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Solution : Again ∂ex

∂x = ex; thus, Var(X) ≈ e2μXσ2
X .

These approximations can be extended to nonlinear functions of more than one
random variable.

Given a set of independent random variables X1, X2, . . . , Xk with means μ1,
μ2, . . . , μk and variances σ2

1 , σ
2
2 , . . . , σ

2
k, respectively, let

Y = h(X1, X2, . . . , Xk)

be a nonlinear function; then the following are approximations for E(Y ) and
Var(Y ):

E(Y ) ≈ h(μ1, μ2, . . . , μk) +

k∑
i=1

σ2
i

2

[
∂2h(x1, x2, . . . , xk)

∂x2
i

]∣∣∣∣
xi=μi, 1≤i≤k

,

Var(Y ) ≈
k∑

i=1

[
∂h(x1, x2, . . . , xk)

∂xi

]2∣∣∣∣∣
xi=μi, 1≤i≤k

σ2
i .

Example 4.26: Consider two independent random variables X and Z with means μX and μZ and
variances σ2

X and σ2
Z , respectively. Consider a random variable

Y = X/Z.

Give approximations for E(Y ) and Var(Y ).

Solution : For E(Y ), we must use ∂y
∂x = 1

z and ∂y
∂z = − x

z2 . Thus,

∂2y

∂x2
= 0 and

∂2y

∂z2
=

2x

z3
.

As a result,

E(Y ) ≈ μX

μZ

+
μX

μ3
Z

σ2
Z =

μX

μZ

(
1 +

σ2
Z

μ2
Z

)
,

and the approximation for the variance of Y is given by

Var(Y ) ≈ 1

μ2
Z

σ2
X +

μ2
X

μ4
Z

σ2
Z =

1

μ2
Z

(
σ2

X +
μ2

X

μ2
Z

σ2
Z

)
.

4.4 Chebyshev’s Theorem

In Section 4.2 we stated that the variance of a random variable tells us something
about the variability of the observations about the mean. If a random variable
has a small variance or standard deviation, we would expect most of the values to
be grouped around the mean. Therefore, the probability that the random variable
assumes a value within a certain interval about the mean is greater than for a
similar random variable with a larger standard deviation. If we think of probability
in terms of area, we would expect a continuous distribution with a large value of
σ to indicate a greater variability, and therefore we should expect the area to
be more spread out, as in Figure 4.2(a). A distribution with a small standard
deviation should have most of its area close to μ, as in Figure 4.2(b).
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Figure 4.2: Variability of continuous observations about the mean.
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Figure 4.3: Variability of discrete observations about the mean.

We can argue the same way for a discrete distribution. The area in the prob-
ability histogram in Figure 4.3(b) is spread out much more than that in Figure
4.3(a) indicating a more variable distribution of measurements or outcomes.

The Russian mathematician P. L. Chebyshev (1821–1894) discovered that the
fraction of the area between any two values symmetric about the mean is related
to the standard deviation. Since the area under a probability distribution curve
or in a probability histogram adds to 1, the area between any two numbers is the
probability of the random variable assuming a value between these numbers.

The following theorem, due to Chebyshev, gives a conservative estimate of the
probability that a random variable assumes a value within k standard deviations
of its mean for any real number k.
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Theorem 4.10: (Chebyshev’s Theorem) The probability that any random variable X will as-
sume a value within k standard deviations of the mean is at least 1− 1/k2. That
is,

P (μ− kσ < X < μ+ kσ) ≥ 1− 1

k2
.

For k = 2, the theorem states that the random variable X has a probability of
at least 1−1/22 = 3/4 of falling within two standard deviations of the mean. That
is, three-fourths or more of the observations of any distribution lie in the interval
μ ± 2σ. Similarly, the theorem says that at least eight-ninths of the observations
of any distribution fall in the interval μ± 3σ.

Example 4.27: A random variable X has a mean μ = 8, a variance σ2 = 9, and an unknown
probability distribution. Find

(a) P (−4 < X < 20),

(b) P (|X − 8| ≥ 6).

Solution : (a) P (−4 < X < 20) = P [8− (4)(3) < X < 8 + (4)(3)] ≥ 15
16 .

(b) P (|X − 8| ≥ 6) = 1− P (|X − 8| < 6) = 1− P (−6 < X − 8 < 6)

= 1− P [8− (2)(3) < X < 8 + (2)(3)] ≤ 1

4
.

Chebyshev’s theorem holds for any distribution of observations, and for this
reason the results are usually weak. The value given by the theorem is a lower
bound only. That is, we know that the probability of a random variable falling
within two standard deviations of the mean can be no less than 3/4, but we never
know how much more it might actually be. Only when the probability distribution
is known can we determine exact probabilities. For this reason we call the theorem
a distribution-free result. When specific distributions are assumed, as in future
chapters, the results will be less conservative. The use of Chebyshev’s theorem is
relegated to situations where the form of the distribution is unknown.

Exercises

4.53 Referring to Exercise 4.35 on page 127, find the
mean and variance of the discrete random variable
Z = 3X − 2, when X represents the number of errors
per 100 lines of code.

4.54 Using Theorem 4.5 and Corollary 4.6, find the
mean and variance of the random variable Z = 5X+3,
where X has the probability distribution of Exercise
4.36 on page 127.

4.55 Suppose that a grocery store purchases 5 car-
tons of skim milk at the wholesale price of $1.20 per
carton and retails the milk at $1.65 per carton. After
the expiration date, the unsold milk is removed from
the shelf and the grocer receives a credit from the dis-

tributor equal to three-fourths of the wholesale price.
If the probability distribution of the random variable
X, the number of cartons that are sold from this lot,
is

x 0 1 2 3 4 5
f(x) 1

15
2
15

2
15

3
15

4
15

3
15

find the expected profit.

4.56 Repeat Exercise 4.43 on page 127 by applying
Theorem 4.5 and Corollary 4.6.

4.57 Let X be a random variable with the following
probability distribution:

x −3 6 9
f(x) 1

6
1
2

1
3
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Find E(X) and E(X2) and then, using these values,
evaluate E[(2X + 1)2].

4.58 The total time, measured in units of 100 hours,
that a teenager runs her hair dryer over a period of one
year is a continuous random variable X that has the
density function

f(x) =

⎧⎨⎩
x, 0 < x < 1,

2− x, 1 ≤ x < 2,

0, elsewhere.

Use Theorem 4.6 to evaluate the mean of the random
variable Y = 60X2 + 39X, where Y is equal to the
number of kilowatt hours expended annually.

4.59 If a random variable X is defined such that

E[(X − 1)2] = 10 and E[(X − 2)2] = 6,

find μ and σ2.

4.60 Suppose that X and Y are independent random
variables having the joint probability distribution

x
f(x, y) 2 4

1 0.10 0.15
y 3 0.20 0.30

5 0.10 0.15

Find

(a) E(2X − 3Y );

(b) E(XY ).

4.61 Use Theorem 4.7 to evaluate E(2XY 2 − X2Y )
for the joint probability distribution shown in Table
3.1 on page 96.

4.62 If X and Y are independent random variables
with variances σ2

X = 5 and σ2
Y = 3, find the variance

of the random variable Z = −2X + 4Y − 3.

4.63 Repeat Exercise 4.62 if X and Y are not inde-
pendent and σXY = 1.

4.64 Suppose that X and Y are independent random
variables with probability densities and

g(x) =

{
8
x3 , x > 2,

0, elsewhere,

and

h(y) =

{
2y, 0 < y < 1,

0, elsewhere.

Find the expected value of Z = XY .

4.65 Let X represent the number that occurs when a
red die is tossed and Y the number that occurs when
a green die is tossed. Find

(a) E(X + Y );

(b) E(X − Y );

(c) E(XY ).

4.66 Let X represent the number that occurs when a
green die is tossed and Y the number that occurs when
a red die is tossed. Find the variance of the random
variable

(a) 2X − Y ;

(b) X + 3Y − 5.

4.67 If the joint density function of X and Y is given
by

f(x, y) =

{
2
7
(x+ 2y), 0 < x < 1, 1 < y < 2,

0, elsewhere,

find the expected value of g(X,Y ) = X
Y 3 +X2Y .

4.68 The power P in watts which is dissipated in an
electric circuit with resistance R is known to be given
by P = I2R, where I is current in amperes and R is a
constant fixed at 50 ohms. However, I is a random vari-
able with μI = 15 amperes and σ2

I = 0.03 amperes2.
Give numerical approximations to the mean and vari-
ance of the power P .

4.69 Consider Review Exercise 3.77 on page 108. The
random variables X and Y represent the number of ve-
hicles that arrive at two separate street corners during
a certain 2-minute period in the day. The joint distri-
bution is

f(x, y) =

(
1

4(x+y)

)(
9

16

)
,

for x = 0, 1, 2, . . . and y = 0, 1, 2, . . . .

(a) Give E(X), E(Y ), Var(X), and Var(Y ).

(b) Consider Z = X + Y , the sum of the two. Find
E(Z) and Var(Z).

4.70 Consider Review Exercise 3.64 on page 107.
There are two service lines. The random variables X
and Y are the proportions of time that line 1 and line
2 are in use, respectively. The joint probability density
function for (X,Y ) is given by

f(x, y) =

{
3
2
(x2 + y2), 0 ≤ x, y ≤ 1,

0, elsewhere.

(a) Determine whether or not X and Y are indepen-
dent.
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(b) It is of interest to know something about the pro-
portion of Z = X + Y , the sum of the two propor-
tions. Find E(X + Y ). Also find E(XY ).

(c) Find Var(X), Var(Y ), and Cov(X,Y ).

(d) Find Var(X + Y ).

4.71 The length of time Y , in minutes, required to
generate a human reflex to tear gas has the density
function

f(y) =

{
1
4
e−y/4, 0 ≤ y < ∞,

0, elsewhere.

(a) What is the mean time to reflex?

(b) Find E(Y 2) and Var(Y ).

4.72 A manufacturing company has developed a ma-
chine for cleaning carpet that is fuel-efficient because
it delivers carpet cleaner so rapidly. Of interest is a
random variable Y , the amount in gallons per minute
delivered. It is known that the density function is given
by

f(y) =

{
1, 7 ≤ y ≤ 8,

0, elsewhere.

(a) Sketch the density function.

(b) Give E(Y ), E(Y 2), and Var(Y ).

4.73 For the situation in Exercise 4.72, compute
E(eY ) using Theorem 4.1, that is, by using

E(eY ) =

∫ 8

7

eyf(y) dy.

Then compute E(eY ) not by using f(y), but rather by
using the second-order adjustment to the first-order
approximation of E(eY ). Comment.

4.74 Consider again the situation of Exercise 4.72. It
is required to find Var(eY ). Use Theorems 4.2 and 4.3
and define Z = eY . Thus, use the conditions of Exer-
cise 4.73 to find

Var(Z) = E(Z2)− [E(Z)]2.

Then do it not by using f(y), but rather by using
the first-order Taylor series approximation to Var(eY ).
Comment!

4.75 An electrical firm manufactures a 100-watt light
bulb, which, according to specifications written on the
package, has a mean life of 900 hours with a standard
deviation of 50 hours. At most, what percentage of
the bulbs fail to last even 700 hours? Assume that the
distribution is symmetric about the mean.

4.76 Seventy new jobs are opening up at an automo-
bile manufacturing plant, and 1000 applicants show up
for the 70 positions. To select the best 70 from among
the applicants, the company gives a test that covers
mechanical skill, manual dexterity, and mathematical
ability. The mean grade on this test turns out to be
60, and the scores have a standard deviation of 6. Can
a person who scores 84 count on getting one of the
jobs? [Hint: Use Chebyshev’s theorem.] Assume that
the distribution is symmetric about the mean.

4.77 A random variable X has a mean μ = 10 and a
variance σ2 = 4. Using Chebyshev’s theorem, find

(a) P (|X − 10| ≥ 3);

(b) P (|X − 10| < 3);

(c) P (5 < X < 15);

(d) the value of the constant c such that

P (|X − 10| ≥ c) ≤ 0.04.

4.78 Compute P (μ − 2σ < X < μ + 2σ), where X
has the density function

f(x) =

{
6x(1− x), 0 < x < 1,

0, elsewhere,

and compare with the result given in Chebyshev’s
theorem.

Review Exercises

4.79 Prove Chebyshev’s theorem.

4.80 Find the covariance of random variables X and
Y having the joint probability density function

f(x, y) =

{
x+ y, 0 < x < 1, 0 < y < 1,

0, elsewhere.

4.81 Referring to the random variables whose joint
probability density function is given in Exercise 3.47
on page 105, find the average amount of kerosene left
in the tank at the end of the day.

4.82 Assume the length X, in minutes, of a particu-
lar type of telephone conversation is a random variable


