 0, if D = 0, then the
plane passes through the origin. Assuming D �= 0, we can write the same equation as
x/a + y/b + z/c = 1, where a = −D/A, b = −D/B, and c = −D/C. What is the
geometrical interpretation of a, b, and c?

We operate with nothing but things which do not exist, with lines, planes, bodies,
atoms, divisible time, divisible space—how should explanation even be possible when
we first make everything into an image, into our own image!

—Friedrich Nietzsche

In some practical situations, the normal to the plane as well as one point on the
plane, are known. It is easy to derive the plane equation in such a case.

We assume that N is the (known) normal vector to the plane, P1 is a known point,
and P is any point in the plane. The vector P−P1 is perpendicular to N, so their dot
product N • (P − P1) equals zero. Since the dot product is associative, we can write
N • P = N • P1. The dot product N • P1 is just a number, to be denoted by s, so we
obtain

N • P = s or Nxx + Nyy + Nzz − s = 0. (2.5)

Equation (2.5) can now be written as Ax + By + Cz + D = 0, where A = Nx, B = Ny,
C = Nz, and D = −s = −N • P1. The three unknowns A, B, and C are therefore the
components of the normal vector and D can be calculated from any known point P1

on the plane. The expression N • P = s is a useful equation of the plane and is used
elsewhere in this book.

� Exercise 2.6: Given N = (1, 1, 1) and P1 = (1, 1, 1), calculate the plane equation.

Note that the direction of the normal in this case is unimportant. Substituting
(−A,−B,−C) for (A, B, C) would also change the sign of D, resulting in the same
equation. However, the direction of the normal is important when the surface is to be
shaded. To be used for the calculation of reflection, the normal has to point outside the
surface. This has to be verified by the user, since the computer has no idea of the shape
of the surface and the meaning of “inside” and “outside.” In the case where a plane is
defined by three points, the direction of the normal can be specified by arranging the
three points (in the data structure in memory) in a certain order.

It is also easy to derive the equation of a plane when three points on the plane, P1,
P2, and P3, are known. In order for the points to define a plane, they should not be
collinear. We consider the vectors r = P2 − P1 and s = P3 − P1 a local coordinate
system on the plane. Any point P on the plane can be expressed as a linear combination
P = ur + ws, where u and w are real numbers. Since r and s are local coordinates on
the plane, the position of point P relative to the origin is expressed as (Figure 2.3)

P(u, w) = P1 + ur + ws, −∞ < u, w < ∞. (2.6)



56 2. Linear Interpolation

P1

P3

P

r

urs

ws
P2

Figure 2.3: Three Points on a Plane.

� Exercise 2.7: Given the three points P1 = (3, 0, 0), P2 = (0, 3, 0), and P3 = (0, 0, 3),
write the equation of the plane defined by them.

2.2.3 Space Division

An infinite plane divides the entire three-dimensional space into two parts. We can call
them “outside” and “inside” (or “above” and “below”), and define the outside direction
as the direction pointed to by the normal. Using the plane equation, N • P = s, it
is possible to tell if a given point Pi lies inside, outside, or on the plane. All that’s
necessary is to examine the sign of the dot product N • (Pi −P), where P is any point
on the plane, different from Pi.

This dot product can also be written |N| |Pi−P| cos θ, where θ is the angle between
the normal N and the vector Pi − P. The sign of the dot product equals the sign of
cos θ, and Figure 2.4a shows that for −90◦ < θ < 90◦, point Pi lies outside the plane,
for θ = 90◦, point Pi lies on the plane, and for θ > 90◦, Pi lies inside the plane.

The regular division of the plane into congruent figures evoking an association in the
observer with a familiar natural object is one of these hobbies or problems. . . . I have
embarked on this geometric problem again and again over the years, trying to throw
light on different aspects each time. I cannot imagine what my life would be like if
this problem had never occurred to me; one might say that I am head over heels in
love with it, and I still don’t know why.

—M. C. Escher

(a) (b)

(Pi−P)

P

NPi

Pi

Pi

a
b

θ

Inside (below)

Outside (above)

Figure 2.4: (a) Space Division. (b) Turning On a Polygon.
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2.2.4 Turning Around on a Polygon

When moving along the edges of a polygon from vertex to vertex, we make a turn at
each vertex. Sometimes, the “sense” of the turn (left or right) is important. However,
the terms “left” and “right” are relative, depending on the location of the observer,
and are therefore ambiguous. Consider Figure 2.4b. It shows two edges, a and b, of a
“thick” polygon, with two arrows pointing from a to b. Imagine each arrow to be a bug
crawling on the polygon. The bug on the top considers the turn from a to b a left turn,
while the bug crawling on the bottom considers the same turn to be a “right” turn.

It is therefore preferable to define terms such as “positive turn” and “negative turn,”
that depend on the polygon and on the coordinate axes, but not on the position of any
observer. To define these terms, consider the plane defined by the vectors a and b (if
they are parallel, they don’t define any plane, but then there is no sense talking about
turning from a to b). The cross product a × b is a vector perpendicular to the plane.
It can point in the direction of the normal N to the plane, or in the opposite direction.
In the former case, we say that the turn from a to b is positive; in the latter case, the
turn is said to be negative.

To calculate the sense of the turn, simply check the sign of the triple scalar product
N • (a × b). A positive sign implies a positive turn.

� Exercise 2.8: Why?

2.2.5 Convex Polygons

Given a polygon, we select two arbitrary points on its edges and connect them with a
straight line. If for any two such points the line is fully contained in the polygon, then
the polygon is called convex. Another way to define a convex polygon is to say that a
line can intersect such a polygon at only two points (unless the line is identical to one
of the edges or it grazes the polygon at one point).

The sense of a turn (positive or negative) can also serve to define a convex polygon.
When traveling from vertex to vertex in such a polygon all turns should have the same
sense. They should all be positive or all negative. In contrast, when traveling along a
concave polygon, both positive and negative turns must be made (Figure 2.5).

Convex Concave

Figure 2.5: Convex and Concave Polygons.

We can think of a polygon as a set of points in two dimensions. The concept of a
set of points, however, exists in any number of dimensions. A set of points is convex if it
satisfies the definition regardless of the number of dimensions. One important concept



58 2. Linear Interpolation

associated with a set of points is the convex hull of the set. This is the set of “extreme”
points that satisfies the following: the set obtained by connecting the points of the
convex hull contains all the points of the set. (A simple, two-dimensional analogy is to
consider the points nails driven into a board. A rubber band placed around all the nails
and stretched will identify the points that constitute the convex hull.)

2.2.6 Line and Plane Intersection

Given a plane N •P = s and a line P = P1 + td [Equation (2.1)], it is easy to calculate
their intersection point. We simply substitute the value of P in the plane equation to
obtain N • (P1 + td) = s. This results in t = (s − N • P1)/(N • d). Thus, we compute
the value of t and substitute it in the line equation, to get the point of intersection.
Such a process is important in ray tracing, an important rendering algorithm where the
intersections of light rays and polygons are computed all the time.

� Exercise 2.9: The intersection of a line parallel to a plane is either the entire line (if
the line happens to be in the plane) or is empty. How do we distinguish these cases from
the equation above?

2.2.7 Triangles

A polygonal surface is often constructed of triangles. A triangle is flat but finite, whereas
the plane equation describes an infinite plane. We therefore need to modify this equation
to describe only the area inside a given triangle

Given any three noncollinear points P1, P2, and P3 in three dimensions, we first
derive the equation of the (infinite) plane defined by them. Following that, we limit
ourselves to just that part of the plane that’s inside the triangle. We start with the two
vectors (P2 −P1) and (P3 −P1). They can serve as local coordinate axes on the plane
(even though they are not normally perpendicular), with point P1 as the local origin.
The linear combination u(P2 − P1) + w(P3 − P1), where both u and w can take any
real values, is a vector on the plane. To get the coordinates of an arbitrary point on the
plane, we simply add point P1 to this linear combination (recall that the sum of a point
and a vector is a point). The resulting plane equation is

P1 + u(P2 − P1) + w(P3 − P1) = P1(1 − u − w) + P2u + P3w. (2.7)

To limit the area covered to just the triangle whose corners are P1, P2, and P3, we note
that Equation (2.7) yields

P1, when u = 0 and w = 0,

P2, when u = 1 and w = 0,

P3, when u = 0 and w = 1.

The entire triangle can therefore be obtained by varying u and w under the conditions
u ≥ 0, w ≥ 0, and u + w ≤ 1.

� Exercise 2.10: Given the three points P1 = (10,−5, 4), P2 = (8,−4, 3.2), and P3 =
(8, 4, 3.2), derive the equation of the triangle defined by them.
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If triangles had a God, He’d have three sides.
—Yiddish proverb

� Exercise 2.11: Given the three points P1 = (10,−5, 4), P2 = (8,−4, 3.2), and P3 =
(12,−6, 4.8), calculate the triangle defined by them.

For more information, see [Triangles 04] or [Kimberling 94].

2.3 Bilinear Surfaces

A flat polygon is the simplest type of surface. The bilinear surface is the simplest
nonflat (curved) surface because it is fully defined by means of its four corner points.
It is discussed here because its four boundary curves are straight lines and because the
coordinates of any point on this surface are derived by linear interpolations. Since this
patch is completely defined by its four corner points, it cannot have a very complex
shape. Nevertheless it may be highly curved. If the four corners are coplanar, the
bilinear patch defined by them is flat.

Let the corner points be the four distinct points P00, P01, P10, and P11. The top
and bottom boundary curves are straight lines and are easy to calculate (Figure 2.6).
They are P(u, 0) =

(
P10 − P00

)
u + P00 and P(u, 1) =

(
P11 − P01

)
u + P01.

P00
P10

P11

P01

P(0,w)

P(1,w)

P(u,1)

P(u0,1)

P(u,0)

P(u0,0)

P(u0,w)

Figure 2.6: A Bilinear Surface.

To linearly interpolate between these boundary curves, we first calculate two cor-
responding points P(u0, 0) and P(u0, 1), one on each curve, then connect them with a
straight line P(u0, w). The two points are

P(u0, 0) = (P10 − P00)u0 + P00 and P(u0, 1) = (P11 − P01)u0 + P01,

and the straight segment connecting them is

P(u0, w) = (P(u0, 1) − P(u0, 0))w + P(u0, 0)

=
[
(P11 − P01)u0 + P01 −

(
(P10 − P00)u0 + P00

)]
w

+ (P10 − P00)u0 + P00.
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The expression for the entire surface is obtained when we release the parameter u from
its fixed value u0 and let it vary. The result is:

P(u, w) = P00(1 − u)(1 − w) + P01(1 − u)w + P10u(1 − w) + P11uw

=
1∑

i=0

1∑
j=0

B1i(u)PijB1j(w), (2.8)

= [B10(u), B11(u)]
[
P00 P01

P10 P11

] [
B10(w)
B11(w)

]
,

where the functions B1i(t) are the Bernstein polynomials of degree 1, introduced in
Section 6.16. This implies that the bilinear surface is a special case of the rectangular
Bézier surface, introduced in the same section. (The Bernstein polynomials crop up in
unexpected places.) Mathematically, the bilinear surface is a hyperbolic paraboloid (see
answer to exercise 2.12). Its parametric expression is linear in both u and w.

The expression P(t) = (1 − t)P1 + tP2 has already been introduced. This is the
straight segment from point P1 to point P2 expressed as a blend (or a barycentric sum)
of the points with the two weights (1 − t) and t. Since B10(t) = 1 − t and B11(t) = t,
this expression can also be written in the form

[B10(t), B11(t)]
[
P1

P2

]
. (2.9)

The reader should notice the similarity between Equations (2.8) and (2.9). The former
expression is a direct extension of the latter and is a simple example of the technique
of Cartesian product, discussed in Section 1.9, which is used to extend many curves to
surfaces.

Figure 2.7 shows a bilinear surface together with the Mathematica code that pro-
duced it. The coordinates of the four corner points and the final, simplified expression
of the surface are also included. The figure illustrates the bilinear nature of this surface.
Every line in the u or in the w directions on this surface is straight, but the surface itself
is curved.

Example: We select the four points P00 = (0, 0, 1), P10 = (1, 0, 0), P01 = (1, 1, 1),
and P11 = (0, 1, 0) (Figure 2.7) and apply Equation (2.8). The resulting surface patch
is

P (u, w) = (0, 0, 1)(1 − u)(1 − w) + (1, 1, 1)(1 − u)w + (1, 0, 0)u(1 − w) + (0, 1, 0)uw

=
(
u + w − 2uw, w, 1 − u

)
. (2.10)

It is easy to check the expression by substituting u = 0, 1 and w = 0, 1, which reduces
the expression to the four corner points. The tangent vectors can easily be calculated.
They are

∂P(u, w)
∂u

= (1 − 2w, 0,−1),
∂P(u, w)

∂w
= (1 − 2u, 1, 0).

The first vector lies in the xz plane, and the second lies in the xy plane.



2.3 Bilinear Surfaces 61

(* a bilinear surface patch *)
Clear[bilinear,pnts,u,w];
<<:Graphics:ParametricPlot3D.m;
pnts=ReadList["Points",{Number,Number,Number}, RecordLists->True];
bilinear[u_,w_]:=pnts[[1,1]](1-u)(1-w)+pnts[[1,2]]u(1-w) \
+pnts[[2,1]]w(1-u)+pnts[[2,2]]u w;
Simplify[bilinear[u,w]]
g1=Graphics3D[{AbsolutePointSize[5], Table[Point[pnts[[i,j]]],{i,1,2},{j,1,2}]}];
g2=ParametricPlot3D[bilinear[u,w],{u,0,1,.05},{w,0,1,.05}, Compiled->False,
DisplayFunction->Identity];
Show[g1,g2, ViewPoint->{0.063, -1.734, 2.905}];
{{0, 0, 1}, {1, 1, 1}, {1, 0, 0}, {0, 1, 0}}
{u + w - 2 u w, u, 1 - w}

Figure 2.7: A Bilinear Surface.

Example: The four points P00 = (0, 0, 1), P10 = (1, 0, 0), P01 = (0.5, 1, 0), and
P11 = (1, 1, 0) are selected and Equation (2.8) is applied to them. The resulting surface
patch is (Figure 2.8)

P (u, w) = (0, 0, 1)(1 − u)(1 − w) + (0.5, 1, 0)(1 − u)w + (1, 0, 0)u(1 − w) + (1, 1, 0)uw

=
(
0.5(1 − u)w + u, w, (1 − u)(1 − w)

)
. (2.11)

Note that the y coordinate is simply w. This means that points with the same w value,
such as P(0.1, w) and P(0.5, w) have the same y coordinate and are therefore located on
the same horizontal line. Also, the z coordinate is a simple function of u and w, varying
from 1 (when u = w = 0) to 0 as we move toward u = 1 or w = 1.

The boundary curves are very easy to calculate from Equation (2.11). Here are two
of them

P(0, w) = (0.5w, w, 1 − w), P(u, 1) = (0.5(1 − u) + u, 1, 0).

The tangent vectors can also be obtained from Equation (2.11)

∂P(u, w)
∂u

= (−0.5w + 1, 0, w − 1),
∂P(u, w)

∂w
= (0.5(1 − u), 1, u − 1). (2.12)
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(* Another bilinear surface example *)
ParametricPlot3D[{0.5(1-u)w+u,w,(1-u)(1-w)}, {u,0,1},{w,0,1}, Compiled->False,
ViewPoint->{-0.846, -1.464, 3.997}, DefaultFont->{"cmr10", 10}];

Figure 2.8: A Bilinear Surface.

The first is a vector in the xz plane, while the second is a vector in the y = 1 plane. The
following two tangent values are especially simple: ∂P(u,1)

∂u = (0.5, 0, 0) and ∂P(1,w)
∂w =

(0, 1, 0). The first is a vector in the x direction and the second is a vector in the y
direction.

Finally, we compute the normal vector to the surface. This vector is normal to the
surface at any point, so it is perpendicular to the two tangent vectors ∂P(u, w)/∂u and
∂P(u, w)/∂w and is therefore the cross-product [Equation (1.5)] of these vectors. The
calculation is straightforward:

N(u, w) =
∂P
∂u

× ∂P
∂w

= (1 − w, 0.5(1 − u), 1 − 0.5w). (2.13)

There are two ways of satisfying ourselves that Equation (2.13) is the correct expression
for the normal:

1. It is easy to prove, by directly calculating the dot products, that the normal
vector of Equation (2.13) is perpendicular to both tangents of Equation (2.12).

2. A closer look at the coordinates of our points shows that three of them have a z
coordinate of zero and only P00 has z = 1. This means that the surface approaches a
flat xy surface as one moves away from point P00. It also means that the normal should
approach the z direction when u and w move away from zero, and it should move away
from that direction when u and w approach zero. It is, in fact, easy to confirm the
following limits:

lim
u,w→1

N(u, w) = (0, 0, 0.5), lim
u,w→0

N(u, w) = (1, 0.5, 1).

� Exercise 2.12: (1) Calculate the bilinear surface for the points (0, 0, 0), (1, 0, 0), (0, 1, 0),
and (1, 1, 1). (2) Guess the explicit representation z = F (x, y) of this surface. (3) What
curve results from the intersection of this surface with the plane z = k (parallel to the
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xy plane). (4) What curve results from the intersection of this surface with a plane
containing the z axis?

The scale, properly speaking, does not permit the measure of the intelligence, because
intellectual qualities are not superposable, and therefore cannot be measured as linear
surfaces are measured.

—Alfred Binet (on his new IQ test)

Example: This is the third example of a bilinear surface. The four points P00 =
(0, 0, 1), P10 = (1, 0, 0), and P01 = P11 = (0, 1, 0) create a triangular surface patch
(Figure 2.9) because two of them are identical. The surface expression is

P (u, w) = (0, 0, 1)(1−u)(1−w) + (0, 1, 0)(1−u)w + (1, 0, 0)u(1−w) + (0, 1, 0)uw

=
(
u(1 − w), w, (1 − u)(1 − w)

)
.

Notice that the boundary curve P(u, 1) degenerates to the single point (0, 1, 0), i.e., it
does not depend on u.

0 0.5 1

00.51
0

0.25

0.5

0.75

1
1

x
y z

(* A Triangular bilinear surface example *)
ParametricPlot3D[{u(1-w),w,(1-u)(1-w)}, {u,0,1},{w,0,1}, Compiled->False,
ViewPoint->{-2.673, -3.418, 0.046}, DefaultFont->{"cmr10", 10}];

Figure 2.9: A Triangular Bilinear Surface.

� Exercise 2.13: Calculate the tangent vectors and the normal vector of this surface.

� Exercise 2.14: Given the two points P00 = (−1,−1, 0) and P10 = (1,−1, 0), consider
them the endpoints of a straight segment L1.

(1) Construct the endpoints of the three straight segments L2, L3, and L4. Each
should be translated one unit above its predecessor on the y axis and should be rotated
60◦ about the y axis, as shown in Figure 2.10. Denote the four pairs of endpoints by
P00P10, P01P11, P02P12 and P03P13.



64 2. Linear Interpolation

(2) Calculate the three bilinear surface patches

P1(u, w) =P00(1 − u)(1 − w) + P01(1 − u)w + P10u(1 − w) + P11uw,

P2(u, w) =P01(1 − u)(1 − w) + P02(1 − u)w + P11u(1 − w) + P12uw,

P3(u, w) =P02(1 − u)(1 − w) + P03(1 − u)w + P12u(1 − w) + P13uw.
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Figure 2.10: Four Straight Segments for Exercise 2.14.

2.4 Lofted Surfaces

This kind of surface patch is curved, but it belongs in this chapter because it is linear
in one direction. It is bounded by two arbitrary curves [that we denote by P(u, 0) and
P(u, 1)] and by two straight segments P(0, w) and P(1, w) connecting them. Surface
lines in the w direction are therefore straight, whereas each line in the u direction is a
blend of P(u, 0) and P(u, 1). The blend of the two curves is simply (1 − w)P(u, 0) +
wP(u, 1), and this blend, which is linear in w, constitutes the expression of the surface

P(u, w) = (1 − w)P(u, 0) + wP(u, 1). (2.14)

This expression is linear in w, implying straight lines in the w direction. Moving in the
u direction, we travel on a curve whose shape depends on the value of w. For w0 ≈ 0,
the curve P(u, w0) is close to the boundary curve P(u, 0). For w0 ≈ 1, it is close to the
boundary curve P(u, 1). For w0 = 0.5, it is 0.5P(u, 0) + 0.5P(u, 1), an equal mixture of
the two.

Note that this kind of surface is fully defined by specifying the two boundary curves.
The four corner points are implicit in these curves. These surfaces are sometimes called
ruled, because straight lines are an important part of their description. This is also
the reason why this type of surface is sometimes defined as follows: a surface is a lofted
surface if and only if through every point on it there is a straight line that lies completely
on the surface.
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This definition implies that any cylinder is a lofted surface, but a little thinking
shows that even a bilinear surface is lofted.

Example: We start with the six points P1 = (−1, 0, 0), P2 = (0,−1, 0), P3 =
(1, 0, 0), P4 = (−1, 0, 1), P5 = (0,−1, 1), and P6 = (1, 0, 1). Because of the special
coordinates of the points (and because of the way we will compute the boundary curves),
the surface is easy to visualize (Figure 2.11). This helps to intuitively make sense of the
expressions for the tangent vectors and the normal. Note especially that the left and
right edges of the surface are in the xz plane, whereas we will see that all the other lines
in the w direction have a small negative y component.

x

y

zP4

P5

P6

P3
P2

P1

Figure 2.11: A Lofted Surface.

We proceed in six steps as follows:
1. As the top boundary curve, P(u, 1), we select the quadratic polynomial passing

through the top three points P4, P5, and P6. There is only one such curve and it has
the form P(u, 1) = A + Bu + Cu2, where the coefficients A, B, and C have to be
calculated. We use the fact that the curve passes through the three points to set up
the three equations P(0, 1) = P4, P(0.5, 1) = P5, and P(1, 1) = P6, that are written
explicitly as

A + B×0 + C×02 = (−1, 0, 1),

A + B×0.5 + C×0.52 = (0,−1, 1),

A + B×1 + C×12 = (1, 0, 1).
These are easy to solve and result in A = (−1, 0, 1), B = (2,−4, 0), and C = (0, 4, 0).
The top boundary curve is therefore P(u, 1) =

(
2u − 1, 4u(u − 1), 1

)
.

2. As the bottom boundary curve, we select the quadratic Bézier curve [Equa-
tion (6.6)] defined by the three points P1, P2, and P3. The curve is

P(u, 0) =
2∑

i=0

B2i(u)Pi+1

= (1 − u)2(−1, 0, 0) + 2u(1 − u)(0,−1, 0) + u2(1, 0, 0)

=
(
2u − 1,−2u(1 − u), 0

)
.

3. The expression of the surface is immediately obtained

P(u, w) = P(u, 0)(1 − w) + P(u, 1)w =
(
2u − 1, 2u(u − 1)(1 + w), w

)
.
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(Notice that it does not pass through P2.)
4. The two tangent vectors are also easy to compute

∂P
∂u

=
(
2, 2(2u − 1)(1 + w), 0

)
,

∂P
∂w

=
(
0, 2u(u − 1), 1

)
.

5. The normal, as usual, is the cross-product of the tangents and is given by
N(u, w) =

(
2(2u − 1)(1 + w),−2, 4u(u − 1)

)
.

6. The most important feature of this example is the ease with which the expressions
of the tangents and the normal can be visualized. This is possible because of the simple
shape and orientation of the surface (again, see Figure 2.11). The reader should examine
the expressions and make sure the following points are clear:

The two boundary curves are very similar. One difference between them is, of
course, the x and z coordinates. However, the only important difference is in the y
coordinate. Both curves are quadratic polynomials in u, but although P(u, 1) passes
through the three top points, P(u, 0) passes only through the first and last points.

The tangent in the u direction, ∂P/∂u, features z = 0; it is a vector in the xy plane.
At the bottom of the surface, where w = 0, it changes direction from (2,−2, 0) (when
u = 0) to (2, 2, 0) (when u = 1), both 45◦ directions in the xy plane. However, at the
top, where w = 1, the tangent changes direction from (2,−4, 0) to (2, 4, 0), both 63◦

directions. This is because the top boundary curve goes deeper in the y direction.

The tangent in the w direction, ∂P/∂w features x = 0; it is a vector in the yz
plane. Its z coordinate is a constant 1, and its y coordinate varies from 0 (on the left,
where u = 0), to −0.5 (in the middle, where u = 0.5), and back to 0 (on the right,
where u = 1). On the left and right edges of the surface, this vector is therefore vertical
(0, 0, 1). In the middle, it is (0,−0.5, 1), making a negative half-step in y for each step
in z.

The normal vector features y = −2 with a small z component. It therefore points
mostly in the negative y direction, and a little in x. At the bottom (w = 0), it varies from
(−2,−2, 0), to (0,−2,−1),* and ends in (2,−2, 0). At the top (w = 1), it varies from
(−4,−2, 0), to (0,−2,−1), and ends in (4,−2, 0). The top boundary curve is deeper,
causing the tangent to be more in the y direction and the normal to be more in the x
direction, than on the bottom boundary curve.

� Exercise 2.15: (a) Given the two three-dimensional points P1 = (−1,−1, 0) and P2 =
(1,−1, 0), calculate the straight line from P1 to P2. This will become the bottom
boundary curve of a lofted surface.

(b) Given the three three-dimensional points P4 = (−1, 1, 0), P5 = (0, 1, 1), and
P6 = (1, 1, 0), calculate the quadratic polynomial P(t) = At2 + Bt + C that passes
through them. This will become the top boundary curve of the surface.

(c) Calculate the expression of the lofted surface patch and the coordinates of its
center point P(0.5, 0.5).

* it has a small z component, reflecting the fact that the surface is not completely
vertical at u = 0.5.
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2.4.1 A Double Helix

This example illustrates how the well-known double helix can be derived as a lofted
surface. The two-dimensional parametric curve (cos t, sin t) is, of course, a circle (of
radius one unit, centered on the origin). As a result, the three-dimensional curve
(cos t, sin t, t) is a helix spiraling around the z axis upward from the origin. The similar
curve (cos(t + π), sin(t + π), t) is another helix, at a 180◦ phase difference with the first.
We consider these the two boundary curves of a lofted surface and create the entire
surface as a linear interpolation of the two curves. Hence,

P(u, w) = (cos u, sin u, u)(1 − w) + (cos(u + π), sin(u + π), u)w,

where 0 ≤ w ≤ 1, and u can vary in any range. The two curves form a double helix, so
the surface looks like a twisted ribbon. Figure 2.12 shows such a surface, together with
the code that generated it.
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Clear[loftedSurf]; (* double helix as a lofted surface *)
<<:Graphics:ParametricPlot3D.m;
loftedSurf:={Cos[u],Sin[u],u}(1-w)+{Cos[u+Pi],Sin[u+Pi],u}w;
ParametricPlot3D[loftedSurf, {u,0,Pi,.1},{w,0,1}, Compiled->False,
Ticks->False, ViewPoint->{-2.640, -0.129, 0.007}]

Figure 2.12: The Double Helix as a Lofted Surface.

� Exercise 2.16: Calculate the expression of a cone as a lofted surface. Assume that the
vertex of the cone is located at the origin, and the base is a circle of radius R, centered
on the z axis and located on the plane z = H.

� Exercise 2.17: Derive the expression for a square pyramid where each face is a lofted
surface. Assume that the base is a square, 2a units on a side, centered about the origin
on the xy plane. The top is point (0, 0, H).
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2.4.2 A Cusp

Given the two curves P1(u) = (8, 4, 0)u3−(12, 9, 0)u2+(6, 6, 0)u+(−1, 0, 0) and P2(u) =
(2u−1, 4u(u−1), 1), the lofted surface defined by them is easy to calculate. Notice that
the curves pass through the points P1(0) = (−1, 0, 0), P1(0.5) = (0, 5/4, 0), P1(1) =
(1, 1, 0), P2(0) = (−1, 0, 1), P2(0.5) = (0,−1, 1), and P2(1) = (1, 0, 1), which makes it
easy to visualize the surface (Figure 2.13). The tangent vectors of the two curves are

Pu
1 (u) = (24, 12, 0)u2 − (24, 18, 0)u + (6, 6, 0), Pu

2 (u) = (2, 8u − 4, 0).

Notice that Pu
1 (0.5) equals (0, 0, 0), which implies that P1(u) has a cusp at u = 0.5.

The lofted surface defined by the two curves is

P(u, w) =
(
4u2(2u−3)(1−w)−4uw+6u−1, u2(4u−9)(1−w)+4u2w−10uw+6u, w

)
.
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(* Another lofted surface example *)
<<:Graphics:ParametricPlot3D.m
Clear[ls];
ls=Simplify[{8u^3-12u^2+6u-1,4u^3-9u^2+6u,0}(1-w)+{2u-1,4u(u-1),1}w];
ParametricPlot3D[ls, {u,0,1,.1},{w,0,1,.1}, Compiled->False,
ViewPoint->{-0.139, -1.179, 1.475}, DefaultFont->{"cmr10", 10},
AspectRatio->Automatic, Ticks->{{0,1},{0,1},{0,1}}];

Figure 2.13: A Lofted Surface Patch.

Now, look Gwen, y’know if we’re gonna keep living together in this loft, we’re gonna
have to have some rules.

—Leah Remini (as Terri Reynolds) in Fired Up (1997)
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� Exercise 2.18: Calculate the tangent vector of this surface in the u direction, and
compute its value at the cusp.

LERP, a quasi-acronym for Linear Interpolation, used

as a verb or noun for the operation. “Bresenham’s algorithm

lerps incrementally between the two endpoints of the line.”

The New Hacker’s Dictionary version 4.2.2, a.k.a., The Jargon File


