
Chapter 3

Random Variables and Probability
Distributions

3.1 Concept of a Random Variable

Statistics is concerned with making inferences about populations and population
characteristics. Experiments are conducted with results that are subject to chance.
The testing of a number of electronic components is an example of a statistical
experiment, a term that is used to describe any process by which several chance
observations are generated. It is often important to allocate a numerical description
to the outcome. For example, the sample space giving a detailed description of each
possible outcome when three electronic components are tested may be written

S = {NNN,NND,NDN,DNN,NDD,DND,DDN,DDD},

where N denotes nondefective and D denotes defective. One is naturally concerned
with the number of defectives that occur. Thus, each point in the sample space will
be assigned a numerical value of 0, 1, 2, or 3. These values are, of course, random
quantities determined by the outcome of the experiment. They may be viewed as
values assumed by the random variable X , the number of defective items when
three electronic components are tested.

Definition 3.1: A random variable is a function that associates a real number with each element
in the sample space.

We shall use a capital letter, say X, to denote a random variable and its correspond-
ing small letter, x in this case, for one of its values. In the electronic component
testing illustration above, we notice that the random variable X assumes the value
2 for all elements in the subset

E = {DDN,DND,NDD}

of the sample space S. That is, each possible value of X represents an event that
is a subset of the sample space for the given experiment.
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82 Chapter 3 Random Variables and Probability Distributions

Example 3.1: Two balls are drawn in succession without replacement from an urn containing 4
red balls and 3 black balls. The possible outcomes and the values y of the random
variable Y , where Y is the number of red balls, are

Sample Space y
RR 2
RB 1
BR 1
BB 0

Example 3.2: A stockroom clerk returns three safety helmets at random to three steel mill em-
ployees who had previously checked them. If Smith, Jones, and Brown, in that
order, receive one of the three hats, list the sample points for the possible orders
of returning the helmets, and find the value m of the random variable M that
represents the number of correct matches.

Solution : If S, J , and B stand for Smith’s, Jones’s, and Brown’s helmets, respectively, then
the possible arrangements in which the helmets may be returned and the number
of correct matches are

Sample Space m
SJB 3
SBJ 1
BJS 1
JSB 1
JBS 0
BSJ 0

In each of the two preceding examples, the sample space contains a finite number
of elements. On the other hand, when a die is thrown until a 5 occurs, we obtain
a sample space with an unending sequence of elements,

S = {F,NF,NNF,NNNF, . . . },

where F and N represent, respectively, the occurrence and nonoccurrence of a 5.
But even in this experiment, the number of elements can be equated to the number
of whole numbers so that there is a first element, a second element, a third element,
and so on, and in this sense can be counted.

There are cases where the random variable is categorical in nature. Variables,
often called dummy variables, are used. A good illustration is the case in which
the random variable is binary in nature, as shown in the following example.

Example 3.3: Consider the simple condition in which components are arriving from the produc-
tion line and they are stipulated to be defective or not defective. Define the random
variable X by

X =

{
1, if the component is defective,

0, if the component is not defective.
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Clearly the assignment of 1 or 0 is arbitrary though quite convenient. This will
become clear in later chapters. The random variable for which 0 and 1 are chosen
to describe the two possible values is called a Bernoulli random variable.

Further illustrations of random variables are revealed in the following examples.

Example 3.4: Statisticians use sampling plans to either accept or reject batches or lots of
material. Suppose one of these sampling plans involves sampling independently 10
items from a lot of 100 items in which 12 are defective.

Let X be the random variable defined as the number of items found defec-
tive in the sample of 10. In this case, the random variable takes on the values
0, 1, 2, . . . , 9, 10.

Example 3.5: Suppose a sampling plan involves sampling items from a process until a defective
is observed. The evaluation of the process will depend on how many consecutive
items are observed. In that regard, let X be a random variable defined by the
number of items observed before a defective is found. With N a nondefective and
D a defective, sample spaces are S = {D} given X = 1, S = {ND} given X = 2,
S = {NND} given X = 3, and so on.

Example 3.6: Interest centers around the proportion of people who respond to a certain mail
order solicitation. Let X be that proportion. X is a random variable that takes
on all values x for which 0 ≤ x ≤ 1.

Example 3.7: Let X be the random variable defined by the waiting time, in hours, between
successive speeders spotted by a radar unit. The random variable X takes on all
values x for which x ≥ 0.

Definition 3.2: If a sample space contains a finite number of possibilities or an unending sequence
with as many elements as there are whole numbers, it is called a discrete sample
space.

The outcomes of some statistical experiments may be neither finite nor countable.
Such is the case, for example, when one conducts an investigation measuring the
distances that a certain make of automobile will travel over a prescribed test course
on 5 liters of gasoline. Assuming distance to be a variable measured to any degree
of accuracy, then clearly we have an infinite number of possible distances in the
sample space that cannot be equated to the number of whole numbers. Or, if one
were to record the length of time for a chemical reaction to take place, once again
the possible time intervals making up our sample space would be infinite in number
and uncountable. We see now that all sample spaces need not be discrete.

Definition 3.3: If a sample space contains an infinite number of possibilities equal to the number
of points on a line segment, it is called a continuous sample space.

A random variable is called a discrete random variable if its set of possible
outcomes is countable. The random variables in Examples 3.1 to 3.5 are discrete
random variables. But a random variable whose set of possible values is an entire
interval of numbers is not discrete. When a random variable can take on values
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on a continuous scale, it is called a continuous random variable. Often the
possible values of a continuous random variable are precisely the same values that
are contained in the continuous sample space. Obviously, the random variables
described in Examples 3.6 and 3.7 are continuous random variables.

In most practical problems, continuous random variables represent measured
data, such as all possible heights, weights, temperatures, distance, or life periods,
whereas discrete random variables represent count data, such as the number of
defectives in a sample of k items or the number of highway fatalities per year in
a given state. Note that the random variables Y and M of Examples 3.1 and 3.2
both represent count data, Y the number of red balls and M the number of correct
hat matches.

3.2 Discrete Probability Distributions

A discrete random variable assumes each of its values with a certain probability.
In the case of tossing a coin three times, the variable X, representing the number
of heads, assumes the value 2 with probability 3/8, since 3 of the 8 equally likely
sample points result in two heads and one tail. If one assumes equal weights for the
simple events in Example 3.2, the probability that no employee gets back the right
helmet, that is, the probability that M assumes the value 0, is 1/3. The possible
values m of M and their probabilities are

m 0 1 3

P(M = m) 1
3

1
2

1
6

Note that the values of m exhaust all possible cases and hence the probabilities
add to 1.

Frequently, it is convenient to represent all the probabilities of a random variable
X by a formula. Such a formula would necessarily be a function of the numerical
values x that we shall denote by f(x), g(x), r(x), and so forth. Therefore, we write
f(x) = P (X = x); that is, f(3) = P (X = 3). The set of ordered pairs (x, f(x)) is
called the probability function, probability mass function, or probability
distribution of the discrete random variable X.

Definition 3.4: The set of ordered pairs (x, f(x)) is a probability function, probability mass
function, or probability distribution of the discrete random variable X if, for
each possible outcome x,

1. f(x) ≥ 0,

2.
∑
x
f(x) = 1,

3. P (X = x) = f(x).

Example 3.8: A shipment of 20 similar laptop computers to a retail outlet contains 3 that are
defective. If a school makes a random purchase of 2 of these computers, find the
probability distribution for the number of defectives.

Solution : Let X be a random variable whose values x are the possible numbers of defective
computers purchased by the school. Then x can only take the numbers 0, 1, and
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2. Now

f(0) = P (X = 0) =

(
3
0

)(
17
2

)(
20
2

) =
68

95
, f(1) = P (X = 1) =

(
3
1

)(
17
1

)(
20
2

) =
51

190
,

f(2) = P (X = 2) =

(
3
2

)(
17
0

)(
20
2

) =
3

190
.

Thus, the probability distribution of X is
x 0 1 2

f(x) 68
95

51
190

3
190

Example 3.9: If a car agency sells 50% of its inventory of a certain foreign car equipped with side
airbags, find a formula for the probability distribution of the number of cars with
side airbags among the next 4 cars sold by the agency.

Solution : Since the probability of selling an automobile with side airbags is 0.5, the 24 = 16
points in the sample space are equally likely to occur. Therefore, the denominator
for all probabilities, and also for our function, is 16. To obtain the number of
ways of selling 3 cars with side airbags, we need to consider the number of ways
of partitioning 4 outcomes into two cells, with 3 cars with side airbags assigned
to one cell and the model without side airbags assigned to the other. This can be
done in

(
4
3

)
= 4 ways. In general, the event of selling x models with side airbags

and 4− x models without side airbags can occur in
(
4
x

)
ways, where x can be 0, 1,

2, 3, or 4. Thus, the probability distribution f(x) = P (X = x) is

f(x) =
1

16

(
4

x

)
, for x = 0, 1, 2, 3, 4.

There are many problems where we may wish to compute the probability that
the observed value of a random variable X will be less than or equal to some real
number x. Writing F (x) = P (X ≤ x) for every real number x, we define F (x) to
be the cumulative distribution function of the random variable X.

Definition 3.5: The cumulative distribution function F (x) of a discrete random variable X
with probability distribution f(x) is

F (x) = P (X ≤ x) =
∑
t≤x

f(t), for −∞ < x < ∞.

For the random variable M , the number of correct matches in Example 3.2, we
have

F (2) = P (M ≤ 2) = f(0) + f(1) =
1

3
+

1

2
=

5

6
.

The cumulative distribution function of M is

F (m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, for m < 0,
1
3 , for 0 ≤ m < 1,
5
6 , for 1 ≤ m < 3,

1, for m ≥ 3.
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One should pay particular notice to the fact that the cumulative distribution func-
tion is a monotone nondecreasing function defined not only for the values assumed
by the given random variable but for all real numbers.

Example 3.10: Find the cumulative distribution function of the random variable X in Example
3.9. Using F (x), verify that f(2) = 3/8.

Solution : Direct calculations of the probability distribution of Example 3.9 give f(0)= 1/16,
f(1) = 1/4, f(2)= 3/8, f(3)= 1/4, and f(4)= 1/16. Therefore,

F (0) = f(0) =
1

16
,

F (1) = f(0) + f(1) =
5

16
,

F (2) = f(0) + f(1) + f(2) =
11

16
,

F (3) = f(0) + f(1) + f(2) + f(3) =
15

16
,

F (4) = f(0) + f(1) + f(2) + f(3) + f(4) = 1.

Hence,

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for x < 0,
1
16 , for 0 ≤ x < 1,
5
16 , for 1 ≤ x < 2,
11
16 , for 2 ≤ x < 3,
15
16 , for 3 ≤ x < 4,

1 for x ≥ 4.

Now

f(2) = F (2)− F (1) =
11

16
− 5

16
=

3

8
.

It is often helpful to look at a probability distribution in graphic form. One
might plot the points (x, f(x)) of Example 3.9 to obtain Figure 3.1. By joining
the points to the x axis either with a dashed or with a solid line, we obtain a
probability mass function plot. Figure 3.1 makes it easy to see what values of X
are most likely to occur, and it also indicates a perfectly symmetric situation in
this case.

Instead of plotting the points (x, f(x)), we more frequently construct rectangles,
as in Figure 3.2. Here the rectangles are constructed so that their bases of equal
width are centered at each value x and their heights are equal to the corresponding
probabilities given by f(x). The bases are constructed so as to leave no space
between the rectangles. Figure 3.2 is called a probability histogram.

Since each base in Figure 3.2 has unit width, P (X = x) is equal to the area
of the rectangle centered at x. Even if the bases were not of unit width, we could
adjust the heights of the rectangles to give areas that would still equal the proba-
bilities of X assuming any of its values x. This concept of using areas to represent
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Figure 3.1: Probability mass function plot.
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Figure 3.2: Probability histogram.

probabilities is necessary for our consideration of the probability distribution of a
continuous random variable.

The graph of the cumulative distribution function of Example 3.9, which ap-
pears as a step function in Figure 3.3, is obtained by plotting the points (x, F (x)).

Certain probability distributions are applicable to more than one physical situ-
ation. The probability distribution of Example 3.9, for example, also applies to the
random variable Y , where Y is the number of heads when a coin is tossed 4 times,
or to the random variable W , where W is the number of red cards that occur when
4 cards are drawn at random from a deck in succession with each card replaced and
the deck shuffled before the next drawing. Special discrete distributions that can
be applied to many different experimental situations will be considered in Chapter
5.

F(x)

x

1/4

1/2

3/4

1

0 1 2 3 4

Figure 3.3: Discrete cumulative distribution function.

3.3 Continuous Probability Distributions

A continuous random variable has a probability of 0 of assuming exactly any of its
values. Consequently, its probability distribution cannot be given in tabular form.
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At first this may seem startling, but it becomes more plausible when we consider a
particular example. Let us discuss a random variable whose values are the heights
of all people over 21 years of age. Between any two values, say 163.5 and 164.5
centimeters, or even 163.99 and 164.01 centimeters, there are an infinite number
of heights, one of which is 164 centimeters. The probability of selecting a person
at random who is exactly 164 centimeters tall and not one of the infinitely large
set of heights so close to 164 centimeters that you cannot humanly measure the
difference is remote, and thus we assign a probability of 0 to the event. This is not
the case, however, if we talk about the probability of selecting a person who is at
least 163 centimeters but not more than 165 centimeters tall. Now we are dealing
with an interval rather than a point value of our random variable.

We shall concern ourselves with computing probabilities for various intervals of
continuous random variables such as P (a < X < b), P (W ≥ c), and so forth. Note
that when X is continuous,

P (a < X ≤ b) = P (a < X < b) + P (X = b) = P (a < X < b).

That is, it does not matter whether we include an endpoint of the interval or not.
This is not true, though, when X is discrete.

Although the probability distribution of a continuous random variable cannot
be presented in tabular form, it can be stated as a formula. Such a formula would
necessarily be a function of the numerical values of the continuous random variable
X and as such will be represented by the functional notation f(x). In dealing with
continuous variables, f(x) is usually called the probability density function, or
simply the density function, of X. Since X is defined over a continuous sample
space, it is possible for f(x) to have a finite number of discontinuities. However,
most density functions that have practical applications in the analysis of statistical
data are continuous and their graphs may take any of several forms, some of which
are shown in Figure 3.4. Because areas will be used to represent probabilities and
probabilities are positive numerical values, the density function must lie entirely
above the x axis.

(a) (b) (c) (d)

Figure 3.4: Typical density functions.

A probability density function is constructed so that the area under its curve
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bounded by the x axis is equal to 1 when computed over the range of X for which
f(x) is defined. Should this range of X be a finite interval, it is always possible
to extend the interval to include the entire set of real numbers by defining f(x) to
be zero at all points in the extended portions of the interval. In Figure 3.5, the
probability that X assumes a value between a and b is equal to the shaded area
under the density function between the ordinates at x = a and x = b, and from
integral calculus is given by

P (a < X < b) =

∫ b

a

f(x) dx.

a b
x

f(x)

Figure 3.5: P (a < X < b).

Definition 3.6: The function f(x) is a probability density function (pdf) for the continuous
random variable X, defined over the set of real numbers, if

1. f(x) ≥ 0, for all x ∈ R.

2.
∫∞
−∞ f(x) dx = 1.

3. P (a < X < b) =
∫ b

a
f(x) dx.

Example 3.11: Suppose that the error in the reaction temperature, in ◦C, for a controlled labora-
tory experiment is a continuous random variable X having the probability density
function

f(x) =

{
x2

3 , −1 < x < 2,

0, elsewhere.

.

(a) Verify that f(x) is a density function.

(b) Find P (0 < X ≤ 1).

Solution : We use Definition 3.6.

(a) Obviously, f(x) ≥ 0. To verify condition 2 in Definition 3.6, we have∫ ∞

−∞
f(x) dx =

∫ 2

−1

x2

3
dx =

x3

9
|2−1 =

8

9
+

1

9
= 1.
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(b) Using formula 3 in Definition 3.6, we obtain

P (0 < X ≤ 1) =

∫ 1

0

x2

3
dx =

x3

9

∣∣∣∣1
0

=
1

9
.

Definition 3.7: The cumulative distribution function F (x) of a continuous random variable
X with density function f(x) is

F (x) = P (X ≤ x) =

∫ x

−∞
f(t) dt, for −∞ < x < ∞.

As an immediate consequence of Definition 3.7, one can write the two results

P (a < X < b) = F (b)− F (a) and f(x) =
dF (x)

dx
,

if the derivative exists.

Example 3.12: For the density function of Example 3.11, find F (x), and use it to evaluate
P (0 < X ≤ 1).

Solution : For −1 < x < 2,

F (x) =

∫ x

−∞
f(t) dt =

∫ x

−1

t2

3
dt =

t3

9

∣∣∣∣x
−1

=
x3 + 1

9
.

Therefore,

F (x) =

⎧⎪⎨⎪⎩
0, x < −1,
x3+1

9 , −1 ≤ x < 2,

1, x ≥ 2.

The cumulative distribution function F (x) is expressed in Figure 3.6. Now

P (0 < X ≤ 1) = F (1)− F (0) =
2

9
− 1

9
=

1

9
,

which agrees with the result obtained by using the density function in Example
3.11.

Example 3.13: The Department of Energy (DOE) puts projects out on bid and generally estimates
what a reasonable bid should be. Call the estimate b. The DOE has determined
that the density function of the winning (low) bid is

f(y) =

{
5
8b ,

2
5b ≤ y ≤ 2b,

0, elsewhere.

Find F (y) and use it to determine the probability that the winning bid is less than
the DOE’s preliminary estimate b.

Solution : For 2b/5 ≤ y ≤ 2b,

F (y) =

∫ y

2b/5

5

8b
dy =

5t

8b

∣∣∣∣y
2b/5

=
5y

8b
− 1

4
.
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f (x )

x
0 2�1 1

0.5

1.0

Figure 3.6: Continuous cumulative distribution function.

Thus,

F (y) =

⎧⎪⎨⎪⎩
0, y < 2

5b,
5y
8b − 1

4 ,
2
5b ≤ y < 2b,

1, y ≥ 2b.

To determine the probability that the winning bid is less than the preliminary bid
estimate b, we have

P (Y ≤ b) = F (b) =
5

8
− 1

4
=

3

8
.

Exercises

3.1 Classify the following random variables as dis-
crete or continuous:

X: the number of automobile accidents per year
in Virginia.

Y : the length of time to play 18 holes of golf.

M : the amount of milk produced yearly by a par-
ticular cow.

N : the number of eggs laid each month by a hen.

P : the number of building permits issued each
month in a certain city.

Q: the weight of grain produced per acre.

3.2 An overseas shipment of 5 foreign automobiles
contains 2 that have slight paint blemishes. If an
agency receives 3 of these automobiles at random, list
the elements of the sample space S, using the letters B
and N for blemished and nonblemished, respectively;

then to each sample point assign a value x of the ran-
dom variable X representing the number of automo-
biles with paint blemishes purchased by the agency.

3.3 Let W be a random variable giving the number
of heads minus the number of tails in three tosses of a
coin. List the elements of the sample space S for the
three tosses of the coin and to each sample point assign
a value w of W .

3.4 A coin is flipped until 3 heads in succession oc-
cur. List only those elements of the sample space that
require 6 or less tosses. Is this a discrete sample space?
Explain.

3.5 Determine the value c so that each of the follow-
ing functions can serve as a probability distribution of
the discrete random variable X:

(a) f(x) = c(x2 + 4), for x = 0, 1, 2, 3;

(b) f(x) = c
(
2
x

)(
3

3−x

)
, for x = 0, 1, 2.
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3.6 The shelf life, in days, for bottles of a certain
prescribed medicine is a random variable having the
density function

f(x) =

{
20,000

(x+100)3
, x > 0,

0, elsewhere.

Find the probability that a bottle of this medicine will
have a shell life of

(a) at least 200 days;

(b) anywhere from 80 to 120 days.

3.7 The total number of hours, measured in units of
100 hours, that a family runs a vacuum cleaner over a
period of one year is a continuous random variable X
that has the density function

f(x) =

⎧⎨⎩
x, 0 < x < 1,

2− x, 1 ≤ x < 2,

0, elsewhere.

Find the probability that over a period of one year, a
family runs their vacuum cleaner

(a) less than 120 hours;

(b) between 50 and 100 hours.

3.8 Find the probability distribution of the random
variable W in Exercise 3.3, assuming that the coin is
biased so that a head is twice as likely to occur as a
tail.

3.9 The proportion of people who respond to a certain
mail-order solicitation is a continuous random variable
X that has the density function

f(x) =

{
2(x+2)

5
, 0 < x < 1,

0, elsewhere.

(a) Show that P (0 < X < 1) = 1.

(b) Find the probability that more than 1/4 but fewer
than 1/2 of the people contacted will respond to
this type of solicitation.

3.10 Find a formula for the probability distribution of
the random variable X representing the outcome when
a single die is rolled once.

3.11 A shipment of 7 television sets contains 2 de-
fective sets. A hotel makes a random purchase of 3
of the sets. If x is the number of defective sets pur-
chased by the hotel, find the probability distribution
of X. Express the results graphically as a probability
histogram.

3.12 An investment firm offers its customers munici-
pal bonds that mature after varying numbers of years.
Given that the cumulative distribution function of T ,
the number of years to maturity for a randomly se-
lected bond, is

F (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, t < 1,
1
4
, 1 ≤ t < 3,

1
2
, 3 ≤ t < 5,

3
4
, 5 ≤ t < 7,

1, t ≥ 7,

find

(a) P (T = 5);

(b) P (T > 3);

(c) P (1.4 < T < 6);

(d) P (T ≤ 5 | T ≥ 2).

3.13 The probability distribution of X, the number
of imperfections per 10 meters of a synthetic fabric in
continuous rolls of uniform width, is given by

x 0 1 2 3 4
f(x) 0.41 0.37 0.16 0.05 0.01

Construct the cumulative distribution function of X.

3.14 The waiting time, in hours, between successive
speeders spotted by a radar unit is a continuous ran-
dom variable with cumulative distribution function

F (x) =

{
0, x < 0,

1− e−8x, x ≥ 0.

Find the probability of waiting less than 12 minutes
between successive speeders

(a) using the cumulative distribution function of X;

(b) using the probability density function of X.

3.15 Find the cumulative distribution function of the
random variable X representing the number of defec-
tives in Exercise 3.11. Then using F (x), find

(a) P (X = 1);

(b) P (0 < X ≤ 2).

3.16 Construct a graph of the cumulative distribution
function of Exercise 3.15.

3.17 A continuous random variable X that can as-
sume values between x = 1 and x = 3 has a density
function given by f(x) = 1/2.

(a) Show that the area under the curve is equal to 1.

(b) Find P (2 < X < 2.5).

(c) Find P (X ≤ 1.6).
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3.18 A continuous random variable X that can as-
sume values between x = 2 and x = 5 has a density
function given by f(x) = 2(1 + x)/27. Find

(a) P (X < 4);

(b) P (3 ≤ X < 4).

3.19 For the density function of Exercise 3.17, find
F (x). Use it to evaluate P (2 < X < 2.5).

3.20 For the density function of Exercise 3.18, find
F (x), and use it to evaluate P (3 ≤ X < 4).

3.21 Consider the density function

f(x) =

{
k
√
x, 0 < x < 1,

0, elsewhere.

(a) Evaluate k.

(b) Find F (x) and use it to evaluate

P (0.3 < X < 0.6).

3.22 Three cards are drawn in succession from a deck
without replacement. Find the probability distribution
for the number of spades.

3.23 Find the cumulative distribution function of the
random variable W in Exercise 3.8. Using F (w), find

(a) P (W > 0);

(b) P (−1 ≤ W < 3).

3.24 Find the probability distribution for the number
of jazz CDs when 4 CDs are selected at random from
a collection consisting of 5 jazz CDs, 2 classical CDs,
and 3 rock CDs. Express your results by means of a
formula.

3.25 From a box containing 4 dimes and 2 nickels,
3 coins are selected at random without replacement.
Find the probability distribution for the total T of the
3 coins. Express the probability distribution graphi-
cally as a probability histogram.

3.26 From a box containing 4 black balls and 2 green
balls, 3 balls are drawn in succession, each ball being
replaced in the box before the next draw is made. Find
the probability distribution for the number of green
balls.

3.27 The time to failure in hours of an important
piece of electronic equipment used in a manufactured
DVD player has the density function

f(x) =

{
1

2000
exp(−x/2000), x ≥ 0,

0, x < 0.

(a) Find F (x).

(b) Determine the probability that the component (and
thus the DVD player) lasts more than 1000 hours
before the component needs to be replaced.

(c) Determine the probability that the component fails
before 2000 hours.

3.28 A cereal manufacturer is aware that the weight
of the product in the box varies slightly from box
to box. In fact, considerable historical data have al-
lowed the determination of the density function that
describes the probability structure for the weight (in
ounces). Letting X be the random variable weight, in
ounces, the density function can be described as

f(x) =

{
2
5
, 23.75 ≤ x ≤ 26.25,

0, elsewhere.

(a) Verify that this is a valid density function.

(b) Determine the probability that the weight is
smaller than 24 ounces.

(c) The company desires that the weight exceeding 26
ounces be an extremely rare occurrence. What is
the probability that this rare occurrence does ac-
tually occur?

3.29 An important factor in solid missile fuel is the
particle size distribution. Significant problems occur if
the particle sizes are too large. From production data
in the past, it has been determined that the particle
size (in micrometers) distribution is characterized by

f(x) =

{
3x−4, x > 1,

0, elsewhere.

(a) Verify that this is a valid density function.

(b) Evaluate F (x).

(c) What is the probability that a random particle
from the manufactured fuel exceeds 4 micrometers?

3.30 Measurements of scientific systems are always
subject to variation, some more than others. There
are many structures for measurement error, and statis-
ticians spend a great deal of time modeling these errors.
Suppose the measurement error X of a certain physical
quantity is decided by the density function

f(x) =

{
k(3− x2), −1 ≤ x ≤ 1,

0, elsewhere.

(a) Determine k that renders f(x) a valid density func-
tion.

(b) Find the probability that a random error in mea-
surement is less than 1/2.

(c) For this particular measurement, it is undesirable
if the magnitude of the error (i.e., |x|) exceeds 0.8.
What is the probability that this occurs?


