
7
B-Spline Approximation
B-spline methods for curves and surfaces were first proposed in the 1940s but were
seriously developed only in the 1970s, by several researchers, most notably R. Riesenfeld.
They have been studied extensively, have been considerably extended since the 1970s,
and much is currently known about them. The designation “B” stands for Basis, so
the full name of this approach to curve and surface design is the basis spline. This
chapter discusses the important types of B-spline curves and surfaces, including the
most versatile one, the nonuniform rational B-spline (NURBS, Section 7.14).

The B-spline curve overcomes the main disadvantages of the Bézier curve which are
(1) the degree of the Bézier curve depends on the number of control points, (2) it offers
only global control, and (3) individual segments are easy to connect with C1 continuity,
but C2 is difficult to obtain. The B-spline curve features local control and any desired
degree of continuity. To obtain Cn continuity, the individual spline segments have to be
polynomials of degree n. The B-spline curve is an approximating curve and is therefore
defined by control points. However, in addition to the control points, the user has to
specify the values of certain quantities called “knots.” They are real numbers that offer
additional control over the shape of the curve. The basic approach taken in the first
part of this chapter ignores the knots, but they are introduced in Section 7.8 and their
effect on the curve is explored.

There are several types of B-splines. In the uniform (also called periodic) B-spline
(Sections 7.1 and 7.2), the knot values are uniformly spaced and all the weight functions
have the same shape and are shifted with respect to each other. In the nonuniform
B-spline (Section 7.11), the knots are specified by the user and the weight functions
are generally different. There is also an open uniform B-spline (Section 7.10), where
the knots are not uniform but are specified in a simple way. In a rational B-spline
(Section 7.14), the weight functions are in the form of a ratio of two polynomials. In a
nonrational B-spline, they are polynomials in t. The B-spline is an approximating curve
based on control points, but there is also an interpolating version that passes through
the points (Section 7.7). Section 7.4 shows how tension can be added to the B-spline.



252 7. B-Spline Approximation

B-splines are mathematically more sophisticated than other types of splines, so we
start with a gentle introduction. We first use basic assumptions to derive the expressions
for the quadratic and cubic uniform B-splines directly and without mentioning knots.
We then show how to extend the derivations to uniform B-splines of any order. Following
this, we discuss a different, recursive formulation of the weight functions of the uniform,
open uniform, and nonuniform B-splines.

7.1 The Quadratic Uniform B-Spline

We start with the quadratic uniform B-spline. We assume that n + 1 control points,
P0, P1,. . . , Pn, are given and we want to construct a spline curve where each segment
Pi(t) is a quadratic parametric polynomial based on three points, Pi−1, Pi, and Pi+1.
We require that the segments connect with C1 continuity (only cubic and higher-degree
polynomial segments can have C2 or higher continuities) and that the entire curve has
local control. To achieve all this, we have to give up something and we elect to give up
the requirement that a segment will pass through its first and last control points. We
denote the start and end points of segment Pi(t) by Ki and Ki+1, respectively and we
call them joint points, or just joints. These points are still unknown and will have to
be determined. Figure 7.1a shows two quadratic segments P1(t) and P2(t) defined by
the four control points P0, P1, P2, and P3. The first segment goes from joint K1 to
joint K2 and the second segment goes from joint K2 to joint K3, where the joints are
drawn tentatively and will have to be determined and redrawn. Note that each segment
is defined by three control points, so its control polygon has two edges. The first spline
segment is defined only by P0, P1, and P2, so any changes in P3 will not affect it. This
is how local control is achieved in a B-spline.

P1 P2

P3

K3

K2

K1

P0

P1(t)
P2(t)

P1

P2

P3

K3

K2

K1

P0

P1(t)
P2(t)

(a) (b)

Figure 7.1: The Quadratic Uniform B-Spline.

We use the usual notation for the two segments

Pi(t) = (t2, t, 1)M

⎛
⎝Pi−1

Pi

Pi+1

⎞
⎠ , i = 1, 2, (7.1)



7.1 The Quadratic Uniform B-Spline 253

where M is the 3×3 basis matrix whose nine elements have to be calculated. We define
three functions a(t), b(t), and c(t) by:

(t2, t, 1)M = (t2, t, 1)

⎛
⎝ a2 b2 c2

a1 b1 c1

a0 b0 c0

⎞
⎠

= (a2t
2 + a1t + a0, b2t

2 + b1t + b0, c2t
2 + c1t + c0)

=
(
a(t), b(t), c(t)

)
.

(7.2)

The nine elements of M are determined from the following three requirements:
1. The two segments should meet at a common joint and their tangent vectors

should be equal at that point. This is expressed as

P1(1) = P2(0), Pt
1(1) = Pt

2(0) (7.3)

and produces the explicit equations (where a dot indicates differentiation with respect
to t)

a(1)P0 + b(1)P1 + c(1)P2 = a(0)P1 + b(0)P2 + c(0)P3,

ȧ(1)P0 + ḃ(1)P1 + ċ(1)P2 = ȧ(0)P1 + ḃ(0)P2 + ċ(0)P3.

Since the control points Pi are arbitrary and can be any points, we can rewrite these
two equations in the form

a(1) = 0, ȧ(1) = 0, for P0,

b(1) = a(0), ḃ(1) = ȧ(0), for P1,

c(1) = b(0), ċ(1) = ḃ(0), for P2,

0 = c(0), 0 = ċ(0), for P3.

Using the notation of Equation (7.2), this can be written

a2 + a1 + a0 = 0, 2a2 + a1 = 0,

b2 + b1 + b0 = a0, 2b2 + b1 = 0,

c2 + c1 + c0 = b0, 2c2 + c1 = 0,
(7.4)

0 = c0, 0 = c1.

This requirement produces eight equations for the nine unknown matrix elements.
2. The entire curve should be independent of the particular coordinate system

used, which implies that the weight functions of each segment should be barycentric,
i.e., a(t) + b(t) + c(t) ≡ 1. This condition can be written explicitly as

a2 + b2 + c2 = 0, a1 + b1 + c1 = 0, a0 + b0 + c0 = 1, (7.5)

and these add three more equations.



254 7. B-Spline Approximation

We now have 11 equations for the nine unknowns, but it is easy to show that only
nine of the 11 are independent. The sum of the first two of Equations (7.5) equals
the sum of the three equations in the right column of Equation (7.4). Taking this into
account, the equations can be solved uniquely, yielding

a2 = 1/2, a1 = −1, a0 = 1/2,

b2 = −1, b1 = 1, b0 = 1/2,

c2 = 1/2, c1 = 0, c0 = 0.

The general quadratic B-spline segment, Equation (7.1), can now be written as

Pi(t) =
1
2
(t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝Pi−1

Pi

Pi+1

⎞
⎠

=
1
2
(t2 − 2t + 1)Pi−1 +

1
2
(−2t2 + 2t + 1)Pi +

t2

2
Pi+1, i = 1, 2.

(7.6)

We are now in a position to determine the start and end points, Ki and Ki+1 of
segment i. They are

Ki = Pi(0) =
1
2
(Pi−1 + Pi), Ki+1 = Pi(1) =

1
2
(Pi + Pi+1).

Thus, the quadratic spline segment starts in the middle of the straight segment Pi−1Pi

and ends at the middle of the straight segment PiPi+1, as shown in Figure 7.1b.
The tangent vector of the general quadratic B-spline segment is easily obtained

from Equation (7.6). It is

Pt
i(t) =

1
2
(2t, 1, 0)

⎡
⎣ 1 −2 1
−2 2 0

1 1 0

⎤
⎦
⎡
⎣Pi−1

Pi

Pi+1

⎤
⎦ = (t− 1)Pi−1 +(−2t+1)Pi + tPi+1. (7.7)

The tangent vectors at both ends of the segment are therefore

Pt(0) = Pi − Pi−1, Pt(1) = Pi+1 − Pi,

i.e., each of them points in the direction of one of the edges of the control polygon of
the spline segment.

Since a quadratic spline segment is a polynomial of degree 2, we require continuity
of the first derivative only. It is easy to show that the second derivative of our segment
is Pi−1 −2Pi +Pi+1. It is constant for a segment but is different for different segments.

Equation (8.4) of Section 8.2 shows a relation between the quadratic B-spline and
Bézier curves. A similar relation between the corresponding cubic curves is illustrated
in Section 7.5.



7.1 The Quadratic Uniform B-Spline 255

Example: Given the four control points P0 = (1, 0), P1 = (1, 1), P2 = (2, 1),
and P3 = (2, 0) (Figure 7.2), the first quadratic spline segment is obtained from Equa-
tion (7.6)

P1(t) =
1
2
(t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠

=
1
2
(t2 − 2t + 1)(1, 0) +

1
2
(−2t2 + 2t + 1)(1, 1) +

t2

2
(2, 1)

= (t2/2 + 1,−t2/2 + t + 1/2).

It starts at joint K1 = P1(0) = (1, 1
2 ) and ends at joint K2 = P1(1) = (3

2 , 1).

P1 P2

P3

K1 K3

K2

P0

P1
(t) P

2(t)

x

y

Figure 7.2: A Quadratic Uniform B-Spline Example.

The tangent vector of this segment is obtained from Equation (7.7)

Pt
1(t) =

1
2
(2t, 1, 0)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠

= (t − 1)(1, 0) + (−2t + 1)(1, 1) + t(2, 1)
= (t, 1 − t).

Thus, the first segment starts going in direction Pt
1(0) = (0, 1) (straight up) and ends

going in direction Pt
1(1) = (1, 0) (to the right).

� Exercise 7.1: Calculate the second segment, its tangent vector, and joint point K3.

Closed Quadratic B-Splines: Closed curves are sometimes needed and a closed
B-spline curve is easy to construct. Given the usual n + 1 control points, we extend
them cyclically to obtain the n + 3 points

Pn, P0, P1, P2, . . . , Pn−1, Pn, P0

and compute the curve by applying Equation (7.6) to the n + 1 geometry vectors⎛
⎝Pn

P0

P1

⎞
⎠

⎛
⎝P0

P1

P2

⎞
⎠

⎛
⎝P1

P2

P3

⎞
⎠ · · ·

⎛
⎝Pn−2

Pn−1

Pn

⎞
⎠

⎛
⎝Pn−1

Pn

P0

⎞
⎠ .



256 7. B-Spline Approximation

Example: Given the four control points P0 = (1, 0), P1 = (1, 1), P2 = (2, 1), and
P3 = (2, 0) of the previous example, it is easy to close the curve by calculating the two
additional segments

P0(t) =
1
2
(t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝P3

P0

P1

⎞
⎠

=
1
2
(t2 − 2t + 1)(2, 0) +

1
2
(−2t2 + 2t + 1)(1, 0) +

t2

2
(1, 1)

= (t2/2 − t + 3/2, t2/2).

P3(t) =
1
2
(t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝P2

P3

P0

⎞
⎠

=
1
2
(t2 − 2t + 1)(2, 1) +

1
2
(−2t2 + 2t + 1)(2, 0) +

t2

2
(1, 0)

= (−t2/2 + 2, t2/2 − t + 1/2).

The four segments connect the four joint points (1, 1/2), (3/2, 1), (2, 1/2), (3/2, 0) and
back to (1, 1/2).

TheB stands for “basis”.

7.2 The Cubic Uniform B-Spline

This curve is again defined by n + 1 control points and it consists of spline segments
Pi(t), each a PC defined by four control points Pi−1, Pi, Pi+1, and Pi+2. The general
form of segment i is therefore

Pi(t) = (t3, t2, t, 1)M

⎛
⎜⎝

Pi−1

Pi

Pi+1

Pi+2

⎞
⎟⎠ , (7.8)

where M is a 4 × 4 matrix whose 16 elements have to be determined by translating
the constraints on the curve into 16 equations and solving them. The constraints are
(1) two segments should meet with C2 continuity and (2) the entire curve should be
independent of the particular coordinate system. As in the quadratic case, we give up
the requirement that a segment Pi(t) starts and ends at control points, and we denote its
extreme points by Ki and Ki+1. These joints can be computed as soon as the expression
for the segment is derived. Figure 7.3a shows a tentative design for two cubic segments.



7.2 The Cubic Uniform B-Spline 257

K1 K3

K2

P0

P1

P2

P3

P4

P1(t
) P

2(t)

(a)

K1
K3

K2

P0

P1

P2

P3

P4

P1(t
)

P2(t)

(b)

Figure 7.3: The Cubic Uniform B-Spline.

We start the derivation by writing

(t3, t2, t, 1)M = (t3, t2, t, 1)

⎛
⎜⎝

a3 b3 c3 d3

a2 b2 c2 d2

a1 b1 c1 d1

a0 b0 c0 d0

⎞
⎟⎠

= (a3t
3 + a2t

2 + a1t + a0, b3t
3 + b2t

2 + b1t + b0,

c3t
3 + c2t

2 + c1t + c0, d3t
3 + d2t

2 + d1t + d0)

=
(
a(t), b(t), c(t), d(t)

)
.

The first three constraints are expressed by

P1(1) = P2(0), Pt
1(1) = Pt

2(0), Ptt
1 (1) = Ptt

2 (0),

or, explicitly

a(1)P0 + b(1)P1 + c(1)P2 + d(1)P3 = a(0)P1 + b(0)P2 + c(0)P3 + d(0)P4,

ȧ(1)P0 + ḃ(1)P1 + ċ(1)P2 + ḋ(1)P3 = ȧ(0)P1 + ḃ(0)P2 + ċ(0)P3 + ḋ(0)P4,

ä(1)P0 + b̈(1)P1 + c̈(1)P2 + d̈(1)P3 = ä(0)P1 + b̈(0)P2 + c̈(0)P3 + d̈(0)P4.

Using the definitions of a(t) and its relatives, this can be written explicitly as

a3 + a2 + a1 + a0 = 0, 3a3 + 2a2 + a1 = 0, 6a3 + 2a2 = 0,

b3 + b2 + b1 + b0 = a0, 3b3 + 2b2 + b1 = a1, 6b3 + 2b2 = 2a2,

c3 + c2 + c1 + c0 = b0, 3c3 + 2c2 + c1 = b1, 6c3 + 2c2 = 2b2, (7.9)
d3 + d2 + d1 + d0 = c0, 3d3 + 2d2 + d1 = c1, 6d3 + 2d2 = 2c2,

0 = d0, 0 = d1, 0 = 2d2.

These are 15 equations for the 16 unknowns.
We already know from the quadratic case that the weight functions of each segment

should be barycentric, i.e., a(t) + b(t) + c(t) + d(t) ≡ 1. This condition can be written
explicitly as

a3 + b3 + c3 + d3 = 0, a2 + b2 + c2 + d2 = 0,

a1 + b1 + c1 + d1 = 0, a0 + b0 + c0 + d0 = 1,
(7.10)



258 7. B-Spline Approximation

and they add four more equations. We now have 19 equations, but only 16 of them
are independent, since the first three equations of Equation (7.10) can be obtained by
summing the first four equations of the left column of Equation (7.9). The system of
equations can therefore be uniquely solved and the solutions are

a3 = −1/6, a2 = 1/2, a1 = −1/2, a0 = 1/6,

b3 = 1/2, b2 = −1, b1 = 0, b0 = 2/3,

c3 = −1/2, c2 = 1/2, c1 = 1/2, c0 = 1/6,

d3 = 1/6, d2 = 0, d1 = 0, d0 = 0.

The cubic B-spline segment can now be expressed as

Pi(t) =
1
6
(t3, t2, t, 1)

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎞
⎟⎠
⎛
⎜⎝

Pi−1

Pi

Pi+1

Pi+2

⎞
⎟⎠

=
1
6
(−t3 + 3t2 − 3t + 1)Pi−1 +

1
6
(3t3 − 6t2 + 4)Pi

+
1
6
(−3t3 + 3t2 + 3t + 1)Pi+1 +

t3

6
Pi+2.

(7.11)

The two extreme points are therefore

Ki = Pi(0) =
1
6
(Pi−1 + 4Pi + Pi+1), and Ki+1 = Pi(1) =

1
6
(Pi + 4Pi+1 + Pi+2).

In order to interpret them geometrically, we write them as

Ki =
(

1
6
Pi−1 +

5
6
Pi

)
+

1
6

(Pi+1 − Pi) ,

Ki+1 =
(

1
6
Pi +

5
6
Pi+1

)
+

1
6

(Pi+2 − Pi+1) .

(7.12)

Point Ki is the sum of the point (1
6Pi−1 + 5

6Pi) and one-sixth of the vector (Pi+1−Pi).
Point Ki+1 has a similar interpretation. Both are shown in Figure 7.3b.

� Exercise 7.2: Show another way to interpret Pi(0) and Pi(1) geometrically.

Users, especially those familiar with Bézier curves, find it counterintuitive that the
B-spline curve does not start and end at its terminal control points. This “inconvenient”
feature can be modified—and the curve made to start and end at its extreme points—by
adding two phantom endpoints, P−1 and Pn+1, at both ends of the curve, and placing
those points at locations that would force the curve to start at P0 and end at Pn. The
calculation of this case is simple. The first segment starts at 1

6 [P−1 + 4P0 + P1]. This
value will equal P0 if we select P−1 = 2P0 − P1. Similarly, the last segment ends at
1
6 [Pn−1 + 4Pn + Pn+1] and this value equals Pn if we select Pn+1 = 2Pn − Pn−1.



7.2 The Cubic Uniform B-Spline 259

Adding phantom points adds two segments to the curve, but this has the advantage
that the tangents at the start and the end of the curve have known directions. The
former is in the direction from P0 to P1 and the latter is from Pn−1 to Pn (same as the
end tangents of a Bézier curve). The tangent vector at the start of the first segment is
1
2P−1 + 1

2P1 = P1 − P0, and similarly for the end tangent of the last segment.
The tangent vector of the general cubic B-spline segment is

Pt
i(t) =

1
6
(−3t2 + 6t − 3)Pi−1 +

1
6
(9t2 − 12t)Pi +

1
6
(−9t2 + 6t + 3)Pi+1 +

t2

2
Pi+2.

As a result, the extreme tangent vectors are

Pt
i(0) =

1
2
(Pi+1 − Pi−1), Pt

i(1) =
1
2
(Pi+2 − Pi). (7.13)

They have simple geometric interpretations.
The second derivative of the cubic segment is

Ptt
i (t) =

1
6
(−6t + 6)Pi−1 +

1
6
(18t − 12)Pi +

1
6
(−18t + 6)Pi+1 + tPi+2,

and it’s easy to see that Ptt
i (1) = Ptt

i+1(0) = Pi − 2Pi+1 + Pi+2, which proves the C2

continuity of this curve.

Example: We select the five points P0 = (0, 0), P1 = (0, 1), P2 = (1, 1),
P3 = (2, 1), and P4 = (2, 0). They have simple, integer coordinates to simplify the
computations. We use these points to construct two cubic B-spline segments. The first
one is given by Equation (7.11)

P1(t) =
1
6
(−t3 + 3t2 − 3t + 1)(0, 0) +

1
6
(3t3 − 6t2 + 4)(0, 1)

+
1
6
(−3t3 + 3t2 + 3t + 1)(1, 1) +

t3

6
(2, 1)

= (−t3/6 + t2/2 + t/2 + 1/6, t3/6 − t2/2 + t/2 + 5/6).

It starts at joint K1 = P1(0) = (1/6, 5/6) and ends at joint K2 = P1(1) = (1, 1). Notice
that these joint points can be verified from Equation (7.12). The tangent vector of this
segment is

Pt
1(t) =

1
6
(−3t2 + 6t − 3)(0, 0) +

1
6
(9t2 − 12t)(0, 1)

+
1
6
(−9t2 + 6t + 3)(1, 1) +

t2

2
(2, 1)

= (−t2/2 + t + 1/2, t2/2 − t + 1/2).

The two extreme tangents are Pt
1(0) = (1/2, 1/2) and Pt

1(1) = (1, 0). These can also be
verified by Equation (7.13). Figure 7.4 shows this segment and its successor (the dashed
curves).



260 7. B-Spline Approximation

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

(* B-spline example of 2 cubic segs and 3 quadr segs for 5 points *)
Clear[Pt,T,t,M3,comb,a,g1,g2,g3];
Pt={{0,0},{0,1},{1,1},{2,1},{2,0}};
(* first, 2 cubic segments (dashed) *)
T[t_]:={t^3,t^2,t,1};
M3={{-1,3,-3,1},{3,-6,3,0},{-3,0,3,0},{1,4,1,0}}/6;
comb[i_]:=(T[t].M3)[[i]] Pt[[i+a]];
g1=Graphics[{PointSize[.02], Point/@Pt}];
a=0;
g2=ParametricPlot[comb[1]+comb[2]+comb[3]+comb[4], {t,0,.95},
Compiled->False, PlotRange->All, DisplayFunction->Identity,
PlotStyle->AbsoluteDashing[{2,2}]];
a=1;
g3=ParametricPlot[comb[1]+comb[2]+comb[3]+comb[4], {t,0.05,1},
Compiled->False, PlotRange->All, DisplayFunction->Identity,
PlotStyle->AbsoluteDashing[{2,2}]];
(* Now the 3 quadratic segments (solid) *)
T[t_]:={t^2,t,1};
M2={{1,-2,1},{-2,2,0},{1,1,0}}/2;
comb[i_]:=(T[t].M2)[[i]] Pt[[i+a]];
a=0;
g4=ParametricPlot[comb[1]+comb[2]+comb[3], {t,0,.97},
Compiled->False, PlotRange->All, DisplayFunction->Identity];
a=1;
g5=ParametricPlot[comb[1]+comb[2]+comb[3], {t,0.03,.97},
Compiled->False, PlotRange->All, DisplayFunction->Identity];
a=2;
g6=ParametricPlot[comb[1]+comb[2]+comb[3], {t,0,1},
Compiled->False, PlotRange->All, DisplayFunction->Identity];
Show[g2,g3,g4,g5,g6,g1, PlotRange->All, DefaultFont->{"cmr10", 10},
DisplayFunction->$DisplayFunction];

Figure 7.4: Two Cubic (Dashed) and Three Quadratic (Solid) Segments of a B-spline.



7.2 The Cubic Uniform B-Spline 261

� Exercise 7.3: Calculate the second spline segment P2(t), its tangent vector, and joint
K3.

� Exercise 7.4: Use the five control points of the example above to construct the three
segments and determine the four joints of the quadratic uniform B-spline defined by the
points.

Exercise 7.4 shows that the same n + 1 control points can be used to construct a
quadratic or a cubic B-spline curve (or a B-spline curve of any order up to n + 1). This
is in contrast to the Bézier curve whose order is determined by the number of control
points. This is also the reason why both n and the degree of the polynomials that make
up the spline segments are needed to identify a B-spline. In practice, we use n and k
(the order) to identify a B-spline. The order is simply the degree plus 1. Thus, a B-
spline defined by five control points P0 through P4 can be of order 2 (linear, with four
segments), order 3 (quadratic, with three segments), order 4 (cubic, with two segments),
or order 5, (quintic, with one segment).

Figure 7.5a,b,c shows how a Bézier curve, a cubic B-spline, and a quadratic B-spline,
respectively, are attracted to their control polygons. We already know that these three
types of curves don’t have the same endpoints, so this figure is only qualitative. It only
shows how the various types of curves are attracted to their control points.

Collinear Points: Segment P2(t) of Exercise 7.4 depends on points P1, P2, and
P3 that are located on the line y = 1. This is why this segment is horizontal (and
therefore straight). We conclude that the B-spline can consist of curved and straight
segments connected with any desired continuity. All that’s necessary in order to have a
straight segment is to have enough collinear control points. In the case of a quadratic
B-spline, three collinear points will result in a straight segment that will connect to its
neighbors (curved or straight) with C1 continuity. In the case of a cubic B-spline, four
collinear points will result in a straight segment that will connect to its neighbors (curved
or straight) with C2 continuity, and similarly for higher-degree uniform B-splines.

A Closed Cubic B-Spline Curve: closing a cubic B-spline is similar to closing a
quadratic curve. Given a set of n+1 control points, we extend them cyclically to obtain
the n + 4 points

Pn, P0, P1, P2, . . . , Pn−1, Pn, P0, P1,

and compute the curve by applying Equation (7.11) to the n + 1 geometry vectors

⎛
⎜⎝

Pn

P0

P1

P2

⎞
⎟⎠

⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

⎛
⎜⎝

P1

P2

P3

P4

⎞
⎟⎠ · · ·

⎛
⎜⎝

Pn−2

Pn−1

Pn

P0

⎞
⎟⎠

⎛
⎜⎝

Pn−1

Pn

P0

P1

⎞
⎟⎠ .



262 7. B-Spline Approximation

(a)

(b)

(c)

Figure 7.5: A Comparison of (a) Bézier, (b) Cubic B-Spline, and (c)
Quadratic B-Spline Curves.



7.3 Multiple Control Points 263

7.3 Multiple Control Points

It is possible to have several identical control points and a set of identical points is
referred to as a multiple point. We use the uniform cubic B-spline [Equation (7.11)] as
an example, but higher-degree uniform B-splines behave similarly.

We start with a double control point. Consider the cubic segment P1(t) defined by
the four control points P0, P1 = P2, and P3. Its expression is

P1(t) =
1
6
(−t3 + 3t2 − 3t + 1)P0 +

1
6
(−3t2 + 3t + 5)P1 +

t3

6
P3,

which implies P1(0) =
1
6
P0 +

5
6
P1, P1(1) =

5
6
P1 +

1
6
P3.

This segment therefore starts and ends at the same points as the general cubic segment
and also has the same extreme tangent vectors. The difference is that it is strongly
attracted to the double point.

Next, we consider a triple point. The five control points P0, P1 = P2 = P3, and
P4 define the two cubic segments

P1(t) =
1
6
(−t3 + 3t2 − 3t + 1)P0 +

1
6
(t3 − 3t2 + 3t + 5)P1

= (1 − u)P0 + uP1, for u = (t3 − 3t2 + 3t + 5)/6,

P2(t) =
1
6
(−t3 + 6)P1 +

t3

6
P4

= (1 − w)P1 + wP4, for w = t3/6.

The parameter substitutions above show that these segments are straight (Figure 7.6).
The extreme points of the two segments are

P1(0) =
1
6
P0 +

5
6
P1, P1(1) = P1,

P2(0) = P1, P2(1) =
5
6
P1 +

1
6
P4,

showing that the segments meet at the triple control point.
In general, a cubic segment is attracted to a double control point and passes through

a triple control point. A degree-4 segment is attracted to double and triple control points
and passes through quadruple points, and similarly for higher-degree uniform segments.

The tangent vectors of the two cubic segments are

Pt
1(t) =

1
6
(−3t2 + 6t − 3)P0 +

1
6
(3t2 − 6t + 3)P1,

Pt
2(t) = − t2

2
P1 +

t2

2
P4,



264 7. B-Spline Approximation

yielding the extreme directions

Pt
1(0) =

1
2
(P1 − P0), Pt

1(1) = 0 · P0 + 0 · P1 = (0, 0),

Pt
2(0) = (0, 0), Pt

2(1) =
1
2
(P4 − P1).

Thus, the first segment starts in the direction from P0 to the triple point P1. The
second segment ends going in the direction from P1 to P4. However, at the triple point,
both tangents are indefinite, suggesting a cusp. It turns out that the two segments are
straight lines (Figure 7.6).

P1(t) P2(t)

P
3(t)

P4(t)P0

P7

P1=P2=P3

P4=P5=P6

Figure 7.6: A Triple Point.

� Exercise 7.5: Given the eight control points P0, P1 = P2 = P3, P4 = P5 = P6, and
P7, calculate the two cubic segments P3(t) and P4(t) and their start and end points
(Figure 7.6).

� Exercise 7.6: Show that a cubic B-spline segment passes through its first control point
if it is a triple point.

As a corollary, we deduce that a uniform cubic B-spline curve where every control
point is triple is a polyline.

Example: We consider the case where both terminal points are triple and there
are two other points in between. The total number of control points is eight and they
satisfy P0 = P1 = P2 and P5 = P6 = P7. The five cubic spline segments are

P1(t) =
1
6
(−t3 + 6)P0 +

t3

6
P3,

P2(t) =
1
6
(2t3 − 3t2 − 3t + 5)P0 +

1
6
(−3t3 + 3t2 + 3t + 1)P3 +

t3

6
P4,

P3(t) =
1
6
(−t3 + 3t2 − 3t + 1)P0 +

1
6
(3t3 − 6t2 + 4)P3

+
1
6
(−3t3 + 3t2 + 3t + 1)P4 +

t3

6
P5, (7.14)

P4(t) =
1
6
(−t3 + 3t2 − 3t + 1)P3 +

1
6
(3t3 − 6t2 + 4)P4



7.4 Cubic B-Splines with Tension 265

+
1
6
(−2t3 + 3t2 + 3t + 1)P5,

P5(t) =
1
6
(−t3 + 3t2 − 3t + 1)P4 +

1
6
(t3 − 3t2 + 3t + 5)P5.

It is easy to see that they satisfy P1(0) = P0 and P5(1) = P5 and that they meet at
the four points

5
6
P0 +

1
6
P3,

1
6
P0 +

4
6
P3 +

1
6
P4,

1
6
P3 +

4
6
P4 +

1
6
P5, and

1
6
P4 +

5
6
P5.

If we want to keep the two extreme points as triples, we can edit this curve only by
moving the two interior points P3 and P4. Moving P4 affects the last four segments,
and moving P3 affects the first four segments. This type of curve is therefore similar
to a Bézier curve in that it starts and ends at its extreme control points and it features
only limited local control.

� Exercise 7.7: Given the eight control points P0 = P1 = P2 = (1, 0), P3 = (2, 1),
P4 = (4, 0), and P5 = P6 = P7 = (4, 1), use Equation (7.14) to calculate the cubic
uniform B-spline curve defined by these points and compare it to the Bézier curve
defined by the points.

7.4 Cubic B-Splines with Tension

Adding a tension parameter to the uniform cubic B-spline is similar to tension in the
cardinal spline (Section 5.4). We use Hermite interpolation [Equation (4.7)] to calculate
a PC segment that starts and ends at the same points as a cubic B-spline and whose
extreme tangent vectors point in the same directions as those of the cubic B-spline, but
whose magnitudes are controlled by a tension parameter s. Substituting 1

6P0+ 4
6P1+ 1

6P2

and 1
6P1 + 4

6P2 + 1
6P3 for the terminal points and s(P2 − P0) and s(P3 − P1) for the

extreme tangents, we write Equation (4.7) and manipulate it such that it ends up looking
like a uniform cubic B-spline segment, Equation (7.11).

P(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1

0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎜⎝

1
6P0 + 4

6P1 + 1
6P2

1
6P1 + 4

6P2 + 1
6P3

s(P2 − P0)
s(P3 − P1)

⎞
⎟⎟⎠

=
1
6

[(
t3(2 − s) + t2(2s − 3) − st + 1

)
P0 +

(
t3(6 − s) + t2(s − 9) + 4

)
P1

+
(
t3(s − 6) + t2(9 − 2s) + st + 1

)
P2 +

(
t3(s − 2) + t2(3 − s)

)
P3

]

=
1
6
(t3, t2, t, 1)

⎛
⎜⎝

2 − s 6 − s s − 6 s − 2
2s − 3 s − 9 9 − 2s 3 − s
−s 0 s 0
1 4 1 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ . (7.15)



266 7. B-Spline Approximation

A quick check verifies that Equation (7.15) reduces to the uniform cubic B-spline
segment, Equation (7.11), for s = 3. This value is therefore considered the “neutral”
or “standard” value of the tension parameter s. Since s controls the length of the
tangent vectors, small values of s should produce the effects of higher tension and, in
the extreme, the value s = 0 should result in indefinite tangent vectors and in the spline
segment becoming a straight line. To show this, we rewrite Equation (7.15) for s = 0:

P(t) =
1
6
(t3, t2, t, 1)

⎛
⎜⎝

2 6 −6 −2
−3 −9 9 3

0 0 0 0
1 4 1 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

=
1
6
(2t3 − 3t2 + 1)P0 +

1
6
(6t3 − 9t2 + 4)P1

+
1
6
(−6t3 + 9t2 + 1)P2 +

1
6
(−2t3 + 3t2)P3.

Substituting T = 3t2 −2t3 for the parameter t changes the above expression to the form

P(T ) =
1
6
(−P0 − 3P1 + 3P2 + P3)T +

1
6
(P0 + 4P1 + P2),

which is a straight line from P(0) = 1
6 (P0 + 4P1 + P2) to P(1) = 1

6 (P1 + 4P2 + P3).
The tangent vector of Equation (7.15) is

Pt(t) =
1
6
(3t2, 2t, 1, 0)

⎛
⎜⎝

2 − s 6 − s s − 6 s − 2
2s − 3 s − 9 9 − 2s 3 − s
−s 0 s 0
1 4 1 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠

=
1
6

[(
3t2(2 − s) + 2t(2s − 3) − s

)
P0 +

(
3t2(6 − s) + 2t(s − 9)

)
P1

+
(
3t2(s − 6) + 2t(9 − 2s) + s

)
P2 +

(
3t2(s − 2) + 2t(3 − s)

)
P3

]
.

(7.16)

The extreme tangents are

Pt(0) =
s

6
(P2 − P0) and Pt(1) =

s

6
(P3 − P1).

Substituting s = 0 in Equation (7.16) yields the tangent vector for the case of infinite
tension

Pt(t) =
1
6

[
6(t2 − t)P0 + 18(t2 − t)P1 − 18(t2 − t)P2 − 6(t2 − t)P3

]
= (t2 − t)(P0 + 3P1 − 3P2 − P3).

(7.17)



7.4 Cubic B-Splines with Tension 267

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1 P1

P0 P3

P2

s=0

s=3
s=5

(* Cubic B-spline with tension *)
Clear[t,s,pnts,stnp,tensMat,bsplineTensn,g1,g2,g3,g4];
pnts={{0,0},{0,1},{1,1},{1,0}};
stnp=Transpose[pnts];
tensMat={{2-s,6-s,s-6,s-2},{2s-3,s-9,9-2s,3-s},{-s,0,s,0},{1,4,1,0}};
bsplineTensn[t_]:=Module[{tmpstruc}, tmpstruc={t^3,t^2,t,1}.tensMat;
{tmpstruc.stnp[[1]],tmpstruc.stnp[[2]]}/6];
g1=ListPlot[pnts, Prolog->AbsolutePointSize[3],
DisplayFunction->Identity];
s=0;
g2=ParametricPlot[bsplineTensn[t], {t,0,1},
Compiled->False, DisplayFunction->Identity];
s=3;
g3=ParametricPlot[bsplineTensn[t], {t,0,1},
Compiled->False, DisplayFunction->Identity,
PlotStyle->AbsoluteDashing[{2,2}]];
s=5;
g4=ParametricPlot[bsplineTensn[t], {t,0,1},
Compiled->False, DisplayFunction->Identity,
PlotStyle->AbsoluteDashing[{1,2,2,2}]];
Show[g1,g2,g3,g4, DisplayFunction->$DisplayFunction]

Figure 7.7: Figure and Code for a Cubic B-Spline with Tension.

� Exercise 7.8: Since the spline segment is a straight line in this case, its tangent vector
should always point in the same direction. Use Equation (7.17) to show that this is so.

Figure 7.7 illustrates the effect of tension on a cubic B-spline. Three curves are
shown, corresponding to s values of 0, 3, and 5.

See also Section 6.11 for a discussion of cubic Bézier curves with tension.

Sex alleviates tension and love causes it.
—Woody Allen (as Andrew) in A Midsummer Night’s Sex Comedy (1982)



268 7. B-Spline Approximation

7.5 Cubic B-Spline and Bézier Curves

Given a cubic B-spline segment P(t) based on the four control points P0, P1, P2, and
P3, it is easy to find four control points Q0, Q1, Q2, and Q3 such that the Bézier curve
Q(t) defined by them will have the same shape as P(t). This is done by equating the
matrices of Equation (7.11) that define P(t) to those of Equation (6.8) that define Q(t):

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ =

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝

Q0

Q1

Q2

Q3

⎞
⎟⎠ .

The solutions are
Q0 =

1
6

(P0 + 4P1 + P2) ,

Q1 =
1
6

(4P1 + 2P2) ,

Q2 =
1
6

(2P1 + 4P2) ,

Q3 =
1
6

(P1 + 4P2 + P3) .

Equation (8.4) of Section 8.2 shows a similar relation between the quadratic B-spline
and Bézier curves.

7.6 Higher-Degree Uniform B-Splines

The methods of Sections 7.1 and 7.2 can be employed to construct uniform B-splines
of higher degrees. It can be shown (see, for example, [Yamaguchi 88], p. 329) that the
degree-n uniform B-spline segment is given by

Pi(t) = (tn, . . . , t2, t, 1)M

⎛
⎜⎜⎜⎜⎝

Pi−1

Pi

Pi+1

...
Pi+n−1

⎞
⎟⎟⎟⎟⎠ ,

where the elements mij of the basis matrix M are

mij =
1
n!

(
n

i

) n∑
k=j

(n − k)i(−1)k−j

(
n + 1
k − j

)
.

Figure 7.8 shows a few examples of these matrices.



7.6 Higher-Degree Uniform B-Splines 269

M1 =
1
1!

(−1 1
1 0

)

M2 =
1
2!

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠

M3 =
1
3!

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎞
⎟⎠

M4 =
1
4!

⎛
⎜⎜⎜⎝

1 −4 6 −4 1
−4 12 −12 4 0
6 −6 −6 6 0
−4 −12 12 4 0
1 11 11 1 0

⎞
⎟⎟⎟⎠

M5 =
1
5!

⎛
⎜⎜⎜⎜⎜⎝

−1 5 −10 10 −5 1
5 −20 30 −20 5 0

−10 20 0 −20 10 0
10 20 −60 20 10 0
−5 −50 0 50 5 0
1 26 66 26 1 0

⎞
⎟⎟⎟⎟⎟⎠

M6 =
1
6!

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −6 15 −20 15 −6 1
−6 30 −60 60 −30 6 0
15 −45 30 30 −45 15 0
−20 −20 160 −160 20 20 0
15 135 −150 −150 135 15 0
−6 −150 −240 240 150 6 0
1 57 302 302 57 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Figure 7.8: Some Basis Matrices for Uniform B-Splines.



270 7. B-Spline Approximation

7.7 Interpolating B-Splines

The B-spline is an approximating curve. Its shape is determined by the control points
Pi, but the curve itself does not pass through those points. Instead, it passes through
the joints Ki. In our notation so far, we have assumed that the cubic uniform B-spline
is based on n + 1 control points and passes through n − 1 joint points. The number
of control points for the cubic curve is therefore always two more than the number of
joints.

One person’s constant is another person’s variable.
—Susan Gerhart

This section deals with the opposite problem. We show how to employ B-splines to
construct an interpolating cubic spline curve that passes through a set of n + 1 given
data points K0, K1,. . . , Kn. The curve must consist of n segments and the idea is to
use the Ki points to calculate a new set of points Pi, then use the new points as the
control points of a cubic uniform B-spline curve. To obtain n cubic segments, we need
n + 3 points and we denote them by P−1 through Pn+1.

Using Pi as our control points, Equation (7.11) shows that the general segment
Pi(t) terminates at Pi(1) = 1

6 [Pi−2 + 4Pi−1 + Pi]. We require that the segment ends
at point Ki−1, which produces the equation 1

6 [Pi−2 + 4Pi−1 + Pi] = Ki−1. When this
equation is repeated for 0 ≤ i ≤ n, we get a system of n + 1 equations with the Pis as
the unknowns. However, there are n + 3 unknowns (P−1 through Pn+1), so we need
two more equations.

The required equations are obtained by considering the tangent vectors of the in-
terpolating curve at its two ends. We denote the tangent at the start by T1. It is given
by T1 = 1

2 (P1 − P−1), so it points in the direction from P−1 to P1; similarly for the
end tangent Tn = 1

2 (Pn+1−Pn−1). After these two relations are included, the resulting
system of n + 3 equations is

n+3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 0 3 0 . . . 0 0 0
1 4 1 0 . . . 0 0 0
0 1 4 1 . . . 0 0 0
...

...
0 0 0 0 . . . 4 1 0
0 0 0 0 . . . 1 4 1
0 0 0 0 . . . −3 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
n+3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P−1

P0

P1
...

Pn−1

Pn

Pn+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

T1

K0

K1
...

Kn−1

Kn

Tn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.18)

The user specifies the values of the two extreme tangents T1 and Tn, the equations are
solved, and the Pi points are then used in the usual way to calculate a cubic uniform
B-spline that passes through the original points Ki. This process should be compared
to the similar computation of the cubic spline, Section 5.1. Specifically, Equation (7.18)
should be compared with Equation (5.7).

Notice that the coefficient matrix of Equation (7.18) is not diagonally dominant
because of the four ±3’s. We can, however, modify it slightly by writing the system of



7.8 A Knot Vector-Based Approach 271

equations in the form

n+3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3/2 0 3/2 0 . . . 0 0 0
1 4 1 0 . . . 0 0 0
0 1 4 1 . . . 0 0 0
...

...
0 0 0 0 . . . 4 1 0
0 0 0 0 . . . 1 4 1
0 0 0 0 . . . −3/2 0 3/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
n+3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P−1

P0

P1
...

Pn−1

Pn

Pn+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

T1/2
K0

K1
...

Kn−1

Kn

Tn/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7.19)

The coefficient matrix of Equation (7.19) is columnwise diagonally dominant and is
therefore nonsingular. Thus, this system of equations has a unique solution, but this
system is mathematically identical to Equation (7.18), so that system of equations also
has a unique solution.

Example: This is the opposite of the example on page 259. We start with K0 =
(1/6, 5/6), K1 = (1, 1), K2 = (11/6, 5/6), and the two extreme tangents T1 = (1/2, 1/2)
and T2 = (1/2,−1/2), and set up the 5×5 system of equations

1
6

⎛
⎜⎜⎜⎝

−3 0 3 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 −3 0 3

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

P−1

P0

P1

P2

P3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

(1/2, 1/2)
(1/6, 5/6)

(1, 1)
(11/6, 5/6)
(1/2,−1/2)

⎞
⎟⎟⎟⎠ .

This is easy to solve and the solutions are P−1 = (0, 0), P0 = (0, 1), P1 = (1, 1),
P2 = (2, 1), and P3 = (2, 0), identical to the original control points of the above-
mentioned example.

7.8 A Knot Vector-Based Approach

The knot vector approach to the uniform B-spline curve assumes that the curve is
a weighted sum, P(t) =

∑n
i=0 PiBn,i(t) of the control points with unknown weight

functions that have to be determined. The method is similar to that used in deriving
the Bézier curve (Section 6.2). The cubic uniform B-spline is used here as an example,
but this approach can be applied to B-splines of any order. We assume that five control
points are given—so that five weight functions, B4,0(t) through B4,4(t) are required—
and that the curve will consist of two cubic segments. In this approach we assume that
each spline segment is traced when the parameter t varies over an interval of one unit,
from an integer value u to the next integer u+1. The u values are called the knots of the
B-spline. Since they are the integers 0, 1, 2, . . ., they are uniformly distributed, hence
the name uniform B-spline. To trace out a two-segment spline curve, t should vary in
the interval [0, 2].

The guiding principle is that each weight function should be a cubic polynomial,
should have a maximum at the vicinity of “its” control point, and should drop to zero



272 7. B-Spline Approximation

when away from the point. A general weight function should therefore have the bell
shape shown in Figure 7.9a. To derive such a function, we write it as the union of four
parts, b0(t), b1(t), b2(t), and b3(t), each a simple cubic polynomial, and each defined
over one unit of t. Figure 7.9b shows how each weight B4,i(t) is defined over a range of
five knots and is zero elsewhere

b0(t)

ui+1 ui+2 ui+3 ui+4ui

b3(t)

b1(t)

B4,2(t) B4,3(t) B4,4(t)B4,0(t)

b2(t)

t

t

(a)

(b)

(c)

−1−2 1 2 3 4

2/3

1/6

t
b3 b0

b1b2

1/6

2/3

1

Figure 7.9: Weight Functions of the Cubic Uniform B-Spline.

The following considerations are employed to set up equations to calculate the bi(t)
functions:

1. They should be barycentric.
2. They should provide C2 continuity at the three points where they join.
3. b0(t) and its first two derivatives should be zero at the start point b0(0).
4. b3(t) and its first two derivatives should be zero at the end point b3(1).



7.8 A Knot Vector-Based Approach 273

We adopt the notation bi(t) = Ait
3 + Bit

2 + Cit + Di. The conditions above yield
the following equations:

1. The single equation B4,0(0) + B4,1(0) + B4,2(0) + B4,3(0) = 1. This is a special
case of condition 1. We see later that the bi(t) functions resulting from our equations
are, in fact, barycentric.

2. Condition 2 yields the nine equations

b0(1) = b1(0), ḃ0(1) = ḃ1(0), b̈0(1) = b̈1(0),
b1(1) = b2(0), ḃ1(1) = ḃ2(0), b̈1(1) = b̈2(0),
b2(1) = b3(0), ḃ2(1) = ḃ3(0), b̈2(1) = b̈3(0).

(7.20)

The first two derivatives of bi(t) are

dbi(t)
dt

= ḃi(t) = 3Ait
2 + 2Bit + Ci,

d2bi(t)
dt2

= b̈i(t) = 6Ait + 2Bi,

so the nine equations above can be written explicitly as

A0 + B0 + C0 + D0 = D1, 3A0 + 2B0 + C0 = C1, 6A0 + 2B0 = 2B1,

A1 + B1 + C1 + D1 = D2, 3A1 + 2B1 + C1 = C2, 6A1 + 2B1 = 2B2,

A2 + B2 + C2 + D2 = D3, 3A2 + 2B2 + C2 = C3, 6A2 + 2B2 = 2B3.

3. Condition 3 yields the three equations

D0 = 0, C0 = 0, 2B0 = 0.

4. Condition 4 yields the three equations

A3 + B3 + C3 + D3 = 0, 3A3 + 2B3 + C3 = 0, 6A3 + 2B3 = 0.

Thus, we end up with 16 equations that are easy to solve. Their solutions are

b0(t) =
1
6
t3, b1(t) =

1
6
(1 + 3t + 3t2 − 3t3),

b2(t) =
1
6
(4 − 6t2 + 3t3), b3(t) =

1
6
(1 − 3t + 3t2 − t3).

(7.21)

The proof that the bi(t) functions are barycentric is now trivial. Figure 7.9c shows the
shapes of the four weights.

Now that the weight functions are known, the entire curve can be expressed as
the weighted sum P(t) =

∑n
i=0 PiB4,i(t), where the weights all look the same and are

shifted with respect to each other by using different ranges for t. Each weight B4,i(t) is
nonzero only in the (open) interval (ui−3, ui+1) (Figure 7.9b).

Each curve segment Pi(t) can now be expressed as the barycentric sum of the four
weighted points Pi−3 through Pi (or, alternatively, as a linear combination of the B4,i(t)
functions), Pi(t) =

∑0
j=−3 Pi+jB4,i+j(t), where ui ≤ t < ui+1. The next (crucial) step



274 7. B-Spline Approximation

is to realize that in the range ui ≤ t < ui+1, only component b3 of B4,i−3 is nonzero and
similarly for the other three weights (see the dashed box of Figure 7.9b). The segment
can therefore be written

Pi(t) =
0∑

j=3

Pi−jbj(t)

=
1
6
Pi−3(−t3 + 3t2 − 3t + 1) +

1
6
Pi−2(3t3 − 6t2 + 4)

+
1
6
Pi−1(−3t3 + 3t2 + 3t + 1) +

1
6
Pit

3 (7.22)

=
1
6
(t3, t2, t, 1)

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎞
⎟⎠
⎛
⎜⎝

Pi−3

Pi−2

Pi−1

Pi

⎞
⎟⎠ ,

an expression identical (except for the choice of index i) to Equation (7.11). This
approach to deriving the weight functions can be generalized for the nonuniform B-
spline.

The dashed box of Figure 7.9b illustrates how the B4,i(t) weight functions blend the
five control points in the two spline segments. The first weight, B4,0(t), goes down from
1/6 to 0 when t varies from 0 to 1. Thus, the first control point P0 starts by contributing
1/6 of its value to the curve, then decreases its contribution until it disappears at t = 1.
This is why P0 does not contribute to the second segment. The second weight, B4,1(t),
starts at 2/3 (when t = 0), goes down to 1/6 for t = 1, then all the way to 0 when
t reaches 2. This is how the second control point P1 participates in the blend that
generates the first two spline segments. Notice how the weight functions have their
maxima at integer values of t, how only three weights are nonzero at these values, and
how there are four nonzero weights for any other values of t.

Figure 7.10a shows the weight functions for the linear uniform B-spline. Each has
the form of a hat, going from 0 to 1 and back to 0. They also have their maxima at integer
values of t. The weight functions of the quadratic B-spline are shown in Figure 7.10b.
Notice how each varies from 0 to 3/4, how they meet at a height of 1/2, and how their
maxima are at half-integer values of t. The first weight, B3,0(t), drops from 1/2 to 0 for
the first spline segment (i.e., when t varies in the interval [0, 1]) and remains zero for
the second and subsequent segments. The second weight, B3,1(t), climbs from 1/2 to 1,
then drops back to 1/2 for the first segment. For the second segment, this weight goes
down from 1/2 to 0. These diagrams provide a clear understanding of how the control
points are blended by the uniform B-spline.

The general B-spline weight functions are normally denoted by Nik(t) and can be
defined recursively. Before delving into this topic, however, we show how the uniform
B-spline curve itself can be defined recursively, similar to the recursive definition of the
Bézier curve [Equation (6.11)]. Given a set of n + 1 control points P0 through Pn and
a uniform knot vector (t0, t1, . . . , tn+k) (a set of equally-spaced n + k + 1 nondecreasing
real numbers), the B-spline of order k is defined as

P(t) = P(k−1)
l (t), where tl ≤ t < tl+1 (7.23)



7.8 A Knot Vector-Based Approach 275

B3,1(t) B3,2(t) B3,3(t)B3,0(t)

t

−1 1 2 3 4

3/4

1/2

(a)

(b)

B2,1(t)
B2,2(t)B2,0(t)

t

−1 1 2 3

1

1/2

Figure 7.10: Weight Functions of the Linear and the Quadratic B-Splines.

and where the quantities P(j)
i (t) are defined recursively by

P(j)
i (t) =

{
Pi, for j = 0,
(1 − Tij)P

(j−1)
i−1 (t) + TijP

(j−1)
i (t), for j > 0,

and
Tij =

t − ti
ti+k−j − ti

.

Figure 7.11 is a pyramid that illustrates how the quantities P(k−1)
l (t) are constructed

recursively. Each P(j)
i (t) in the figure is constructed as a barycentric sum of the two

quantities immediately to its left. Equation (7.23) is the geometric definition of the
uniform B-spline.

We now turn to the algebraic (or analytical) definition of the general (uniform and
nonuniform) B-spline curve. It is defined as the weighted sum

P(t) =
n∑

i=0

PiNik(t),

where the weight functions Nik(t) are defined recursively by

Ni1(t) =
{

1, if t ∈ [ti, ti+1),
0, otherwise,

(7.24)



276 7. B-Spline Approximation

...
Pl−k+1

P(1)
l−k+2

Pl−k+2 P(2)
l−k+3

P(1)
l−k+3 .

Pl−k+3 .
Pl−k+4

. P(k−2)
l−1

. P(k−1)
l

. P(k−2)
l

.
Pl−2 P(2)

l−1

P(1)
l−1 .

Pl−1 P(2)
l

P(1)
l

Pl
...

Figure 7.11: Recursive Construction of P(k−1)
l (t).

(note how the interval starts at ti but does not reach ti+1; such an interval is closed on
the left and open on the right) and

Nik(t) =
t − ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t

ti+k − ti+1
Ni+1,k−1(t), where 0 ≤ i ≤ n. (7.25)

The weights Nik(t) may be tedious to calculate in the general case, where the knots ti
can be any, but are easy to calculate in the special case where the knot vector is the
uniform sequence (0, 1, . . . , n + k), i.e., when ti = i. Here are examples for the first few
values of k.

For k = 1, the weight functions are defined by

Ni1(t) =
{

1, if t ∈ [i, i + 1),
0, otherwise.

(7.26)

This results in the “step” functions shown in Figure 7.12. Notice how each step is closed
on the left and open on the right and how Ni1(t) is nonzero only in the interval [i, i+1)
(this interval is its support). It is also clear that each of them is a shifted version of its
predecessor, so we can express any of them as a shifted version of the first one and write
Ni1(t) = N01(t − i).

For k = 2, the weight functions can be calculated for any i from Equation (7.25)

N02(t) =
t − t0
t1 − t0

N01(t) +
t2 − t

t2 − t1
N11(t)



7.8 A Knot Vector-Based Approach 277

N31(t)

[ )

N21(t)

[ )

N11(t)

[ )

N01(t)

[ )

10 2 3 4

10 2 3 4

10 2 3 4

10 2 3 4

Figure 7.12: Uniform B-Spline Weight Functions for k = 1.

= tN01(t) + (2 − t)N11(t)

=

{
t, when 0 ≤ t < 1,
2 − t, when 1 ≤ t < 2,
0, otherwise,

N12(t) =
t − t1
t2 − t1

N11(t) +
t3 − t

t3 − t2
N21(t)

= (t − 1)N11(t) + (3 − t)N21(t)

=

{
t − 1, when 1 ≤ t < 2,
3 − t, when 2 ≤ t < 3,
0, otherwise,

N22(t) =
t − t2
t3 − t2

N21(t) +
t4 − t

t4 − t3
N31(t)

= (t − 2)N21(t) + (4 − t)N31(t)

=

{
t − 2, when 2 ≤ t < 3,
4 − t, when 3 ≤ t < 4,
0, otherwise.

The hat-shaped functions are shown in Figure 7.13. Notice how Ni2(t) spans the interval
[i, i+2). It is also obvious that each of them is a shifted version of its predecessor, so we
can express any of them as a shifted version of the first one and write Ni2(t) = N02(t−i).



278 7. B-Spline Approximation

N22(t)

10 2 3 4

N12(t)

10 2 3 4

N02(t)

10 2 3 4

Figure 7.13: Uniform B-Spline Weight Functions for k = 2.

For k = 3, the calculations are similar:

N03(t) =
t − t0
t2 − t0

N02(t) +
t3 − t

t3 − t1
N12(t)

=
t

2
N02(t) +

3 − t

2
N12(t)

=

⎧⎪⎪⎨
⎪⎪⎩

t2/2, when 0 ≤ t < 1,
t2

2 (2 − t) + 3−t
2 (t − 1), when 1 ≤ t < 2,

(3 − t)2/2, when 2 ≤ t < 3,
0, otherwise,

=

⎧⎪⎪⎨
⎪⎪⎩

t2/2, when 0 ≤ t < 1,
(−2t2 + 6t − 3)/2, when 1 ≤ t < 2,
(3 − t)2/2, when 2 ≤ t < 3,
0, otherwise,

N13(t) =
t − t1
t3 − t1

N12(t) +
t4 − t

t4 − t2
N22(t)

=
t − 1

2
N12(t) +

4 − t

2
N22(t)



7.8 A Knot Vector-Based Approach 279

=

⎧⎪⎪⎨
⎪⎪⎩

(t − 1)2/2, when 1 ≤ t < 2,
(−2t2 + 10t − 11)/2, when 2 ≤ t < 3,
(4 − t)2/2, when 3 ≤ t < 4,
0, otherwise.

Each of these curves (Figure 7.14) is a spline whose three segments are quadratic polyno-
mials (i.e., parabolic arcs) joined smoothly at the knots. Notice again that the support
of Ni3(t) is the interval [i, i+3) and that they are shifted versions of each other, allowing
us to write Ni3(t) = N03(t − i).

N23(t)

10 2 3 4

N13(t)

10 2 3 4

N03(t)

10 2 3 4

Figure 7.14: Uniform B-Spline Weight Functions for k = 3.

� Exercise 7.9: How can we show that the various Ni3(t) are shifted versions of each
other?

In general, the support of Nik(t) is the interval [i, i + k) and Nik(t) = N0k(t − i).
Figure 7.15 shows how a general weight function Nik(t) is constructed recursively. Each
Nij(t) function in this triangle is constructed as a weighted sum of the two functions
immediately to its left.

The geometric and algebraic definitions of the B-spline look different but it can be
shown that they are identical. The proof of this is called the Cox–DeBoor (or DeBoor–
Cox) formula [DeBoor 72].



280 7. B-Spline Approximation

Ni,1

Ni+1,1 .
. .
. Ni,k−2

Ni,k−1

Ni+1,k−2 Ni,k

Ni+1,k−1

. Ni+2,k−2

. .
Ni+k−2,1 .
Ni+k−1,1

Figure 7.15: Recursive Construction of Ni,k(t).

7.9 Recursive Definitions of the B-Spline

The order k of the B-spline curve is an integer in the interval [2, n + 1] (it is possible to
have k = 1, but the curve degenerates in this case to just a plot of the control points).
Each blending function Nik(t) has support over k intervals [ti, ti+k−1) and is zero outside
its support. The knot vector (t0, t1, . . . , tn+k) consists of n + k + 1 nondecreasing real
numbers ti. These values define n + k subintervals [ti, ti+1). The two extreme values
t0 and tn are selected based on the values of n and k. Any terms of the form 0/0 or
x/0 in the calculation of the blending functions are assumed to be zero. Editing the
B-spline curve can be done by (1) adding, moving, or deleting control points without
changing the order k, (2) changing the order k without modifying the control points,
and (3) increasing the size of the knot vector. The knot vector contains n+k +1 values,
so increasing its size implies that either n or k should be increased. Here are a few more
properties of the curve:

1. Plotting the B-spline curve is done by varying the parameter t over the range of
knot values [tk−1, tn+1).

2. Each segment of the curve (between two consecutive knot values) depends on
k control points. This is why the curve has local control and it also implies that the
maximum value of k is the number n + 1 of control points.

3. Any control point participates in at most k segments.
4. The curve lies inside the convex hull defined by at most k control points. This

means that the curve passes close to the control points, a feature that makes it easy for
a designer to place these points in order to obtain the right curve shape.

5. The blending functions Nik(t) are barycentric for any t in the interval [tk−1, tn+1).
They are also nonnegative and, except for k = 1, each has one maximum.

6. The curve and its first k − 1 derivatives are continuous over the entire range
(except that nonuniform B-splines can have discontinuities, see Figure 7.19d).

7. The entire curve can be affinely transformed by transforming the control points,
then redrawing the curve from the new points.

One important difference between the B-spline and the Bézier curve is the use of
a knot vector. This feature (which has already been mentioned) consists of a nonde-
creasing sequence of real numbers called knots. The knot vector adds flexibility to the



7.10 Open Uniform B-Splines 281

curve and provides better control of its shape, but its use requires experience. There
are three common ways to select the values in the knot vector, namely uniform, open
uniform, and nonuniform. In a uniform B-spline the knot values are equally spaced. An
example is (−2,−1.5,−0.5, 0, 0.5, 1, 1.5), but more typical examples are a vector with
normalized values between 0 and 1 (0, 0.2, 0.4, 0.6, 0.8, 1) or a vector with integer values
(0, 1, 2, 3, 4, 5, 6). Figure 7.16 lists Mathematica code to calculate, print, and plot the
weight functions for any set of knots.

(* B-spline weight functions printed and plotted *)
Clear[bspl,knt,i,k,n,t,p]
bspl[i_,k_,t_]:=If[knt[[i+k]]==knt[[i+1]],0, (* 0<=i<=n *)
bspl[i,k-1,t] (t-knt[[i+1]])/(knt[[i+k]]-knt[[i+1]])] \
+If[knt[[i+1+k]]==knt[[i+2]],0,
bspl[i+1,k-1,t] (knt[[i+1+k]]-t)/(knt[[i+1+k]]-knt[[i+2]])];
bspl[i_,1,t_]:=If[knt[[i+1]]<=t<knt[[i+2]], 1, 0];
n=4; k=3; (* Note: 0<=k<=n *)
(* knt=Table[i, {i,0,n+k}]; *) (* knots for the uniform case *)
knt={0,0,0,1,2,3,3,3}; (* knots for the NONuniform case *)
(* Show the weight functions *)
Do[Print["N(",i,",",k,",",t,")=",Simplify[bspl[i,k,t]]], {i,0,n}]
(* Plot them. Plots are separated using .97 instead of 1 *)
Do[p[i+1]=Plot[bspl[i,k,t], {t,k-.97,n+.97},
DisplayFunction->Identity], {i,0,n}]
Show[Table[p[i+1], {i,0,n}], Ticks->None,
DisplayFunction->$DisplayFunction]

Figure 7.16: Code for the B-Spline Weight Functions.

7.10 Open Uniform B-Splines

The open uniform B-spline is obtained when the knot vector is uniform except at its
two ends, where knot values are repeated k times. The following are simple examples:

For n = 3 and k = 2, there are n + k + 1 = 6 knots, e.g., (0, 0, 1, 2, 3, 3).
For n = 4 and k = 4, there are n + k + 1 = 9 knots, e.g., (0, 0, 0, 0, 1, 2, 2, 2, 2).
For n = 3 and k = 2, there are n + k + 1 = 6 knots, e.g., (0, 0, 0.33, 0.67, 1, 1).
For n = 4 and k = 4, there are n + k + 1 = 9 knots, e.g., (0, 0, 0, 0, 0.5, 1, 1, 1, 1).

(Notice how the last two examples are normalized.) In general, given values for n and
k, we can generate an integer open knot vector by setting

ti =

{ 0, for 0 ≤ i < k,
i − k + 1, for k ≤ i ≤ n,
n − k + 2, for n < i ≤ n + k,

for 0 ≤ i ≤ n + k. (7.27)

An open uniform B-spline curve starts at P0 and ends at Pn. This feature makes
it easy to generate closed curves of this type. The two extreme tangents of this curve



282 7. B-Spline Approximation

point in the directions from P0 to P1 and from Pn−1 to Pn, respectively. This is why
open uniform B-spline curves are similar to Bézier curves. In fact, when k = n + 1 (i.e.,
when the degree of the polynomials is n), these curves have knot vectors of the form
(0, 0, . . . , 0, 1, 1, . . . , 1) and they reduce to Bézier curves.

Example: (1) Five control points P0 through P4 are given, implying that n = 4.
We select order 3 (i.e., segments that are polynomials of degree 2) and use Equa-
tion (7.27) to construct the knot sequence (0, 0, 0, 1, 2, 3, 3, 3). The parameter t varies
from tk−1 = t2 = 0 to tn+1 = t5 = 3, so our curve will consist of three segments. Each
of the blending functions Ni3(t) (where 0 ≤ i ≤ n) is nonzero over three subintervals of
t and is calculated from Equations (7.24) and (7.25). The result is

N03(t) = (1 − t)2, 0 ≤ t < 1,

N13(t) =
1
2

{−3t2 + 4t, 0 ≤ t < 1,
(2 − t)2, 1 ≤ t < 2,

N23(t) =
1
2

⎧⎨
⎩

t2, 0 ≤ t < 1,
−2t2 + 6t − 3, 1 ≤ t < 2,
(3 − t)2, 2 ≤ t < 3,

N33(t) =
1
2

{
(t − 1)2, 1 ≤ t < 2,
−3t2 + 14t − 15, 2 ≤ t < 3,

N43(t) = (t − 2)2, 2 ≤ t < 3,

so the three spline segments are

P1(t) = (1 − t)2P0 + 1
2 t(4 − 3t)P1 + 1

2 t2P2, 0 ≤ t < 1,

P2(t) = 1
2 (2−t)2P1+ 1

2

[
t(2−t)+(t−1)(3−t)

]
P2+ 1

2 (t − 1)2P3, 1 ≤ t < 2,

P3(t) = 1
2 (3 − t)2P2 + 1

2 (3 − t)(3t − 5)P3 + (t − 2)2P4, 2 ≤ t < 3.

It is now easy to calculate where each segment starts and ends:

P1(0) = P0, P1(1) = (P1 + P2)/2,

P2(1) = (P1 + P2)/2, P2(2) = (P2 + P3)/2,

P3(2) = (P2 + P3)/2, P3(3) = P4,

Figure 7.17 shows a typical example of the three segments (with intentional gaps between
them).

� Exercise 7.10: Show that the three spline segments provide C1 continuity at the two
interior points P1(1) = P2(1) and P2(2) = P3(2).

Example: (2) We again choose five control points but this time we select k =
n + 1 = 5. The curve will therefore consist of degree-4 polynomial segments. Such a
segment requires five points (it has five coefficients, so five equations are needed), which
is why we will end up with just one segment. Equation (7.27) is again used to construct
the knot vector (0, 0, 0, 0, 0, 1, 1, 1, 1, 1). The parameter t varies from tk−1 = t4 = 0 to



7.10 Open Uniform B-Splines 283

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

P1

P2

P0

P3

P4

(* Plot a B-spline curve. Can also print the weight functions *)
Clear[bspl,knt,i,k,n,t,p,g1,g2,pnt] (* First the weight functions *)
bspl[i_,k_,t_]:=If[knt[[i+k]]==knt[[i+1]],0, (* 0<=i<=n *)
bspl[i,k-1,t] (t-knt[[i+1]])/(knt[[i+k]]-knt[[i+1]])] \
+If[knt[[i+1+k]]==knt[[i+2]],0,
bspl[i+1,k-1,t] (knt[[i+1+k]]-t)/(knt[[i+1+k]]-knt[[i+2]])];
bspl[i_,1,t_]:=If[knt[[i+1]]<=t<knt[[i+2]], 1, 0];
n=4; k=3; (* Note: 0<=k<=n *)
(* knt=Table[i, {i,0,n+k}]; knots for the uniform case *)
knt={0,0,0,1,2,3,3,3}; (* knots for the open-unif or non-uniform cases *)
(* Do[Print[bspl[i,k,t]], {i,0,n}] Display the weight functions *)
pnt={{0,0},{1,1},{1,2},{2,2},{3,1}}; (* test for n+1=5 control points *)
p[t_]:=Sum[pnt[[i+1]] bspl[i,k,t], {i,0,n}] (* The curve as a weighted sum *)
g1=ListPlot[pnt, Prolog->AbsolutePointSize[3], DisplayFunction->Identity];
g2=ParametricPlot[p[t], {t,0,.97}, Compiled->False, DisplayFunction->Identity];
g3=ParametricPlot[p[t], {t,1,1.97}, Compiled->False, DisplayFunction->Identity];
g4=ParametricPlot[p[t], {t,2,3}, Compiled->False, DisplayFunction->Identity];
Show[g1,g2,g3,g4, PlotRange->All, DisplayFunction->$DisplayFunction,
DefaultFont->{"cmr10", 10}];

Figure 7.17: An Open Uniform B-Spline.

tn+1 = t5 = 1, showing again that the curve will consist of one segment. This should be
a Bézier curve, because k = n + 1.

The calculation of the blending functions Ni5(t) (where 0 ≤ i ≤ n) is shown here in
detail. We start with the nine functions Ni1(t) that are calculated from Equation (7.24)

N01 = 1 when t0 ≤ t < t1, N11 = 1 when t1 ≤ t < t2, . . . , N81 = 1 when t8 ≤ t < t9.

Since t0 = t1 = t2 = t3 = t4 = 0 and t5 = t6 = t7 = t8 = t9 = 1, we conclude that

N41 = 1 when t ∈ [t4, t5) = [0, 1),

and the other eight functions Ni1(t) are zero. The next step is to calculate the eight



284 7. B-Spline Approximation

functions Ni2(t) from Equation (7.25):

N02(t) =
t − t0
t1 − t0

N01 +
t2 − t

t2 − t1
N11 = 0,

N12(t) =
t − t1
t2 − t1

N11 +
t3 − t

t3 − t2
N21 = 0,

N22(t) =
t − t2
t3 − t2

N21 +
t4 − t

t4 − t3
N31 = 0,

N32(t) =
t − t3
t4 − t3

N31 +
t5 − t

t5 − t4
N41 = 0 + (1 − t),

N42(t) =
t − t4
t5 − t4

N41 +
t6 − t

t6 − t5
N51 = t + 0,

N52(t) =
t − t5
t6 − t5

N51 +
t7 − t

t7 − t6
N61 = 0,

N62(t) =
t − t6
t7 − t6

N61 +
t8 − t

t8 − t7
N71 = 0,

N72(t) =
t − t7
t8 − t7

N71 +
t9 − t

t9 − t8
N81 = 0.

Only N32(t) and N42(t) are nonzero. The seven functions Ni3(t) are calculated similarly:

N03(t) =
t − t0
t2 − t0

N02 +
t3 − t

t3 − t1
N12 = 0,

N13(t) =
t − t1
t3 − t1

N12 +
t4 − t

t4 − t2
N22 = 0,

N23(t) =
t − t2
t4 − t2

N22 +
t5 − t

t5 − t3
N32 = 0 + (1 − t)2,

N33(t) =
t − t3
t5 − t3

N32 +
t6 − t

t6 − t4
N42 = t(1 − t) + (1 − t)t,

N43(t) =
t − t4
t6 − t4

N42 +
t7 − t

t7 − t5
N52 = t2 + 0,

N53(t) =
t − t5
t7 − t5

N52 +
t8 − t

t8 − t6
N62 = 0,

N63(t) =
t − t6
t8 − t6

N62 +
t9 − t

t9 − t7
N72 = 0.

Three of the seven functions are nonzero. The six functions Ni4(t) are

N04(t) =
t − t0
t3 − t0

N03 +
t4 − t

t4 − t1
N13 = 0,

N14(t) =
t − t1
t4 − t1

N13 +
t5 − t

t5 − t2
N23 = 0 + (1 − t)3,

N24(t) =
t − t2
t5 − t2

N23 +
t6 − t

t6 − t3
N33 = t(1 − t)2 + 2t(1 − t)2,

N34(t) =
t − t3
t6 − t3

N33 +
t7 − t

t7 − t4
N43 = 2t2(1 − t) + (1 − t)t2,



7.10 Open Uniform B-Splines 285

N44(t) =
t − t4
t7 − t4

N43 +
t8 − t

t8 − t5
N53 = t3,

N54(t) =
t − t5
t8 − t5

N53 +
t9 − t

t9 − t6
N63 = 0.

Four of them are nonzero. The last step is the calculation of the five functions Ni5(t):

N05(t) =
t − t0
t4 − t0

N04 +
t5 − t

t5 − t1
N14 = (1 − t)4,

N15(t) =
t − t1
t5 − t1

N14 +
t6 − t

t6 − t2
N24 = t(1 − t)3 + 3t(1 − t)3,

N25(t) =
t − t2
t6 − t2

N24 +
t7 − t

t7 − t3
N34 = 3t2(1 − t)2 + 3t2(1 − t)2,

N35(t) =
t − t3
t7 − t3

N34 +
t8 − t

t8 − t4
N44 = 3t3(1 − t) + (1 − t)t3,

N45(t) =
t − t4
t8 − t4

N44 +
t9 − t

t9 − t5
N54 = t4.

All five are nonzero and they should look familiar (they are the Bernstein polynomials
for n = 4). The curve consists of the single segment

P(t) =
4∑

i=0

Ni5(t)Pi

= (1 − t)4P0 + 4t(1 − t)3P1 + 6t2(1 − t)2P2 + 4t3(1 − t)P3 + t4P4,

which is the Bézier curve defined by the five points. The B-spline curve is again shown
to be more general than the Bézier curve, since it contains the latter as a special case.

It is the multiplicity of knot values that causes the open B-spline to start and end
at its extreme control points. This is easy to understand when we realize that every
subinterval [ti, ti+1) of knots corresponds to one segment Pi(t) of the B-spline. When
ti = ti+1, that segment reduces to a point. The result is that each repeat of a knot value
decreases the continuity at a joint point by 1. Consider, for example, the open B-spline
of order k = 4. The individual spline segments are degree-3 (cubic) polynomials that
have C2 continuity at their joint points. If knot ti has multiplicity 2 (i.e., ti = ti+1),
then segment Pi(t) reduces to a point and segments Pi−1(t) and Pi+1(t) meet at a joint
point with C1 continuity. If knot ti has multiplicity 3 (ti = ti+1 = ti+2), then segments
Pi(t) and Pi+1(t) reduce to points and segments Pi−1(t) and Pi+2(t) meet at a joint
point (which in this case is a control point) with C0 continuity. If the first knot has
multiplicity 4 (t0 = t1 = t2 = t3), then segments P0(t), P1(t), and P2(t) reduce to
points and segment P3(t) starts at that point with no continuity.



286 7. B-Spline Approximation

7.11 Nonuniform B-Splines

The nonuniform B-spline is more general than the uniform or open B-splines, although
it is not the most general type of this curve. It is obtained when the knot values are not
equally spaced. The only requirement is that the knots be nondecreasing. Adjusting the
knot values (as well as having multiple values) is a feature that helps fine-tune the shape
of the curve. Multiple knots can be used to pull the curve in a certain direction and
to create a cusp or even a discontinuity at a join point. Nonuniform B-splines can get
complex, so we limit the discussion in this section to order-4 (i.e., degree-3) nonuniform
B-splines. This is not a serious limitation, as this type is the most commonly used and
it makes it easier to understand the properties and behavior of the nonuniform B-spline.

In the case of order-4 nonuniform B-splines, the knot vector contains values from
t0 to tn+4 (there are four more knots than control points), so the minimum number of
knots is eight (since the minimum number of control points is four) and the parameter
t varies, in this case, from tk−1 = t3 to tn+1 = t4. Spline segment Pi(t) depends on
control points Pi−3, Pi−2, Pi−1, and Pi and its expression is

Pi(t) = Ni−3,4(t)Pi−3 + Ni−2,4(t)Pi−2 + Ni−1,4(t)Pi−1 + Ni,4(t)Pi,

where 3 ≤ i ≤ n and ti ≤ t ≤ ti+1. There are n− 2 segments denoted by P3(t) through
Pn(t). When n = 3 (four control points), the curve consists of just one segment. When
knot ti has multiplicity 2 (i.e., ti = ti+1), segment Pi(t) reduces to a point. As has
been mentioned earlier, it is this feature that makes the nonuniform B-spline so flexible,
powerful, and therefore useful in practical work.

The weight functions are defined recursively by Equations (7.24) and (7.25) but go
up to Ni4 only:

Ni1(t) =
{

1, if t ∈ [ti, ti+1),
0, otherwise,

Ni2(t) =
t − ti

ti+1 − ti
Ni,1(t) +

ti+2 − t

ti+2 − ti+1
Ni+1,1(t),

Ni3(t) =
t − ti

ti+2 − ti
Ni,2(t) +

ti+3 − t

ti+3 − ti+1
Ni+1,2(t), (7.28)

Ni4(t) =
t − ti

ti+3 − ti
Ni,3(t) +

ti+4 − t

ti+4 − ti+1
Ni+1,3(t).

The first set, Ni1(t), are horizontal segments. The second set, Ni2(t), are straight lines.
The third set are quadratic polynomials and the fourth set, Ni4(t), are cubic polynomials.
Each cubic segment is defined by four control points and lies in the convex hull defined
by the points. Thus, segment Pi(t) is defined by points Pi−3, Pi−2, Pi−1, and Pi, while
segment Pi+1(t) is defined by points Pi−2, Pi−1, Pi, and Pi+1.

Figure 7.19 illustrates the effect of knot multiplicities using n = 7 (i.e., eight points)
as an example. The knot vector should contain n + k + 1 = 7 + 4 + 1 = 12 values and t
should vary from tk−1 = t3 to tn+1 = t8, a total of five subintervals. The four parts of
the figure show cubic B-spline curves constructed with the knot vectors

(−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8), (−3,−2,−1, 0, 1, 1, 2, 3, 4, 5, 6, 7),



7.11 Nonuniform B-Splines 287

(* 8-Point Nonuniform Cubic B-Spline Example. Five Segments *)
Clear[g,Q,pts,seg];
P0={0,0}; P1={0,1}; P2={1,1}; P3={1,0}; P4={2,0}; P5={2.75,1}; P6={3,1}; P7={3,0};
pts=Graphics[{PointSize[.01], Point/@{P0,P1,P2,P3,P4,P5,P6,P7}}];
seg={AbsoluteDashing[{2,2}], Line[{P1,P2,P3}], Line[{P4,P5,P6,P7}]};
Q[t_]:={((1-t)^3 P0 +(3t^3-6t^2+4) P1 +(-3t^3+3t^2+3t+1) P2 +t^3 P3)/6,
((2-t)^3 P1 +(3t^3-15t^2+21t-5) P2 +(-3t^3+12t^2-12t+4) P3 +(t-1)^3 P4)/6,
((3-t)^3 P2 +(3t^3-24t^2+60t-44) P3 +(-3t^3+21t^2-45t+31) P4 +(t-2)^3 P5)/6,
((4-t)^3 P3 +(3t^3-33t^2+117t-131) P4 +(-3t^3+30t^2-96t+100) P5 +(t-3)^3 P6)/6,
((5-t)^3 P4 +(3t^3-42t^2+192t-284) P5 +(-3t^3+39t^2-165t+229) P6 +(t-4)^3 P7)/6};
g=Table[ParametricPlot[Q[t][[i]], {t,i-1,0.97i},
Compiled->False, DisplayFunction->Identity], {i,1,5}];
Show[g, pts, Graphics[seg], PlotRange->All, DefaultFont->{"cmr10", 10},
DisplayFunction->$DisplayFunction, AspectRatio->Automatic];

For the four segments of part (b), the only difference is
Q[t_]:={(1-t)^3/6 P0 +(11t^3-15t^2-3t+7)/12 P1+(-5t^3+3t^2+3t+1)/4 P2 +t^3/2 P3,
(2-t)^3/2 P2 +(5t^3-27t^2+45t-21)/4 P3+(-11t^3+51t^2-69t+29)/12 P4 +(t-1)^3/6 P5,
(3-t)^3/4 P3 +(7t^3-57t^2+147t-115)/12 P4+(-3t^3+21t^2-45t+31)/6 P5 +(t-2)^3/6 P6,
((4-t)^3 P4 +(3t^3-33t^2+117t-131)P5+(-3t^3+30t^2-96t+100)P6 +(t-3)^3 P7)/6};
g=Table[ParametricPlot[Q[t][[i]], {t,i-1,0.97i},
Compiled->False, DisplayFunction->Identity], {i,1,4}];

For the three segments of part (c), the only difference is
Q[t_]:={(1-t)^3 P0 /6+(11t^3-15t^2-3t+7)P1 /12+(-7t^3+3t^2+3t+1)P2 /4+t^3 P3,
(2-t)^3 P3+(7t^3-39t^2+69t-37)P4 /4+(-11t^3+51t^2-69t+29) P5 /12+(t-1)^3 P6 /6,
(3-t)^3 P4 /4+(7t^3-57t^2+147t-115)P5 /12+(-3t^3+21t^2-45t+31) P6 /6+(t-2)^3 P7 /6};
g=Table[ParametricPlot[Q[t][[i]], {t,i-1,0.97i},
Compiled->False, DisplayFunction->Identity], {i,1,3}];

For the two segments of part (d), the only difference is
Q[t_]:={(1-t)^3P0 /6 +(11t^3-15t^2-3t+7)P1 /12+(-7t^3+3t^2+3t+1)P2 /4 +t^3 P3,
(2-t)^3 P4 +(7t^3-39t^2+69t-37)P5 /4+(-11t^3+51t^2-69t+29)P6 /12+(t-1)^3P7 /6};
g=Table[ParametricPlot[Q[t][[i]], {t,i-1,0.97i},
Compiled->False, DisplayFunction->Identity], {i,1,2}];

Figure 7.18: Code for an 8-Point Nonuniform B-Spline Example, Figure 7.19.

(−3,−2,−1, 0, 1, 1, 1, 2, 3, 4, 5, 6), (−3,−2,−1, 0, 1, 1, 1, 1, 2, 3, 4, 5),

respectively. Notice that only six knots, t3 through t8, are really important. The rest are
distinct and uniform but less important, since only some of them are used in calculating
the blending functions.

In Figure 7.19a, all knots have multiplicity 1, each segment is defined by four points,
and adjacent segments share three points. The first segment, P3(t), is defined by points
P0, P1, P2, and P3, while the last segment, P7(t), is defined by points P4, P5, P6, and
P7. The five segments join with C2 continuity. In Figure 7.19b, we set t4 = t5, thereby
reducing segment P4(t) to zero length, causing segments P3(t) and P5(t) to meet at
join t4 = t5. However, these segments share just two control points, P2 and P3, so they
have less “in common” and, consequently, join with only C1 continuity. In Figure 7.19c,
we set t4 = t5 = t6, thereby reducing segments P4(t) and P5(t) to zero length and
causing segments P3(t) and P6(t) to meet. These segments share just one control point,
namely P3, so they meet at this point, with C0 continuity. In Figure 7.19d, we set



288 7. B-Spline Approximation

t4 = t5 = t6 = t7, so now we have three zero-length segments, namely P4(t), P5(t), and
P6(t). Segments P3(t) and P7(t) now have to meet, but they don’t have any common
control points. The result is a discontinuity (a break) in the curve between points P3

and P4.
Figure 7.18 lists the code for Figure 7.19.
Example: This long example is divided into two parts.
Part a. In this part, we calculate the blending functions and spline segments of the

curve of Figure 7.19a, where the knot vector is the uniform sequence

(−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8).

The calculations are done bearing in mind that t varies from t3 = 0 to t8 = 5.
We need to calculate all the functions Ni4(t) that are nonzero in the five subintervals
[0, 1), [1, 2), [2, 3), [3, 4), and [4, 5). Four blending functions are used to construct each
of the five spline segments, so segment P3(t) is defined by functions N04(t) through
N34(t), segment P4(t) is defined by functions N14(t) through N44(t), and segment P7(t)
is defined by functions N44(t) through N74(t). The first step is to calculate Ni1:

N31 = 1 for t ∈ [0, 1), N41 = 1 for t ∈ [1, 2),
N51 = 1 for t ∈ [2, 3), N61 = 1 for t ∈ [3, 4), N71 = 1 for t ∈ [4, 5),

and N01, N11, N21, N81, N91, N10,1, and N11,1 are zero in the range 0 ≤ t < 5.
Step 2 is to calculate functions Ni2 that are nonzero for 0 ≤ t < 5:

N02(t) =
t − t0
t1 − t0

N01 +
t2 − t

t2 − t1
N11 = 0,

N12(t) =
t − t1
t2 − t1

N11 +
t3 − t

t3 − t2
N21 = 0,

N22(t) =
t − t2
t3 − t2

N21 +
t4 − t

t4 − t3
N31 = (1 − t) for t ∈ [0, 1),

N32(t) =
t − t3
t4 − t3

N31 +
t5 − t

t5 − t4
N41 =

{
t for t ∈ [0, 1),
2 − t for t ∈ [1, 2),

N42(t) =
t − t4
t5 − t4

N41 +
t6 − t

t6 − t5
N51 =

{
t − 1 for t ∈ [1, 2),
3 − t for t ∈ [2, 3),

N52(t) =
t − t5
t6 − t5

N51 +
t7 − t

t7 − t6
N61 =

{
t − 2 for t ∈ [2, 3),
4 − t for t ∈ [3, 4),

N62(t) =
t − t6
t7 − t6

N61 +
t8 − t

t8 − t7
N71 =

{
t − 3 for t ∈ [3, 4),
5 − t for t ∈ [4, 5),

N72(t) =
t − t7
t8 − t7

N71 +
t9 − t

t9 − t8
N81 = t − 4 for t ∈ [4, 5).

This step terminates at N72(t) since N82(t) and its successors are zero for 0 ≤ t < 5.
Step 3 requires the calculation of several functions Ni3:

N03(t) =
t − t0
t2 − t0

N02 +
t3 − t

t3 − t1
N12 = 0,



7.11 Nonuniform B-Splines 289

P1 P2

t3 t4

t5 t6

t7
t8

P0 P3 P4 P7

P6P5

x

y

P3(t)

P
4 (t)

P5(t)

P6
(t)

P7(t)

P1 P2

t3

t4=t5

t6

t7 t8

P0 P3 P4 P7

P6P5

x

y

P
3(t)

P5(t)

P6
(t)

P7(t)

P1 P2

t3

t4=t5=t6

t7

t8

P0 P3 P4 P7

P6P5

x

y

P
3(t)

P6
(t) P7(t)

P1 P2

t3

t4=t5=t6=t7

t8

P0 P3 P4 P7

P6P5

x

y

P
3(t)

P7
(t)

(a)

(b)

(c)

(d)

Figure 7.19: An Eight-Point Nonuniform B-Spline Curve with Multiple Knots.



290 7. B-Spline Approximation

N13(t) =
t − t1
t3 − t1

N12 +
t4 − t

t4 − t2
N22 =

1
2
(1 − t)2 for t ∈ [0, 1),

N23(t) =
t − t2
t4 − t2

N22 +
t5 − t

t5 − t3
N32 =

1
2

{
(−2t2 + 2t + 1) for t ∈ [0, 1),
(2 − t)2 for t ∈ [1, 2),

N33(t) =
t − t3
t5 − t3

N32 +
t6 − t

t6 − t4
N42 =

1
2

⎧⎨
⎩

t2 for t ∈ [0, 1),
(−2t2 + 6t − 3) for t ∈ [1, 2),
(3 − t)2 for t ∈ [2, 3),

N43(t) =
t − t4
t6 − t4

N42 +
t7 − t

t7 − t5
N52 =

1
2

⎧⎨
⎩

(t − 1)2 for t ∈ [1, 2),
(−2t2 + 10t − 11) for t ∈ [2, 3),
(4 − t)2 for t ∈ [3, 4),

N53(t) =
t − t5
t7 − t5

N52 +
t8 − t

t8 − t6
N62 =

1
2

⎧⎨
⎩

(t − 2)2 for t ∈ [2, 3),
(−2t2 + 14t − 23) for t ∈ [3, 4),
(5 − t)2 for t ∈ [4, 5),

N63(t) =
t − t6
t8 − t6

N62 +
t9 − t

t9 − t7
N72 =

1
2

{
(t − 3)2 for t ∈ [3, 4),
(−2t2 + 18t − 39) for t ∈ [4, 5),

N73(t) =
t − t7
t9 − t7

N72 +
t10 − t

t10 − t8
N82 =

1
2
(t − 4)2 for t ∈ [4, 5).

We stop at N73 since N83 and its successors are zero for 0 ≤ t < 5.
The last step involves the calculation of eight functions Ni4:

N04(t) =
t − t0
t3 − t0

N03 +
t4 − t

t4 − t1
N13 =

1
6
(1 − t)3 for t ∈ [0, 1),

N14(t) =
t − t1
t4 − t1

N13 +
t5 − t

t5 − t2
N23 =

1
6

{
(3t3 − 6t2 + 4) for t ∈ [0, 1),
(2 − t)3 for t ∈ [1, 2),

N24(t) =
t − t2
t5 − t2

N23 +
t6 − t

t6 − t3
N33 =

1
6

⎧⎨
⎩

(−3t3 + 3t2 + 3t + 1) for t ∈ [0, 1),
(3t3 − 15t2 + 21t − 5) for t ∈ [1, 2),
(3 − t)3 for t ∈ [2, 3),

N34(t) =
t − t3
t6 − t3

N33 +
t7 − t

t7 − t4
N43 =

1
6

⎧⎪⎪⎨
⎪⎪⎩

t3 for t ∈ [0, 1),
(−3t3 + 12t2 − 12t + 4) for t ∈ [1, 2),
(3t3 − 24t2 + 60t − 44) for t ∈ [2, 3),
(4 − t)3 for t ∈ [3, 4),

N44(t) =
t − t4
t7 − t4

N43 +
t8 − t

t8 − t5
N53 =

1
6

⎧⎪⎪⎨
⎪⎪⎩

(t − 1)3 for t ∈ [1, 2),
(−3t3 + 21t2 − 45t + 31) for t ∈ [2, 3),
(3t3 − 33t2 + 117t − 131) for t ∈ [3, 4),
(5 − t)3 for t ∈ [4, 5),

N54(t) =
t − t5
t8 − t5

N53 +
t9 − t

t9 − t6
N63 =

1
6

⎧⎨
⎩

(t − 2)3 for t ∈ [2, 3),
(−3t3 + 30t2 − 96t + 100) for t ∈ [3, 4),
(3t3 − 42t2 + 192t − 284) for t ∈ [4, 5),

N64(t) =
t − t6
t9 − t6

N63 +
t10 − t

t10 − t7
N73 =

1
6

{
(t − 3)3 for t ∈ [3, 4),
(−3t3 + 39t2 − 165t + 229) for t ∈ [4, 5),



7.11 Nonuniform B-Splines 291

N74(t) =
t − t7

t10 − t7
N73 +

t11 − t

t11 − t8
N83 =

1
6
(t − 4)3 for t ∈ [4, 5).

A careful study of this last group shows that N84 and its successors are zero for 0 ≤ t < 5.
The last group of blending functions can now be used to construct the five spline

segments:

P3(t) = N04(t)P0 + N14(t)P1 + N24(t)P2 + N34(t)P3 t ∈ [0, 1)

=
1
6
[
(1 − t)3P0 + (3t3 − 6t2 + 4)P1

+ (−3t3 + 3t2 + 3t + 1)P2 + t3P3

]
,

P4(t) = N14(t)P1 + N24(t)P2 + N34(t)P3 + N44(t)P4 t ∈ [1, 2)

=
1
6
[
(2 − t)3P1 + (3t3 − 15t2 + 21t − 5)P2

+ (−3t3 + 12t2 − 12t + 4)P3 + (t − 1)3P4

]
,

P5(t) = N24(t)P2 + N34(t)P3 + N44(t)P4 + N54(t)P5 t ∈ [2, 3)

=
1
6
[
(3 − t)3P2 + (3t3 − 24t2 + 60t − 44)P3

+ (−3t3 + 21t2 − 45t + 31)P4 + (t − 2)3P5

]
,

P6(t) = N34(t)P3 + N44(t)P4 + N54(t)P5 + N64(t)P6 t ∈ [3, 4)

=
1
6
[
(4 − t)3P3 + (3t3 − 33t2 + 117t − 131)P4

+ (−3t3 + 30t2 − 96t + 100)P5 + (t − 3)3P6

]
,

P7(t) = N44(t)P4 + N54(t)P5 + N64(t)P6 + N74(t)P7 t ∈ [4, 5)

=
1
6
[
(5 − t)3P4 + (3t3 − 42t2 + 192t − 284)P5

+ (−3t3 + 39t2 − 165t + 229)P6 + (t − 4)3P7

]
.

A direct check verifies that each segment has barycentric weights. The entire curve
starts at P3(0) = (P0 +4P1 +P2)/6 and ends at P7(5) = (P5 +4P6 +P7)/6. The four
joint points between the segments are

P3(1) = P4(1) = (P1 + 4P2 + P3)/6, P4(2) = P5(2) = (P2 + 4P3 + P4)/6,

P5(3) = P6(3) = (P3 + 4P4 + P5)/6, P6(4) = P7(4) = (P4 + 4P5 + P6)/6.

The coordinates of the control points of Figure 7.19a are P0 = (0, 0), P1 = (0, 1),
P2 = (1, 1), P3 = (1, 0), P4 = (2, 0), P5 = (2.75, 1), P6 = (3, 1), and P7 = (3, 0). The
curve therefore starts at (1/6, 5/6), ends at (2.96, 5/6), and passes through the joins
(5/6, 5/6), (7/6, 1/6), (1.96, 1/6), and (2.67, 5/6).

Figure 7.20 lists the code that computes the weight functions for this case. This
code is general and can also compute B-spline weight functions for the uniform and open
uniform cases.

Part b: To continue the example, we now calculate the blending functions and
spline segments of the curve of Figure 7.19b where the knot vector is the nonuniform



292 7. B-Spline Approximation

(* Compute the nonuniform weight functions for the 8-point example that follows *)
Clear[bspl,knt]
bspl[i_,k_,t_]:=If[knt[[i+k]]==knt[[i+1]],0, (* 0<=i<=n *)
bspl[i,k-1,t] (t-knt[[i+1]])/(knt[[i+k]]-knt[[i+1]])] \
+If[knt[[i+1+k]]==knt[[i+2]],0,
bspl[i+1,k-1,t] (knt[[i+1+k]]-t)/(knt[[i+1+k]]-knt[[i+2]])];
bspl[i_,1,t_]:=If[knt[[i+1]]<=t<knt[[i+2]], 1, 0];
n=4; k=4; (* Note: 0<=k<=n *)
knt={-3,-2,-1,0,1,2,3,4,5,6,7,8}; (* knots for nonuniform case *)
bspl[i,k,t] (* assign a value to i *)

Figure 7.20: Eight-Point Nonuniform B-Spline Example; Code for Blending Functions.

(−3,−2,−1, 0, 1, 1, 2, 3, 4, 5, 6, 7). Notice that we now have t4 = t5 = 1, resulting in
different blending functions and different spline segments.

It is important to realize that t varies in this case from t3 = 0 to t8 = 4. The five
intervals of t for the five spline segments are [0, 1), [1, 1), [1, 2), [2, 3), and [3, 4). The
second segment P4(t) has now been reduced to a single point.

The first step is to calculate Ni1:

N31 = 1 for t ∈ [0, 1), N41 = 1 for t ∈ [1, 1),
N51 = 1 for t ∈ [1, 2), N61 = 1 for t ∈ [2, 3), N71 = 1 for t ∈ [3, 4),

and N01, N11, N21, N81, N91, N10,1, and N11,1 are zero in the range 0 ≤ t < 4.
Step 2 is to calculate functions Ni2 that are nonzero for 0 ≤ t < 4:

N02(t) =
t − t0
t1 − t0

N01 +
t2 − t

t2 − t1
N11 = 0,

N12(t) =
t − t1
t2 − t1

N11 +
t3 − t

t3 − t2
N21 = 0,

N22(t) =
t − t2
t3 − t2

N21 +
t4 − t

t4 − t3
N31 = (1 − t) for t ∈ [0, 1),

N32(t) =
t − t3
t4 − t3

N31 +
t5 − t

t5 − t4
N41 = t for t ∈ [0, 1),

N42(t) =
t − t4
t5 − t4

N41 +
t6 − t

t6 − t5
N51 = 2 − t for t ∈ [1, 2),

N52(t) =
t − t5
t6 − t5

N51 +
t7 − t

t7 − t6
N61 =

{
t − 1 for t ∈ [1, 2),
3 − t for t ∈ [2, 3),

N62(t) =
t − t6
t7 − t6

N61 +
t8 − t

t8 − t7
N71 =

{
t − 2 for t ∈ [2, 3),
4 − t for t ∈ [3, 4),

N72(t) =
t − t7
t8 − t7

N71 +
t9 − t

t9 − t8
N81 = t − 4 for t ∈ [3, 4).

This step terminates at N72(t) since N82(t) and its successors are zero for 0 ≤ t < 4.
Step 3 requires the calculation of several functions Ni3:

N03(t) =
t − t0
t2 − t0

N02 +
t3 − t

t3 − t1
N12 = 0,



7.11 Nonuniform B-Splines 293

N13(t) =
t − t1
t3 − t1

N12 +
t4 − t

t4 − t2
N22 =

1
2
(1 − t)2 for t ∈ [0, 1),

N23(t) =
t − t2
t4 − t2

N22 +
t5 − t

t5 − t3
N32 =

1
2
(−3t2 + 2t + 1) for t ∈ [0, 1),

N33(t) =
t − t3
t5 − t3

N32 +
t6 − t

t6 − t4
N42 =

{
t2 for t ∈ [0, 1),
(2 − t)2 for t ∈ [1, 2),

N43(t) =
t − t4
t6 − t4

N42 +
t7 − t

t7 − t5
N52 =

1
2

{
(−3t2 + 10t − 7) for t ∈ [1, 2),
(3 − t)2 for t ∈ [2, 3),

N53(t) =
t − t5
t7 − t5

N52 +
t8 − t

t8 − t6
N62 =

1
2

⎧⎨
⎩

(t − 1)2 for t ∈ [1, 2),
(−2t2 + 10t − 11) for t ∈ [2, 3),
(4 − t)2 for t ∈ [3, 4),

N63(t) =
t − t6
t8 − t6

N62 +
t9 − t

t9 − t7
N72 =

1
2

{
(t − 2)2 for t ∈ [2, 3),
(−2t2 + 14t − 23) for t ∈ [3, 4),

N73(t) =
t − t7
t9 − t7

N72 +
t10 − t

t10 − t8
N82 =

1
2
(t − 3)2 for t ∈ [3, 4).

Here we stop at N73 since N83 and its successors are zero for 0 ≤ t < 4.
The last step involves the calculation of eight functions Ni4:

N04(t) =
t − t0
t3 − t0

N03 +
t4 − t

t4 − t1
N13 =

1
6
(1 − t)3 for t ∈ [0, 1),

N14(t) =
t − t1
t4 − t1

N13 +
t5 − t

t5 − t2
N23 =

1
12

(11t3 − 15t2 − 3t + 7) for t ∈ [0, 1),

N24(t) =
t − t2
t5 − t2

N23 +
t6 − t

t6 − t3
N33 =

{ 1
4 (−5t3 + 3t2 + 3t + 1) for t ∈ [0, 1),
1
2 (2 − t)3 for t ∈ [1, 2),

N34(t) =
t − t3
t6 − t3

N33 +
t7 − t

t7 − t4
N43 =

⎧⎨
⎩

1
2 t3 for t ∈ [0, 1),
1
4 (5t3 − 27t2 + 45t − 21) for t ∈ [1, 2),
1
4 (3 − t)3 for t ∈ [2, 3),

N44(t) =
t − t4
t7 − t4

N43 +
t8 − t

t8 − t5
N53 =

⎧⎨
⎩

1
12 (−11t3 + 51t2 − 69t + 29) for t ∈ [1, 2),
1
12 (7t3 − 57t2 + 147t − 115) for t ∈ [2, 3),
1
6 (4 − t)3 for t ∈ [3, 4),

N54(t) =
t − t5
t8 − t5

N53 +
t9 − t

t9 − t6
N63 =

1
6

⎧⎨
⎩

(t − 1)3 for t ∈ [1, 2),
(−3t3 + 21t2 − 45t + 31) for t ∈ [2, 3),
(3t3 − 33t2 + 117t − 131) for t ∈ [3, 4),

N64(t) =
t − t6
t9 − t6

N63 +
t10 − t

t10 − t7
N73 =

1
6

{
(t − 2)3 for t ∈ [2, 3),
(−3t3 + 30t2 − 96t + 100) for t ∈ [3, 4),

N74(t) =
t − t7

t10 − t7
N73 +

t11 − t

t11 − t8
N83 =

1
6
(t − 3)3 for t ∈ [3, 4).

This group of blending functions can now be used to construct the five spline seg-
ments

P3(t) = N04(t)P0 + N14(t)P1 + N24(t)P2 + N34(t)P3 t ∈ [0, 1)



294 7. B-Spline Approximation

=
1
6
(1 − t)3P0 +

1
12

(11t3 − 15t2 − 3t + 7)P1

+
1
4
(−5t3 + 3t2 + 3t + 1)P2 +

1
2
t3P3,

P4(t) = N14(1)P1 + N24(1)P2 + N34(1)P3 + N44(1)P4 t ∈ [1, 1)

= 0P1 +
1
2
P2 +

1
2
P3 + 0P4 = (P2 + P3)/2 (a point),

P5(t) = N24(t)P2 + N34(t)P3 + N44(t)P4 + N54(t)P5 t ∈ [1, 2)

=
1
2
(2 − t)3P2 +

1
4
(5t3 − 27t2 + 45t − 21)P3

+
1
12

(−11t3 + 51t2 − 69t + 29)P4 +
1
6
(t − 1)3P5,

P6(t) = N34(t)P3 + N44(t)P4 + N54(t)P5 + N64(t)P6 t ∈ [2, 3)

=
1
4
(3 − t)3P3 +

1
12

(7t3 − 57t2 + 147t − 115)P4

+
1
6
(−3t3 + 21t2 − 45t + 31)P5 +

1
6
(t − 2)3P6,

P7(t) = N44(t)P4 + N54(t)P5 + N64(t)P6 + N74(t)P7 t ∈ [3, 4)

=
1
6
[
(4 − t)3P4 + (3t3 − 33t2 + 117t − 131)P5

+ (−3t3 + 30t2 − 96t + 100)P6 + (t − 3)3P7

]
.

A direct check verifies that each segment has barycentric weights. The entire curve
starts at P3(0) = (2P0 + 7P1 + 3P2)/12 and ends at P7(4) = (P5 + 4P6 + P7)/6. The
three joint points between the segments are

P3(1) = P5(1) = (P2 + P3)/2, P5(2) = P6(2) = (3P3 + 7P4 + 2P5)/12,

P6(3) = P7(3) = (P4 + 4P5 + P6)/6.

(End of example.)

� Exercise 7.11: Calculate the blending functions and spline segments for the curves of
Figure 7.19c,d.

This example illustrates the power and flexibility of the nonuniform B-spline. Other
curve methods make it possible to control the shape of a curve by moving control points,
by subdividing the curve and adding points, and by repeating certain points. The
nonuniform B-spline method can employ all these operations but can also fine-tune the
curve by changing the values of knots and by using multiple knots.



7.12 Matrix Form of the Nonuniform B-Spline 295

7.12 Matrix Form of the Nonuniform B-Spline

The Cox–DeBoor recursive formula, Equations (7.24) and (7.25), is general and can
be used to calculate the blending functions of the uniform, open, and nonuniform B-
splines. However, it is complex and slow to calculate. Explicit, matrix-based expressions
for the B-spline are simpler and faster to use. Such expressions have been derived for the
uniform quadratic B-spline in Section 7.1 [Equation (7.6)] and for the uniform cubic B-
spline in Section 7.2 [Equation (7.11)]. Similar expressions are derived in this section for
the linear, quadratic, and cubic nonuniform B-splines. We temporarily use the notation
u instead of t for the parameter and ui instead of ti for the knots.

For the linear case, where k = 2, the Cox–DeBoor formula becomes

Ni2 =
u − ui

ui+1 − ui
Ni1(u) +

ui+2 − u

ui+2 − ui+2
Ni+1,1(u)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u − ui

ui+1 − ui
for u ∈ [ui, ui+1),

ui+2 − u

ui+2 − ui+1
for u ∈ [ui+1, ui+2),

0 otherwise.

(7.29)

For i = 0, this becomes

N02 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u − u0

u1 − u0
for u ∈ [u0, u1),

u2 − u

u2 − u1
for u ∈ [u1, u2),

0 otherwise.

(7.30)

The other blending function N12 is easily obtained from Equation (7.30) by incrementing
all the indices.

Blending function N02 is zero over the subinterval [u2, u3) and blending function
N12 is zero over [u0, u1). It is therefore only over the interval [u1, u2) that both these
functions are nonzero, so the parameter u should vary from u1 to u2. Over this interval,
we have

N02(u) =
u2 − u

u2 − u1
, N12(u) =

u3 − u

u3 − u2
. (7.31)

To derive the expression for the linear spline, we denote ∆ = u2 − u1 and define the
parameter t by

t =
u − u1

∆
=

u − u1

u2 − u1
.

Notice that u = u1 → t = 0 and u = u2 → t = 1. Also, u − u1 = t∆ and u − u2 =
∆(t−1). Substituting this in Equation (7.31) yields the matrix expression for the linear
nonuniform B-spline

P(t) = (t, 1)
(−1 1

1 0

)(
P0

P1

)
. (7.32)

When t varies from 0 to 1, this becomes the straight line from P0 to P1. The nonuniform
linear B-spline does not depend on ∆, so it is identical to the uniform linear B-spline.



296 7. B-Spline Approximation

When you get an 8 on the midterm, there ain’t a curve in the world that can save you.
—Unknown

Next, we derive the matrix form of the quadratic case. Applying the Cox–DeBoor
formula to Equation (7.30), we get the first quadratic blending function N03:

N03(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u − u0

u2 − u0
· u − u0

u1 − u0
for u ∈ [u0, u1),

u − u0

u2 − u0
· u2 − u

u2 − u1
+

u3 − u

u3 − u1
· u − u1

u2 − u1
for u ∈ [u1, u2),

u3 − u

u3 − u1
· u3 − u

u3 − u2
for u ∈ [u2, u3),

0 otherwise.

(7.33)

Functions N13 and N23 are obtained from Equation (7.33) by incrementing all the indices.
When this is done, we observe that each of the three blending functions Ni3 is zero over
different intervals and it is only over subinterval [u2, u3) that all three are nonzero, and
their values are

N03(u) =
u3 − u

u3 − u1
· u3 − u

u3 − u2
,

N13(u) =
u − u1

u3 − u1
· u3 − u

u3 − u2
+

u4 − u

u4 − u2
· u − u2

u3 − u2
,

N23(u) =
u − u2

u4 − u2
· u − u2

u3 − u2
. (7.34)

Since the knot vector is nonuniform, the differences between consecutive knots may be
different and we denote them

∆1 = u2 − u1, ∆2 = u3 − u2, ∆3 = u4 − u3.

We also define t = (u − u2)/∆2, which implies

u − u1 = t∆2 + ∆1,

u − u2 = t∆2,

u − u3 = (t − 1)∆2,

u − u4 = t∆2 − (∆2 + ∆3). (7.35)

Equations (7.34) and (7.35) yield the matrix form of the nonuniform quadratic B-spline

P(t) = (t2, t, 1)

⎛
⎝ a −a − b b

−2a 2a 0
a 1 − a 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ , (7.36)

where
a =

∆2

∆1 + ∆2
, b =

∆2

∆2 + ∆3
,

and t varies from 0 to 1 (note that u = u2 → t = 0 and u = u3 → t = 1).



7.12 Matrix Form of the Nonuniform B-Spline 297

B-splines were known to and studied by Nikolai Lobachevsky whose major con-
tribution to mathematics is perhaps the so-called non-Euclidean (hyperbolic) ge-
ometry in the late eighteenth century. The modern version described here was
developed, in the late 1970s, by C. DeBoor, M. Cox and L. Mansfield. Note that
their algorithm is a generalization of de Casteljau’s scaffolding method.

The next example derives the matrix form of the nonuniform cubic B-spline. We
apply the Cox–DeBoor formula to Equation (7.33) to obtain the first of the four blending
functions Ni4:

N04(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u − u0

u3 − u0
· u − u0

u2 − u0
· u − u0

u1 − u0
for u ∈ [u0, u1),

u − u0

u3 − u0
· u − u0

u2 − u0
· u2 − u

u2 − u1

+
u − u0

u3 − u0
· u3 − u

u3 − u1
· u − u1

u2 − u1

+
u4 − u

u4 − u1
· u − u1

u3 − u1
· u − u1

u2 − u1
for u ∈ [u1, u2),

u − u0

u3 − u0
· u3 − u

u3 − u1
· u3 − u

u3 − u2

+
u4 − u

u4 − u1
· u − u1

u3 − u1
· u3 − u

u3 − u2

+
u4 − u

u4 − u1
· u4 − u

u4 − u2
· u − u2

u3 − u2
for u ∈ [u2, u3),

u4 − u

u4 − u1
· u4 − u

u4 − u2
· u4 − u

u4 − u3
for u ∈ [u3, u4),

0 otherwise.

(7.37)

The remaining three blending functions N14, N24, and N34 are obtained from Equa-
tion (7.37) by incrementing all the indices. When this is done we observe, as before,
that each of the four blending functions Ni4 is zero over different intervals and it is only
over subinterval [u3, u4) that all four are nonzero. Their values are

N04(u) =
u4 − u

u4 − u1
· u4 − u

u4 − u2
· u4 − u

u4 − u3
,

N14(u) =
u − u1

u4 − u1
· u4 − u

u4 − u2
· u4 − u

u4 − u3
+

u5 − u

u5 − u2
· u − u2

u4 − u2
· u4 − u

u4 − u3

+
u5 − u

u5 − u2
· u5 − u

u5 − u3
· u − u3

u4 − u3
, (7.38)

N24(u) =
u − u2

u5 − u2
· u − u2

u4 − u2
· u4 − u

u4 − u3
+

u − u2

u5 − u2
· u5 − u

u5 − u3
· u − u3

u4 − u3

+
u6 − u

u6 − u3
· u − u3

u5 − u3
· u − u3

u4 − u3
,

N34(u) =
u − u3

u6 − u3
· u − u3

u5 − u3
· u − u3

u4 − u3
.

Since the knot vector is nonuniform, the differences between consecutive knots may



298 7. B-Spline Approximation

be different and we denote them by

∆1 = u2 − u1, ∆2 = u3 − u2, ∆3 = u4 − u3,

∆4 = u5 − u4, ∆5 = u6 − u5, t = (u − u3)/∆3.

This implies

u − u1 = t∆3 + (∆1 + ∆2),
u − u2 = t∆3 + ∆2,

u − u3 = t∆3,

u − u4 = (t − 1)∆3,
(7.39)

u − u5 = t∆3 − (∆3 + ∆4),
u − u6 = t∆3 − (∆3 + ∆4 + ∆5).

Equations (7.38) and (7.39) yield the matrix form of the nonuniform cubic B-spline:

P(t) = (t3, t2, t, 1)

⎛
⎜⎝

−a a + b + c −b − c − d d
3a −3a − 3b 3b 0
−3a 3a − 3e 3e 0
a 1 − a − f f 0

⎞
⎟⎠
⎛
⎜⎝

P0

P1

P2

P3

⎞
⎟⎠ , (7.40)

where

a =
∆2

3

(∆1 + ∆2 + ∆3)(∆2 + ∆3)
, d =

∆2
3

(∆3 + ∆4 + ∆5)(∆4 + ∆5)
,

b =
∆2

3

(∆2 + ∆3 + ∆4)(∆2 + ∆3)
, e =

∆2∆3

(∆2 + ∆3 + ∆4)(∆2 + ∆3)
,

c =
∆2

3

(∆2 + ∆3 + ∆4)(∆3 + ∆4)
, f =

∆2
2

(∆2 + ∆3 + ∆4)(∆2 + ∆3)
.

The quantities ∆i are defined as differences of knot values ui+1 − ui and a good
choice for those differences is the chord lengths between points. However, a cubic spline
segment requires five ∆i’s, but there are only three chords between the four points
defining it. In general, a B-spline curve is defined by n + 1 points, having n chords
between them, but n + 2 differences ∆i are required. A standard technique is to select

∆1 = ∆2 = |P1 − P0|, ∆n+1 = ∆n+2 = |Pn − Pn−1|,

and ∆i = |Pi−1 − Pi−2| for i = 3, 4, . . . , n.
The last topic discussed in this section is the relation between the quadratic uniform

and quadratic nonuniform B-splines. Given three control points Q0, Q1, and Q2, the
uniform quadratic B-spline Q(t) defined by them is given by Equation (7.6)

Q(t) =
1
2
(t2, t, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝Q0

Q1

Q2

⎞
⎠ . (7.6)



7.13 Subdividing the B-spline Curve 299

The nonuniform quadratic B-spline defined by three control points P0, P1, and P2 is
given by Equation (7.36). If we require the two curves to be identical for any value of
the parameter t, we obtain the equation

1
2

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝Q0

Q1

Q2

⎞
⎠ =

⎛
⎝ a −a − b b

−2a 2a 0
a 1 − a 0

⎞
⎠
⎛
⎝P0

P1

P2

⎞
⎠ .

This is a system of three equations where we assume that the unknowns are the Qi’s.
The solutions are

Q0 = 2aP0 + (1 − 2a)P1, Q1 = P1, and Q2 = (1 − 2b)P1 + 2bP2.

To see the geometrical interpretation of these relations, we write

Q0 = 2aP0 + (1 − 2a)P1 = 2aP0 + 2(1 − a)P1 − P1 = 2P(0) − P1 = 2Q(0) − Q1,

which implies Q0 − Q(0) = Q(0) − Q1. The distance between Q0 and Q(0) equals the
distance between Q(0) and Q1, and a similar relation among Q1, Q(1), and Q2.

The conclusion is that a group of three points P0, P1, and P2 defining a single
quadratic nonuniform B-spline segment P(t) can be replaced by a group of three points
Q0, Q1, and Q2 defining a single quadratic uniform B-spline segment Q(t) identical to
P(t). However, given a set of n + 1 control points Pi for a nonuniform B-spline curve,
they cannot, in general, be replaced by a set of n+1 points Qi that produce an identical
uniform B-spline curve.

7.13 Subdividing the B-spline Curve

The B-spline curve is easy to manipulate by moving the control points and varying the
knots. Still, if the curve is based on too few points, it may “refuse” to get the right
shape, no matter what. More control points can be added, in such a case, by subdividing
the curve, a process similar to subdividing the Bézier curve (Section 6.8). The method
described here is called the Oslo algorithm and the discussion follows [Cohen et al. 80]
and [Prautzsch 84].

(Control points can also be added by raising the degree of the B-spline curve, similar
to the degree elevation of the Bézier curve, Section 6.9. This operation is discussed in
[Cohen et al. 85].)

The idea behind subdividing a curve is that there are many (even infinitely many)
sets of control points that produce the same B-spline curve. Normally, we are interested
in the smallest number of control points that will produce a given curve, but if we cannot
get the right shape with the original n + 1 control points, we need to find a set of n + 2
points that will produce the same curve, then move the new points around, attempting
to bring the curve to the desired shape.

Given a set of n + 1 control points Pi and a knot vector (t0, t1, . . . , tn+k), we start
the subdivision process by inserting several new knots, thereby obtaining a new knot



300 7. B-Spline Approximation

vector (u0, u1, . . . , um+k) where m > n. The new, subdivided curve is based on the
m + 1 control points Qj defined by the Oslo algorithm as

Qj =
n∑

i=0

ak
ijPi, where 0 ≤ i ≤ n and 0 ≤ j ≤ m,

where the coefficients ak
ij are defined recursively by a relation similar to the Cox–DeBoor

formula

a1
ij =

{
1, ti ≤ uj < ti+1,
0, otherwise, (7.41)

ak
ij =

uj+k−1 − ti
ti+k−1 − ti

ak−1
ij +

ti+k − uj+k−1

ti+k − ti+1
ak−1

i+1,j . (7.42)

This relation guarantees that
∑n

i ak
ij = 1, for 0 ≤ j ≤ m.

If the original knot vector is uniform, inserting a single knot will convert it to a
nonuniform vector. However, an open knot vector can sometimes remain open after
inserting new knots, as the following example shows. Suppose that we have the open
vector (0, 0, 0, 1, 2, 2, 2), where t varies from 0 to 2. This corresponds to a two-segment
curve and we want to subdivide both segments. We first multiply each knot by 2,
obtaining the vector (0, 0, 0, 2, 4, 4, 4) that produces the same curve when 0 ≤ t < 4.
Next, we insert knots 1 and 3 to obtain the knot vector (0, 0, 0, 1, 2, 3, 4, 4, 4). This
vector is still open and it corresponds to the four segments [0, 1), [1, 2), [2, 3), and [3, 4).

Example: We assume four control points and quadratic segments (i.e., k = 3). We
already know that each segment is defined by three points, so two segments are needed
for this curve. The knot vector is assumed to be uniform and it goes from t0 = 0 to
tn+k = t6 = 6. The parameter t varies from tk−1 = t2 = 2 to tn+1 = t4 = 4; two
subintervals. This again shows that the curve consists of two spline segments, the first
for the subinterval [t2, t3) and the second for [t3, t4). We decide to subdivide the first
segment. This segment is defined by points P0, P1, and P2 (notice that n = 2 for this
subdivision), so the subdivision process should produce four points, Q0, Q1, Q2, and
Q3 (this implies m = 3), such that the two quadratic segments defined by them will
have the same shape as the segment being subdivided.

To perform the subdivision, we need to insert a new knot between t2 = 2 and t3 = 3.
We (somewhat arbitrarily) select its value to be 2.5. The new knot vector is

(u0, u1, u2, u3, u4, u5, u6, u7) = (0, 1, 2, 2.5, 3, 4, 5, 6),

and it is nonuniform. The calculation of the ak
ij coefficients is done by varying i from 0

to n = 2 and varying j from 0 to m = 3. It requires three steps, for k = 1, 2, 3 (notice
that this k is not the same as the order of the B-spline).

Step 1: We use Equation (7.41). A direct comparison of the ti and ui knots shows
that the only nonzero a1

ij coefficients are a1
00, a1

11, a1
22, and a1

23. Each has a value of 1.



7.13 Subdividing the B-spline Curve 301

Step 2: We calculate a2
ij for j = 0, 1, 2, 3 from Equation (7.42). For each value of j,

we stop when we get coefficients that add up to 1. The nonzero coefficients are

a2
00 =

u1 − t0
t1 − t0

a1
00 +

t2 − u1

t2 − t1
a1
10 =

1 − 0
1 − 0

· 1 = 1,

a2
11 =

u2 − t1
t2 − t1

a1
11 +

t3 − u2

t3 − t2
a1
21 =

2 − 1
2 − 1

· 1 = 1,

a2
12 =

u3 − t1
t2 − t1

a1
12 +

t3 − u3

t3 − t2
a1
22 =

3 − 2.5
3 − 2

· 1 = 1/2,

a2
22 =

u3 − t2
t3 − t2

a1
22 +

t4 − u3

t4 − t3
a1
32 =

2.5 − 2
3 − 2

· 1 = 1/2,

a2
23 =

u4 − t2
t3 − t2

a1
23 +

t4 − u4

t4 − t3
a1
33 =

3 − 2
3 − 2

· 1 = 1.

Step 3: The coefficients of step 2 are used to calculate a3
ij :

a3
00 =

u2 − t0
t2 − t0

a2
00 +

t3 − u2

t3 − t1
a2
10 =

2 − 0
2 − 0

· 1 = 1,

a3
01 =

u3 − t0
t2 − t0

a2
01 +

t3 − u3

t3 − t1
a2
11 =

3 − 2.5
3 − 1

· 1 = 1/4,

a3
11 =

u3 − t1
t3 − t1

a2
11 +

t4 − u3

t4 − t2
a2
21 =

2.5 − 1
3 − 1

· 1 = 3/4,

a3
12 =

u4 − t1
t3 − t1

a2
12 +

t4 − u4

t4 − t2
a2
22 =

3 − 1
3 − 1

· 1
2

+
4 − 3
4 − 2

· 1
2

= 3/4,

a3
22 =

u4 − t2
t4 − t2

a2
22 +

t5 − u4

t5 − t3
a2
32 =

3 − 2
4 − 2

· 1
2

= 1/4,

a3
23 =

u5 − t2
t4 − t2

a2
23 +

t5 − u5

t5 − t3
a2
33 =

4 − 2
4 − 2

· 1 = 1.

The four new control points can now be calculated. They are

Q0 =
3∑

i=0

a3
i0Pi = a3

00P0 = P0,

Q1 =
3∑

i=0

a3
i1Pi = a3

01P0 + a3
11P1 =

1
4
P0 +

3
4
P1,

Q2 =
3∑

i=0

a3
i2Pi = a3

12P1 + a3
22P2 =

3
4
P1 +

1
4
P2,

Q3 =
3∑

i=0

a3
i3Pi = a3

23P2 = P2.

The two quadratic B-spline segments defined by Q0Q1Q2 and Q2Q3Q4 have the same
shape as the original segment defined by P0P1P2, but they are easier to modify since
they are based on four points.



302 7. B-Spline Approximation

7.14 Nonuniform Rational B-Splines (NURBS)

The use of a knot vector is one reason why the B-spline curve is more general than the
Bézier and other curve methods. The n+k+1 knots can be used as parameters and can
be varied by the user/designer to obtain the desired shape of the curve. The rational
B-spline, described in this section, employs an additional set of n + 1 parameters wi,
called weights, to add even greater flexibility to the curve. In addition to this feature,
the rational B-spline has several more important advantages as follows:

1. It makes it possible to create curves that are true conic sections. It is well known
that a polynomial cannot represent a circle. More generally, it cannot represent arbitrary
conic sections. It is easy to show that the Bézier and B-spline curves can represent
approximate circles (Appendix B). If precise circles or conic sections are needed, then
rational curves are the natural choice.

2. It is invariant under perspective projections. We know that curves that are
barycentric sums are invariant under affine transformations. If we want to rotate, scale,
shear, or translate such a curve, we can apply the transformation to the control points
and use the transformed points to draw the transformed curve. There is no need to
apply the transformation to every pixel on the curve. However, if we want to project a
space (three-dimensional) curve in perspective on a two-dimensional output device, we
have to individually project every pixel on the curve. With a rational curve, we can
(perspective) project the control points and use the projected, two-dimensional points
to calculate the projected curve.

3. It reduces to the nonrational B-spline when all the weights wi are set to 1. This
means that a software package for rational B-splines can be used to generate nonrational
B-splines (uniform, open, and nonuniform). This also implies that the nonuniform ra-
tional B-spline (NURBS for short) is the most general parametric curve. It can take
many shapes and can easily be reduced to simpler forms. Because of this, NURBS is
today the defacto standard for curve design. Three excellent references to NURBS are
[Farin 99], [Piegl 97], and [Rogers 01].

Perhaps the best way to introduce rational B-splines (and rational curves in gen-
eral) is by means of homogeneous coordinates. This method starts by adding an extra
dimension to points, so a two-dimensional point becomes a triplet (x, y, w) and a three-
dimensional point becomes a 4-tuple (x, y, z, w). After transforming or manipulating the
point, it is projected back to its original number of dimensions by dividing its coordi-
nates by w. Given four-dimensional control points Qi = (xi, yi, zi, wi), where we assume
for convenience that the wi coordinates are nonnegative, we can define a (nonrational)
B-spline curve as

Pnr(t) =
n∑

i=0

QiNik(t).

From this we get the rational B-spline Pr(t) by isolating that part of Pnr(t) that depends
on the fourth coordinates wi and dividing by this part.

Pr(t) =
∑n

i=0 PiwiNik(t)∑n
i=0 wiNik(t)

=
n∑

i=0

PiRik(t), (7.43)



7.14 Nonuniform Rational B-Splines (NURBS) 303

where Pi = (xi, yi, zi) are three-dimensional control points and Rik(t) are the new,
rational blending functions defined by

Rik(t) =
wiNik(t)∑n
i=0 wiNik(t)

. (7.44)

This type of curve has most of the properties of the nonrational B-spline. The following
should be mentioned in particular:

1. The new blending functions Rik(t) are nonnegative and barycentric.
2. The curve reduces to the nonrational curve when all the weights wi equal 1 [this

is a direct consequence of Equation (7.44)].
3. Since the rational curve is the four-dimensional generalization of the nonrational

B-spline, the algorithms for curve subdivision and degree elevation of the B-spline can be
used for the rational version. They simply have to be executed on the four-dimensional
control points (xi, yi, zi, wi).

So much for the definition of the rational B-spline. The main question is how to
select values for the weights in order to modify the shape of the curve in a predictable
way. In order to isolate the effect of one weight on the curve, we first observe that
Equation (7.43) implies that when wk = 0, point Pk has no effect on the curve. To see
how increasing the value of a weight affects the curve, we select an index 0 ≤ k ≤ n and
divide Equation (7.43) by wk

Pr(t) =

∑n
i=0,i �=k Pi

wi

wk
Nik(t) + PkNkk(t)∑n

i=0,i �=k
wi

wk
Nik(t) + Nkk(t)

.

It is easy to see that as wk grows without limit, the result approaches point Pk. We
therefore conclude that those curve segments that are affected by Pk will approach this
point as weight wk grows.

The rest of this section describes two approaches to understanding the weights and
their effects on the curve. The first approach is to set all weights wi = 1, then change
the value of one of them and see how it affects the blending functions. The second
approach is to derive specific sets of weights that will produce B-spline curves that are
conic sections. The first approach is illustrated by a detailed example.

Example: This is an extension of the open B-spline example on page 282. We
assume n = 4 (five control points), select order k = 3 (quadratic polynomial segments),
and the knot vector (0, 0, 0, 1, 2, 3, 3, 3). The parameter t varies from tk−1 = t2 = 0
to tn+1 = t5 = 3, so our curve consists of three segments. The nonrational blending
functions Ni3(t) are

N03(t) = (1 − t)2, 0 ≤ t < 1,

N13(t) =
1
2

{
t(4 − 3t), 0 ≤ t < 1,
(2 − t)2, 1 ≤ t < 2,

N23(t) =
1
2

⎧⎨
⎩

t2, 0 ≤ t < 1,
(−2t2 + 6t − 3), 1 ≤ t < 2,
(3 − t)2, 2 ≤ t < 3,



304 7. B-Spline Approximation

N33(t) =
1
2

{
(t − 1)2, 1 ≤ t < 2,
(−3t2 + 14t − 15), 2 ≤ t < 3,

N43(t) = (t − 2)2, 2 ≤ t < 3.

Before we can calculate the rational blending functions, we have to select values
for the five weights. We choose (1, 1, w2, 1, 1), where w2 will later be assigned several
different values. The result is

R03(t) =
w0N03(t)∑4
i=0 wiNi3(t)

=
(1 − t)2

(1 − t)2 + t(4 − 3t)/2 + w2t2/2
, t ∈ [0, 1),

R13(t) =
w1N13(t)∑4
i=0 wiNi3(t)

=

⎧⎨
⎩

t(4−3t)/2
(1−t)2+t(4−3t)/2+w2t2/2 , t ∈ [0, 1)

(2−t)2/2
(2−t)2/2+w2(−2t2+6t−3)/2+(t−1)2/2 , t ∈ [1, 2),

R23(t) =
w2N23(t)∑4
i=0 wiNi3(t)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w2t2/2
(1−t)2+t(4−3t)/2+w2t2/2 , t ∈ [0, 1)

w2(−2t2+6t−3)/2
(2−t)2/2+w2(−2t2+6t−3)/2+(t−1)2/2 , t ∈ [1, 2)

w2(3−t)2/2
w2(3−t)2/2+(−3t2+14t−15)/2+(t−2)2 , t ∈ [2, 3),

R33(t) =
w3N33(t)∑4
i=0 wiNi3(t)

=

⎧⎨
⎩

(t−1)2/2
(2−t)2/2+w2(−2t2+6t−3)/2+(t−1)2/2 , t ∈ [1, 2)

(−3t2+14t−15)/2
w2(3−t)2/2+(−3t2+14t−15)/2+(t−2)2 , t ∈ [2, 3),

R43(t) =
w4N43(t)∑4
i=0 wiNi3(t)

=
(t − 2)2

w2(3 − t)2/2 + (−3t2 + 14t − 15)/2 + (t − 2)2
t ∈ [2, 3).

We next calculate the three spline segments for the four cases w2 = 0, 0.5, 1, and 5.
For w2 = 0 the three segments are

P1(t) =
(1 − t)2

1 − t2/2
P0 +

(4 − 3t)t
2 − t2

P1 + 0P2,

P2(t) =
(2 − t)2

5 − 6t + 2t2
P1 + 0P2 +

(t − 1)2

5 − 6t + 2t2
P3,

P3(t) = 0P2 +
15 − 14t + 3t2

7 − 6t + t2
P3 +

2(−2 + t)2

−7 + 6t − t2
P4.

For w2 = 0.5 they are

P1(t) =
(1 − t)2

1 − 0.25t2
P0 +

(4 − 3t)t
2 − 0.5t2

P1 +
0.25t2

1 − 0.25t2
P2,

P2(t) =
(2 − t)2

3.5 − 3t + t2
P1 +

0.25(−3 + 6t − 2t2)
1.75 − 1.5t + 0.5t2

P2 +
(t − 1)2

3.5 − 0.5t2
P3,

P3(t) =
0.25(3 − t)2

−1.25 + 1.5t − 0.25t2
P2 +

−15 + 14t − 3t2

−2.5 + 3.5t − 0.5t2
P3 +

(t − 2)2

−1.25 + 1.5t − 0.25t2
P4.



7.14 Nonuniform Rational B-Splines (NURBS) 305

For w2 = 1 we get

P1(t) = (1 − t)2P0 +
(4 − 3t)t

2
P1 +

t2

2
P2,

P2(t) =
(2 − t)2

2
P1 +

−3 + 6t − 2t2

2
P2 +

(t − 1)2

2 + 6t − 3t2
P3,

P3(t) =
(3 − t)2

2
P2 +

−15 + 14t − 3t2

2
P3 + (t − 2)2P4.

Finally, for w2 = 5 the segments are

P1(t) =
(1 − t)2

1 + 2t2
P0 +

(4 − 3t)t
2 + 4t2

P1 +
5t2

2 + 4t2
P2,

P2(t) =
(2 − t)2

−10 + 24t − 8t2
P1 +

5(−3 + 6t − 2t2)
−10 + 24t − 8t2

P2 +
(t − 1)2

−10 + 54t − 23t2
P3,

P3(t) =
5(3 − t)2

38 − 24t + 4t2
P2 +

−15 + 14t − 3t2

38 − 24t + 4t2
P3 +

(t − 2)2

19 − 12t + 2t2
P4.

They are plotted in Figure 7.21 for control points P0 = (0, 0), P1 = (0, 1), P2 = (1, 0),
P3 = (2, 1), and P4 = (2, 0). It is easy to see how weight w2 affects the shape of the
curve by controlling the amount of “pull” that point P2 exerts on the curve. For w2 = 0,
point P2 has no effect. The curve is defined by the four remaining points and is identical
to the control polygon of these points. As w2 grows toward 5, the curve becomes more
and more attracted to P2.

Now for the second approach. We are looking for specific sets of weights that will
generate conic sections. Since the conics are described by quadratic equations and each
is fully defined by means of three points, it makes sense to try rational B-splines of order
k = 3 defined by three points (i.e., n = 2). The conic is easier to design if the B-spline
curve starts and ends at control points, so it makes sense to use an open B-spline. Since
we have selected k = n + 1, we know (from Section 7.10) that the open B-spline will
be a Bézier curve. The knot vector for our curve is calculated by Equation (7.27) to be
(0, 0, 0, 0, 1, 1, 1, 1). To simplify our task, we try the simple set of weights (1, w1, 1). Our
problem is to find out for what values, if any, of w1 we get precise conics.

There is no need to use the Cox–DeBoor recursive formula [Equation (7.25)] to
calculate the blending functions because they are the quadratic Bernstein polynomials.
The curve itself can easily be written

P(t) =
N03(t)P0 + w1N13(t)P1 + N23(t)P2

N03(t) + w1N13(t) + N23(t)

=
(1 − t)2P0 + 2w1t(1 − t)P1 + t2P2

(1 − t)2 + 2w1t(1 − t) + t2
. (7.45)

� Exercise 7.12: Show that in the special case where w1 = 0, the curve of Equation (7.45)
reduces to the straight line between P0 and P2.



306 7. B-Spline Approximation

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1
P1 P3

P4P2P0

w2=0

w2=0.5

w2=1

w2=5

(* Rational B-spline example. w_2=0, .5, 1, 5 (Slow!) *)
Clear[bspl,knt,w,pnts,cur1,cur2,cur3,cur4,R] (* weight functions *)
bspl[i_,k_,t_]:=If[knt[[i+k]]==knt[[i+1]],0, (* 0<=i<=n *)
bspl[i,k-1,t] (t-knt[[i+1]])/(knt[[i+k]]-knt[[i+1]])] \
+If[knt[[i+1+k]]==knt[[i+2]],0,
bspl[i+1,k-1,t] (knt[[i+1+k]]-t)/(knt[[i+1+k]]-knt[[i+2]])];
bspl[i_,1,t_]:=If[knt[[i+1]]<=t<knt[[i+2]], 1, 0];
R[i_,t_]:=(w[[i+1]] bspl[i,k,t])/Sum[w[[j+1]] bspl[j,k,t], {j,0,n}];
n=4; k=3; w={1,1,0,1,1}; (* weights *)
knt={0,0,0,1,2,3,3,3}; (* knots *)
pnts={{0,0}, {0,1}, {1,0}, {2,1}, {2,0}};
cur1=ParametricPlot[Sum[(R[i,t] pnts[[i+1]]), {i,0,n}], {t,0,3},
PlotRange->All, DisplayFunction->Identity, Compiled->False];
w[[3]]=0.5;
cur2=ParametricPlot[Sum[(R[i,t] pnts[[i+1]]), {i,0,n}], {t,0,3},
PlotRange->All, DisplayFunction->Identity, Compiled->False];
w[[3]]=1;
cur3=ParametricPlot[Sum[(R[i,t] pnts[[i+1]]), {i,0,n}], {t,0,3},
PlotRange->All, DisplayFunction->Identity, Compiled->False];
w[[3]]=5;
cur4=ParametricPlot[Sum[(R[i,t] pnts[[i+1]]), {i,0,n}], {t,0,3},
PlotRange->All, DisplayFunction->Identity, Compiled->False];
Show[cur1,cur2,cur3,cur4, PlotRange->All, DefaultFont->{"cmr10", 10},
DisplayFunction->$DisplayFunction];

Figure 7.21: Effects of Varying Weight w2.

The midpoint S of the curve of Equation (7.45) is given by

S = P(0.5) =
(P0 + P2)/2

1 + w1
+

w1P1

1 + w1
=

1
1 + w1

M+
w1

1 + w1
P1 = (1−u)M+uP1, (7.46)

where M = (P0 + P2)/2 is the midpoint of P0 and P2 and u
def= w1/(1 + w1). Thus,

point S, which is called the shoulder point of the curve moves along a straight line from
M to P1 when w1 varies from 0 to ∞ (or, equivalently, when u varies from 0 to 1).



7.14 Nonuniform Rational B-Splines (NURBS) 307

Equation (7.46) also yields the relation

w1 =
M − S
S − P1

, (7.47)

which shows that w1 is the ratio of two distances.
It can be shown (see, e.g., [Lee 86]) that the single weight w1 determines the type

of conic generated by Equation (7.45). Values in the range (0, 1) generate an elliptic
curve (with a circle as a special case). The value w1 = 1 produces a parabolic curve,
and values w1 > 1 result in a hyperbolic curve. Figure 7.22 shows examples of these
types of conics (notice that S is not necessarily the maximum point on these curves).

P1

P2M

S

S

S

P0
x

y

w1>1

w1<1

w1=1

elliptic

parabolic

hyp
erb

olic

Figure 7.22: Conics Generated by Varying w1.

A circle is formed when the three control points form an isosceles triangle. If we
denote the base angle of this triangle by θ, it can be shown that a circular arc spanning
2θ degrees is obtained when w1 = cos θ. The most common cases are θ = 60◦ and
θ = 90◦. In the latter case (Figure 7.23b), a complete circle can easily be formed by
using the symmetry of a circle and duplicating every point four times. In the former
case (Figure 7.23a), a complete circle can be obtained by specifying six control points
and calculating three spline segments.

Example: We are given the three points P0 = (0,−1)R, P1 = (−1.732,−1)R, and
P2 = (−0.866, 0.5)R of Figure 7.23a. Substituting these points in Equation (7.45) and
setting w1 to cos 60◦ = 0.5 yields the 60◦ circular arc that goes from P0 to P2:

P(t) =
(1 − t)2P0 + 2w1t(1 − t)P1 + t2P2

(1 − t)2 + 2w1t(1 − t) + t2

= R
(1 − t)2(0,−1) + t(1 − t)(−1.732,−1) + t2(−0.866, 0.5)

(1 − t)2 + t(1 − t) + t2



308 7. B-Spline Approximation

(a) (b)

x

y

x

y

P0 P0
P1 P1

P2

P2

L

600 450

(* One third of a circle done by rational B-spline *)
P0={0,-1}; P1={-1.732,-1}; P2={-0.866,0.5}; w1=0.5;
pnts=ListPlot[{P0,P1,P2}, Prolog->PointSize[.04], DisplayFunction->Identity];
axs={AbsoluteThickness[1], Line[{P0,P1,P2}]};
th=ParametricPlot[((1-t)^2 P0+2w1 t(1-t)P1+t^2 P2)/((1-t)^2+2w1 t(1-t)+t^2),
{t,0,1}, PlotRange->All, DisplayFunction->Identity, Compiled->False];
Show[Graphics[axs],th,pnts, PlotRange->All, DisplayFunction->$DisplayFunction];

Figure 7.23: Control Points for Circles.

= R
(0.866t2 − 1.732t, 0.5t2 + t − 1)

(1 − t)2 + t(1 − t) + t2
.

� Exercise 7.13: Show how to figure out the coordinates of the three points from Fig-
ure 7.23a.

� Exercise 7.14: Given the three points P0 = (1, 0)R, P1 = (0, 0), and P2 = (0, 1)R
of Figure 7.23b, calculate the quadratic rational B-spline segment defined by the points
whose shape is a circular arc spanning 90◦.

7.15 Uniform B-Spline Surfaces

The uniform B-Spline surface patch is constructed as a Cartesian product of two uniform
B-spline curves. The biquadratic B-spline surface patch, for example, is fully defined by
nine control points and is constructed as the Cartesian product of Equation (7.6) with
itself

P(u, w) =
(

1
2

)2

(u2, u, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠
⎛
⎝P00 P01 P02

P10 P11 P12

P20 P21 P22

⎞
⎠

×
⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠T ⎛

⎝w2

w
1

⎞
⎠ .

(7.48)



7.15 Uniform B-Spline Surfaces 309

Its four corner points are not the four extreme control points, but

K00 = P(0, 0) =
1
4
(P00 + P01 + P10 + P11),

K01 = P(0, 1) =
1
4
(P01 + P02 + P11 + P12),

K10 = P(1, 0) =
1
4
(P10 + P11 + P20 + P21),

K11 = P(1, 1) =
1
4
(P11 + P12 + P21 + P22).

(7.49)

Notice that corner point K00 can be written

K00 =
1
2

(
P00 + P01

2
+

P10 + P11

2

)
.

This point is therefore located midway between points (P00 +P01)/2 and (P10 +P11)/2.
Figure 7.24a shows this location, as well as the locations of the other three corner points,
for the case where the control points are equally spaced.

P00 P10 P20 P30

P01 P11 P21 P31

P02 P12 P22 P32

P03 P13 P23 P33

P00

K00

P10 P20

P01 P11 P21

P02 P12 P22

(a) (b)

Figure 7.24: Idealized B-Spline Surface Patches.

Example: Given the nine points

P00 = (0, 0, 0), P01 = (0, 1, 0), P02 = (0, 2, 0),
P10 = (1, 0, 0), P11 = (1, 1, 1), P12 = (1, 2, 0),
P20 = (2, 0, 0), P21 = (2, 1, 0), P22 = (2, 2, 0),



310 7. B-Spline Approximation

the biquadratic B-spline surface patch defined by them is given by the simple expression

P(u, w) = (u + 1/2, w + 1/2, (−1 − 2u + 2u2)(−1 − 2w + 2w2)/4).

Its four corner points are

K00 = P(0, 0) =
(

1
2
,
1
2
,
1
4

)
, K01 = P(0, 1) =

(
1
2
,
3
2
,
1
4

)
,

K10 = P(1, 0) =
(

3
2
,
1
2
,
1
4

)
, K11 = P(1, 1) =

(
3
2
,
3
2
,
1
4

)
.

Figure 7.25 shows the relation between this surface and its control points.

0 1 2

0

1
2

0

1

1
2

P00

P01

P02

P10

P11

P21

P20

P22

x

y

z

(* BiQuadratic B-spline Patch Example *)
<<:Graphics:ParametricPlot3D.m
Clear[T,Pnts,Q,comb,g1,g2];
T[t_]:={t^2,t,1};
Pnts={{{0,0,0},{0,1.5,0},{0,2,0}},{{1,0,0},{1,1,1},{1,2,0}},
{{2,0,0},{2,0.5,0},{2,2,0}}};
Q={{1,-2,1},{-2,2,0},{1,1,0}};
g1=Graphics3D[{AbsolutePointSize[3], Table[Point[Pnts[[i,j]]],{i,1,3},{j,1,3}]}];
comb[i_]:=((1/4)T[u].Q.Pnts)[[i]] (Transpose[Q].T[w])[[i]]
g2=ParametricPlot3D[comb[1]+comb[2]+comb[3], {u,0,1},{w,0,1}, AspectRatio->Automatic,
Ticks->{{0,1,2},{0,1,2},{0,1}}, Compiled->False, DisplayFunction->Identity];
Show[g2,g1, DisplayFunction->$DisplayFunction, ViewPoint->{-0.196, -4.177, 1.160},
PlotRange->All, DefaultFont->{"cmr10", 10}];

Figure 7.25: A Biquadratic B-Spline Surface Patch.

� Exercise 7.15: Calculate the midpoint P(1/2, 1/2) of this patch.

From the dictionary

A line segment is a part of a line that is bounded by two end points. The midpoint of
a segment is the unique point located at an equal distance from the two end points.



7.15 Uniform B-Spline Surfaces 311

The bicubic B-spline patch is defined by a grid of 4×4 control points and is con-
structed as the Cartesian product of Equation (7.11) with itself

P(u, w) =
(1

6

)2

(u3, u2, u, 1)

⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎞
⎟⎠

×

⎛
⎜⎝

P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

⎞
⎟⎠
⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎞
⎟⎠

T ⎛
⎜⎝

w3

w2

w
1

⎞
⎟⎠ .

(7.50)

Its four corner points are

K00 = P(0, 0)

=
1
36

(P00 + P02 + 4P10 + 4P12 + P20 + 4P01 + 16P11 + 4P21 + P22),

K01 = P(0, 1)

=
1
36

(P01 + 4P02 + P03 + 4P11 + 16P12 + 4P13 + P21 + 4P22 + P23),

K10 = P(1, 0) (7.51)

=
1
36

(P10 + P12 + 4P20 + 4P22 + P30 + 4P11 + 16P21 + 4P31 + P32),

K11 = P(1, 1)

=
1
36

(P11 + 4P12 + P13 + 4P21 + 16P22 + 4P23 + P31 + 4P32 + P33).

Each is a barycentric sum of nine control points. Notice that the first corner point can
be rewritten in the form

K00 =
1
6

[1
6
(P00 +4P10 +P20)+

4
6
(P01 +4P11 +P21)+

1
6
(P02 +4P12 +P22)

]
. (7.52)

This point is therefore the weighted sum of three points, each the weighted sum of three
control points. Its precise location depends on the positions of the nine points involved.

� Exercise 7.16: What is the value of K00 for the special case where the control points
are equally spaced?

The other three corner points can be expressed similarly. If all 16 points are equally
spaced, the bicubic surface patch has its corners at the four control points P11, P21,
P12, and P22 (Figure 7.24b shows an idealized diagram).

Large B-spline surfaces can be constructed from these bicubic patches by starting
with a mesh of (m + 1) × (n + 1) control points P00 through Pmn, dividing it into
(m− 2)× (n− 2) overlapping groups of 4× 4 points each, as in Figure 5.9 and applying
Equation (7.50) to calculate a cubic patch for each group. The individual patches will
not only connect at their joint points but will have C2 continuity along their boundaries.



312 7. B-Spline Approximation

To show that the bicubic patches connect at the joints, we note how joint point K01

can be obtained from joint K00 by incrementing the second indices of the nine control
points involved in their expressions [Equation (7.51)]. The same is true for joints K10

and K11. Similarly, joint point K10 can be obtained from K00 by incrementing the first
index of each control point, and the same is true for joints K01 and K11.

To show first-order continuity we calculate, for example, the two tangent vectors
Pu(u, 0) and Pu(u, 1) of boundary curves P(u, 0) and P(u, 1)

Pu(u, 0) =
(−P02 + P20 + 4P21 + P22 − P00(u − 1)2 − 4P01(u − 1)2

+ 2P02u − 4P10u − 16P11u − 4P12u + 2P20u + 8P21u + 2P22u

− P02u
2 + 3P10u

2 + 12P11u
2 + 3P12u

2 − 3P20u
2 − 12P21u

2

− 3P22u
2 + P30u

2 + 4P31u
2 + P32u

2
)
/12

Pu(u, 1) =
(−P03 + P21 + 4P22 + P23 − P01(u − 1)2 − 4P02(u − 1)2

+ 2P03u − 4P11u − 16P12u − 4P13u + 2P21u + 8P22u + 2P23u

− P03u
2 + 3P11u

2 + 12P12u
2 + 3P13u

2 − 3P21u
2 − 12P22u

2

− 3P23u
2 + P31u

2 + 4P32u
2 + P33u

2
)
/12

(7.53)

Equation (7.53) shows that tangent vector Pu(u, 1) can be obtained from Pu(u, 0) by
incrementing the second index of every control point involved. Equation (7.54) illustrates
the same property for the second derivatives, thereby showing second-order continuity:

Puu(u, 0) =
(
P00 + P02 − 2P10 − 8P11 − 2P12 + P20 + 4P21 + P22

− 4P01(u − 1) − P00u − P02u + 3P10u + 12P11u + 3P12u

− 3P20u − 12P21u − 3P22u + P30u + 4P31u + P32u
)
/6

Puu(u, 1) =
(
P01 + P03 − 2P11 − 8P12 − 2P13 + P21 + 4P22 + P23

− 4P02(u − 1) − P01u − P03u + 3P11u + 12P12u + 3P13u

− 3P21u − 12P22u − 3P23u + P31u + 4P32u + P33u
)
/6.

(7.54)

7.16 Relation to Other Surfaces

This short section shows how the uniform bicubic B-spline surface patch can be expressed
as either a bicubic Coons or a bicubic Bézier patch.

Bicubic Coons and B-Spline Patches. A bicubic B-spline surface patch can
be written as a bicubic Coons patch. That patch [Equation (4.35), duplicated here]
is defined in terms of four corner points, eight tangent vectors, and four twist vectors.
These 16 quantities (the elements of matrix C below) can be expressed in terms of the
16 control points Pij that define the B-spline patch. The idea is to equate the expression



7.16 Relation to Other Surfaces 313

for the Coons surface

Q(u, w) = (u3, u2, u, 1)H

⎛
⎜⎝

Q00 Q01 Qw
00 Qw

01

Q10 Q11 Qw
10 Qw

11

Qu
00 Qu

01 Quw
00 Quw

01

Qu
10 Qu

11 Quw
10 Quw

11

⎞
⎟⎠HT

⎛
⎜⎝

w3

w2

w
1

⎞
⎟⎠ = UHCHT WT ,

(4.35)
with that of the B-spline surface, Equation (7.50), and solve for the 16 elements of
matrix C. This process is straightforward and the solutions are

Q00 =
1
6

(
P00

6
+

4P10

6
+

P20

6

)
+

4
6

(
P01

6
+

4P11

6
+

P21

6

)
+

1
6

(
P02

6
+

4P12

6
+

P22

6

)
,

Q01 =
1
6

(
P01

6
+

4P11

6
+

P21

6

)
+

4
6

(
P02

6
+

4P12

6
+

P22

6

)
+

1
6

(
P03

6
+

4P13

6
+

P23

6

)
,

Q10 =
1
6

(
P10

6
+

4P20

6
+

P30

6

)
+

4
6

(
P11

6
+

4P21

6
+

P31

6

)
+

1
6

(
P12

6
+

4P22

6
+

P32

6

)
,

Q11 =
1
6

(
P11

6
+

4P21

6
+

P31

6

)
+

4
6

(
P12

6
+

4P22

6
+

P32

6

)
+

1
6

(
P13

6
+

4P23

6
+

P33

6

)
,

Qu
00 =

1
6

(
P20 − P00

2

)
+

4
6

(
P21 − P01

2

)
+

1
6

(
P22 − P02

2

)
,

Qu
01 =

1
6

(
P21 − P01

2

)
+

4
6

(
P22 − P02

2

)
+

1
6

(
P23 − P03

2

)
,

Qu
10 =

1
6

(
P30 − P10

2

)
+

4
6

(
P31 − P11

2

)
+

1
6

(
P32 − P12

2

)
,

Qu
11 =

1
6

(
P31 − P11

2

)
+

4
6

(
P32 − P12

2

)
+

1
6

(
P33 − P13

2

)
,

Qw
00 =

1
2

(
P02

6
+

4P12

6
+

P22

6

)
− 1

2

(
P00

6
+

4P10

6
+

P20

6

)
,

Qw
01 =

1
2

(
P03

6
+

4P13

6
+

P23

6

)
− 1

2

(
P01

6
+

4P11

6
+

P21

6

)
,

Qw
10 =

1
2

(
P12

6
+

4P22

6
+

P32

6

)
− 1

2

(
P10

6
+

4P20

6
+

P30

6

)
,

Qw
11 =

1
2

(
P13

6
+

4P23

6
+

P33

6

)
− 1

2

(
P11

6
+

4P21

6
+

P31

6

)
,

Quw
00 =

1
2

(
P22 − P02

2

)
− 1

2

(
P20 − P00

2

)
,

Quw
01 =

1
2

(
P23 − P03

2

)
− 1

2

(
P21 − P01

2

)
,

Quw
10 =

1
2

(
P32 − P12

2

)
− 1

2

(
P30 − P10

2

)
,

Quw
11 =

1
2

(
P33 − P13

2

)
− 1

2

(
P31 − P11

2

)
.



314 7. B-Spline Approximation

Bézier and B-Spline Bicubic Patches. A bicubic B-spline surface patch can
also be written in the form of a bicubic Bézier patch. The bicubic Bézier patch is fully
defined by 16 control points Qij [the elements of matrix P of Equation (6.32)]. They
can be expressed in terms of the 16 control points Pij defining the B-spline patch. The
idea is to equate the expressions for the bicubic Bézier and B-spline surface patches and
solve for the elements of matrix P. The solutions are

Q00 =
1
6

(
P00

6
+

4P10

6
+

P20

6

)
+

4
6

(
P01

6
+

4P11

6
+

P21

6

)
+

1
6

(
P02

6
+

4P12

6
+

P22

6

)
,

Q01 =
4
6

(
P01

6
+

4P11

6
+

P21

6

)
+

2
6

(
P02

6
+

4P12

6
+

P32

6

)
,

Q02 =
2
6

(
P01

6
+

4P11

6
+

P21

6

)
+

4
6

(
P02

6
+

4P12

6
+

P32

6

)
,

Q03 =
1
6

(
P01

6
+

4P11

6
+

P21

6

)
+

4
6

(
P02

6
+

4P12

6
+

P22

6

)
+

1
6

(
P03

6
+

4P13

6
+

P23

6

)
,

Q10 =
1
6

(
4P10 + 2P20

6

)
+

4
6

(
4P11 + 2P21

6

)
+

1
6

(
4P12 + 2P22

6

)
,

Q11 =
4
6

(
4P11 + 2P21

6

)
+

2
6

(
4P12 + 2P22

6

)
,

Q12 =
2
6

(
4P11 + 2P21

6

)
+

4
6

(
4P12 + 2P22

6

)
,

Q13 =
1
6

(
4P11 + 2P21

6

)
+

4
6

(
4P12 + 2P22

6

)
+

1
6

(
4P13 + 2P23

6

)
,

Q20 =
1
6

(
4P10 + 2P20

6

)
+

4
6

(
4P11 + 2P21

6

)
+

1
6

(
4P12 + 2P22

6

)
,

Q21 =
4
6

(
2P11 + 4P21

6

)
+

2
6

(
2P12 + 4P22

6

)
,

Q22 =
2
6

(
2P11 + 4P21

6

)
+

4
6

(
2P12 + 4P22

6

)
,

Q23 =
1
6

(
2P11 + 4P21

6

)
+

4
6

(
2P12 + 4P22

6

)
+

1
6

(
2P13 + 4P23

6

)
,

Q30 =
1
6

(
P10

6
+

4P20

6
+

P30

6

)
+

4
6

(
P11

6
+

4P21

6
+

P31

6

)
+

1
6

(
P12

6
+

4P22

6
+

P32

6

)
,

Q31 =
4
6

(
P11 + 4P21 + P31

6

)
+

2
6

(
P12 + 4P22 + P32

6

)
,

Q32 =
2
6

(
P11 + 4P21 + P31

6

)
+

4
6

(
P12 + 4P22 + P32

6

)
,

Q33 =
1
6

(
P11

6
+

4P21

6
+

P31

6

)
+

4
6

(
P12

6
+

4P22

6
+

P32

6

)
+

1
6

(
P13

6
+

4P23

6
+

P33

6

)
.



7.17 An Interpolating Bicubic Patch 315

7.17 An Interpolating Bicubic Patch

The uniform bicubic B-spline surface patch is defined by 16 control points. A mesh of
(m+1)× (n+1) control points can be used to calculate (m− 2)× (n− 2) such patches.
Each patch has four corner points, but since the patches are connected, the total number
of joint points is (m−1)×(n−1). This section shows how to solve the opposite problem,
namely given a mesh of (m − 1) × (n − 1) data points Q1,1 through Qm−1,n−1, how to
calculate the bicubic B-spline surface that passes through them.

P00 P10 P20 P30 P40 Pm−1,0 Pm,0

P01 P11

P21

Q21Q11

Q22

Q31

Q32

Q41

Q42

Qm−1,1

Qm−1,2Q12

P31 P41 Pm−1,1

Pm,1

P02 P12 P22 P32 P42 Pm−1,2 Pm,2

P03 P13 P23 P33 P43 Pm−1,3 Pm,3

Figure 7.26: An Interpolating B-Spline Surface.

The given data points Qij are considered the joint points of the unknown surface
and Equation (7.52) shows how they are related to the (yet unknown) control points
P00 through Pmn:

Qij =
1
6

[1
6
(Pi−1,j−1 + 4Pi,j−1 + Pi+1,j−1)

+
4
6
(Pi−1,j + 4Pi,j + Pi+1,j)

+
1
6
(Pi−1,j+1 + 4Pi,j+1 + Pi+1,j+1)

]
. (7.55)

Equation (7.55) can be written (m − 1) × (n − 1) times, once for each given data point
Qij . The number of equations needed, however, is (m+1)× (n+1). We use the relation

(m + 1) × (n + 1) = (m − 1) × (n − 1) + 2m + 2n,

to figure out how many more equations are needed. The extra equations are obtained
by the user specifying the vectors shown in Figure 7.26. There are m − 1 vectors going
from boundary control points Pi,0 to the “bottom” data points Qi1. There are m − 1
more such vectors going from the boundary control points Pi,n+1 to the “top” data
points Qi,n. In addition, there are 2(n − 1) vectors going from the “left” and “right”
boundary control points to the extreme data points Q1,j and Qm−1,j . Finally, there are
four vectors going from the four corner control points to the four corner data points.



316 7. B-Spline Approximation

Once all 2(n−1)+2(m−1)+4 vectors have been specified, a system of (m+1)× (n+1)
linear equations can be set and solved, to yield the control points.

If the surface should be closed along one dimension, some of the vectors don’t
have to be specified. For example, if the surface of Figure 7.26 should be closed in the
vertical direction (i.e., if it should resemble a horizontal cylinder), then the bottom row
of control points Pi,0 should be duplicated and renamed Pi,4, and the top row Pi,3

should be duplicated and renamed Pi,−1. Two extra rows of surface patches should be
calculated, but every patch now has control points above and below it, so the 2(m − 1)
vertical vectors need not be specified by the user.

0 0 0 0 1 1 0 2 1 0 2 0
1 0 0 1 1 2 1 2 1 1 3 2
2 0 0 2 1 3 2 2 2 2 3 3
3 0 0 3 1 2 3 2 1 3 3 2
4 0 0 4 1 1 4 2 1 4 2 0

(* a general uniform B-spline surface patch *)
Clear[bsplSurf,surpnts,bspl,g1,g2,knt,i,j,km,kn,m,n,u,w]
bspl[i_,k_,t_]:=bspl[i,k-1,t] (t-knt[[i+1]])/(knt[[i+k]]-knt[[i+1]]) \
+bspl[i+1,k-1,t] (knt[[i+1+k]]-t)/(knt[[i+1+k]]-knt[[i+2]]) (* 0<=i<=n *)
bspl[i_,1,t_]:=If[knt[[i+1]]<=t<knt[[i+2]], 1, 0];
n=3; kn=3; m=4; km=3; (* Note: 0<=kn<=n 0<=km<=m *)
knt=Table[i, {i,0,m+km}]; (* uniform knots *)
(* Input triplets from data file *)
surpnts=ReadList["surf.pnts", {Number,Number,Number}, RecordLists->True];
bsplSurf[u_,w_]:=Sum[Sum[surpnts[[i+1,j+1]]bspl[i,km,u],{i,0,m}]bspl[j,kn,w],{j,0,n}]
g1=Graphics3D[{AbsolutePointSize[3], Table[Point[surpnts[[i,j]]],{i,1,5},{j,1,4}]}];
g2=ParametricPlot3D[bsplSurf[u,w], {u,km-1,m+1},{w,kn-1,n+1},
DisplayFunction->Identity,
AspectRatio->Automatic, Compiled->False];
Show[g1,g2, PlotRange->All, DisplayFunction->$DisplayFunction,
DefaultFont->{"cmr10", 10}, ViewPoint->{1.389, -3.977, 1.042}];

Figure 7.27: A Quadratic-Cubic B-Spline Surface Patch.



7.18 The Quadratic-Cubic B-Spline Surface 317

7.18 The Quadratic-Cubic B-Spline Surface

This type of surface patch is defined by a 3×4 mesh of control points and its expression
is a Cartesian product of the quadratic and cubic B-spline curves:

P(u, w) =
(

1
2

)(
1
6

)
(u2, u, 1)

⎛
⎝ 1 −2 1

−2 2 0
1 1 0

⎞
⎠

×
⎛
⎝P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

⎞
⎠
⎛
⎜⎝

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎞
⎟⎠

T ⎛
⎜⎝

w3

w2

w
1

⎞
⎟⎠ .

Figure 7.27 is an example.

The excellent mathematical and algorithmic properties,

combined with successful industrial applications, have

contributed to the enormous popularity of NURBS. NURBS

play a role in the CAD/CAM/CAE world similar to

that of the English language in science and business:

“Want to talk business? Learn to talk NURBS”.

Les Piegl and Wayne Tiller, The NURBS Book (1996)


