Exponential Distribution

Let ' X ' be a positive continuous random variable with interval $(0, \infty)$ is said to be Exponential distribution, having its p.d.f
$f(x)=\frac{1}{\theta} e^{-\frac{x}{\theta}}$ $0 \leq x \leq \infty$

It is only one parameter θ.
If $\frac{1}{\theta}=\theta$ then it is also exponential distribution
$f(x)=\theta e^{-x \theta}$
If $\theta=1$ then it follow standard exponential distribution
$f(x)=e^{-x}$
This is also known as negative exponential distribution or single parameter exponential distribution.

Properties

i) Exponential distribution is a continuous distribution.
ii) The total area under the curve is unity.
iii) The range of the distribution is 0 to ∞.
iv) It has one parameter θ.
v) The mean of the exponential distribution is $\mathrm{E}(\mathrm{x})=\theta$.
vi) The variance of the exponential distribution is $\operatorname{Var}(\mathrm{x})=\theta^{2}$.
vii) The m.g.f of the exponential distribution is m.g.f $=(1-\theta)^{-1}$.

Prove that total area under the curve is unity

Proof: Let by definition:
Area $=\int f(x) d x$
As $\mathrm{x} \approx \exp (\theta)$
$f(x)=\frac{1}{\theta} e^{-\frac{x}{\theta}}$
Area $=\int_{0}^{\infty} \frac{1}{\theta} e^{\frac{-x}{\theta}} d x$
Area $=\frac{1}{\theta} \int_{0}^{\infty} e^{\frac{-x}{\theta}} d x$
As we know that gamma function is
$\sqrt{a} b^{a}=\int_{0}^{\infty} x^{a-1} e^{-x / b} d x$
Comparing (A) \& (B) and we get
$\mathrm{a}=1 \quad \& \mathrm{~b}=\theta$
$\sqrt{a} b^{a}=\sqrt{1} \theta^{1} \quad$ Put in (A)
Area $=\frac{1}{\theta} \theta=1$
Hence Prove

Find mean \& variance

Solution: Let by definition:
$E(x)=\int x f(x) d x=\frac{1}{\theta} \int_{0}^{\infty} x e^{\frac{-x}{\theta}} d x$
$E(x)=\frac{1}{\theta} \int_{0}^{\infty} x^{2^{-1}} e^{\frac{-x}{\theta}} d x$
As we know that gamma function is
$\sqrt{a} b^{a}=\int_{0}^{\infty} x^{a-1} e^{-x / b} d x$
Comparing (A) \& (B) and we get
$\mathrm{a}=2 \quad \& \mathrm{~b}=\theta$
$\sqrt{a} b^{a}=\sqrt{2} \theta^{2}$
Put in (A)
$E(x)=\frac{1}{\theta} \sqrt{2} \theta^{2}$
$E(x)=\theta$
$\operatorname{Var}(x)=E\left(x^{2}\right)-[E(x)]^{2}$
$E\left(x^{2}\right)=\int x^{2} f(x) d x=\frac{1}{\theta} \int_{0}^{\infty} x^{2} e^{\frac{-x}{\theta}} d x$
$E\left(x^{2}\right)=\frac{1}{\theta} \int_{0}^{\infty} x^{3-1} e^{\frac{-x}{\theta}} d x$
As we know that gamma function is
$\bar{a} b^{a}=\int_{0}^{\infty} x^{a-1} e^{-x / b} d x$
Comparing (A) \& (B) and we get
$\mathrm{a}=3 \quad \& \mathrm{~b}=\theta$
$\sqrt{a} b^{a}=\sqrt{3} \theta^{3}$
$E\left(x^{2}\right)=\frac{1}{\theta} \sqrt{3} \theta^{3}=2 \theta^{2}$
$\operatorname{Var}(x)=E\left(x^{2}\right)-[E(x)]^{2}==2 \theta^{2}-(\theta)^{2}=\theta^{2}$
Find $\mathbf{r}^{\text {th }}$ moments about origin. By use it finds mean $\&$ variance
Solution: Let by definition
$\mu_{r}=E\left(x^{r}\right)$
$\mu_{r}=\int x^{r} f(x) d x$
$\mu_{r}^{\prime}=\frac{1}{\theta} \int_{0}^{\infty} x^{r} e^{-x / \theta} d x$
$\mu_{r}^{\prime}=\frac{1}{\theta} \int_{0}^{\infty} x^{r+1-1} e^{-x / b} d x$
As we know that gamma function is
$\bar{a} b^{a}=\int_{0}^{\infty} x^{a-1} e^{-x / b} d x$
Comparing (A) \& (B) and we get
$\mathrm{a}=\mathrm{r}+1 \quad \& \mathrm{~b}=\theta$
$\bar{a} b^{a}=\sqrt{r+1} \theta^{r+1}$
Put in (A)
$\mu _ { r } ^ { \prime } = \frac { 1 } { \theta } \longdiv { r + 1 } \cdot \theta ^ { r + 1 }$
$\mu_{r}^{\prime}=\frac{1}{\theta} \sqrt{r+1} . \theta^{r+1}$
$\mu_{r}^{\prime}=\sqrt{r+1} . \theta^{r}$
Use rth moments to find mean \& variance
mean $=\mu_{1}=E(x)$
$\mu_{r}=\sqrt{r+1} . \theta^{r}$
Put $\mathrm{r}=1$ in eq (C)
$\mu_{1}^{\prime}=\sqrt{1+1} \cdot \theta^{1}=\theta$
Now, put $\mathrm{r}=2$ in eq.(C)
$\mu _ { 2 } ^ { \prime } = \sqrt { 2 + 1 } \cdot \theta ^ { 2 } = 2 \longdiv { 2 } \cdot \theta ^ { 2 } = 2 \theta ^ { 2 }$
$\mu_{2}=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2}=2 . \theta^{2}-(\theta)^{2}=\theta^{2}=\operatorname{Var}(X)$
Find m.g.f of exponential distribution. Also find mean \& variance by using m.g.f Solution: Let by definition
$M_{x}(t)=m_{x}(t)=E\left(e^{t x}\right)=\int e^{t x} f(x) d x$
As $\mathrm{x} \approx \exp (\theta)$
$f(x)=\frac{1}{\theta} e^{-\frac{x}{\theta}}$
$M_{0}(t)=\frac{1}{\theta} \int_{0}^{\infty} e^{t x} e^{-x / \theta} d x$
$M_{0}(t)=\frac{1}{\theta} \int_{0}^{\infty} e^{t x^{-x} / \theta} d x$
$M_{0}(t)=\frac{1}{\theta} \int_{0}^{\infty} e^{-x / \theta^{(1-\theta t)}} d x$
$M_{0}(t)=\frac{1}{\theta} \int_{0}^{\infty} x^{1-1} e^{-x / \theta(1-\theta t)^{-1}} d x$
$M(t)=\frac{1}{\theta} \int_{0}^{\infty} x^{1-1} e^{-x / \theta(1-\theta t)^{-1}} d x$
As we know that gamma function is
$\bar{a} b^{a}=\int_{0}^{\infty} x^{a-1} e^{-x / b} d x$
Comparing (A) \& (B) and we get
$\mathrm{a}=1 \quad \& \mathrm{~b}=\theta(1-\theta t)^{-1}$
$\bar{a} b^{a}=\overline{1}\left\{\theta(1-\theta t)^{-1}\right\}$
$m_{x}(t)=\frac{1}{\theta} \sqrt[1]{1}\left\{\theta(1-\theta t)^{-1}\right\}=(1-\theta t)^{-1}$
$\mu_{x}(t)=(1-\theta t)^{-1} \quad$ Required m.g.f.
Use it to find mean \& variance
$E(x)=\mu_{1}^{\prime}=\left[\frac{d}{d x} m_{x}(t)\right]_{t=0}$
$E(x)=\left[\frac{d}{d x}(1-\theta t)^{-1}\right]_{t=0}$
$E(x)=\left[\theta(1-\theta t)^{-2}\right]_{\ell=0}$
$E(x)=\theta$
Again differentiate eq(c) w.r.t to ' t '
$E\left(x^{2}\right)=\mu_{2}^{\prime}=\left[\frac{d^{2}}{d x^{2}} M_{x}(t)\right]_{T=0}$
$E\left(x^{2}\right)=\frac{d}{d t}\left[\frac{d}{d x} M_{x}(t)\right]_{T=0}$
$E\left(x^{2}\right)=\frac{d}{d t}\left[\theta(1-\theta t)^{-2}\right]_{T=0}$
$E\left(x^{2}\right)=\left[-2 \theta(1-\theta t)^{-3}(-\theta)\right]_{T=0}$
$E\left(x^{2}\right)=\mu_{2}^{\prime}=2 \theta^{2}$
$\mu_{2}=\mu_{2}^{\prime}-\left(\mu_{1}^{\prime}\right)^{2}=2 . \theta^{2}-(\theta)^{2}=\theta^{2}=\operatorname{Var}(X)$

Find cummulent generating function

Solution: Let by definition

$$
\begin{aligned}
& k(t)=\log \left[M_{x}(t)\right] \\
& k(t)=\log \left[(1-\theta t)^{-1}\right] \\
& k(t)=-\log (1-\theta t)
\end{aligned}
$$

Therefore
$\log (1-x)=-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4} \ldots$
$k(t)=-\left[-(\theta t)-\frac{(\theta t)^{2}}{2}-\frac{(\theta t)^{3}}{3}-\frac{(\theta t)^{4}}{4} \ldots\right]$
$k(t)=\left[\theta t+\theta^{2} \frac{t^{2}}{2}+\theta^{3} \frac{t^{3}}{3}+\theta^{4} \frac{t^{4}}{4} \cdots\right]$
$k(t)=\left[\theta \frac{t}{1!}+\theta^{2} \frac{t^{2}}{2!}+2 \theta^{3} \frac{t^{3}}{3!}+6 \theta^{4} \frac{t^{4}}{4!} \cdots\right]$
As we know general expression of cummulent
$k(t)=\left[k_{1} \frac{t}{1!}+k^{2} \frac{t^{2}}{2}+k_{3} \frac{t^{3}}{3}+k_{4} \frac{t^{4}}{4} \cdots\right]$
By comparing (A) \& (B) and we get
$k_{1}=\mu_{1}^{\prime}=\theta$
$k_{2}=\mu_{2}=\theta^{2}=\operatorname{Var}(X)$
$k_{3}=\mu_{3}=2 \theta^{3}$
$k_{4}=\mu_{4}^{\prime}=6 \theta^{4}$
$\mu_{4}=k_{4}+3 k_{2}^{2}=6 \theta^{4}+3\left(\theta^{2}\right)^{2}$
$\mu_{4}=6 \theta^{4}+3 \theta^{4}=9 \theta^{4}$
Moment Ratio
$\beta_{1}=\frac{\mu_{3}{ }^{2}}{\mu_{2}{ }^{3}}=\frac{\left(2 \theta^{3}\right)^{2}}{\left(\theta^{2}\right)^{3}}=\frac{4 \theta^{6}}{\theta^{6}}=4$
$\mu_{3}=2 \theta^{3}$ It is positive so distribution positively skewed
$\beta_{2}=\frac{\mu_{4}}{\mu_{2}{ }^{2}}=\frac{9 \theta^{4}}{\left(\theta^{2}\right)^{2}}=\frac{9 \theta^{4}}{\theta^{4}}=9$
As $\beta_{2}>3$ so the distribution is leptokurtic.

Find mode of exponential distribution

Solution: Let by definition
If following two conditions are satisfied then mode exists.
$f\left(x^{\prime}\right)=0 \quad$ or $\quad \frac{d}{d x} \log f(x)=0$
$f\left(x^{\prime}\right)<0 \quad$ or $\quad \frac{d^{2}}{d x^{2}} \log f(x)<0$
As $\mathrm{x} \approx \exp (\theta)$
$f(x)=\frac{1}{\theta} e^{-\frac{x}{\theta}}$ $0 \leq x \leq \infty$

Taking log on both sides
$\log f(x)=\log \left[\frac{1}{\theta} e^{-x / \theta}\right]$
$\log f(x)=\left[\log \left(\frac{1}{\theta}\right)-\frac{x}{\theta} \log e\right]$
$:-\log _{e}=1$
$\log f(x)=\left[\log \left(\frac{1}{\theta}\right)-\frac{x}{\theta}\right]$
Differentiate w.r.t to ' x '
$\frac{d}{d x} \log f(x)=\frac{d}{d x}\left[\log \left(\frac{1}{\theta}\right)-\frac{x}{\theta}\right]$
$\frac{d}{d x} \log f(x)=\left[-\frac{1}{\theta}\right]$
It means that mode of exponential distribution does not exist.

State \& prove Memory less property of Exponential Distribution

Statement:
If ' x ' follows the negative exponential distribution with p.d.f $f(x)=\theta e^{-x \theta} \quad 0 \leq x \leq \infty$ then by definition
$P\left[\frac{x>(a+b)}{x>a}\right]=P(x>b) \quad$ by law of compliment
$\frac{1-P[x \leq(a+b)]}{1-P(x \leq a)}=\frac{1-F(a+b)}{1-F(a)}$
Let ' x ' be continuous random variable having the p.d.f $f(x)=\theta e^{-x \theta}$ its c.d.f is
$F(x)=\int_{0}^{x} \theta e^{-x \theta} d x$
$F(x)=\left.\theta \frac{e^{-x \theta}}{-\theta}\right|_{0} ^{x}$
$F(x)=1-e^{-x \theta}$
$F(a)=1-e^{-a \theta}$
$F(a+b)=1-e^{-(a+b) \theta}$
$F(b)=1-e^{-b \theta}$
Put in (i)
$\frac{1-F(a+b)}{1-F(a)}=\frac{1-\left(1-e^{-(a+b) \theta}\right)}{1-\left(1-e^{-a \theta}\right)}$
$\frac{1-F(a+b)}{1-F(a)}=\frac{1-1+e^{-(a+b) \theta}}{1-1+e^{-a \theta}}$
$\frac{1-F(a+b)}{1-F(a)}=\frac{e^{-(a+b) \theta}}{e^{-a \theta}}$
$\frac{1-F(a+b)}{1-F(a)}=e^{-a \theta-b \theta+a \theta}=e^{-b \theta}$
$\frac{1-F(a+b)}{1-F(a)}=1-\left(1-e^{-b \theta}\right)=1-F(b)=1-P(x \leq b)=P(x>b)$

$2^{\text {nd }}$ Method

Suppose A be the event such that $(x>a) \& B$ is another event such that $x>(a+b)$. i.e B is a subset of A. Then we consider
$P\left[\frac{B}{A}\right]=\frac{P(A \cap B)}{P(A)}=\frac{P(B)}{P(A)}$
Because B is a subset of A , replacing $\mathrm{A}=\mathrm{x}>\mathrm{a} \& \mathrm{~B}=\mathrm{x}>\mathrm{a}+\mathrm{b}$ we get
$P\left[\frac{x>(a+b)}{x>a}\right]=\frac{P(x>a+b)}{P(x>a)}$
Then c.d.f of Negative Exp.Distribution
$P(X \leq x))=\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{x} \theta e^{-x \theta} d x=\left.\theta \frac{e^{-x \theta}}{-\theta}\right|_{0} ^{x}=1-e^{-x \theta}$
Then by compliment we know that

$$
\begin{aligned}
& P(X \leq x))=1-e^{-x \theta} \\
& P(x>a))=1-P(X \leq x)=1-1-e^{-a \theta}=e^{-a \theta} \\
& \text { Similarly } \\
& P(x>a+b))==e^{-(a+b) \theta} \\
& \frac{P(x>a+b)}{P(x>a)}=\frac{e^{-(a+b) \theta}}{e^{-a \theta}}=e^{-a \theta-b \theta+a \theta}=e^{-b \theta}=P(x>b)
\end{aligned}
$$

Hence, Memory less property is proved.

