(c) What is the probability that of 10 workers testing positive, none is a cocaine user?
5.21 The surface of a circular dart board has a small center circle called the bull's-eye and 20 pie-shaped regions numbered from 1 to 20 . Each of the pie-shaped regions is further divided into three parts such that a person throwing a dart that lands in a specific region scores the value of the number, double the number, or triple the number, depending on which of the three parts the dart hits. If a person hits the bull's-eye with probability 0.01 , hits a double with probability 0.10 , hits a triple with probability 0.05 , and misses the dart board with probability 0.02 , what is the probability that 7 throws will result in no bull's-eyes, no triples, a double twice, and a complete miss once?
5.22 According to a genetics theory, a certain cross of guinea pigs will result in red, black, and white offspring in the ratio $8: 4: 4$. Find the probability that among 8 offspring, 5 will be red, 2 black, and 1 white.
5.23 The probabilities are $0.4,0.2,0.3$, and 0.1 , respectively, that a delegate to a certain convention arrived by air, bus, automobile, or train. What is the probability that among 9 delegates randomly selected at this convention, 3 arrived by air, 3 arrived by bus, 1 arrived by automobile, and 2 arrived by train?
5.24 A safety engineer claims that only 40% of all workers wear safety helmets when they eat lunch at the workplace. Assuming that this claim is right, find the probability that 4 of 6 workers randomly chosen will be wearing their helmets while having lunch at the workplace.
5.25 Suppose that for a very large shipment of integrated-circuit chips, the probability of failure for any one chip is 0.10 . Assuming that the assumptions underlying the binomial distributions are met, find the probability that at most 3 chips fail in a random sample of 20 .
5.26 Assuming that 6 in 10 automobile accidents are due mainly to a speed violation, find the probability that among 8 automobile accidents, 6 will be due mainly to a speed violation
(a) by using the formula for the binomial distribution;
(b) by using Table A.1.
5.27 If the probability that a fluorescent light has a useful life of at least 800 hours is 0.9 , find the probabilities that among 20 such lights
(a) exactly 18 will have a useful life of at least 800 hours;
(b) at least 15 will have a useful life of at least 800 hours;
(c) at least 2 will not have a useful life of at least 800 hours.
5.28 A manufacturer knows that on average 20% of the electric toasters produced require repairs within 1 year after they are sold. When 20 toasters are randomly selected, find appropriate numbers x and y such that
(a) the probability that at least x of them will require repairs is less than 0.5 ;
(b) the probability that at least y of them will not require repairs is greater than 0.8 .

5.3 Hypergeometric Distribution

The simplest way to view the distinction between the binomial distribution of Section 5.2 and the hypergeometric distribution is to note the way the sampling is done. The types of applications for the hypergeometric are very similar to those for the binomial distribution. We are interested in computing probabilities for the number of observations that fall into a particular category. But in the case of the binomial distribution, independence among trials is required. As a result, if that distribution is applied to, say, sampling from a lot of items (deck of cards, batch of production items), the sampling must be done with replacement of each item after it is observed. On the other hand, the hypergeometric distribution does not require independence and is based on sampling done without replacement.

Applications for the hypergeometric distribution are found in many areas, with heavy use in acceptance sampling, electronic testing, and quality assurance. Obviously, in many of these fields, testing is done at the expense of the item being tested. That is, the item is destroyed and hence cannot be replaced in the sample. Thus, sampling without replacement is necessary. A simple example with playing

