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In this paper, we propose a B-spline method for solving the one-dimensional Bratu’s problem.The numerical
approximations to the exact solution are computed and then compared with other existing methods. The
effectiveness and accuracy of the B-spline method is verified for different values of the parameter, below
its critical value, where two solutions occur.
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1. Introduction

We consider the Liouville–Bratu–Gelfand equation [5,13,17,18]

�u + λeu = 0, x ∈ �

u = 0, x ∈ ∂�
(1)

where λ > 0 is a physical parameter and � is a bounded domain in RN . We restrict our attention
to the one-dimensional case, where � = (0, 1). This is known in the literature as the classical
Bratu’s problem [13,17]:

u′′(x) + λeu = 0, 0 < x < 1

u(0) = u(1) = 0.
(2)
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An extended summary of history of the equation can be found in Refs [13,17]. The exact solution
of this boundary value problem (BVP) is given by:

u(x) = −2 ln

[
cos h((x − 1/2) × θ/2)

cosh(θ/4)

]
,

where θ is the solution of θ = √
2λ cos h(θ/4).

The exponential term guarantees nonlinearity and the bifurcation phenomenon that follows up.
In particular for different values of λ, one can verify the following:

• for λ > λc, the problem has no solutions
• for λ = λc, the problem has a unique solution
• for 0 < λ < λc, the problem has two bifurcated solutions, where the critical value

λc = 3.513830719 has the solution of 1 = (1/4)
√

2λc sin h(θ/4) [2–4,10].

Such two-point BVPs are widely used in science and engineering to describe complicated physical
and chemical models. Bratu’s problem is also used in a large variety of applications such as
the fuel ignition model of the thermal combustion theory, the model of thermal reaction process
[5,15,16,18–20], the Chandrasekhar model of the expansion of the universe, questions in geometry
and relativity about the Chandrasekhar model [5,16,17–20], chemical reaction theory, radiative
heat transfer and nanotechnology [12].

Several analytical and numerical methods, such as finite difference method [5,18], decompo-
sition method [8], Laplace transform decomposition method [14,19], Adomian decomposition
method [20], homotopy analysis method [15], weighted residual method [1], differential trans-
formation method [11] and He’s variational method [12] have been used to solve the Bratu’s
problem.

Our intention is to use B-spline method for solving the aforesaid problem. This method has been
applied with success in several BVPs with different types of boundary conditions [6]. In this work,
third-degree B-spline functions have been successfully implemented to the Bratu’s problem. The
obtained results are numerically compared with the corresponding results from other methods
given in literature [8,14]. The numerical results given by the present method show that a good
accuracy can be obtained. As shown in text, application of this method is very simple and clear.

2. The third-degree B-splines

In this section, third-degree B-splines are used to construct numerical solutions to nonlinear
Bratu’s problem that is given in Equation (2). A detailed description of B-spline functions can be
found in Ref. [7].

The third-degree B-splines are defined as:

B0(x) = 1

6h3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x3 0 ≤ x < h

−3x3 + 12hx2 − 12h2x + 4h3 h ≤ x < 2h

3x3 − 24hx2 + 60h2x − 44h3 2h ≤ x < 3h

−x3 + 12hx2 − 48h2x + 64h3 3h ≤ x < 4h

, (3)

Bi−1(x) = B0(x − (i − 1)h), i = . . . ,−4, −3, −2, −1, 0, 1, 2, 3, 4, . . .

To solve nonlinear Bratu’s problem, Bi, B
′
i and B ′′

i evaluated at the nodal points are needed. Their
coefficients are tabulated in Table 1.
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Table 1. Values of Bi, B
′
i and B ′′

i .

xi xi+1 xi+2 xi+3 xi+4

Bi 0 1/6 4/6 1/6 0
B ′

i 0 3/6h 0/6h –3/6h 0
B ′′

i 0 6/6h2 –12/6h2 6/6h2 0

3. B-spline solutions for Bratu’s problem

Let

S(x) =
n−1∑

j=−3

CjBj (x) (4)

be an approximate solution of Equation (2), where Cj are unknown real coefficients and Bj(x) are
third-degree B-spline functions. Let x0, x1, . . . , xn be n + 1 grid points in the interval [a, b] so
that xi = a + ih, i = 1, 2, . . . , n, x0 = a, xn = b, h = (b − a)/n. The approximate solution
of Equation (4) is substituted in Equation (2) and evaluated at the grid points x0, x1, . . . , xn. This
leads to a nonlinear system of equations of the form:

n−1∑
j=−3

CjB
′′
j (xi) + λ exp

⎛
⎝ n−1∑

j=−3

CjBj (xi)

⎞
⎠ = 0, i = 0, 1, . . . , n (5)

n−1∑
j=−3

CjBj (x0) = 0, for x = 0, (6)

n−1∑
j=−3

CjBj (xn) = 0, for x = 1. (7)

The values of the spline functions at the knots {xi}ni=0 are determined using Table 1 with
substitution in Equations (5) to (7). Thus, a system of n + 3 nonlinear equations in the (n + 3)

unknowns C−3, C−2, . . . , Cn−1 is obtained.
This system may be written in the matrix vector form as follows:

AC + λB = 0, (8)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

6

4

6

1

6
0 0 0 · · · 0

6

6h2

−12

6h2

6

6h2
0 0 0 · · · 0

0
6

6h2

−12

6h2

6

6h2
0 0 · · · 0

...
...

...
...

...
...

. . .
...

0 0 0 0 · · · 6

6h2

−12

6h2

6

6h2

0 0 0 0 · · · 1

6

4

6

1

6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
eC−3+4C−2+C−1

eC−2+4C−1+C0

eC−1+4C0+C1

...

eCn−4+4Cn−3+Cn−2

eCn−3+4Cn−2+Cn−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

C = [
C−3 C−2 C−1 · · · Cn−3 Cn−2 Cn−1

]T
.

The approximate solution (Equation (4)) is obtained by solving the nonlinear system using
Levenberg–Marquardt optimization method [9] and Matlab 6.5.

4. Numerical results

In this section, we illustrate the numerical techniques discussed previously, by applying our method
to the planar one-dimensional Bratu’s problem for three specific values of λ, which guarantee the
existence of two locally unique solutions. In particular, having used λ = 1, 2 and 3.51, we have
constructed comparison tables to indicate the accuracy of our method compared with the exact
solution as well as the other methods’ solutions. The numerical results are shown in Figure 1. All
calculations have been performed using Matlab 6.5.

In Table 2, we have tabulated the exact solution together with the solutions given by Laplace
method, Decomposition and B-spline methods are as exhibited before, in the case of λ = 1. In
Table 3, we have calculated the absolute error of each method compared with the exact solution.
As one clearly observes, the magnitude of the errors remains uniform throughout the unit interval,
whereas in the Laplace method the magnitude of the error increases when x exceeds 0.5.

In Table 4, we have tabulated the exact solution together with the solutions given by Laplace
method, Decomposition and B-spline methods are as exhibited before, in the case of λ = 2. In

Figure 1. Results for λ = 1, 2 and 3.51(n = 21).
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Table 2. Laplace and decomposition method approximation and B-spline method of Bratu’s problem for the case λ = 1.

x Exact solution Laplace [17] Decomposition [16] B-spline

0.1 0.0498467900 0.0498448112 0.0471616875 0.0498438103
0.2 0.0891899350 0.0891859956 0.0871680000 0.0891844690
0.3 0.1176090956 0.1176032408 0.1177614375 0.1176017599
0.4 0.1347902526 0.1347825488 0.1369920000 0.1347817559
0.5 0.1405392142 0.1405297477 0.1435546875 0.1405303221
0.6 0.1347902526 0.1347791409 0.1369920000 0.1347817559
0.7 0.1176090956 0.1175965240 0.1177614375 0.1176017599
0.8 0.0891899350 0.0891899350 0.0871680000 0.0891844690
0.9 0.0498467900 0.0498348222 0.0471616875 0.0498438103

Table 3. The absolute errors for Laplace and decomposition method approximation and B-spline method of Bratu’s
problem for the case λ = 1.

x Laplace [17] Decomposition [16] B-spline

0.1 1.978800000003445e–6 2.685102500000001e–3 2.979700000002583e–6
0.2 3.939399999999815e–6 2.021935000000003e–3 5.465999999995641e–6
0.3 5.854800000010263e–6 1.523418999999915e–4 7.335699999999612e–6
0.4 7.703799999980721e–6 2.201747400000009e–3 8.496699999999136e–6
0.5 9.466499999999378e–6 3.015473299999988e–3 8.892100000018610e–6
0.6 1.111169999998274e–5 2.201747400000009e–3 8.496699999999136e–6
0.7 1.257160000001090e–5 1.523418999999915e–4 7.335699999999612e–6
0.8 1.347531e–5 2.021935000000003e–3 5.465999999995641e–6
0.9 1.196780000000536e–5 2.685102500000001e–3 2.979700000002583e–6

Table 4. Laplace and decomposition method approximation and B-spline method of Bratu’s problem for the case λ = 2.

x Exact solution Laplace [17] Decomposition [16] B-spline

0.1 0.1144107440 0.1122817141 0.0991935000 0.1143935651
0.2 0.2064191156 0.2022094162 0.1917440000 0.2063865190
0.3 0.2738793116 0.2676925058 0.2679915000 0.2738344125
0.4 0.3150893646 0.3070874506 0.3183360000 0.3150365062
0.5 0.3289524214 0.3193532294 0.3359375000 0.3288968072
0.6 0.3150893646 0.3041598403 0.3183360000 0.3150365062
0.7 0.2738793116 0.2619458909 0.2679915000 0.2738344125
0.8 0.2064191156 0.1940413072 0.1917440000 0.2063865190
0.9 0.1144107440 0.1035373785 0.0991935000 0.1143935651

Table 5. The absolute errors for Laplace and decomposition method approximation and B-spline method of Bratu’s
problem for the case λ = 2.

x Laplace [17] Decomposition [16] B-spline

0.1 2.129029899999996e–3 1.521724399999999e–2 1.717889999999778e–5
0.2 4.209699400000017e–3 1.467511560000001e–2 3.259660000001774e–5
0.3 6.186805800000028e–3 5.887811600000015e–3 4.489909999999542e–5
0.4 8.001913999999999e–3 3.246635400000031e–3 5.285839999996655e–5
0.5 9.599191999999979e–3 6.985078600000028e–3 5.561419999999817e–5
0.6 1.092952429999999e–2 3.246635400000031e–3 5.285839999996655e–5
0.7 1.193342070000003e–2 5.887811600000015e–3 4.489909999999542e–5
0.8 1.237780840000000e–2 1.467511560000001e–2 3.259660000001774e–5
0.9 1.087336550000000e–2 1.521724399999999e–2 1.717889999999778e–5
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Table 5, we have calculated the absolute error of each method compared with the exact solution.As
one clearly observes, the magnitude of the errors using the B-spline method becomes significantly
smaller and remains uniform throughout the unit interval.

Finally in Tables 6 and 7, we have exhibited comparisons between the exact solution and
B-spline method solutions in the case of λ = 3.51. Naturally, one can observe that the magnitude
of the errors increase as λ increases, due to the involvement of λ with the nonlinear term in
Equation (2). The effect of the number of mesh points, n, is also shown (for the case λ = 2). As
clearly seen in Table 8, the numerical results become better as the value of n increases.

Table 6. B-spline method of Bratu’s problem for the case λ = 3.51.

x Exact solution B-spline

0.1 0.395805699 0.357388461
0.2 0.739097410 0.664283874
0.3 1.008758260 0.902930838
0.4 1.182536660 1.055419782
0.5 1.242742690 1.107989815
0.6 1.182536660 1.055419782
0.7 1.008758260 0.902930838
0.8 0.739097410 0.664283874
0.9 0.395805699 0.357388461

Table 7. The absolute errors B-spline method of Bratu’s problem for the case λ = 3.51.

x B-spline

0.1 3.84172369550e–2
0.2 7.48135367780e–2
0.3 1.05827422823e–1
0.4 1.27116880861e–1
0.5 1.34752877607e–1
0.6 1.27116880864e–1
0.7 1.05827422823e–1
0.8 7.48135367760e–2
0.9 3.84172369530e–2

Table 8. Numerical solutions of different values of nfor the case λ = 2.

x Exact solution n = 21 n = 61 n = 91

0.1 0.1144107440 0.1143420832 0.1143935652 0.1144073490
0.2 0.2064191156 0.2062888337 0.2063865191 0.2064126752
0.3 0.2738793116 0.2736998743 0.2738344125 0.2738704396
0.4 0.3150893646 0.3148781299 0.3150365063 0.3150789192
0.5 0.3289524214 0.3287301762 0.3288968073 0.3289414316
0.6 0.3150893646 0.3148781299 0.3150365063 0.3150789192
0.7 0.2738793116 0.2736998743 0.2738344125 0.2738704396
0.8 0.2064191156 0.2062888337 0.2063865191 0.2064126752
0.9 0.1144107440 0.1143420832 0.1143935652 0.1144073490
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5. Conclusions

In this paper, B-spline method is developed for the approximate solution of nonlinear Bratu’s
problem. The numerical results obtained by using the method described in this study give accept-
able results. We have concluded that the numerical results converge to the exact solution when h

goes to zero. It has been observed that the B-spline method yields much better approximations to
the exact solutions of Bratu’s problem than those shown by Khuri [14] and Deeba et al. [8].
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