and rendered worthless, how much is the profit reduced on 10,000 packages due to failure to meet weight specification?
2.72 Prove that

$$
P\left(A^{\prime} \cap B^{\prime}\right)=1+P(A \cap B)-P(A)-P(B)
$$

2.6 Conditional Probability, Independence, and the Product Rule

One very important concept in probability theory is conditional probability. In some applications, the practitioner is interested in the probability structure under certain restrictions. For instance, in epidemiology, rather than studying the chance that a person from the general population has diabetes, it might be of more interest to know this probability for a distinct group such as Asian women in the age range of 35 to 50 or Hispanic men in the age range of 40 to 60 . This type of probability is called a conditional probability.

Conditional Probability

The probability of an event B occurring when it is known that some event A has occurred is called a conditional probability and is denoted by $P(B \mid A)$. The symbol $P(B \mid A)$ is usually read "the probability that B occurs given that A occurs" or simply "the probability of B, given A."

Consider the event B of getting a perfect square when a die is tossed. The die is constructed so that the even numbers are twice as likely to occur as the odd numbers. Based on the sample space $S=\{1,2,3,4,5,6\}$, with probabilities of $1 / 9$ and $2 / 9$ assigned, respectively, to the odd and even numbers, the probability of B occurring is $1 / 3$. Now suppose that it is known that the toss of the die resulted in a number greater than 3 . We are now dealing with a reduced sample space $A=\{4,5,6\}$, which is a subset of S. To find the probability that B occurs, relative to the space A, we must first assign new probabilities to the elements of A proportional to their original probabilities such that their sum is 1. Assigning a probability of w to the odd number in A and a probability of $2 w$ to the two even numbers, we have $5 w=1$, or $w=1 / 5$. Relative to the space A, we find that B contains the single element 4 . Denoting this event by the symbol $B \mid A$, we write $B \mid A=\{4\}$, and hence

$$
P(B \mid A)=\frac{2}{5}
$$

This example illustrates that events may have different probabilities when considered relative to different sample spaces.

We can also write

$$
P(B \mid A)=\frac{2}{5}=\frac{2 / 9}{5 / 9}=\frac{P(A \cap B)}{P(A)}
$$

where $P(A \cap B)$ and $P(A)$ are found from the original sample space S. In other words, a conditional probability relative to a subspace A of S may be calculated directly from the probabilities assigned to the elements of the original sample space S.

Definition 2.10: The conditional probability of B, given A, denoted by $P(B \mid A)$, is defined by

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}, \quad \text { provided } \quad P(A)>0
$$

As an additional illustration, suppose that our sample space S is the population of adults in a small town who have completed the requirements for a college degree. We shall categorize them according to gender and employment status. The data are given in Table 2.1.

Table 2.1: Categorization of the Adults in a Small Town

	Employed	Unemployed	Total
Male	460	40	500
Female	140	260	400
Total	600	300	900

One of these individuals is to be selected at random for a tour throughout the country to publicize the advantages of establishing new industries in the town. We shall be concerned with the following events:
M: a man is chosen,
E : the one chosen is employed.
Using the reduced sample space E, we find that

$$
P(M \mid E)=\frac{460}{600}=\frac{23}{30} .
$$

Let $n(A)$ denote the number of elements in any set A. Using this notation, since each adult has an equal chance of being selected, we can write

$$
P(M \mid E)=\frac{n(E \cap M)}{n(E)}=\frac{n(E \cap M) / n(S)}{n(E) / n(S)}=\frac{P(E \cap M)}{P(E)},
$$

where $P(E \cap M)$ and $P(E)$ are found from the original sample space S. To verify this result, note that

$$
P(E)=\frac{600}{900}=\frac{2}{3} \quad \text { and } \quad P(E \cap M)=\frac{460}{900}=\frac{23}{45} .
$$

Hence,

$$
P(M \mid E)=\frac{23 / 45}{2 / 3}=\frac{23}{30},
$$

as before.

Example 2.34: The probability that a regularly scheduled flight departs on time is $P(D)=0.83$; the probability that it arrives on time is $P(A)=0.82$; and the probability that it departs and arrives on time is $P(D \cap A)=0.78$. Find the probability that a plane
(a) arrives on time, given that it departed on time, and (b) departed on time, given that it has arrived on time.
Solution: Using Definition 2.10, we have the following.
(a) The probability that a plane arrives on time, given that it departed on time, is

$$
P(A \mid D)=\frac{P(D \cap A)}{P(D)}=\frac{0.78}{0.83}=0.94
$$

(b) The probability that a plane departed on time, given that it has arrived on time, is

$$
P(D \mid A)=\frac{P(D \cap A)}{P(A)}=\frac{0.78}{0.82}=0.95
$$

The notion of conditional probability provides the capability of reevaluating the idea of probability of an event in light of additional information, that is, when it is known that another event has occurred. The probability $P(A \mid B)$ is an updating of $P(A)$ based on the knowledge that event B has occurred. In Example 2.34, it is important to know the probability that the flight arrives on time. One is given the information that the flight did not depart on time. Armed with this additional information, one can calculate the more pertinent probability $P\left(A \mid D^{\prime}\right)$, that is, the probability that it arrives on time, given that it did not depart on time. In many situations, the conclusions drawn from observing the more important conditional probability change the picture entirely. In this example, the computation of $P\left(A \mid D^{\prime}\right)$ is

$$
P\left(A \mid D^{\prime}\right)=\frac{P\left(A \cap D^{\prime}\right)}{P\left(D^{\prime}\right)}=\frac{0.82-0.78}{0.17}=0.24 .
$$

As a result, the probability of an on-time arrival is diminished severely in the presence of the additional information.

Example 2.35: The concept of conditional probability has countless uses in both industrial and biomedical applications. Consider an industrial process in the textile industry in which strips of a particular type of cloth are being produced. These strips can be defective in two ways, length and nature of texture. For the case of the latter, the process of identification is very complicated. It is known from historical information on the process that 10% of strips fail the length test, 5% fail the texture test, and only 0.8% fail both tests. If a strip is selected randomly from the process and a quick measurement identifies it as failing the length test, what is the probability that it is texture defective?
Solution: Consider the events

$$
L \text { : length defective, } \quad T \text { : texture defective. }
$$

Given that the strip is length defective, the probability that this strip is texture defective is given by

$$
P(T \mid L)=\frac{P(T \cap L)}{P(L)}=\frac{0.008}{0.1}=0.08
$$

Thus, knowing the conditional probability provides considerably more information than merely knowing $P(T)$.

Independent Events

In the die-tossing experiment discussed on page 62 , we note that $P(B \mid A)=2 / 5$ whereas $P(B)=1 / 3$. That is, $P(B \mid A) \neq P(B)$, indicating that B depends on A. Now consider an experiment in which 2 cards are drawn in succession from an ordinary deck, with replacement. The events are defined as
A : the first card is an ace,
B : the second card is a spade.
Since the first card is replaced, our sample space for both the first and the second draw consists of 52 cards, containing 4 aces and 13 spades. Hence,

$$
P(B \mid A)=\frac{13}{52}=\frac{1}{4} \quad \text { and } \quad P(B)=\frac{13}{52}=\frac{1}{4}
$$

That is, $P(B \mid A)=P(B)$. When this is true, the events A and B are said to be independent.

Although conditional probability allows for an alteration of the probability of an event in the light of additional material, it also enables us to understand better the very important concept of independence or, in the present context, independent events. In the airport illustration in Example 2.34, $P(A \mid D)$ differs from $P(A)$. This suggests that the occurrence of D influenced A, and this is certainly expected in this illustration. However, consider the situation where we have events A and B and

$$
P(A \mid B)=P(A)
$$

In other words, the occurrence of B had no impact on the odds of occurrence of A. Here the occurrence of A is independent of the occurrence of B. The importance of the concept of independence cannot be overemphasized. It plays a vital role in material in virtually all chapters in this book and in all areas of applied statistics.

Definition 2.11: Two events A and B are independent if and only if

$$
P(B \mid A)=P(B) \quad \text { or } \quad P(A \mid B)=P(A)
$$

assuming the existences of the conditional probabilities. Otherwise, A and B are dependent.

The condition $P(B \mid A)=P(B)$ implies that $P(A \mid B)=P(A)$, and conversely. For the card-drawing experiments, where we showed that $P(B \mid A)=P(B)=1 / 4$, we also can see that $P(A \mid B)=P(A)=1 / 13$.

The Product Rule, or the Multiplicative Rule

Multiplying the formula in Definition 2.10 by $P(A)$, we obtain the following important multiplicative rule (or product rule), which enables us to calculate
the probability that two events will both occur.
Theorem 2.10: If in an experiment the events A and B can both occur, then

$$
P(A \cap B)=P(A) P(B \mid A), \text { provided } P(A)>0
$$

Thus, the probability that both A and B occur is equal to the probability that A occurs multiplied by the conditional probability that B occurs, given that A occurs. Since the events $A \cap B$ and $B \cap A$ are equivalent, it follows from Theorem 2.10 that we can also write

$$
P(A \cap B)=P(B \cap A)=P(B) P(A \mid B)
$$

In other words, it does not matter which event is referred to as A and which event is referred to as B.

Example 2.36: Suppose that we have a fuse box containing 20 fuses, of which 5 are defective. If 2 fuses are selected at random and removed from the box in succession without replacing the first, what is the probability that both fuses are defective?
Solution: We shall let A be the event that the first fuse is defective and B the event that the second fuse is defective; then we interpret $A \cap B$ as the event that A occurs and then B occurs after A has occurred. The probability of first removing a defective fuse is $1 / 4$; then the probability of removing a second defective fuse from the remaining 4 is $4 / 19$. Hence,

$$
P(A \cap B)=\left(\frac{1}{4}\right)\left(\frac{4}{19}\right)=\frac{1}{19} .
$$

Example 2.37: One bag contains 4 white balls and 3 black balls, and a second bag contains 3 white balls and 5 black balls. One ball is drawn from the first bag and placed unseen in the second bag. What is the probability that a ball now drawn from the second bag is black?
Solution: Let B_{1}, B_{2}, and W_{1} represent, respectively, the drawing of a black ball from bag 1 , a black ball from bag 2 , and a white ball from bag 1 . We are interested in the union of the mutually exclusive events $B_{1} \cap B_{2}$ and $W_{1} \cap B_{2}$. The various possibilities and their probabilities are illustrated in Figure 2.8. Now

$$
\begin{aligned}
P\left[\left(B_{1} \cap B_{2}\right) \text { or }\left(W_{1} \cap B_{2}\right)\right] & =P\left(B_{1} \cap B_{2}\right)+P\left(W_{1} \cap B_{2}\right) \\
& =P\left(B_{1}\right) P\left(B_{2} \mid B_{1}\right)+P\left(W_{1}\right) P\left(B_{2} \mid W_{1}\right) \\
& =\left(\frac{3}{7}\right)\left(\frac{6}{9}\right)+\left(\frac{4}{7}\right)\left(\frac{5}{9}\right)=\frac{38}{63} .
\end{aligned}
$$

If, in Example 2.36, the first fuse is replaced and the fuses thoroughly rearranged before the second is removed, then the probability of a defective fuse on the second selection is still $1 / 4$; that is, $P(B \mid A)=P(B)$ and the events A and B are independent. When this is true, we can substitute $P(B)$ for $P(B \mid A)$ in Theorem 2.10 to obtain the following special multiplicative rule.

Figure 2.8: Tree diagram for Example 2.37.

Theorem 2.11: Two events A and B are independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

Therefore, to obtain the probability that two independent events will both occur, we simply find the product of their individual probabilities.

Example 2.38: A small town has one fire engine and one ambulance available for emergencies. The probability that the fire engine is available when needed is 0.98 , and the probability that the ambulance is available when called is 0.92 . In the event of an injury resulting from a burning building, find the probability that both the ambulance and the fire engine will be available, assuming they operate independently.
Solution: Let A and B represent the respective events that the fire engine and the ambulance are available. Then

$$
P(A \cap B)=P(A) P(B)=(0.98)(0.92)=0.9016
$$

Example 2.39: An electrical system consists of four components as illustrated in Figure 2.9. The system works if components A and B work and either of the components C or D works. The reliability (probability of working) of each component is also shown in Figure 2.9. Find the probability that (a) the entire system works and (b) the component C does not work, given that the entire system works. Assume that the four components work independently.
Solution: In this configuration of the system, A, B, and the subsystem C and D constitute a serial circuit system, whereas the subsystem C and D itself is a parallel circuit system.
(a) Clearly the probability that the entire system works can be calculated as
follows:

$$
\begin{aligned}
P[A \cap B \cap & (C \cup D)]=P(A) P(B) P(C \cup D)=P(A) P(B)\left[1-P\left(C^{\prime} \cap D^{\prime}\right)\right] \\
& =P(A) P(B)\left[1-P\left(C^{\prime}\right) P\left(D^{\prime}\right)\right] \\
& =(0.9)(0.9)[1-(1-0.8)(1-0.8)]=0.7776 .
\end{aligned}
$$

The equalities above hold because of the independence among the four components.
(b) To calculate the conditional probability in this case, notice that

$$
\begin{aligned}
P & =\frac{P(\text { the system works but } C \text { does not work })}{P(\text { the system works })} \\
& =\frac{P\left(A \cap B \cap C^{\prime} \cap D\right)}{P(\text { the system works })}=\frac{(0.9)(0.9)(1-0.8)(0.8)}{0.7776}=0.1667 .
\end{aligned}
$$

Figure 2.9: An electrical system for Example 2.39.
The multiplicative rule can be extended to more than two-event situations.

Theorem 2.12: If, in an experiment, the events $A_{1}, A_{2}, \ldots, A_{k}$ can occur, then

$$
\begin{aligned}
& P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{k}\right) \\
& \quad=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right) \cdots P\left(A_{k} \mid A_{1} \cap A_{2} \cap \cdots \cap A_{k-1}\right) .
\end{aligned}
$$

If the events $A_{1}, A_{2}, \ldots, A_{k}$ are independent, then

$$
P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{k}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \cdots P\left(A_{k}\right)
$$

Example 2.40: Three cards are drawn in succession, without replacement, from an ordinary deck of playing cards. Find the probability that the event $A_{1} \cap A_{2} \cap A_{3}$ occurs, where A_{1} is the event that the first card is a red ace, A_{2} is the event that the second card is a 10 or a jack, and A_{3} is the event that the third card is greater than 3 but less than 7.
Solution: First we define the events
A_{1} : the first card is a red ace,
A_{2} : the second card is a 10 or a jack,
A_{3} : the third card is greater than 3 but less than 7 .
Now

$$
P\left(A_{1}\right)=\frac{2}{52}, \quad P\left(A_{2} \mid A_{1}\right)=\frac{8}{51}, \quad P\left(A_{3} \mid A_{1} \cap A_{2}\right)=\frac{12}{50},
$$

and hence, by Theorem 2.12,

$$
\begin{aligned}
P\left(A_{1} \cap A_{2} \cap A_{3}\right) & =P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{1} \cap A_{2}\right) \\
& =\left(\frac{2}{52}\right)\left(\frac{8}{51}\right)\left(\frac{12}{50}\right)=\frac{8}{5525} .
\end{aligned}
$$

The property of independence stated in Theorem 2.11 can be extended to deal with more than two events. Consider, for example, the case of three events A, B, and C. It is not sufficient to only have that $P(A \cap B \cap C)=P(A) P(B) P(C)$ as a definition of independence among the three. Suppose $A=B$ and $C=\phi$, the null set. Although $A \cap B \cap C=\phi$, which results in $P(A \cap B \cap C)=0=P(A) P(B) P(C)$, events A and B are not independent. Hence, we have the following definition.

Definition 2.12:
A collection of events $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ are mutually independent if for any subset of $\mathcal{A}, A_{i_{1}}, \ldots, A_{i_{k}}$, for $k \leq n$, we have

$$
P\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right)=P\left(A_{i_{1}}\right) \cdots P\left(A_{i_{k}}\right) .
$$

Exercises

2.73 If R is the event that a convict committed armed robbery and D is the event that the convict pushed dope, state in words what probabilities are expressed by
(a) $P(R \mid D)$;
(b) $P\left(D^{\prime} \mid R\right)$;
(c) $P\left(R^{\prime} \mid D^{\prime}\right)$.
2.74 A class in advanced physics is composed of 10 juniors, 30 seniors, and 10 graduate students. The final grades show that 3 of the juniors, 10 of the seniors, and 5 of the graduate students received an A for the course. If a student is chosen at random from this class and is found to have earned an A, what is the probability that he or she is a senior?
2.75 A random sample of 200 adults are classified below by sex and their level of education attained.

Education	Male	Female
Elementary	38	45
Secondary	28	50
College	22	17

If a person is picked at random from this group, find the probability that
(a) the person is a male, given that the person has a secondary education;
(b) the person does not have a college degree, given that the person is a female.
2.76 In an experiment to study the relationship of hypertension and smoking habits, the following data are collected for 180 individuals:

	Nonsmokers	Moderate Smokers	Heavy Smokers
H	21	36	30
NH	48	26	19

where H and $N H$ in the table stand for Hypertension and Nonhypertension, respectively. If one of these individuals is selected at random, find the probability that the person is
(a) experiencing hypertension, given that the person is a heavy smoker;
(b) a nonsmoker, given that the person is experiencing no hypertension.
2.77 In the senior year of a high school graduating class of 100 students, 42 studied mathematics, 68 studied psychology, 54 studied history, 22 studied both mathematics and history, 25 studied both mathematics and psychology, 7 studied history but neither mathematics nor psychology, 10 studied all three subjects, and 8 did not take any of the three. Randomly select
a student from the class and find the probabilities of the following events.
(a) A person enrolled in psychology takes all three subjects.
(b) A person not taking psychology is taking both history and mathematics.
2.78 A manufacturer of a flu vaccine is concerned about the quality of its flu serum. Batches of serum are processed by three different departments having rejection rates of $0.10,0.08$, and 0.12 , respectively. The inspections by the three departments are sequential and independent.
(a) What is the probability that a batch of serum survives the first departmental inspection but is rejected by the second department?
(b) What is the probability that a batch of serum is rejected by the third department?
2.79 In USA Today (Sept. 5, 1996), the results of a survey involving the use of sleepwear while traveling were listed as follows:

	Male	Female	Total
Underwear	0.220	0.024	0.244
Nightgown	0.002	0.180	0.182
Nothing	0.160	0.018	0.178
Pajamas	0.102	0.073	0.175
T-shirt	0.046	0.088	0.134
Other	0.084	0.003	0.087

(a) What is the probability that a traveler is a female who sleeps in the nude?
(b) What is the probability that a traveler is male?
(c) Assuming the traveler is male, what is the probability that he sleeps in pajamas?
(d) What is the probability that a traveler is male if the traveler sleeps in pajamas or a T-shirt?
2.80 The probability that an automobile being filled with gasoline also needs an oil change is 0.25 ; the probability that it needs a new oil filter is 0.40 ; and the probability that both the oil and the filter need changing is 0.14 .
(a) If the oil has to be changed, what is the probability that a new oil filter is needed?
(b) If a new oil filter is needed, what is the probability that the oil has to be changed?
2.81 The probability that a married man watches a certain television show is 0.4 , and the probability that a married woman watches the show is 0.5 . The probability that a man watches the show, given that his wife does, is 0.7 . Find the probability that
(a) a married couple watches the show;
(b) a wife watches the show, given that her husband does;
(c) at least one member of a married couple will watch the show.
2.82 For married couples living in a certain suburb, the probability that the husband will vote on a bond referendum is 0.21 , the probability that the wife will vote on the referendum is 0.28 , and the probability that both the husband and the wife will vote is 0.15 . What is the probability that
(a) at least one member of a married couple will vote?
(b) a wife will vote, given that her husband will vote?
(c) a husband will vote, given that his wife will not vote?
2.83 The probability that a vehicle entering the Luray Caverns has Canadian license plates is 0.12 ; the probability that it is a camper is 0.28 ; and the probability that it is a camper with Canadian license plates is 0.09 . What is the probability that
(a) a camper entering the Luray Caverns has Canadian license plates?
(b) a vehicle with Canadian license plates entering the Luray Caverns is a camper?
(c) a vehicle entering the Luray Caverns does not have Canadian plates or is not a camper?
2.84 The probability that the head of a household is home when a telemarketing representative calls is 0.4. Given that the head of the house is home, the probability that goods will be bought from the company is 0.3 . Find the probability that the head of the house is home and goods are bought from the company.
2.85 The probability that a doctor correctly diagnoses a particular illness is 0.7 . Given that the doctor makes an incorrect diagnosis, the probability that the patient files a lawsuit is 0.9 . What is the probability that the doctor makes an incorrect diagnosis and the patient sues?
2.86 In 1970, 11% of Americans completed four years of college; 43% of them were women. In 1990, 22% of Americans completed four years of college; 53% of them were women (Time, Jan. 19, 1996).
(a) Given that a person completed four years of college in 1970 , what is the probability that the person was a woman?
(b) What is the probability that a woman finished four years of college in 1990 ?
(c) What is the probability that a man had not finished college in 1990?
2.87 A real estate agent has 8 master keys to open several new homes. Only 1 master key will open any given house. If 40% of these homes are usually left unlocked, what is the probability that the real estate agent can get into a specific home if the agent selects 3 master keys at random before leaving the office?
2.88 Before the distribution of certain statistical software, every fourth compact disk (CD) is tested for accuracy. The testing process consists of running four independent programs and checking the results. The failure rates for the four testing programs are, respectively, $0.01,0.03,0.02$, and 0.01 .
(a) What is the probability that a CD was tested and failed any test?
(b) Given that a CD was tested, what is the probability that it failed program 2 or 3 ?
(c) In a sample of 100 , how many CDs would you expect to be rejected?
(d) Given that a CD was defective, what is the probability that it was tested?
2.89 A town has two fire engines operating independently. The probability that a specific engine is available when needed is 0.96 .
(a) What is the probability that neither is available when needed?
(b) What is the probability that a fire engine is available when needed?
2.90 Pollution of the rivers in the United States has been a problem for many years. Consider the following events:
A : the river is polluted,
B : a sample of water tested detects pollution,
C : fishing is permitted.

Assume $P(A)=0.3, P(B \mid A)=0.75, P\left(B \mid A^{\prime}\right)=0.20$, $P(C \mid A \cap B)=0.20, P\left(C \mid A^{\prime} \cap B\right)=0.15, P\left(C \mid A \cap B^{\prime}\right)=$ 0.80 , and $P\left(C \mid A^{\prime} \cap B^{\prime}\right)=0.90$.
(a) Find $P(A \cap B \cap C)$.
(b) Find $P\left(B^{\prime} \cap C\right)$.
(c) Find $P(C)$.
(d) Find the probability that the river is polluted, given that fishing is permitted and the sample tested did not detect pollution.
2.91 Find the probability of randomly selecting 4 good quarts of milk in succession from a cooler containing 20 quarts of which 5 have spoiled, by using
(a) the first formula of Theorem 2.12 on page 68 ;
(b) the formulas of Theorem 2.6 and Rule 2.3 on pages 50 and 54 , respectively.
2.92 Suppose the diagram of an electrical system is as given in Figure 2.10. What is the probability that the system works? Assume the components fail independently.
2.93 A circuit system is given in Figure 2.11. Assume the components fail independently.
(a) What is the probability that the entire system works?
(b) Given that the system works, what is the probability that the component A is not working?
2.94 In the situation of Exercise 2.93, it is known that the system does not work. What is the probability that the component A also does not work?

Figure 2.10: Diagram for Exercise 2.92.

Figure 2.11: Diagram for Exercise 2.93.

