Example 6.13: The average grade for an exam is 74 , and the standard deviation is 7 . If 12% of the class is given $A \mathrm{~s}$, and the grades are curved to follow a normal distribution, what is the lowest possible A and the highest possible B ?
Solution: In this example, we begin with a known area of probability, find the z value, and then determine x from the formula $x=\sigma z+\mu$. An area of 0.12 , corresponding to the fraction of students receiving A s, is shaded in Figure 6.20 . We require a z value that leaves 0.12 of the area to the right and, hence, an area of 0.88 to the left. From Table A.3, $P(Z<1.18)$ has the closest value to 0.88 , so the desired z value is 1.18 . Hence,

$$
x=(7)(1.18)+74=82.26
$$

Therefore, the lowest A is 83 and the highest B is 82 .

Figure 6.20: Area for Example 6.13.

Figure 6.21: Area for Example 6.14.

Example 6.14: Refer to Example 6.13 and find the sixth decile.

Solution: The sixth decile, written D_{6}, is the x value that leaves 60% of the area to the left, as shown in Figure 6.21. From Table A. 3 we find $P(Z<0.25) \approx 0.6$, so the desired z value is 0.25 . Now $x=(7)(0.25)+74=75.75$. Hence, $D_{6}=75.75$. That is, 60% of the grades are 75 or less.

Exercises

6.1 Given a continuous uniform distribution, show that
(a) $\mu=\frac{A+B}{2}$ and
(b) $\sigma^{2}=\frac{(B-A)^{2}}{12}$.
6.2 Suppose X follows a continuous uniform distribution from 1 to 5 . Determine the conditional probability $P(X>2.5 \mid X \leq 4)$.
6.3 The daily amount of coffee, in liters, dispensed by a machine located in an airport lobby is a random
variable X having a continuous uniform distribution with $A=7$ and $B=10$. Find the probability that on a given day the amount of coffee dispensed by this machine will be
(a) at most 8.8 liters;
(b) more than 7.4 liters but less than 9.5 liters;
(c) at least 8.5 liters.
6.4 A bus arrives every 10 minutes at a bus stop. It is assumed that the waiting time for a particular individual is a random variable with a continuous uniform distribution.

