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Exercises

1.7 Consider the drying time data for Exercise 1.1
on page 13. Compute the sample variance and sample
standard deviation.

1.8 Compute the sample variance and standard devi-
ation for the water absorbency data of Exercise 1.2 on
page 13.

1.9 Exercise 1.3 on page 13 showed tensile strength
data for two samples, one in which specimens were ex-
posed to an aging process and one in which there was
no aging of the specimens.

(a) Calculate the sample variance as well as standard
deviation in tensile strength for both samples.

(b) Does there appear to be any evidence that aging
affects the variability in tensile strength? (See also
the plot for Exercise 1.3 on page 13.)

1.10 For the data of Exercise 1.4 on page 13, com-
pute both the mean and the variance in “flexibility”
for both company A and company B. Does there ap-
pear to be a difference in flexibility between company
A and company B?

1.11 Consider the data in Exercise 1.5 on page 13.
Compute the sample variance and the sample standard
deviation for both control and treatment groups.

1.12 For Exercise 1.6 on page 13, compute the sample
standard deviation in tensile strength for the samples
separately for the two temperatures. Does it appear as
if an increase in temperature influences the variability
in tensile strength? Explain.

1.5 Discrete and Continuous Data

Statistical inference through the analysis of observational studies or designed ex-
periments is used in many scientific areas. The data gathered may be discrete
or continuous, depending on the area of application. For example, a chemical
engineer may be interested in conducting an experiment that will lead to condi-
tions where yield is maximized. Here, of course, the yield may be in percent or
grams/pound, measured on a continuum. On the other hand, a toxicologist con-
ducting a combination drug experiment may encounter data that are binary in
nature (i.e., the patient either responds or does not).

Great distinctions are made between discrete and continuous data in the prob-
ability theory that allow us to draw statistical inferences. Often applications of
statistical inference are found when the data are count data. For example, an en-
gineer may be interested in studying the number of radioactive particles passing
through a counter in, say, 1 millisecond. Personnel responsible for the efficiency
of a port facility may be interested in the properties of the number of oil tankers
arriving each day at a certain port city. In Chapter 5, several distinct scenarios,
leading to different ways of handling data, are discussed for situations with count
data.

Special attention even at this early stage of the textbook should be paid to some
details associated with binary data. Applications requiring statistical analysis of
binary data are voluminous. Often the measure that is used in the analysis is
the sample proportion. Obviously the binary situation involves two categories.
If there are n units involved in the data and x is defined as the number that
fall into category 1, then n − x fall into category 2. Thus, x/n is the sample
proportion in category 1, and 1− x/n is the sample proportion in category 2. In
the biomedical application, 50 patients may represent the sample units, and if 20
out of 50 experienced an improvement in a stomach ailment (common to all 50)
after all were given the drug, then 20

50 = 0.4 is the sample proportion for which
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the drug was a success and 1 − 0.4 = 0.6 is the sample proportion for which the
drug was not successful. Actually the basic numerical measurement for binary
data is generally denoted by either 0 or 1. For example, in our medical example,
a successful result is denoted by a 1 and a nonsuccess a 0. As a result, the sample
proportion is actually a sample mean of the ones and zeros. For the successful
category,

x1 + x2 + · · ·+ x50

50
=

1 + 1 + 0 + · · ·+ 0 + 1

50
=

20

50
= 0.4.

What Kinds of Problems Are Solved in Binary Data Situations?

The kinds of problems facing scientists and engineers dealing in binary data are
not a great deal unlike those seen where continuous measurements are of interest.
However, different techniques are used since the statistical properties of sample
proportions are quite different from those of the sample means that result from
averages taken from continuous populations. Consider the example data in Ex-
ercise 1.6 on page 13. The statistical problem underlying this illustration focuses
on whether an intervention, say, an increase in curing temperature, will alter the
population mean tensile strength associated with the silicone rubber process. On
the other hand, in a quality control area, suppose an automobile tire manufacturer
reports that a shipment of 5000 tires selected randomly from the process results
in 100 of them showing blemishes. Here the sample proportion is 100

5000 = 0.02.
Following a change in the process designed to reduce blemishes, a second sample of
5000 is taken and 90 tires are blemished. The sample proportion has been reduced
to 90

5000 = 0.018. The question arises, “Is the decrease in the sample proportion
from 0.02 to 0.018 substantial enough to suggest a real improvement in the pop-
ulation proportion?” Both of these illustrations require the use of the statistical
properties of sample averages—one from samples from a continuous population,
and the other from samples from a discrete (binary) population. In both cases,
the sample mean is an estimate of a population parameter, a population mean
in the first illustration (i.e., mean tensile strength), and a population proportion
in the second case (i.e., proportion of blemished tires in the population). So here
we have sample estimates used to draw scientific conclusions regarding population
parameters. As we indicated in Section 1.3, this is the general theme in many
practical problems using statistical inference.

1.6 Statistical Modeling, Scientific Inspection, and Graphical
Diagnostics

Often the end result of a statistical analysis is the estimation of parameters of a
postulated model. This is natural for scientists and engineers since they often
deal in modeling. A statistical model is not deterministic but, rather, must entail
some probabilistic aspects. A model form is often the foundation of assumptions
that are made by the analyst. For example, in Example 1.2 the scientist may wish
to draw some level of distinction between the nitrogen and no-nitrogen populations
through the sample information. The analysis may require a certain model for
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the data, for example, that the two samples come from normal or Gaussian
distributions. See Chapter 6 for a discussion of the normal distribution.

Obviously, the user of statistical methods cannot generate sufficient informa-
tion or experimental data to characterize the population totally. But sets of data
are often used to learn about certain properties of the population. Scientists and
engineers are accustomed to dealing with data sets. The importance of character-
izing or summarizing the nature of collections of data should be obvious. Often a
summary of a collection of data via a graphical display can provide insight regard-
ing the system from which the data were taken. For instance, in Sections 1.1 and
1.3, we have shown dot plots.

In this section, the role of sampling and the display of data for enhancement of
statistical inference is explored in detail. We merely introduce some simple but
often effective displays that complement the study of statistical populations.

Scatter Plot

At times the model postulated may take on a somewhat complicated form. Con-
sider, for example, a textile manufacturer who designs an experiment where cloth
specimen that contain various percentages of cotton are produced. Consider the
data in Table 1.3.

Table 1.3: Tensile Strength

Cotton Percentage Tensile Strength

15 7, 7, 9, 8, 10
20 19, 20, 21, 20, 22
25 21, 21, 17, 19, 20
30 8, 7, 8, 9, 10

Five cloth specimens are manufactured for each of the four cotton percentages.
In this case, both the model for the experiment and the type of analysis used
should take into account the goal of the experiment and important input from
the textile scientist. Some simple graphics can shed important light on the clear
distinction between the samples. See Figure 1.5; the sample means and variability
are depicted nicely in the scatter plot. One possible goal of this experiment is
simply to determine which cotton percentages are truly distinct from the others.
In other words, as in the case of the nitrogen/no-nitrogen data, for which cotton
percentages are there clear distinctions between the populations or, more specifi-
cally, between the population means? In this case, perhaps a reasonable model is
that each sample comes from a normal distribution. Here the goal is very much
like that of the nitrogen/no-nitrogen data except that more samples are involved.
The formalism of the analysis involves notions of hypothesis testing discussed in
Chapter 10. Incidentally, this formality is perhaps not necessary in light of the
diagnostic plot. But does this describe the real goal of the experiment and hence
the proper approach to data analysis? It is likely that the scientist anticipates
the existence of a maximum population mean tensile strength in the range of cot-
ton concentration in the experiment. Here the analysis of the data should revolve
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around a different type of model, one that postulates a type of structure relating
the population mean tensile strength to the cotton concentration. In other words,
a model may be written

μt,c = β0 + β1C + β2C
2,

where μt,c is the population mean tensile strength, which varies with the amount
of cotton in the product C. The implication of this model is that for a fixed cotton
level, there is a population of tensile strength measurements and the population
mean is μt,c. This type of model, called a regression model, is discussed in
Chapters 11 and 12. The functional form is chosen by the scientist. At times
the data analysis may suggest that the model be changed. Then the data analyst
“entertains” a model that may be altered after some analysis is done. The use
of an empirical model is accompanied by estimation theory, where β0, β1, and
β2 are estimated by the data. Further, statistical inference can then be used to
determine model adequacy.
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Figure 1.5: Scatter plot of tensile strength and cotton percentages.

Two points become evident from the two data illustrations here: (1) The type
of model used to describe the data often depends on the goal of the experiment;
and (2) the structure of the model should take advantage of nonstatistical scientific
input. A selection of a model represents a fundamental assumption upon which
the resulting statistical inference is based. It will become apparent throughout the
book how important graphics can be. Often, plots can illustrate information that
allows the results of the formal statistical inference to be better communicated to
the scientist or engineer. At times, plots or exploratory data analysis can teach
the analyst something not retrieved from the formal analysis. Almost any formal
analysis requires assumptions that evolve from the model of the data. Graphics can
nicely highlight violation of assumptions that would otherwise go unnoticed.
Throughout the book, graphics are used extensively to supplement formal data
analysis. The following sections reveal some graphical tools that are useful in
exploratory or descriptive data analysis.
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Stem-and-Leaf Plot

Statistical data, generated in large masses, can be very useful for studying the
behavior of the distribution if presented in a combined tabular and graphic display
called a stem-and-leaf plot.

To illustrate the construction of a stem-and-leaf plot, consider the data of Table
1.4, which specifies the “life” of 40 similar car batteries recorded to the nearest tenth
of a year. The batteries are guaranteed to last 3 years. First, split each observation
into two parts consisting of a stem and a leaf such that the stem represents the
digit preceding the decimal and the leaf corresponds to the decimal part of the
number. In other words, for the number 3.7, the digit 3 is designated the stem and
the digit 7 is the leaf. The four stems 1, 2, 3, and 4 for our data are listed vertically
on the left side in Table 1.5; the leaves are recorded on the right side opposite the
appropriate stem value. Thus, the leaf 6 of the number 1.6 is recorded opposite
the stem 1; the leaf 5 of the number 2.5 is recorded opposite the stem 2; and so
forth. The number of leaves recorded opposite each stem is summarized under the
frequency column.

Table 1.4: Car Battery Life

2.2 4.1 3.5 4.5 3.2 3.7 3.0 2.6
3.4 1.6 3.1 3.3 3.8 3.1 4.7 3.7
2.5 4.3 3.4 3.6 2.9 3.3 3.9 3.1
3.3 3.1 3.7 4.4 3.2 4.1 1.9 3.4
4.7 3.8 3.2 2.6 3.9 3.0 4.2 3.5

Table 1.5: Stem-and-Leaf Plot of Battery Life

Stem Leaf Frequency
1
2
3
4

69
25669
0011112223334445567778899
11234577

2
5
25
8

The stem-and-leaf plot of Table 1.5 contains only four stems and consequently
does not provide an adequate picture of the distribution. To remedy this problem,
we need to increase the number of stems in our plot. One simple way to accomplish
this is to write each stem value twice and then record the leaves 0, 1, 2, 3, and 4
opposite the appropriate stem value where it appears for the first time, and the
leaves 5, 6, 7, 8, and 9 opposite this same stem value where it appears for the second
time. This modified double-stem-and-leaf plot is illustrated in Table 1.6, where the
stems corresponding to leaves 0 through 4 have been coded by the symbol � and
the stems corresponding to leaves 5 through 9 by the symbol ·.

In any given problem, we must decide on the appropriate stem values. This
decision is made somewhat arbitrarily, although we are guided by the size of our
sample. Usually, we choose between 5 and 20 stems. The smaller the number of
data available, the smaller is our choice for the number of stems. For example, if
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the data consist of numbers from 1 to 21 representing the number of people in a
cafeteria line on 40 randomly selected workdays and we choose a double-stem-and-
leaf plot, the stems will be 0�, 0·, 1�, 1·, and 2� so that the smallest observation
1 has stem 0� and leaf 1, the number 18 has stem 1· and leaf 8, and the largest
observation 21 has stem 2� and leaf 1. On the other hand, if the data consist of
numbers from $18,800 to $19,600 representing the best possible deals on 100 new
automobiles from a certain dealership and we choose a single-stem-and-leaf plot,
the stems will be 188, 189, 190, . . . , 196 and the leaves will now each contain two
digits. A car that sold for $19,385 would have a stem value of 193 and the two-digit
leaf 85. Multiple-digit leaves belonging to the same stem are usually separated by
commas in the stem-and-leaf plot. Decimal points in the data are generally ignored
when all the digits to the right of the decimal represent the leaf. Such was the
case in Tables 1.5 and 1.6. However, if the data consist of numbers ranging from
21.8 to 74.9, we might choose the digits 2, 3, 4, 5, 6, and 7 as our stems so that a
number such as 48.3 would have a stem value of 4 and a leaf of 8.3.

Table 1.6: Double-Stem-and-Leaf Plot of Battery Life

Stem Leaf Frequency
1·
2�
2·
3�
3·
4�
4·

69
2
5669
001111222333444
5567778899
11234
577

2
1
4

15
10
5
3

The stem-and-leaf plot represents an effective way to summarize data. Another
way is through the use of the frequency distribution, where the data, grouped
into different classes or intervals, can be constructed by counting the leaves be-
longing to each stem and noting that each stem defines a class interval. In Table
1.5, the stem 1 with 2 leaves defines the interval 1.0–1.9 containing 2 observations;
the stem 2 with 5 leaves defines the interval 2.0–2.9 containing 5 observations; the
stem 3 with 25 leaves defines the interval 3.0–3.9 with 25 observations; and the
stem 4 with 8 leaves defines the interval 4.0–4.9 containing 8 observations. For the
double-stem-and-leaf plot of Table 1.6, the stems define the seven class intervals
1.5–1.9, 2.0–2.4, 2.5–2.9, 3.0–3.4, 3.5–3.9, 4.0–4.4, and 4.5–4.9 with frequencies 2,
1, 4, 15, 10, 5, and 3, respectively.

Histogram

Dividing each class frequency by the total number of observations, we obtain the
proportion of the set of observations in each of the classes. A table listing relative
frequencies is called a relative frequency distribution. The relative frequency
distribution for the data of Table 1.4, showing the midpoint of each class interval,
is given in Table 1.7.

The information provided by a relative frequency distribution in tabular form is
easier to grasp if presented graphically. Using the midpoint of each interval and the
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Table 1.7: Relative Frequency Distribution of Battery Life

Class Class Frequency, Relative
Interval Midpoint f Frequency
1.5–1.9 1.7 2 0.050
2.0–2.4 2.2 1 0.025
2.5–2.9 2.7 4 0.100
3.0–3.4 3.2 15 0.375
3.5–3.9 3.7 10 0.250
4.0–4.4 4.2 5 0.125
4.5–4.9 4.7 3 0.075
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0.250

0.125
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Figure 1.6: Relative frequency histogram.

corresponding relative frequency, we construct a relative frequency histogram
(Figure 1.6).

Many continuous frequency distributions can be represented graphically by the
characteristic bell-shaped curve of Figure 1.7. Graphical tools such as what we see
in Figures 1.6 and 1.7 aid in the characterization of the nature of the population. In
Chapters 5 and 6 we discuss a property of the population called its distribution.
While a more rigorous definition of a distribution or probability distribution
will be given later in the text, at this point one can view it as what would be seen
in Figure 1.7 in the limit as the size of the sample becomes larger.

A distribution is said to be symmetric if it can be folded along a vertical axis
so that the two sides coincide. A distribution that lacks symmetry with respect to
a vertical axis is said to be skewed. The distribution illustrated in Figure 1.8(a)
is said to be skewed to the right since it has a long right tail and a much shorter
left tail. In Figure 1.8(b) we see that the distribution is symmetric, while in Figure
1.8(c) it is skewed to the left.

If we rotate a stem-and-leaf plot counterclockwise through an angle of 90◦,
we observe that the resulting columns of leaves form a picture that is similar
to a histogram. Consequently, if our primary purpose in looking at the data is to
determine the general shape or form of the distribution, it will seldom be necessary
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Figure 1.7: Estimating frequency distribution.

(a) (b) (c)

Figure 1.8: Skewness of data.

to construct a relative frequency histogram.

Box-and-Whisker Plot or Box Plot

Another display that is helpful for reflecting properties of a sample is the box-
and-whisker plot. This plot encloses the interquartile range of the data in a box
that has the median displayed within. The interquartile range has as its extremes
the 75th percentile (upper quartile) and the 25th percentile (lower quartile). In
addition to the box, “whiskers” extend, showing extreme observations in the sam-
ple. For reasonably large samples, the display shows center of location, variability,
and the degree of asymmetry.

In addition, a variation called a box plot can provide the viewer with infor-
mation regarding which observations may be outliers. Outliers are observations
that are considered to be unusually far from the bulk of the data. There are many
statistical tests that are designed to detect outliers. Technically, one may view
an outlier as being an observation that represents a “rare event” (there is a small
probability of obtaining a value that far from the bulk of the data). The concept
of outliers resurfaces in Chapter 12 in the context of regression analysis.
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The visual information in the box-and-whisker plot or box plot is not intended
to be a formal test for outliers. Rather, it is viewed as a diagnostic tool. While the
determination of which observations are outliers varies with the type of software
that is used, one common procedure is to use a multiple of the interquartile
range. For example, if the distance from the box exceeds 1.5 times the interquartile
range (in either direction), the observation may be labeled an outlier.

Example 1.5: Nicotine content was measured in a random sample of 40 cigarettes. The data are
displayed in Table 1.8.

Table 1.8: Nicotine Data for Example 1.5

1.09 1.92 2.31 1.79 2.28 1.74 1.47 1.97
0.85 1.24 1.58 2.03 1.70 2.17 2.55 2.11
1.86 1.90 1.68 1.51 1.64 0.72 1.69 1.85
1.82 1.79 2.46 1.88 2.08 1.67 1.37 1.93
1.40 1.64 2.09 1.75 1.63 2.37 1.75 1.69

1.0 1.5 2.0 2.5

Nicotine

Figure 1.9: Box-and-whisker plot for Example 1.5.

Figure 1.9 shows the box-and-whisker plot of the data, depicting the observa-
tions 0.72 and 0.85 as mild outliers in the lower tail, whereas the observation 2.55
is a mild outlier in the upper tail. In this example, the interquartile range is 0.365,
and 1.5 times the interquartile range is 0.5475. Figure 1.10, on the other hand,
provides a stem-and-leaf plot.

Example 1.6: Consider the data in Table 1.9, consisting of 30 samples measuring the thickness of
paint can “ears” (see the work by Hogg and Ledolter, 1992, in the Bibliography).
Figure 1.11 depicts a box-and-whisker plot for this asymmetric set of data. Notice
that the left block is considerably larger than the block on the right. The median
is 35. The lower quartile is 31, while the upper quartile is 36. Notice also that the
extreme observation on the right is farther away from the box than the extreme
observation on the left. There are no outliers in this data set.
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The decimal point is 1 digit(s) to the left of the |

7 | 2

8 | 5

9 |

10 | 9

11 |

12 | 4

13 | 7

14 | 07

15 | 18

16 | 3447899

17 | 045599

18 | 2568

19 | 0237

20 | 389

21 | 17

22 | 8

23 | 17

24 | 6

25 | 5

Figure 1.10: Stem-and-leaf plot for the nicotine data.

Table 1.9: Data for Example 1.6

Sample Measurements Sample Measurements
1 29 36 39 34 34 16 35 30 35 29 37
2 29 29 28 32 31 17 40 31 38 35 31
3 34 34 39 38 37 18 35 36 30 33 32
4 35 37 33 38 41 19 35 34 35 30 36
5 30 29 31 38 29 20 35 35 31 38 36
6 34 31 37 39 36 21 32 36 36 32 36
7 30 35 33 40 36 22 36 37 32 34 34
8 28 28 31 34 30 23 29 34 33 37 35
9 32 36 38 38 35 24 36 36 35 37 37
10 35 30 37 35 31 25 36 30 35 33 31
11 35 30 35 38 35 26 35 30 29 38 35
12 38 34 35 35 31 27 35 36 30 34 36
13 34 35 33 30 34 28 35 30 36 29 35
14 40 35 34 33 35 29 38 36 35 31 31
15 34 35 38 35 30 30 30 34 40 28 30

There are additional ways that box-and-whisker plots and other graphical dis-
plays can aid the analyst. Multiple samples can be compared graphically. Plots of
data can suggest relationships between variables. Graphs can aid in the detection
of anomalies or outlying observations in samples.

There are other types of graphical tools and plots that are used. These are
discussed in Chapter 8 after we introduce additional theoretical details.
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28 30 32 34 36 38 40

Paint

Figure 1.11: Box-and-whisker plot for thickness of paint can “ears.”

Other Distinguishing Features of a Sample

There are features of the distribution or sample other than measures of center
of location and variability that further define its nature. For example, while the
median divides the data (or distribution) into two parts, there are other measures
that divide parts or pieces of the distribution that can be very useful. Separation
is made into four parts by quartiles, with the third quartile separating the upper
quarter of the data from the rest, the second quartile being the median, and the first
quartile separating the lower quarter of the data from the rest. The distribution can
be even more finely divided by computing percentiles of the distribution. These
quantities give the analyst a sense of the so-called tails of the distribution (i.e.,
values that are relatively extreme, either small or large). For example, the 95th
percentile separates the highest 5% from the bottom 95%. Similar definitions
prevail for extremes on the lower side or lower tail of the distribution. The 1st
percentile separates the bottom 1% from the rest of the distribution. The concept
of percentiles will play a major role in much that will be covered in future chapters.

1.7 General Types of Statistical Studies: Designed
Experiment, Observational Study, and Retrospective Study

In the foregoing sections we have emphasized the notion of sampling from a pop-
ulation and the use of statistical methods to learn or perhaps affirm important
information about the population. The information sought and learned through
the use of these statistical methods can often be influential in decision making and
problem solving in many important scientific and engineering areas. As an illustra-
tion, Example 1.3 describes a simple experiment in which the results may provide
an aid in determining the kinds of conditions under which it is not advisable to use
a particular aluminum alloy that may have a dangerous vulnerability to corrosion.
The results may be of use not only to those who produce the alloy, but also to the
customer who may consider using it. This illustration, as well as many more that
appear in Chapters 13 through 15, highlights the concept of designing or control-
ling experimental conditions (combinations of coating conditions and humidity) of
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interest to learn about some characteristic or measurement (level of corrosion) that
results from these conditions. Statistical methods that make use of measures of
central tendency in the corrosion measure, as well as measures of variability, are
employed. As the reader will observe later in the text, these methods often lead to
a statistical model like that discussed in Section 1.6. In this case, the model may be
used to estimate (or predict) the corrosion measure as a function of humidity and
the type of coating employed. Again, in developing this kind of model, descriptive
statistics that highlight central tendency and variability become very useful.

The information supplied in Example 1.3 illustrates nicely the types of engi-
neering questions asked and answered by the use of statistical methods that are
employed through a designed experiment and presented in this text. They are

(i) What is the nature of the impact of relative humidity on the corrosion of the
aluminum alloy within the range of relative humidity in this experiment?

(ii) Does the chemical corrosion coating reduce corrosion levels and can the effect
be quantified in some fashion?

(iii) Is there interaction between coating type and relative humidity that impacts
their influence on corrosion of the alloy? If so, what is its interpretation?

What Is Interaction?

The importance of questions (i) and (ii) should be clear to the reader, as they
deal with issues important to both producers and users of the alloy. But what
about question (iii)? The concept of interaction will be discussed at length in
Chapters 14 and 15. Consider the plot in Figure 1.3. This is an illustration of
the detection of interaction between two factors in a simple designed experiment.
Note that the lines connecting the sample means are not parallel. Parallelism
would have indicated that the effect (seen as a result of the slope of the lines)
of relative humidity is the same, namely a negative effect, for both an uncoated
condition and the chemical corrosion coating. Recall that the negative slope implies
that corrosion becomes more pronounced as humidity rises. Lack of parallelism
implies an interaction between coating type and relative humidity. The nearly
“flat” line for the corrosion coating as opposed to a steeper slope for the uncoated
condition suggests that not only is the chemical corrosion coating beneficial (note
the displacement between the lines), but the presence of the coating renders the
effect of humidity negligible. Clearly all these questions are very important to the
effect of the two individual factors and to the interpretation of the interaction, if
it is present.

Statistical models are extremely useful in answering questions such as those
listed in (i), (ii), and (iii), where the data come from a designed experiment. But
one does not always have the luxury or resources to employ a designed experiment.
For example, there are many instances in which the conditions of interest to the
scientist or engineer cannot be implemented simply because the important factors
cannot be controlled. In Example 1.3, the relative humidity and coating type (or
lack of coating) are quite easy to control. This of course is the defining feature of
a designed experiment. In many fields, factors that need to be studied cannot be
controlled for any one of various reasons. Tight control as in Example 1.3 allows the
analyst to be confident that any differences found (for example, in corrosion levels)
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are due to the factors under control. As a second illustration, consider Exercise
1.6 on page 13. Suppose in this case 24 specimens of silicone rubber are selected
and 12 assigned to each of the curing temperature levels. The temperatures are
controlled carefully, and thus this is an example of a designed experiment with a
single factor being curing temperature. Differences found in the mean tensile
strength would be assumed to be attributed to the different curing temperatures.

What If Factors Are Not Controlled?

Suppose there are no factors controlled and no random assignment of fixed treat-
ments to experimental units and yet there is a need to glean information from a
data set. As an illustration, consider a study in which interest centers around the
relationship between blood cholesterol levels and the amount of sodium measured
in the blood. A group of individuals were monitored over time for both blood
cholesterol and sodium. Certainly some useful information can be gathered from
such a data set. However, it should be clear that there certainly can be no strict
control of blood sodium levels. Ideally, the subjects should be divided randomly
into two groups, with one group assigned a specific high level of blood sodium and
the other a specific low level of blood sodium. Obviously this cannot be done.
Clearly changes in cholesterol can be experienced because of changes in one of
a number of other factors that were not controlled. This kind of study, without
factor control, is called an observational study. Much of the time it involves a
situation in which subjects are observed across time.

Biological and biomedical studies are often by necessity observational studies.
However, observational studies are not confined to those areas. For example, con-
sider a study that is designed to determine the influence of ambient temperature on
the electric power consumed by a chemical plant. Clearly, levels of ambient temper-
ature cannot be controlled, and thus the data structure can only be a monitoring
of the data from the plant over time.

It should be apparent that the striking difference between a well-designed ex-
periment and observational studies is the difficulty in determination of true cause
and effect with the latter. Also, differences found in the fundamental response
(e.g., corrosion levels, blood cholesterol, plant electric power consumption) may
be due to other underlying factors that were not controlled. Ideally, in a designed
experiment the nuisance factors would be equalized via the randomization process.
Certainly changes in blood cholesterol could be due to fat intake, exercise activity,
and so on. Electric power consumption could be affected by the amount of product
produced or even the purity of the product produced.

Another often ignored disadvantage of an observational study when compared
to carefully designed experiments is that, unlike the latter, observational studies
are at the mercy of nature, environmental or other uncontrolled circumstances
that impact the ranges of factors of interest. For example, in the biomedical study
regarding the influence of blood sodium levels on blood cholesterol, it is possible
that there is indeed a strong influence but the particular data set used did not
involve enough observed variation in sodium levels because of the nature of the
subjects chosen. Of course, in a designed experiment, the analyst chooses and
controls ranges of factors.
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A third type of statistical study which can be very useful but has clear dis-
advantages when compared to a designed experiment is a retrospective study.
This type of study uses strictly historical data, data taken over a specific period
of time. One obvious advantage of retrospective data is that there is reduced cost
in collecting the data. However, as one might expect, there are clear disadvantages.

(i) Validity and reliability of historical data are often in doubt.

(ii) If time is an important aspect of the structure of the data, there may be data
missing.

(iii) There may be errors in collection of the data that are not known.

(iv) Again, as in the case of observational data, there is no control on the ranges
of the measured variables (the factors in a study). Indeed, the ranges found
in historical data may not be relevant for current studies.

In Section 1.6, some attention was given to modeling of relationships among vari-
ables. We introduced the notion of regression analysis, which is covered in Chapters
11 and 12 and is illustrated as a form of data analysis for designed experiments
discussed in Chapters 14 and 15. In Section 1.6, a model relating population mean
tensile strength of cloth to percentages of cotton was used for illustration, where
20 specimens of cloth represented the experimental units. In that case, the data
came from a simple designed experiment where the individual cotton percentages
were selected by the scientist.

Often both observational data and retrospective data are used for the purpose
of observing relationships among variables through model-building procedures dis-
cussed in Chapters 11 and 12. While the advantages of designed experiments
certainly apply when the goal is statistical model building, there are many areas
in which designing of experiments is not possible. Thus, observational or historical
data must be used. We refer here to a historical data set that is found in Exercise
12.5 on page 450. The goal is to build a model that will result in an equation
or relationship that relates monthly electric power consumed to average ambient
temperature x1, the number of days in the month x2, the average product purity
x3, and the tons of product produced x4. The data are the past year’s historical
data.

Exercises

1.13 A manufacturer of electronic components is in-
terested in determining the lifetime of a certain type
of battery. A sample, in hours of life, is as follows:

123, 116, 122, 110, 175, 126, 125, 111, 118, 117.

(a) Find the sample mean and median.

(b) What feature in this data set is responsible for the
substantial difference between the two?

1.14 A tire manufacturer wants to determine the in-
ner diameter of a certain grade of tire. Ideally, the
diameter would be 570 mm. The data are as follows:

572, 572, 573, 568, 569, 575, 565, 570.

(a) Find the sample mean and median.

(b) Find the sample variance, standard deviation, and
range.

(c) Using the calculated statistics in parts (a) and (b),
can you comment on the quality of the tires?

1.15 Five independent coin tosses result in
HHHHH. It turns out that if the coin is fair the
probability of this outcome is (1/2)5 = 0.03125. Does
this produce strong evidence that the coin is not fair?
Comment and use the concept of P-value discussed in
Section 1.1.
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1.16 Show that the n pieces of information in
n∑

i=1

(xi − x̄)2 are not independent; that is, show that

n∑
i=1

(xi − x̄) = 0.

1.17 A study of the effects of smoking on sleep pat-
terns is conducted. The measure observed is the time,
in minutes, that it takes to fall asleep. These data are
obtained:

Smokers: 69.3 56.0 22.1 47.6
53.2 48.1 52.7 34.4
60.2 43.8 23.2 13.8

Nonsmokers: 28.6 25.1 26.4 34.9
29.8 28.4 38.5 30.2
30.6 31.8 41.6 21.1
36.0 37.9 13.9

(a) Find the sample mean for each group.

(b) Find the sample standard deviation for each group.

(c) Make a dot plot of the data sets A and B on the
same line.

(d) Comment on what kind of impact smoking appears
to have on the time required to fall asleep.

1.18 The following scores represent the final exami-
nation grades for an elementary statistics course:

23 60 79 32 57 74 52 70 82
36 80 77 81 95 41 65 92 85
55 76 52 10 64 75 78 25 80
98 81 67 41 71 83 54 64 72
88 62 74 43 60 78 89 76 84
48 84 90 15 79 34 67 17 82
69 74 63 80 85 61

(a) Construct a stem-and-leaf plot for the examination
grades in which the stems are 1, 2, 3, . . . , 9.

(b) Construct a relative frequency histogram, draw an
estimate of the graph of the distribution, and dis-
cuss the skewness of the distribution.

(c) Compute the sample mean, sample median, and
sample standard deviation.

1.19 The following data represent the length of life in
years, measured to the nearest tenth, of 30 similar fuel
pumps:

2.0 3.0 0.3 3.3 1.3 0.4
0.2 6.0 5.5 6.5 0.2 2.3
1.5 4.0 5.9 1.8 4.7 0.7
4.5 0.3 1.5 0.5 2.5 5.0
1.0 6.0 5.6 6.0 1.2 0.2

(a) Construct a stem-and-leaf plot for the life in years
of the fuel pumps, using the digit to the left of the
decimal point as the stem for each observation.

(b) Set up a relative frequency distribution.

(c) Compute the sample mean, sample range, and sam-
ple standard deviation.

1.20 The following data represent the length of life,
in seconds, of 50 fruit flies subject to a new spray in a
controlled laboratory experiment:

17 20 10 9 23 13 12 19 18 24
12 14 6 9 13 6 7 10 13 7
16 18 8 13 3 32 9 7 10 11
13 7 18 7 10 4 27 19 16 8
7 10 5 14 15 10 9 6 7 15

(a) Construct a double-stem-and-leaf plot for the life
span of the fruit flies using the stems 0�, 0·, 1�, 1·,
2�, 2·, and 3� such that stems coded by the symbols
� and · are associated, respectively, with leaves 0
through 4 and 5 through 9.

(b) Set up a relative frequency distribution.

(c) Construct a relative frequency histogram.

(d) Find the median.

1.21 The lengths of power failures, in minutes, are
recorded in the following table.

22 18 135 15 90 78 69 98 102
83 55 28 121 120 13 22 124 112
70 66 74 89 103 24 21 112 21
40 98 87 132 115 21 28 43 37
50 96 118 158 74 78 83 93 95

(a) Find the sample mean and sample median of the
power-failure times.

(b) Find the sample standard deviation of the power-
failure times.

1.22 The following data are the measures of the di-
ameters of 36 rivet heads in 1/100 of an inch.

6.72 6.77 6.82 6.70 6.78 6.70 6.62 6.75
6.66 6.66 6.64 6.76 6.73 6.80 6.72 6.76
6.76 6.68 6.66 6.62 6.72 6.76 6.70 6.78
6.76 6.67 6.70 6.72 6.74 6.81 6.79 6.78
6.66 6.76 6.76 6.72

(a) Compute the sample mean and sample standard
deviation.

(b) Construct a relative frequency histogram of the
data.

(c) Comment on whether or not there is any clear in-
dication that the sample came from a population
that has a bell-shaped distribution.

1.23 The hydrocarbon emissions at idling speed in
parts per million (ppm) for automobiles of 1980 and
1990 model years are given for 20 randomly selected
cars.
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1980 models:
141 359 247 940 882 494 306 210 105 880
200 223 188 940 241 190 300 435 241 380

1990 models:
140 160 20 20 223 60 20 95 360 70
220 400 217 58 235 380 200 175 85 65

(a) Construct a dot plot as in Figure 1.1.

(b) Compute the sample means for the two years and
superimpose the two means on the plots.

(c) Comment on what the dot plot indicates regarding
whether or not the population emissions changed
from 1980 to 1990. Use the concept of variability
in your comments.

1.24 The following are historical data on staff salaries
(dollars per pupil) for 30 schools sampled in the eastern
part of the United States in the early 1970s.

3.79 2.99 2.77 2.91 3.10 1.84 2.52 3.22
2.45 2.14 2.67 2.52 2.71 2.75 3.57 3.85
3.36 2.05 2.89 2.83 3.13 2.44 2.10 3.71
3.14 3.54 2.37 2.68 3.51 3.37

(a) Compute the sample mean and sample standard
deviation.

(b) Construct a relative frequency histogram of the
data.

(c) Construct a stem-and-leaf display of the data.

1.25 The following data set is related to that in Ex-
ercise 1.24. It gives the percentages of the families that
are in the upper income level, for the same individual
schools in the same order as in Exercise 1.24.

72.2 31.9 26.5 29.1 27.3 8.6 22.3 26.5
20.4 12.8 25.1 19.2 24.1 58.2 68.1 89.2
55.1 9.4 14.5 13.9 20.7 17.9 8.5 55.4
38.1 54.2 21.5 26.2 59.1 43.3

(a) Calculate the sample mean.

(b) Calculate the sample median.

(c) Construct a relative frequency histogram of the
data.

(d) Compute the 10% trimmed mean. Compare with
the results in (a) and (b) and comment.

1.26 Suppose it is of interest to use the data sets in
Exercises 1.24 and 1.25 to derive a model that would
predict staff salaries as a function of percentage of fam-
ilies in a high income level for current school systems.
Comment on any disadvantage in carrying out this type
of analysis.

1.27 A study is done to determine the influence of
the wear, y, of a bearing as a function of the load, x,
on the bearing. A designed experiment is used for this
study. Three levels of load were used, 700 lb, 1000 lb,
and 1300 lb. Four specimens were used at each level,

and the sample means were, respectively, 210, 325, and
375.

(a) Plot average wear against load.

(b) From the plot in (a), does it appear as if a relation-
ship exists between wear and load?

(c) Suppose we look at the individual wear values for
each of the four specimens at each load level (see
the data that follow). Plot the wear results for all
specimens against the three load values.

(d) From your plot in (c), does it appear as if a clear
relationship exists? If your answer is different from
that in (b), explain why.

x

700 1000 1300
y1 145 250 150
y2 105 195 180
y3 260 375 420
y4 330 480 750

ȳ1 = 210 ȳ2 = 325 ȳ3 = 375

1.28 Many manufacturing companies in the United
States and abroad use molded parts as components of
a process. Shrinkage is often a major problem. Thus, a
molded die for a part is built larger than nominal size
to allow for part shrinkage. In an injection molding
study it is known that the shrinkage is influenced by
many factors, among which are the injection velocity
in ft/sec and mold temperature in ◦C. The following
two data sets show the results of a designed experiment
in which injection velocity was held at two levels (low
and high) and mold temperature was held constant at
a low level. The shrinkage is measured in cm × 104.

Shrinkage values at low injection velocity:

72.68 72.62 72.58 72.48 73.07
72.55 72.42 72.84 72.58 72.92

Shrinkage values at high injection velocity:

71.62 71.68 71.74 71.48 71.55
71.52 71.71 71.56 71.70 71.50

(a) Construct a dot plot of both data sets on the same
graph. Indicate on the plot both shrinkage means,
that for low injection velocity and high injection
velocity.

(b) Based on the graphical results in (a), using the lo-
cation of the two means and your sense of variabil-
ity, what do you conclude regarding the effect of
injection velocity on shrinkage at low mold tem-
perature?

1.29 Use the data in Exercise 1.24 to construct a box
plot.

1.30 Below are the lifetimes, in hours, of fifty 40-watt,
110-volt internally frosted incandescent lamps, taken
from forced life tests:
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919 1196 785 1126 936 918
1156 920 948 1067 1092 1162
1170 929 950 905 972 1035
1045 855 1195 1195 1340 1122
938 970 1237 956 1102 1157
978 832 1009 1157 1151 1009
765 958 902 1022 1333 811

1217 1085 896 958 1311 1037
702 923

Construct a box plot for these data.

1.31 Consider the situation of Exercise 1.28. But now
use the following data set, in which shrinkage is mea-
sured once again at low injection velocity and high in-
jection velocity. However, this time the mold temper-
ature is raised to a high level and held constant.

Shrinkage values at low injection velocity:

76.20 76.09 75.98 76.15 76.17
75.94 76.12 76.18 76.25 75.82

Shrinkage values at high injection velocity:

93.25 93.19 92.87 93.29 93.37
92.98 93.47 93.75 93.89 91.62

(a) As in Exercise 1.28, construct a dot plot with both
data sets on the same graph and identify both
means (i.e., mean shrinkage for low injection ve-
locity and for high injection velocity).

(b) As in Exercise 1.28, comment on the influence of
injection velocity on shrinkage for high mold tem-
perature. Take into account the position of the two
means and the variability around each mean.

(c) Compare your conclusion in (b) with that in (b)
of Exercise 1.28 in which mold temperature was
held at a low level. Would you say that there is
an interaction between injection velocity and mold
temperature? Explain.

1.32 Use the results of Exercises 1.28 and 1.31 to cre-
ate a plot that illustrates the interaction evident from
the data. Use the plot in Figure 1.3 in Example 1.3 as
a guide. Could the type of information found in Exer-
cises 1.28 and 1.31 have been found in an observational
study in which there was no control on injection veloc-
ity and mold temperature by the analyst? Explain why
or why not.

1.33 Group Project: Collect the shoe size of every-
one in the class. Use the sample means and variances
and the types of plots presented in this chapter to sum-
marize any features that draw a distinction between the
distributions of shoe sizes for males and females. Do
the same for the height of everyone in the class.


